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Microbial communities Anouk Zancarini -Tools in molecular data analysis

Current practice in the normalization of microbiome count data is inefficient in the statistical sense. For apparently historical reasons, the common approach is either to use simple proportions (which does not address heteroscedasticity) or to use

Microbiota data analysis

q Define microbiome and state microbiome importance q Identify differences between metabarcoding and metagenomics q Explain how microbiota data are generated (including bias) q Explain and preform data pre-processing q Explain how microbiota data are analysed q Define, perform and interpret alpha-diversity q Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization q Define, perform and interpret beta-diversity q Generate and interpret multivariate data analyses q Perform and interpret appropriate statistical tests q Visualize and interpret microbial community composition

Learning objectives

What is microbiome?

Ø W h o i s t h e r e ? W h a t a r e t h e y d o i n g ? Ø D i f f e r e n t a p p r o a c h e s b a s e d o n D N A

• M e t a g e n o m i c s = a l l D N A

• M e t a b a r c o d i n g = o n e s p e c i f i c u b i q u i t o u s g e n e w i t h c o n s e r v e d a n d v a r i a b l e r e g i o n s ( 1 6 S r R N A , 1 8 S r R N A o r I T S )

Main biological questions and methods
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Microbiota data analysis

q Define microbiome and state microbiome importance q Identify differences between metabarcoding and metagenomics q Explain how microbiota data are generated (including bias) q Explain and preform data pre-processing q Explain how microbiota data are analysed q Define, perform and interpret alpha-diversity q Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization q Define, perform and interpret beta-diversity q Generate and interpret multivariate data analyses q Perform and interpret appropriate statistical tests q Visualize and interpret microbial community composition Defining the core Arabidopsis thaliana root microbiome Derek S. Lundberg 1,2 *, Sarah L. Lebeis 1 *, Sur Herrera Paredes 1 *, Scott Yourstone 1,3 *, Jase Gehring 1 , Stephanie Malfatti 4 , Julien Tremblay 4 , Anna Engelbrektson 4 {, Victor Kunin 4 {, Tijana Glavina del Rio 4 , Robert C. Edgar 5 , Thilo Eickhorst 6 , Ruth E. Ley 7 , Philip Hugenholtz 4,8 , Susannah Green Tringe 4 & Jeffery L. Dangl 1,2,9,10,11 Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing the rhizosphere (immediately surrounding the root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation [1][2][3] . Colonization of the root occurs despite a sophisticated plant immune system 4,5 , suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We Microbial community structure differs across plant species 12,13 , and there are reports of host-genotype-dependent differences in patterns of microbial associations 14,15 . However, the divergent methods used in those studies relied on small sample sizes and low-resolution phylotyping techniques potentially confounded by off-target sequences and chimaeric amplicons. We developed a robust experimental system to sample repeatedly the root microbiome using high-throughput sequencing. Our results confirm many of the general conclusions from earlier studies and, because of controlled experimental design and the power of deep sequencing, provide a key step towards the definition of this microbiome's functional capacity and the host genes that potentially contribute to microbial association phenotypes. Such plant genes would constitute major agronomic targets.

Learning objectives

Requirements

We used 454 pyrosequencing to sequence 16S ribosomal RNA (rRNA) gene amplicons for DNA prepared from eight diverse, inbred A. thaliana accessions. Plants were grown from surface-sterile seeds in climate-controlled conditions in two diverse soils, respectively termed

Process overview

Step 1: From sample to sequences Sampling Sterilized rice seeds were germinated and grown under controlled greenhouse conditions in soil collected from three rice fields across the Central Valley of California (SI Appendix, Fig. S1). We analyzed the bacterial and archaeal microbiomes from three separate rhizocompartments: the rhizosphere, rhizoplane, and endosphere (Fig. 1A). Because the root microbiome has been shown to correlate with the developmental stage of the plant (10), the root-associated microbial communities were sampled at 42 d (6 wk), when rice plants from all genotypes were well-established in the soil but still in their vegetative phase of growth. For our study, the rhizosphere compartment was com- Bulk soil Rhizosphere § Three compartments q Bulk soil q Rhizosphere soil q Endosphere LETTER doi:10.1038/nature11237

Defining the core Arabidopsis thaliana root microbiome Derek S. Lundberg 1,2 *, Sarah L. Lebeis 1 *, Sur Herrera Paredes 1 *, Scott Yourstone 1,3 *, Jase Gehring 1 , Stephanie Malfatti 4 , Julien Tremblay 4 , Anna Engelbrektson 4 {, Victor Kunin 4 {, Tijana Glavina del Rio 4 , Robert C. Edgar 5 , Thilo Eickhorst 6 , Ruth E. Ley 7 , Philip Hugenholtz 4,8 , Susannah Green Tringe 4 & Jeffery L. Dangl 1,2,9,10,11 Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing the rhizosphere (immediately surrounding the root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation 1-3 . Colonization of the root occurs despite a sophisticated plant immune system 4,5 , suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plantmicrobe interactions derived from complex soil communities.

Roots influence the rhizosphere by altering soil pH, soil structure, oxygen availability, antimicrobial concentration, and quorum-sensing mimicry, and by providing an energy source of dead root material and carbon-rich exudates 6,7 . The microbiota inhabiting this niche can both benefit and undermine plant health; shifting this balance is of agronomic interest. Mutualistic microbes may provide the plant with physiologically accessible nutrients and phytohormones that improve plant growth, may suppress phytopathogens or may help plants withstand heat, salt and drought 8,9 . The rhizosphere community is a subset of soil microbes that are subsequently filtered via niche utilization attributes and interactions with the host to inhabit the endophytic compartment 10 (EC). Although a variety of microbes may enter and become transient endophytes, those consistently found inside roots are candidate symbionts or stealthy pathogens 10,11 . Notably, Arabidopsis and other Brassicaceae are not well colonized by arbuscular mycorrhizal fungi, implying that other microorganisms may fill this niche.

