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Microbiota data analysis

q Define microbiome and state microbiome importance
q Identify differences between metabarcoding and metagenomics
q Explain how microbiota data are generated (including bias)
q Explain and preform data pre-processing
q Explain how microbiota data are analysed
q Define, perform and interpret alpha-diversity
q Address sparsity, under-sampling and uneven sampling depth 

using data filtering and normalization
q Define, perform and interpret beta-diversity
q Generate and interpret multivariate data analyses
q Perform and interpret appropriate statistical tests
q Visualize and interpret microbial community composition

Learning objectives



What is microbiome?
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Microbiota is the assemblage of microorganisms present in a defined environment.
Microbiota includes archaea, bacteria, fungi, protists and viruses.

Metagenome is the collection of genomes and genes from the members of a
microbiota.

Microbiome refers to the entire habitat, including the microorganisms (bacteria,
archaea, lower and higher eurkaryotes, and viruses), their genomes (i.e., genes),
and the surrounding environmental conditions.

Definitions
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Human microbiome: our second genome
§ ~10 times more cells than you
§ ~100 times more genes than you
§ ~1000s different species

The Human Microbiome Project

§ Characterize human microbiome
§ Analyse its role in human health and disease

Human microbiome links to health
§ Influence metabolism
§ Modulate drug interaction
§ Link to irritable bowel syndrome, cancer,

mental health, obesity, diabetes, asthma, etc.

Microbiome importance

Adapted from Appanna V.D. (2018) The Human Microbiome:
The Origin. In: Human Microbes - The Power Within. Springer, Singapore

Grince and Segre, 2012 6Anouk Zancarini – Tools in molecular data analysis – March 2021



Microbiome importance

Plant microbiome can improve plant growth and health
§ Biofertilisation
§ Phytostimulation
§ Rhizoremediation
§ Improve stress tolerance

Plant drives its microbiome
§ Root exudates

(nutrients and signalling molecules)

Soil

Root exudates
Dead root material

Soil

Microbial abundance, taxonomic 
and functional diversity

Growth
Nutrition
Stress tolerance
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What is microbiome and its importance?

Test your knowledge…

• Please answer the 3 questions in the following quiz
https://bigdata_microbiome.presenterswall.nl/
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Microbiota data analysis

q Define microbiome and state microbiome importance
q Identify differences between metabarcoding and metagenomics
q Explain how microbiota data are generated (including bias)
q Explain and preform data pre-processing
q Explain how microbiota data are analysed
q Define, perform and interpret alpha-diversity
q Address sparsity, under-sampling and uneven sampling depth 

using data filtering and normalization
q Define, perform and interpret beta-diversity
q Generate and interpret multivariate data analyses
q Perform and interpret appropriate statistical tests
q Visualize and interpret microbial community composition

Learning objectives



Main biological questions and methods

Challenge:Most of the microbes 
are not cultivable
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Main biological questions
Ø Who is there?
Ø What are they doing?

From culturing area to sequencing area



Main biological questions and methods
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Metabarcoding
Metagenomics 

Metatranscriptomics Metaproteomics
Metabolomics 

Main biological questions
Ø Who is there?
Ø What are they doing?



Main biological questions and methods
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Main biological questions
Ø Who is there?
Ø What are they doing?
Ø Which microbe is associated with a specific phenotype? (i.e. feature selection)

Statistical approaches
& machine learning

Microbial data1 trait



Main biological questions and methods
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Main biological questions
Ø Who is there?
Ø What are they doing?
Ø Which microbe is associated with a specific phenotype? (i.e. feature selection)
Ø Unravel how microbiome is recruited? 

Metagenomics

Microbiome

Root exudates
Metabolomics

(LC-MS & GC-MS)

Plant genetics
GWAS/QTL

Plant gene expression
RNA-seq

Multi-omics approach
and data integration



Main biological questions and methods
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Metabarcoding
Metagenomics 

Metatranscriptomics Metaproteomics
Metabolomics 

Main biological questions
Ø Who is there?
Ø What are they doing?