Microbial community structure differs across plant species 12,13 , and there are reports of host-genotype-dependent differences in patterns of microbial associations 14,15 . However, the divergent methods used in those studies relied on small sample sizes and low-resolution phylotyping techniques potentially confounded by off-target sequences and chimaeric amplicons. We developed a robust experimental system to sample repeatedly the root microbiome using high-throughput sequencing. Our results confirm many of the general conclusions from earlier studies and, because of controlled experimental design and the power of deep sequencing, provide a key step towards the definition of this microbiome's functional capacity and the host genes that potentially contribute to microbial association phenotypes. Such plant genes would constitute major agronomic targets.

We used 454 pyrosequencing to sequence 16S ribosomal RNA (rRNA) gene amplicons for DNA prepared from eight diverse, inbred A. thaliana accessions. Plants were grown from surface-sterile seeds in climate-controlled conditions in two diverse soils, respectively termed Mason Farm and Clayton (Supplementary Table 1; detailed in Supplementary Information). For each soil, we assayed multiple individuals from each A. thaliana accession grown from sterile seeds in both soils across independent full-factorial biological replicates, in which all genotypes and bulk soils (pots without a plant) for a given soil type were grown in parallel (Supplementary Table 2). We isolated separate rhizosphere and EC fractions from individual plant root systems (Supplementary Fig. 1 and Supplementary Table 2). We established 1114F and 1392R as our primer pair (Supplementary Information and Supplementary Fig. 2). Using an otupipe-based pipeline (http://drive5.com/otupipe/), we grouped sequences into 97%-identical operational taxonomic units (OTUs), reduced noise and removed chimaeras. We determined technical reproducibility thresholds to conclude that OTUs defined by $25 reads in $5 samples (hereafter 25 3 5) are individually 'measurable OTUs' 16,17 (Supplementary Figs 2 and 10). All data reported here are from one run of our otupipe-based pipeline (Supplementary Fig. 3 and Supplementary Database 1).

Excluding additional control samples, we ribotyped 1,248 samples comprising 111 bulk soil, 613 rhizosphere and 524 EC samples, generating 9,787,070 high-quality reads (Supplementary Figs 3 and4a-c). After removing plant-sequence-derived OTUs, we obtained a table of usable OTU read counts per sample containing 6,387,407 reads distributed across 18,783 OTUs. We normalized this table of usable reads by rarefying to 1,000 reads per sample (Supplementary Database 2a) or, alternatively, by dividing the reads per OTU in a sample by the sum of usable reads in that sample, resulting in a table
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Roots influence the rhizosphere by altering soil pH, soil structure, oxygen availability, antimicrobial concentration, and quorum-sensing mimicry, and by providing an energy source of dead root material and carbon-rich exudates 6,7 . The microbiota inhabiting this niche can both benefit and undermine plant health; shifting this balance is of agronomic interest. Mutualistic microbes may provide the plant with physiologically accessible nutrients and phytohormones that improve plant growth, may suppress phytopathogens or may help plants withstand heat, salt and drought 8,9 . The rhizosphere community is a subset of soil microbes that are subsequently filtered via niche utilization attributes and interactions with the host to inhabit the endophytic compartment 10 (EC). Although a variety of microbes may enter and become transient endophytes, those consistently found inside roots are candidate symbionts or stealthy pathogens 10,11 . Notably, Arabidopsis and other Brassicaceae are not well colonized by arbuscular mycorrhizal fungi, implying that other microorganisms may fill this niche.

Microbial community structure differs across plant species 12,13 , and there are reports of host-genotype-dependent differences in patterns of microbial associations 14,15 . However, the divergent methods used in those studies relied on small sample sizes and low-resolution phylotyping techniques potentially confounded by off-target sequences and chimaeric amplicons. We developed a robust experimental system to sample repeatedly the root microbiome using high-throughput sequencing. Our results confirm many of the general conclusions from earlier studies and, because of controlled experimental design and the power of deep sequencing, provide a key step towards the definition of this microbiome's functional capacity and the host genes that potentially contribute to microbial association phenotypes. Such plant genes would constitute major agronomic targets.

We used 454 pyrosequencing to sequence 16S ribosomal RNA (rRNA) gene amplicons for DNA prepared from eight diverse, inbred A. thaliana accessions. Plants were grown from surface-sterile seeds in climate-controlled conditions in two diverse soils, respectively termed Mason Farm and Clayton (Supplementary Table 1; detailed in Supplementary Information). For each soil, we assayed multiple individuals from each A. thaliana accession grown from sterile seeds in both soils across independent full-factorial biological replicates, in which all genotypes and bulk soils (pots without a plant) for a given soil type were grown in parallel (Supplementary Table 2). We isolated separate rhizosphere and EC fractions from individual plant root systems (Supplementary Fig. 1 and Supplementary Table 2). We established 1114F and 1392R as our primer pair (Supplementary Information and Supplementary Fig. 2). Using an otupipe-based pipeline (http://drive5.com/otupipe/), we grouped sequences into 97%-identical operational taxonomic units (OTUs), reduced noise and removed chimaeras. We determined technical reproducibility thresholds to conclude that OTUs defined by $25 reads in $5 samples (hereafter 25 3 5) are individually 'measurable OTUs' 16,17 (Supplementary Figs 2 and 10). All data reported here are from one run of our otupipe-based pipeline (Supplementary Fig. 3 and Supplementary Database 1).

Excluding additional control samples, we ribotyped 1,248 samples comprising 111 bulk soil, 613 rhizosphere and 524 EC samples, generating 9,787,070 high-quality reads (Supplementary Figs 3 and4a-c). After removing plant-sequence-derived OTUs, we obtained a table of usable OTU read counts per sample containing 6,387,407 reads distributed across 18,783 OTUs. We normalized this table of usable reads by rarefying to 1,000 reads per sample (Supplementary Database 2a) or, alternatively, by dividing the reads per OTU in a sample by the sum of usable reads in that sample, resulting in a table Ø D o n 't f o r g e t t h a t t h e r e a r e b i a s I t w i l l b e d i f f i c u l t t o

Process overview

Amplification

• A s s e s s t h e e n t i r e m i c r o b i a l c o m m u n i t y

• O b t a i n s a m e a m o u n t o f s e q u e n c e s p e r s a m p l e

Step 1: From sample to sequences

Anouk Zancarini -Tools in molecular data analysis -March 2021

Microbiota data analysis

q Define microbiome and state microbiome importance q Identify differences between metabarcoding and metagenomics q Explain how microbiota data are generated (including bias) q Explain and preform data pre-processing q Explain how microbiota data are analysed q Define, perform and interpret alpha-diversity q Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization q Define, perform and interpret beta-diversity q Generate and interpret multivariate data analyses q Perform and interpret appropriate statistical tests q Visualize and interpret microbial community composition

Learning objectives

Process overview

Step 2: From sequences to microbiota data sets § De-multiplex (i. Defining the core Arabidopsis thaliana root microbiome

Process overview

We previously introdu Algorithm (DADA), a amplicon errors without fine-scale variation in 45 putting few false positive

Here we present DAD github.com/benjjneb/dada and improves the DADA a ity-aware model of Illumin inferred by dividing ampl the error model (Online applicable to any genetic l the full amplicon workflo ence, chimera identificati

We compared DADA2 UPARSE, an OTU-constr We present the open-source software package DADA2 for modeling and correcting Illumina-sequenced amplicon errors (https://github.com/benjjneb/dada2). DADA2 infers sample sequences exactly and resolves differences of as little as 1 nucleotide. In several mock communities, DADA2 identified

DADA2: High-resolution sample inference from Illumina amplicon data

BRIEF COMMUNICATIONS

We previously introduced the Divisive Amplicon Denoising Algorithm (DADA), a model-based approach for correcting amplicon errors without constructing OTUs 5 . DADA identified fine-scale variation in 454-sequenced amplicon data while outputting few false positives 2,5 .

Here we present DADA2, an open-source R package (https:// github.com/benjjneb/dada2, Supplementary Software) that extends and improves the DADA algorithm. 

Process overview
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Step 2: From sequences to microbiota data sets Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing the rhizosphere (immediately surrounding the root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation 1-3 . Colonization of the root occurs despite a sophisticated plant immune system 4,5 , suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more Microbial community structure differs across plant species 12,13 , and there are reports of host-genotype-dependent differences in patterns of microbial associations 14,15 . However, the divergent methods used in those studies relied on small sample sizes and low-resolution phylotyping techniques potentially confounded by off-target sequences and chimaeric amplicons. We developed a robust experimental system to sample repeatedly the root microbiome using high-throughput sequencing. Our results confirm many of the general conclusions from earlier studies and, because of controlled experimental design and the power of deep sequencing, provide a key step towards the definition of this microbiome's functional capacity and the host genes that poten- 

Taxonomic assignment

Strain -Ø D a t a p r e -p r o c e s s i n g : a l w a y s a t r a d e -o f f b e t w e e n q u a l i t y a n d q u a n t i t y Ø O T U O p e r a t i o n a l T a x o n o m i c U n i t s ≠ A S V A m p l i c o n S e q u e n c e V a r i a n t s Ø G o f r o m f a s t a f i l e s t o t h r e e t a b l e s • o c c u r r e n c e t a b l e • t a x o n o m i c a s s i g n a t i o n • s a m p l e m e t a d a t a

Step 2: From sequences to microbiota data sets 

Microbiota data analysis

q Define microbiome and state microbiome importance q Identify differences between metabarcoding and metagenomics q Explain how microbiota data are generated (including bias) q Explain and preform data pre-processing q Explain how microbiota data are analysed q Define, perform and interpret alpha-diversity q Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization q Define, perform and interpret beta-diversity q Generate and interpret multivariate data analyses q Perform and interpret appropriate statistical tests q Visualize and interpret microbial community composition

Learning objectives

Part 1

• Definitions

• Microbiome importance • Scientific questions

• Differences between metagenomics and metabarcoding

What is microbiome? Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing the rhizosphere (immediately surrounding the root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation 1-3 . Colonization of the root occurs despite a sophisticated plant immune system 4,5 , suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plantmicrobe interactions derived from complex soil communities.

Roots influence the rhizosphere by altering soil pH, soil structure, oxygen availability, antimicrobial concentration, and quorum-sensing mimicry, and by providing an energy source of dead root material and carbon-rich exudates 6,7 . The microbiota inhabiting this niche can both benefit and undermine plant health; shifting this balance is of agronomic interest. Mutualistic microbes may provide the plant with physiologically accessible nutrients and phytohormones that improve plant growth, may suppress phytopathogens or may help plants withstand heat, salt and drought 8,9 . The rhizosphere community is a subset of soil microbes that are subsequently filtered via niche utilization attributes and interactions with the host to inhabit the endophytic compartment 10 (EC). Although a variety of microbes may enter and become transient endophytes, those consistently found inside roots are Microbial community structure differs across plant species 12,13 , and there are reports of host-genotype-dependent differences in patterns of microbial associations 14,15 . However, the divergent methods used in those studies relied on small sample sizes and low-resolution phylotyping techniques potentially confounded by off-target sequences and chimaeric amplicons. We developed a robust experimental system to sample repeatedly the root microbiome using high-throughput sequencing. Our results confirm many of the general conclusions from earlier studies and, because of controlled experimental design and the power of deep sequencing, provide a key step towards the definition of this microbiome's functional capacity and the host genes that potentially contribute to microbial association phenotypes. Such plant genes would constitute major agronomic targets.

We used 454 pyrosequencing to sequence 16S ribosomal RNA (rRNA) gene amplicons for DNA prepared from eight diverse, inbred A. thaliana accessions. Plants were grown from surface-sterile seeds in climate-controlled conditions in two diverse soils, respectively termed Mason Farm and Clayton (Supplementary Table 1; detailed in Supplementary Information). For each soil, we assayed multiple individuals from each A. thaliana accession grown from sterile seeds in both soils across independent full-factorial biological replicates, in which all genotypes and bulk soils (pots without a plant) for a given soil type were grown in parallel (Supplementary Table 2). We isolated separate rhizosphere and EC fractions from individual plant root systems (Supplementary Fig. 1 and Supplementary Table 2). We established 1114F and 1392R as our primer pair (Supplementary Information and Supplementary Fig. 2). Using an otupipe-based pipeline (http://drive5.com/otupipe/), we grouped sequences into 97%-identical operational taxonomic units (OTUs), reduced noise and removed chimaeras. We determined technical reproducibility thresholds to conclude that OTUs defined by $25 reads in $5 samples (hereafter 25 3 5) are individually 'measurable OTUs' 16,17 (Supplementary Figs 2 and 10). All data reported here are from one run of our otupipe-based pipeline (Supplementary Fig. 3 and Supplementary Database 1).