Methods to assess microbial composition and diversity

Metagenomics
(shotgun sequencing)

Metabarcoding
(amplicon sequencing)

§ Sequence all DNA

§ Higher cost

§ Higher complexity

§ Environmental contamination

§ Functional information

§ Sequence only specific gene

§ Cheaper

§ Less complex to analyse

§ Primer amplification bias

§ No functional information

§ Difficult to identify species

16Anouk Zancarini – Tools in molecular data analysis – March 2021



Requirements
§ Gene ubiquitous
§ With conserve and variable regions

For Bacteria analysis: 16S rRNA gene
§ Gene code for a RNA part of the ribosome

For Fungi analysis: 18S rRNA gene or ITS

Yarza et al. 2014

Adapted from Shahi et al 2017
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A targeted approach: metabarcoding/amplicon sequencing
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Main biological questions and methods

Test your knowledge…

• Please answer the 2 questions in the following quiz
https://bigdata_microbiome.presenterswall.nl/
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Microbiota data analysis

q Define microbiome and state microbiome importance
q Identify differences between metabarcoding and metagenomics
q Explain how microbiota data are generated (including bias)
q Explain and preform data pre-processing
q Explain how microbiota data are analysed
q Define, perform and interpret alpha-diversity
q Address sparsity, under-sampling and uneven sampling depth 

using data filtering and normalization
q Define, perform and interpret beta-diversity
q Generate and interpret multivariate data analyses
q Perform and interpret appropriate statistical tests
q Visualize and interpret microbial community composition

Learning objectives



Requirements
§ Gene ubiquitous
§ With conserve and variable regions

For Bacteria analysis: 16S rRNA gene
§ Gene code for a RNA part of the ribosome

For Fungi analysis: 18S rRNA gene or ITS

Yarza et al. 2014

Adapted from Shahi et al 2017
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A targeted approach: metabarcoding/amplicon sequencing
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Defining the core Arabidopsis thaliana root
microbiome
Derek S. Lundberg1,2*, Sarah L. Lebeis1*, Sur Herrera Paredes1*, Scott Yourstone1,3*, Jase Gehring1, Stephanie Malfatti4,
Julien Tremblay4, Anna Engelbrektson4{, Victor Kunin4{, Tijana Glavina del Rio4, Robert C. Edgar5, Thilo Eickhorst6, Ruth E. Ley7,
Philip Hugenholtz4,8, Susannah Green Tringe4 & Jeffery L. Dangl1,2,9,10,11

Land plants associate with a root microbiota distinct from the com-
plex microbial community present in surrounding soil. The micro-
biota colonizing the rhizosphere (immediately surrounding the root)
and the endophytic compartment (within the root) contribute to
plant growth, productivity, carbon sequestration and phytoremedia-
tion1–3. Colonization of the root occurs despite a sophisticated
plant immune system4,5, suggesting finely tuned discrimination of
mutualists and commensals from pathogens. Genetic principles
governing the derivation of host-specific endophyte communities
from soil communities are poorly understood. Here we report the
pyrosequencing of the bacterial 16S ribosomal RNA gene of more
than 600 Arabidopsis thaliana plants to test the hypotheses that the
root rhizosphere and endophytic compartment microbiota of plants
grown under controlled conditions in natural soils are sufficiently
dependent on the host to remain consistent across different soil
types and developmental stages, and sufficiently dependent on host
genotype to vary between inbred Arabidopsis accessions. We
describe different bacterial communities in two geochemically dis-
tinct bulk soils and in rhizosphere and endophytic compartments
prepared from roots grown in these soils. The communities in each
compartment are strongly influenced by soil type. Endophytic com-
partments from both soils feature overlapping, low-complexity com-
munities that are markedly enriched in Actinobacteria and specific
families from other phyla, notably Proteobacteria. Some bacteria
vary quantitatively between plants of different developmental stage
and genotype. Our rigorous definition of an endophytic compart-
ment microbiome should facilitate controlled dissection of plant–
microbe interactions derived from complex soil communities.

Roots influence the rhizosphere by altering soil pH, soil structure,
oxygen availability, antimicrobial concentration, and quorum-sensing
mimicry, and by providing an energy source of dead root material
and carbon-rich exudates6,7. The microbiota inhabiting this niche
can both benefit and undermine plant health; shifting this balance is
of agronomic interest. Mutualistic microbes may provide the plant with
physiologically accessible nutrients and phytohormones that improve
plant growth, may suppress phytopathogens or may help plants
withstand heat, salt and drought8,9. The rhizosphere community is a
subset of soil microbes that are subsequently filtered via niche utiliza-
tion attributes and interactions with the host to inhabit the endophytic
compartment10 (EC). Although a variety of microbes may enter and
become transient endophytes, those consistently found inside roots are
candidate symbionts or stealthy pathogens10,11. Notably, Arabidopsis
and other Brassicaceae are not well colonized by arbuscular mycorrhizal
fungi, implying that other microorganisms may fill this niche.