Excluding additional control samples, we ribotyped 1,248 samples comprising 111 bulk soil, 613 rhizosphere and 524 EC samples, generating 9,787,070 high-quality reads (Supplementary Figs 3 and4a-c). After removing plant-sequence-derived OTUs, we obtained a table of usable OTU read counts per sample containing 6,387,407 reads distributed across 18,783 OTUs. We normalized this table of Alpha-diversity § Diversity within one sample/ecosystem (usually calculated at feature level) § Alpha-diversity indices q Richness represents the number of species observed (S obs ) q Chao1 estimates total richness (S 1 ) q Pielou's evenness provide information about equity in species abundance q Shannon provides information about both richness and evenness (H') H' = -Σ p i ln p i Sobs i=1 p i proportion of individuals belonging to the i th species 54

Alpha-diversity

Anouk Zancarini -Tools in molecular data analysis -March 2021 § Diversity within one sample/ecosystem (usually calculated at feature level) § Alpha-diversity indices q Richness represents the number of species observed (S obs ) q Chao1 estimates total richness (S 1 ) q Pielou's evenness provide information about equity in species abundance q Shannon provides information about both richness and evenness (H') § Statistical tests q Normal distribution: t-test or ANOVA q No normal distribution: Mann Whitney or Kruskal Wallis 55

Alpha-diversity
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Ø S e q u e n c i n g d e p t h = > d i d I c a t c h a l l t h e d i v e r s i t y ?

Alpha-diversity
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Learning objectives

Occurrence table ~100 samples ~10,000 features § n << p § Sparse data (~80% of 0)

Filter the data in order to decrease low quality or uninformative features 59

Microbiota data properties
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Is a zero value a true zero, meaning that this feature is not present in the sample?

N O T A l w a y s !

Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing the rhizosphere (immediately surrounding the root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation 1-3 . Colonization of the root occurs despite a sophisticated plant immune system 4,5 , suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plantmicrobe interactions derived from complex soil communities. Roots influence the rhizosphere by altering soil pH, soil structure, oxygen availability, antimicrobial concentration, and quorum-sensing mimicry, and by providing an energy source of dead root material and carbon-rich exudates 6,7 . The microbiota inhabiting this niche can both benefit and undermine plant health; shifting this balance is of agronomic interest. Mutualistic microbes may provide the plant with physiologically accessible nutrients and phytohormones that improve plant growth, may suppress phytopathogens or may help plants withstand heat, salt and drought 8,9 . The rhizosphere community is a subset of soil microbes that are subsequently filtered via niche utilization attributes and interactions with the host to inhabit the endophytic compartment 10 (EC). Although a variety of microbes may enter and become transient endophytes, those consistently found inside roots are Microbial community structure differs across plant species 12,13 , and there are reports of host-genotype-dependent differences in patterns of microbial associations 14,15 . However, the divergent methods used in those studies relied on small sample sizes and low-resolution phylotyping techniques potentially confounded by off-target sequences and chimaeric amplicons. We developed a robust experimental system to sample repeatedly the root microbiome using high-throughput sequencing. Our results confirm many of the general conclusions from earlier studies and, because of controlled experimental design and the power of deep sequencing, provide a key step towards the definition of this microbiome's functional capacity and the host genes that potentially contribute to microbial association phenotypes. Such plant genes would constitute major agronomic targets.

We used 454 pyrosequencing to sequence 16S ribosomal RNA (rRNA) gene amplicons for DNA prepared from eight diverse, inbred A. thaliana accessions. Plants were grown from surface-sterile seeds in climate-controlled conditions in two diverse soils, respectively termed Mason Farm and Clayton (Supplementary Table 1; detailed in Supplementary Information). For each soil, we assayed multiple individuals from each A. thaliana accession grown from sterile seeds in both soils across independent full-factorial biological replicates, in which all genotypes and bulk soils (pots without a plant) for a given soil type were grown in parallel (Supplementary Table 2). We isolated separate rhizosphere and EC fractions from individual plant root systems (Supplementary Fig. 1 and Supplementary Table 2). We established 1114F and 1392R as our primer pair (Supplementary Information and Supplementary Fig. 2). Using an otupipe-based pipeline (http://drive5.com/otupipe/), we grouped sequences into 97%-identical operational taxonomic units (OTUs), reduced noise and removed chimaeras. We determined technical reproducibility thresholds to conclude that OTUs defined by $25 reads in $5 samples (hereafter 25 3 5) are individually 'measurable OTUs' 16,17 (Supplementary Figs 2 and 10). All data reported here are from one run of our otupipe-based pipeline (Supplementary Fig. 3 and Supplementary Database 1).

Excluding additional control samples, we ribotyped 1,248 samples comprising 111 bulk soil, 613 rhizosphere and 524 EC samples, generating 9,787,070 high-quality reads (Supplementary Figs 3 and4a-c). After removing plant-sequence-derived OTUs, we obtained a 

Data filtering Raw occurrence data

Alpha-diversity § Different normalisation methods available (depend on your downstream analysis)

q Total Sum Normalisation: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100 

seq_1

Microbiota data normalisation

Anouk Zancarini -Tools in molecular data analysis -March 2021 § Different normalisation methods available q Total Sum Normalisation: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100 q Rarefy: randomly subsampling each sample to the lowest read depth of any sample LETTER doi:10.1038/nature11237

Defining the core Arabidopsis thaliana root microbiome Derek S. Lundberg 1,2 *, Sarah L. Lebeis 1 *, Sur Herrera Paredes 1 *, Scott Yourstone 1,3 *, Jase Gehring 1 , Stephanie Malfatti 4 , Julien Tremblay 4 , Anna Engelbrektson 4 {, Victor Kunin 4 {, Tijana Glavina del Rio 4 , Robert C. Edgar 5 , Thilo Eickhorst 6 , Ruth E. Ley 7 , Philip Hugenholtz 4,8 , Susannah Green Tringe 4 & Jeffery L. Dangl 1,2,9,10,11 Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing the rhizosphere (immediately surrounding the root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation 1-3 . Colonization of the root occurs despite a sophisticated plant immune system 4,5 , suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host Microbial community structure differs across plant species 12,13 , and there are reports of host-genotype-dependent differences in patterns of microbial associations 14,15 . However, the divergent methods used in those studies relied on small sample sizes and low-resolution phylotyping techniques potentially confounded by off-target sequences and chimaeric amplicons. We developed a robust experimental system to sample repeatedly the root microbiome using high-throughput sequencing. Our results confirm many of the general conclusions from earlier studies and, because of controlled experimental design and the power of deep sequencing, provide a key step towards the definition of this microbiome's functional capacity and the host genes that potentially contribute to microbial association phenotypes. Such plant genes would constitute major agronomic targets.

We used 454 pyrosequencing to sequence 16S ribosomal RNA (rRNA) gene amplicons for DNA prepared from eight diverse, inbred A. thaliana accessions. Plants were grown from surface-sterile seeds in Ø Rarefied at 1000 reads per sample

Microbiota data normalisation

Anouk Zancarini -Tools in molecular data analysis -March 2021 REMARK: When the sequencing depth is not enough and you have big differences in library sizes (~x10), it is better to rarefy your data than calculate percentage q Total Sum Normalisation: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100 q Rarefy: randomly subsampling each sample to the lowest read depth of any sample q DESeq-VS: a variance stabilizing transformation (used for RNA-seq analysis) q edgeR-TMM: a trimmed mean of M-values normalisation

R ES EAR CH

Open Access

Normalization and microbial differential abundance strategies depend upon data characteristics

Sophie Weiss 1 , Zhenjiang Zech Xu 2 , Shyamal Peddada 3 , Amnon Amir 2 , Kyle Bittinger 4 , Antonio Gonzalez 2 , Catherine Lozupone 5 , Jesse R. Zaneveld 6 , Yoshiki Vázquez-Baeza 7 , Amanda Birmingham 8 , Embriette R. Hyde 2 and Rob Knight 2,7,9* Abstract Background: Data from 16S ribosomal RNA (rRNA) amplicon sequencing present challenges to ecological and statistical interpretation. In particular, library sizes often vary over several ranges of magnitude, and the data contains many zeros. Although we are typically interested in comparing relative abundance of taxa in the ecosystem of two or more groups, we can only measure the taxon relative abundance in specimens obtained from the ecosystems.

Because the comparison of taxon relative abundance in the specimen is not equivalent to the comparison of taxon relative abundance in the ecosystems, this presents a special challenge. Second, because the relative abundance of taxa in the specimen (as well as in the ecosystem) sum to 1, these are compositional data. Because the compositional data are constrained by the simplex (sum to 1) and are not unconstrained in the Euclidean space, many standard methods of analysis are not applicable. Here, we evaluate how these challenges impact the performance of existing normalization methods and differential abundance analyses.

Results: Effects on normalization: Most normalization methods enable successful clustering of samples according to biological origin when the groups differ substantially in their overall microbial composition. Rarefying more clearly clusters samples according to biological origin than other normalization techniques do for ordination Ø D i f f e r e n t n o r m a l i s a t i o n m e t h o d s f o r s a m p l e c o m p a r i s o n • F o r c o m m u n i t y l e v e l a n a l y s i s ( T S N o r r a r e f y i n g )

• F o r d i f f e r e n t i a l a b u n d a n c e t e s t i n g ( D E S e q -V S o r e d g e R -T M M )

Ø B e t t e r t o u s e r a r e f y i n g w h e n s e q u e n c i n g d e p t h i s n o t e n o u g h a n d t h e r e a r e b i g d i f f e r e n c e s i n l i b r a r y s i z e s

Microbiota data normalisation

Anouk Zancarini -Tools in molecular data analysis -March 2021

In the tutorial, look at: o 5. Data filtering and normalisation

Practice time: data filtering and normalisation Tutorial link:

Microbiota data analysis

q Define microbiome and state microbiome importance q Identify differences between metabarcoding and metagenomics q Explain how microbiota data are generated (including bias) q Explain and preform data pre-processing q Explain how microbiota data are analysed q Define, perform and interpret alpha-diversity q Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization q Define, perform and interpret beta-diversity q Generate and interpret multivariate data analyses q Perform and interpret appropriate statistical tests q Visualize and interpret microbial community composition

Learning objectives

Process overview 

Microbiota data analysis

q Define microbiome and state microbiome importance q Identify differences between metabarcoding and metagenomics q Explain how microbiota data are generated (including bias) q Explain and preform data pre-processing q Explain how microbiota data are analysed q Define, perform and interpret alpha-diversity q Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization q Define, perform and interpret beta-diversity q Generate and interpret multivariate data analyses q Perform and interpret appropriate statistical tests q Visualize and interpret microbial community composition Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing the rhizosphere (immediately surrounding the root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremedia-Microbial community structure differs across plant species 12,13 , and there are reports of host-genotype-dependent differences in patterns of microbial associations 14,15 . However, the divergent methods used in those studies relied on small sample sizes and low-resolution phylotyping techniques potentially confounded by off-target sequences and 

Microbiota data analysis

q Define microbiome and state microbiome importance q Identify differences between metabarcoding and metagenomics q Explain how microbiota data are generated (including bias) q Explain and preform data pre-processing q Explain how microbiota data are analysed q Define, perform and interpret alpha-diversity q Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization q Define, perform and interpret beta-diversity q Generate and interpret multivariate data analyses q Perform and interpret appropriate statistical tests q Visualize and interpret microbial community composition