Microbial community structure differs across plant species12,13, and
there are reports of host-genotype-dependent differences in patterns of
microbial associations14,15. However, the divergent methods used in
those studies relied on small sample sizes and low-resolution phylotyp-
ing techniques potentially confounded by off-target sequences and
chimaeric amplicons. We developed a robust experimental system to
sample repeatedly the root microbiome using high-throughput
sequencing. Our results confirm many of the general conclusions from
earlier studies and, because of controlled experimental design and the
power of deep sequencing, provide a key step towards the definition of
this microbiome’s functional capacity and the host genes that poten-
tially contribute to microbial association phenotypes. Such plant genes
would constitute major agronomic targets.

We used 454 pyrosequencing to sequence 16S ribosomal RNA
(rRNA) gene amplicons for DNA prepared from eight diverse, inbred
A. thaliana accessions. Plants were grown from surface-sterile seeds in
climate-controlled conditions in two diverse soils, respectively termed
Mason Farm and Clayton (Supplementary Table 1; detailed in
Supplementary Information). For each soil, we assayed multiple indi-
viduals from each A. thaliana accession grown from sterile seeds in
both soils across independent full-factorial biological replicates, in
which all genotypes and bulk soils (pots without a plant) for a given
soil type were grown in parallel (Supplementary Table 2). We isolated
separate rhizosphere and EC fractions from individual plant root
systems (Supplementary Fig. 1 and Supplementary Table 2). We
established 1114F and 1392R as our primer pair (Supplementary
Information and Supplementary Fig. 2). Using an otupipe-based
pipeline (http://drive5.com/otupipe/), we grouped sequences into
97%-identical operational taxonomic units (OTUs), reduced noise
and removed chimaeras. We determined technical reproducibility
thresholds to conclude that OTUs defined by $25 reads in $5 samples
(hereafter 25 3 5) are individually ‘measurable OTUs’16,17 (Supplemen-
tary Figs 2 and 10). All data reported here are from one run of our
otupipe-based pipeline (Supplementary Fig. 3 and Supplementary
Database 1).

Excluding additional control samples, we ribotyped 1,248 samples
comprising 111 bulk soil, 613 rhizosphere and 524 EC samples,
generating 9,787,070 high-quality reads (Supplementary Figs 3 and
4a–c). After removing plant-sequence-derived OTUs, we obtained a
table of usable OTU read counts per sample containing 6,387,407
reads distributed across 18,783 OTUs. We normalized this table of
usable reads by rarefying to 1,000 reads per sample (Supplementary
Database 2a) or, alternatively, by dividing the reads per OTU in a
sample by the sum of usable reads in that sample, resulting in a table

1Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 2Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina
27599, USA. 3Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 4DOE Joint Genome Institute, Walnut Creek, California 94598,
USA. 5Taxon Biosciences, Inc., Tiburon, California 94920, USA. 6Soil Science, Faculty of Biology and Chemistry, University of Bremen, Bremen 28359, Germany. 7Department of Microbiology, Cornell
University, Ithaca, New York 14853, USA. 8Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences & Institute for Molecular Bioscience, The University of Queensland, Brisbane,
Queensland 4072, Australia. 9Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 10Carolina Center for Genome Sciences, University of
North Carolina, Chapel Hill, North Carolina 27599, USA. 11Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, North Carolina 27599, USA. {Present addresses: Department of Plant
and Microbial Biology, University of California, Berkeley, California 94720-3102, USA (A.E.); Taxon Biosciences, Inc., Tiburon, California 94920, USA (V.K.).
*These authors contributed equally to this work.
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Objective: illustration through a concrete case
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A research example: plant root microbiome

Please answer two quiz questions…
https://bigdata_microbiome.presenterswall.nl/
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Process overview