Learning objectives

Microbiota data analysis assignment 

For

  § Gene ubiquitous § With conserve and variable regions For Bacteria analysis: 16S rRNA gene § Gene code for a RNA part of the ribosome

  , Jessica (2014): Overview of data generation, processing and analysis using QIIME. Figshare. https://doi.org/10.6084/m9.figshare.902219Tools in molecular data analysis -March 2021

  e. assign a sequence to a sample) § Remove adaptor and barcode § Remove low quality reads (i.e. filtering step) sequences to microbiota data sets § De-multiplex (i.e. assign a sequence to a sample) § Remove adaptor and barcode § Remove low quality reads (i.e. filtering step) § Remove chimeras 31 Anouk Zancarini -Tools in molecular data analysis -March 2021 During PCR multiple sequence can combine to form a hybrid Chimeras must be removed sequences to microbiota data sets § De-multiplex (i.e. assign a sequence to a sample) § Remove adaptor and barcode § Remove low quality reads (i.e. filtering step) sequences to microbiota data sets § De-multiplex (i.e. assign a sequence to a sample) § Remove adaptor and barcode § Remove low quality reads (i.e. filtering step) § Remove chimeras § Merged pair-end reads § Sequence clustering in

  DADA2 implements a new quality-aware model of Illumina amplicon errors. Sample composition is inferred by dividing amplicon reads into partitions consistent with sequences to microbiota data sets Anouk Zancarini -Tools in molecular data analysis -March 2021 Sequencing data Pre-processing § A new pre-processing pipeline DADA2 § Using Divisive Amplicon Denoising Algorithm (DADA) to correct amplicon errors without constructing OTU (i.e. Amplicon Sequence Variants or ASV)

  assignTaxonomy() assign taxonomy to the ASV Step 2: From sequences to microbiota data sets Anouk Zancarini -Tools in molecular data analysis -March 2021 Sequencing data SILVA database h i g h q u a l i t y r i b o s o m a l R N A d a t a b a s e s LETTER doi:10.1038/nature11237 Defining the core Arabidopsis thaliana root microbiome Derek S. Lundberg 1,2 *, Sarah L. Lebeis 1 *, Sur Herrera Paredes 1 *, Scott Yourstone 1,3 *, Jase Gehring 1 , Stephanie Malfatti 4 , Julien Tremblay 4 , Anna Engelbrektson 4 {, Victor Kunin 4 {, Tijana Glavina del Rio 4 , Robert C. Edgar 5 , Thilo Eickhorst 6 , Ruth E. Ley 7 , Philip Hugenholtz 4,8 , Susannah Green Tringe 4 & Jeffery L. Dangl 1,2,9,10,11 

  Tools in molecular data analysis -March 2021 Alpha-diversity § Diversity within one sample/ecosystem § Alpha-diversity indices q Richness represents the number of species observed (S obs ) Tools in molecular data analysis -March 2021 https://bigdata_microbiome.presenterswall.nl/ Alpha-diversity Anouk Zancarini -Tools in molecular data analysis -March 2021 Bulk soil Rhizosphere Endosphere LETTER doi:10.1038/nature11237 Defining the core Arabidopsis thaliana root microbiome Derek S. Lundberg 1,2 *, Sarah L. Lebeis 1 *, Sur Herrera Paredes 1 *, Scott Yourstone 1,3 *, Jase Gehring 1 , Stephanie Malfatti 4 , Julien Tremblay 4 , Anna Engelbrektson 4 {, Victor Kunin 4 {, Tijana Glavina del Rio 4 , Robert C. Edgar 5 , Thilo Eickhorst 6 , Ruth E. Ley 7 , Philip Hugenholtz 4,8 , Susannah Green Tringe 4 & Jeffery L. Dangl 1,2,9,10,11 

  Diversity within one sample/ecosystem (usually calculated at feature level) § Alpha-diversity indices q Richness represents the number of species observed (S obs ) q Chao1 estimates total richness (S 1 ) S 1 = S obs + ___ F in molecular data analysis -March 2021 REMARK: Difference between observed richness and Chao1give you information about the sequencing depth (enough if Richness = Chao1; not enough if Richness << Chao1) REMARK: Chao1 can only be calculated on raw data § Diversity within one sample/ecosystem (usually calculated at feature level) § Alpha-diversity indices q Richness represents the number of species observed (S obs ) q Chao1 estimates total richness (S 1 ) q Pielou's evenness provide information about equity in species abundance 53

Ø

  S h o u l d b e c a l c u l a t e d o n r a w d a t a Ø O b s e r v e d r i c h n e s s = n u m b e r o f f e a t u r e s o b s e r v e d

ØIn

  M i c r o b i o t a d a t a u s u a l l y s p a r s e = > n e e d f i l t e r i n g e s p e c i a l l y w h e n s e q u e n c i n g d e p t h w a s n o t e n o u g h Ø U n e v e n l i b r a r y s i z e = > n e e d n o r m a l i s a t i o n f o r s a m p l e c o m p a r i s o nMicrobiota data propertiesAnouk Zancarini -Tools in molecular data analysis -March 2021 microbiota data sets to data visualisation Anouk Zancarini -Tools in molecular data analysis -March 2021

Ø

  D i v e r s i t y b e t w e e n t w o s a m p l e s / e c o s y s t e m s Ø D i f f e r e n t d i s t a n c e m e a s u r e m e n t s :• J a c c a r d ( o c c u r r e n c e t a b l e : p r e s e n c e / a b s e n c e )• B r a y -C u r t i s ( o c c u r r e n c e t a b l e : a b u n d a n c e )• U n i f r a c ( o c c u r r e n c e t a b l e a n d p h y l o g e n y ) Ø V i s u a l i s a t i o n u s i n g o r d i n a t i o n p l o t ( P C O A )Anouk Zancarini -Tools in molecular data analysis -March 2021 scienceparkstudygroup.github.io/mic robiome-lesson/06-beta-diversity/index.htmlAnouk Zancarini -Tools in molecular data analysis -March 2021