Step 1: From sample to sequences

Sampling

To address some of these questions, we have undertaken an
exhaustive characterization of the root-associated microbiome of
rice. Rice is a major crop plant and a staple food for half of the
world’s population. Metagenomic and proteomic approaches
have been used to identify different microbial genes present in
the rice microbiome (17, 18), but an extensive characterization of
microbiome composition and variation has not been performed.
Rice cultivation also contributes to global methane, accounting
for an estimated 10–20% of anthropogenic emissions, due to the
growth of methanogenic archaea in the vicinity of rice roots (19).
Here we have used deep sequencing of microbial 16S rRNA
genes to detect over 250,000 operational taxonomic units
(OTUs), with a structural resolution of three distinct compart-
ments (rhizosphere, rhizoplane, and endosphere) and extending
over multiple factors contributing to variation, both under con-
trolled greenhouse conditions as well as different field environ-
ments. The large datasets from the different conditions sampled
in this study were used for identification of putative microbial
consortia involved in processes such as methane cycling. Through
dynamic studies of the microbiome composition, we provide
insights into the process of root microbiome assembly.

Results
Root-Associated Microbiomes Form Three Spatially Separable Com-
partments Exhibiting Distinct and Overlapping Microbial Communities.
Sterilized rice seeds were germinated and grown under con-
trolled greenhouse conditions in soil collected from three rice
fields across the Central Valley of California (SI Appendix, Fig.
S1). We analyzed the bacterial and archaeal microbiomes from
three separate rhizocompartments: the rhizosphere, rhizoplane,
and endosphere (Fig. 1A). Because the root microbiome has
been shown to correlate with the developmental stage of the
plant (10), the root-associated microbial communities were
sampled at 42 d (6 wk), when rice plants from all genotypes were
well-established in the soil but still in their vegetative phase of
growth. For our study, the rhizosphere compartment was com-

posed of ∼1 mm of soil tightly adhering to the root surface that is
not easily shaken from the root (SI Appendix, Fig. S2). The
rhizoplane compartment microbiome was derived from the suite
of microbes on the root surface that cannot be removed by
washing in buffer but is removed by sonication (SI Appendix,
Materials and Methods). The endosphere compartment micro-
biome, composed of the microbes inhabiting the interior of the
root, was isolated from the same roots left after sonication.
Unplanted soil pots were used as a control to differentiate plant
effects from general edaphic factors.
The V4-V5 region of the 16S rRNA gene was amplified using

PCR and sequenced using the Illumina MiSeq platform. A total
of 10,554,651 high-quality sequences was obtained with a median
read count per sample of 51,970 (range: 2,958–203,371; Dataset
S2). The high-quality reads were clustered using >97% sequence
identity into 101,112 microbial OTUs. Low-abundance OTUs
(<5 total counts) were discarded, resulting in 27,147 OTUs. The
resulting OTU counts in each library were normalized using the
trimmed mean of M values method. This method was chosen due
to its sensitivity for detecting differentially abundant taxa com-
pared with traditional microbiome normalization techniques
such as rarefaction and relative abundance (20). Measures of
within-sample diversity (α-diversity) revealed a diversity gradient
from the endosphere to the rhizosphere (Fig. 1B and Dataset
S4). Endosphere communities had the lowest α-diversity and the
rhizosphere had the highest α-diversity. The mean α-diversity
was higher in the rhizosphere than bulk soil; however, the dif-
ference in α-diversity between these two compartments cannot be
considered as statistically significant (Wilcoxon test; Dataset S4).
Unconstrained principal coordinate analyses (PCoAs) of

weighted and unweighted UniFrac distances were performed to
investigate patterns of separation between microbial communi-
ties (SI Appendix, Materials and Methods). The UniFrac distance
is based on taxonomic relatedness, where the weighted UniFrac
(WUF) metric takes abundance of taxa into consideration whereas
the unweighted UniFrac (UUF) does not and is thus more sen-
sitive to rare taxa. In both the WUF and UUF PCoAs, the rhi-
zocompartments separate across the first principal coordinate,
indicating that the largest source of variation in root-associated
microbial communities is proximity to the root (Fig. 1C, WUF
and SI Appendix, Fig. S4, UUF). Moreover, the pattern of sepa-
ration is consistent with a gradient of microbial populations from
the exterior of the root, across the rhizoplane, and into the in-
terior of the root. Permutational multivariate analysis of variance
(PERMANOVA) corroborates that rhizospheric compartmen-
talization comprises the largest source of variation within the
microbiome data when using a WUF distance metric (46.62%,
P < 0.001; Dataset S5A). PERMANOVA using a UUF distance,
however, describes rhizospheric compartmentalization as having
the second largest source of variation behind soil type (18.07%,
P < 0.001; Dataset S5H). In addition to PERMANOVA, we also
performed partial canonical analysis of principal coordinates
(CAP) on both the WUF and UUF metrics to quantify the var-
iance attributable to each experimental variable (SI Appendix,
Materials and Methods). This technique differs from unconstrained
PCoA in that technical factors can be controlled for in the
analysis and the analysis can be constrained to any factor of in-
terest to better understand the quantitative impact of the factor
on the microbial composition. Using this technique to control for
soil type, cultivar, and technical factors (biological replicate, se-
quencing batch, and planting container), we found that in
agreement with the PERMANOVA results, microbial commu-
nities vary significantly between rhizocompartments (34.2% of
variance, P = 0.005, WUF, SI Appendix, Fig. S5A and 22.6% of
variance, P = 0.005, UUF, SI Appendix, Fig. S5C).
There are notable differences in the proportions of various

phyla across the compartments that are consistent across every
tested soil (Fig. 1D). The endosphere has a significantly greater
proportion of Proteobacteria and Spirochaetes than the rhizo-
sphere or bulk soil, whereas Acidobacteria, Planctomycetes, and
Gemmatimonadetes are mostly depleted in the endosphere

Fig. 1. Root-associated microbial communities are separable by rhizo-
compartment and soil type. (A) A representation of a rice root cross-section
depicting the locations of the microbial communities sampled. (B) Within-
sample diversity (α-diversity) measurements between rhizospheric compart-
ments indicate a decreasing gradient in microbial diversity from the rhizo-
sphere to the endosphere independent of soil type. Estimated species
richness was calculated as eShannon_entropy. The horizontal bars within boxes
represent median. The tops and bottoms of boxes represent 75th and 25th
quartiles, respectively. The upper and lower whiskers extend 1.5× the
interquartile range from the upper edge and lower edge of the box, re-
spectively. All outliers are plotted as individual points. (C) PCoA using the
WUF metric indicates that the largest separation between microbial com-
munities is spatial proximity to the root (PCo 1) and the second largest
source of variation is soil type (PCo 2). (D) Histograms of phyla abundances in
each compartment and soil. B, bulk soil; E, endosphere; P, rhizoplane; S,
rhizosphere; Sac, Sacramento.

E912 | www.pnas.org/cgi/doi/10.1073/pnas.1414592112 Edwards et al.
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Defining the core Arabidopsis thaliana root
microbiome
Derek S. Lundberg1,2*, Sarah L. Lebeis1*, Sur Herrera Paredes1*, Scott Yourstone1,3*, Jase Gehring1, Stephanie Malfatti4,
Julien Tremblay4, Anna Engelbrektson4{, Victor Kunin4{, Tijana Glavina del Rio4, Robert C. Edgar5, Thilo Eickhorst6, Ruth E. Ley7,
Philip Hugenholtz4,8, Susannah Green Tringe4 & Jeffery L. Dangl1,2,9,10,11

Land plants associate with a root microbiota distinct from the com-
plex microbial community present in surrounding soil. The micro-
biota colonizing the rhizosphere (immediately surrounding the root)
and the endophytic compartment (within the root) contribute to
plant growth, productivity, carbon sequestration and phytoremedia-
tion1–3. Colonization of the root occurs despite a sophisticated
plant immune system4,5, suggesting finely tuned discrimination of
mutualists and commensals from pathogens. Genetic principles
governing the derivation of host-specific endophyte communities
from soil communities are poorly understood. Here we report the
pyrosequencing of the bacterial 16S ribosomal RNA gene of more
than 600 Arabidopsis thaliana plants to test the hypotheses that the
root rhizosphere and endophytic compartment microbiota of plants
grown under controlled conditions in natural soils are sufficiently
dependent on the host to remain consistent across different soil
types and developmental stages, and sufficiently dependent on host
genotype to vary between inbred Arabidopsis accessions. We
describe different bacterial communities in two geochemically dis-
tinct bulk soils and in rhizosphere and endophytic compartments
prepared from roots grown in these soils. The communities in each
compartment are strongly influenced by soil type. Endophytic com-
partments from both soils feature overlapping, low-complexity com-
munities that are markedly enriched in Actinobacteria and specific
families from other phyla, notably Proteobacteria. Some bacteria
vary quantitatively between plants of different developmental stage
and genotype. Our rigorous definition of an endophytic compart-
ment microbiome should facilitate controlled dissection of plant–
microbe interactions derived from complex soil communities.