  Tools in molecular data analysis -March 2021 LETTER doi:10.1038/nature11237 Defining the core Arabidopsis thaliana root microbiome Derek S. Lundberg 1,2 *, Sarah L. Lebeis 1 *, Sur Herrera Paredes 1 *, Scott Yourstone 1,3 *, Jase Gehring 1 , Stephanie Malfatti 4 , Julien Tremblay 4 , Anna Engelbrektson 4 {, Victor Kunin 4 {, Tijana Glavina del Rio 4 , Robert C. Edgar 5 , Thilo Eickhorst 6 , Ruth E. Ley 7 , Philip Hugenholtz 4,8 , Susannah Green Tringe 4 & Jeffery L. Dangl 1,2,9,10,11

Figure 2 |

 2 Figure 2 | OTUs that differentiate the rhizosphere from soil. A, Heat map sho counts from the rarefied OTU table (Supplementary Database 2a; log 2 -tran from each of the 256 rhizosphere-and differentiating OTUs present across rep Samples and OTUs are clustered on th Curtis similarities (group-average linkag relates colours to the untransformed re Different hues of the same colour corre different replicates as in Fig. 1. B, The GLMM predictions (best linear unbiase predictors) is represented by bar heigh predicted as EC enriched (red, up) or E (blue, down). b, OTUs higher in the EC Farm soil than Clayton (brown, up) or Clayton soil than Mason Farm (gold, do in a that are not differentially affected b are shown there in darker hues. c, OTU as rhizosphere enriched (as in a). d, OTU rhizosphere in one soil type (as in b). C, Histograms showing the distribution present in the 778 measurable OTUs in

  Bacteria § Co-occurrence analyses § Functional prediction (e.g. PICRUST) § New sequencing technologies q Long reads for a better identification q Tools in molecular data analysis -March 2021 § Scientific context, research question and experimental design § Data properties (i.e. sparsity and library size) § Data filtering and normalisation § Alpha-diversity § Beta-diversity § Microbial composition § Conclusion

  

  

  

  

  

  

  

  

  

  

  

  

  

  

data Observation metadata 37 Step 2: From sequences to microbiota data sets

  

			Taxonomic assignment
	§ Looking for sequence homology with ref databases Data sets output Example of the bacteria Escherichia coli O157:H7 Process overview Example of the bacteria Escherichia coli O157:H7 -> ASV_6287 § Accuracy depends on quality and completeness of the database § Sample metadata § Occurrence data Sequencing data Domain Bacteria Domain Bacteria
	Check quality Check quality		Sample metadata § Observation metadata (taxonomic assignation) Kingdom Eubacteria Kingdom Eubacteria
	Filtering Filtering		Phylum Phylum	Proteobacteria Proteobacteria
	Merging Denoising ASV table Denoising ASV table Merging	~100 samples	Class Class Order Order	Gammaproteobacteria Gammaproteobacteria Enterobacterales Enterobacterales
	Chimeras Chimeras		Ribosomal Data Project database Family Family	Enterobacteriaceae Enterobacteriaceae	Greengenes database
	removal Taxonomy removal Taxonomy		Genus Genus	Escherichia-Shigella Undefined
	assignation assignation		Species Species	Escherichia coli Undefined
	Microbiota data		Strain	O157:H7	38 39

~10,000 features Occurrence

from sequences to microbiota data sets Script on Canvas or link:

  

	o Getting ready
	o Inspect read quality profiles
	o Filter and trim
	o Learn the error rates
	o Sample inference
	o Merge paired reads
	o Construct sequence table
	o Remove chimeras
	o Track reads through the pipeline
	o Assign taxonomy
	Tutorial link:

Anouk Zancarini -Tools in molecular data analysis -March 2021

In the tutorial, look at: http://benjjneb.github.io/dada2/tutorial.html

Practice time:

https://scienceparkstudygroup.github.io/microbiomelesson/02-data-preprocess-fastq-to-asv/index.html

number of reads per sample 65 Microbiota data properties: library size per sample

  table of usable OTU read counts per sample containing 6,387,407 reads distributed across 18,783 OTUs. We normalized this table of Library size is the total

	§					
		seq_1 seq_2 seq_3	(…)	seq_p total_reads
	sample_1 500	80	20		5	10,000
	sample_2 500	80	20		5	1,000
	sample_3	50	8	2		0	1,000
	(…)					
	sample_n 2000	0	2		0	10,000

Anouk Zancarini -Tools in molecular data analysis -March 2021 https://bigdata_microbiome.presenterswall.nl/

  dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100 q Rarefy: randomly subsampling each sample to the lowest read depth of any sample

		Microbiota data normalisation Microbiota data normalisation Microbiota data normalisation Microbiota data normalisation Microbiota data normalisation
	q Total Sum Normalisation: dividing the reads for each OTU in a sample by q Total Sum Normalisation: dividing the reads for each OTU in a sample by q Total Sum Normalisation: dividing the reads for each OTU in a sample by q Total Sum Normalisation: dividing the reads for each OTU in a sample by
	the total number of reads in that sample and multiplying by 100 the total number of reads in that sample and multiplying by 100 the total number of reads in that sample and multiplying by 100 the total number of reads in that sample and multiplying by 100
	seq_2 seq_3 seq_1 seq_2 seq_3 seq_1 seq_2 seq_3 q Rarefy: randomly subsampling each sample to the lowest read depth of (…) seq_p total_reads (…) seq_p total_reads (…) q Rarefy: randomly subsampling each sample to the lowest read depth of seq_p total_reads any sample any sample
	sample_1 500 sample_1 500 sample_1 500	80 80 80	20 20 20		5 5 5	10,000 10,000 10,000
	sample_2 500 sample_2 500 sample_2 500 seq_1 seq_2 seq_3 80 20 80 20 80 20 seq_1 seq_2 seq_3 seq_1 seq_2 seq_3	(…) (…) (…)	5 5 5 seq_p total_reads 1,000 1,000 1,000 seq_p total_reads seq_p total_reads
	sample_3 sample_3 sample_3 sample_1 500 50 50 50 sample_1 500 sample_1 500	8 8 8 80 80 80	2 2 2 20 20 20		0 0 0 5 5 5	1,000 1,000 1,000 10,000 10,000 10,000
	sample_2 500 sample_2 500 sample_2 500	80 80 80	20 20 20		5 5 5	1,000 1,000 1,000
	sample_3 sample_3 sample_3	50 50 50	8 8 8	2 2 2		0 0 0	1,000 1,000 1,000
		seq_1 seq_2 seq_3 seq_1 seq_2 seq_3 seq_1 seq_2 seq_3	(…) (…) (…)	seq_p total_reads seq_p total_reads seq_p total_reads
	sample_1 sample_2 sample_3 sample_1 sample_2 sample_1 0.05 seq_1 seq_2 seq_3 0.008 0.002 seq_1 seq_2 seq_3 seq_1 seq_2 seq_3 sample_3 sample_2 0.5 0.08 0.02 sample_1 sample_1 sample_1 52 8 1 sample_3 0.05 0.008 0.002 sample_2 sample_2 500 80 20 sample_2 500 80 20	(…) (…) (…)	100 100 seq_p total_reads 0.0005 seq_p total_reads seq_p total_reads 100 0.005 100 1,000 1,000 0 1,000 100 0 100 1,000 5 1,000 5 1,000
	sample_3 sample_3 sample_3	50 50	8 8	2 2		0 0	1,000 1,000 1,000
							69 70 71 72 73 74

Anouk Zancarini -Tools in molecular data analysis -March 2021 § Different normalisation methods available Anouk Zancarini -Tools in molecular data analysis -March 2021 § Different normalisation methods available Anouk Zancarini -Tools in molecular data analysis -March 2021 § Different normalisation methods available Anouk Zancarini -Tools in molecular data analysis -March 2021 § Different normalisation methods available Anouk Zancarini -Tools in molecular data analysis -March 2021 § Different normalisation methods available q Total Sum Normalisation:

  Scientific context, research question and experimental design § Data properties (i.e. sparsity and library size) § Data filtering and normalisation § Alpha-diversity § Beta-diversity § Microbial composition § Conclusion § Rmarkdown report in pdf § Think about reproducibility • What have you done? • Why? § Include, describe and interpret your plots & statistical results

	D e t a i l e d i n s t r u c t i o n s a v a i l a b l e o n C a n v a s

104

Anouk Zancarini -Tools in molecular data analysis -March 2021 §

Derek S. Lundberg 1,2 *, Sarah L. Lebeis 1 *, Sur Herrera Paredes 1 *, Scott Yourstone 1,3 *, Jase Gehring 1 , Stephanie Malfatti 4 , Julien Tremblay 4 , Anna Engelbrektson 4 {, Victor Kunin 4 {, Tijana Glavina del Rio 4 , Robert C. Edgar 5 , Thilo Eickhorst 6 , Ruth E. Ley 7 , Philip Hugenholtz 4,8 , Susannah Green Tringe 4 & Jeffery L. Dangl 1,2,9,10,11

Anouk Zancarini -Tools in molecular data analysis -March 2021

https://scienceparkstudygroup.github.io/ microbiome-lesson/03-data-explorationand-properties/index.html Anouk Zancarini -Tools in molecular data analysis -March 2021

https://scienceparkstudygroup.github.io/ microbiome-lesson/05-data-filtering-andnormalisation/index.html Anouk Zancarini -Tools in molecular data analysis -March 2021

How microbiota data are generated?

Test your knowledge…

• Please answer the 3 questions in the following quiz https://bigdata_microbiome.presenterswall.nl/

Sequencing depth

Anouk Zancarini -Tools in molecular data analysis -March 2021 REMARK: If the sequencing depth is not enough, it will be difficult to compare difference between samples for low counts. Therefore, it will be better to remove features that have only low counts.

Process overview

Data filtering Raw occurrence data 61

Step 3: From microbiota data sets to data visualisation Beta-diversity § Diversity between two samples/ecosystems (feature level) § Calculate distances between samples q Jaccard (presence/absence in occurrence table) q Bray-Curtis (occurrence table) q Unifrac (occurrence table and phylogeny)

q Unweighted q Weighted 84 Anouk Zancarini -Tools in molecular data analysis -March 2021

Beta-diversity § Diversity between two samples/ecosystems (feature level) § Calculate distances between samples § Visualisation (ordination plot) Lundberg et al. 2012 than 50% senescent leaves). Additional control samples from the reference genotype Col-0 harvested from four independent digs of Mason Farm soil underscored the reproducibility of these bacterial community profiles (Supplementary Fig. 6). Together, these data demonstrate that the interaction of diverse soil communities with plants determines the assembly of the rhizosphere, leading to biome. By con extent in one so Importantly, 3 blue bars). So significantly ov hypergeometri (Fig. 2B,c than 50% senescent leaves). Additional control samples from the reference genotype Col-0 harvested from four independent digs of Mason Farm soil underscored the reproducibility of these bacterial community profiles (Supplementary Fig. 6). Together, these data demonstrate that the interaction of diverse soil communities with plants determines the assembly of the rhizosphere, leading to biome. B extent in Importan blue bar significan hypergeo (Fig. 2B Fig. 5b). Samples harvested at different developmental stages clustered together, indicating that this variable does not have a major effect on overall community composition (Fig. 1 and Supplementary Fig. 5a,b; yng versus old, where yng refers to the time of appearance of an inflorescence meristem and old refers to fruiting plants with greater than 50% senescent leaves). Additional control samples from the reference genotype Col-0 harvested from four independent digs of Mason Farm soil underscored the reproducibility of these bacterial community profiles (Supplementary Fig. 6). Together, these data demonstrate that the interaction of diverse soil communities with plants determines the assembly of the rhizosphere, leading to and Supplementary tary Fig. 5). Of these a; dark and light red these 164, 97 were (Fig. 2B Beta-diversity § Diversity between two samples/ecosystems (feature level) § Calculate distances between samples § Visualisation (ordination plot) § Statistical comparison among sets of communities q PERMANOVA: ANOVA type method based on sample to sample distances to compare within and between group distances & P-value by permutation q ANOSIM: Similar to Permanova, but analysis is performed on ranked distances 92 Anouk Zancarini -Tools in molecular data analysis -March 2021

Beta-diversity