Roots influence the rhizosphere by altering soil pH, soil structure,
oxygen availability, antimicrobial concentration, and quorum-sensing
mimicry, and by providing an energy source of dead root material
and carbon-rich exudates6,7. The microbiota inhabiting this niche
can both benefit and undermine plant health; shifting this balance is
of agronomic interest. Mutualistic microbes may provide the plant with
physiologically accessible nutrients and phytohormones that improve
plant growth, may suppress phytopathogens or may help plants
withstand heat, salt and drought8,9. The rhizosphere community is a
subset of soil microbes that are subsequently filtered via niche utiliza-
tion attributes and interactions with the host to inhabit the endophytic
compartment10 (EC). Although a variety of microbes may enter and
become transient endophytes, those consistently found inside roots are
candidate symbionts or stealthy pathogens10,11. Notably, Arabidopsis
and other Brassicaceae are not well colonized by arbuscular mycorrhizal
fungi, implying that other microorganisms may fill this niche.

Microbial community structure differs across plant species12,13, and
there are reports of host-genotype-dependent differences in patterns of
microbial associations14,15. However, the divergent methods used in
those studies relied on small sample sizes and low-resolution phylotyp-
ing techniques potentially confounded by off-target sequences and
chimaeric amplicons. We developed a robust experimental system to
sample repeatedly the root microbiome using high-throughput
sequencing. Our results confirm many of the general conclusions from
earlier studies and, because of controlled experimental design and the
power of deep sequencing, provide a key step towards the definition of
this microbiome’s functional capacity and the host genes that poten-
tially contribute to microbial association phenotypes. Such plant genes
would constitute major agronomic targets.

We used 454 pyrosequencing to sequence 16S ribosomal RNA
(rRNA) gene amplicons for DNA prepared from eight diverse, inbred
A. thaliana accessions. Plants were grown from surface-sterile seeds in
climate-controlled conditions in two diverse soils, respectively termed
Mason Farm and Clayton (Supplementary Table 1; detailed in
Supplementary Information). For each soil, we assayed multiple indi-
viduals from each A. thaliana accession grown from sterile seeds in
both soils across independent full-factorial biological replicates, in
which all genotypes and bulk soils (pots without a plant) for a given
soil type were grown in parallel (Supplementary Table 2). We isolated
separate rhizosphere and EC fractions from individual plant root
systems (Supplementary Fig. 1 and Supplementary Table 2). We
established 1114F and 1392R as our primer pair (Supplementary
Information and Supplementary Fig. 2). Using an otupipe-based
pipeline (http://drive5.com/otupipe/), we grouped sequences into
97%-identical operational taxonomic units (OTUs), reduced noise
and removed chimaeras. We determined technical reproducibility
thresholds to conclude that OTUs defined by $25 reads in $5 samples
(hereafter 25 3 5) are individually ‘measurable OTUs’16,17 (Supplemen-
tary Figs 2 and 10). All data reported here are from one run of our
otupipe-based pipeline (Supplementary Fig. 3 and Supplementary
Database 1).

Excluding additional control samples, we ribotyped 1,248 samples
comprising 111 bulk soil, 613 rhizosphere and 524 EC samples,
generating 9,787,070 high-quality reads (Supplementary Figs 3 and
4a–c). After removing plant-sequence-derived OTUs, we obtained a
table of usable OTU read counts per sample containing 6,387,407
reads distributed across 18,783 OTUs. We normalized this table of
usable reads by rarefying to 1,000 reads per sample (Supplementary
Database 2a) or, alternatively, by dividing the reads per OTU in a
sample by the sum of usable reads in that sample, resulting in a table
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USA. 5Taxon Biosciences, Inc., Tiburon, California 94920, USA. 6Soil Science, Faculty of Biology and Chemistry, University of Bremen, Bremen 28359, Germany. 7Department of Microbiology, Cornell
University, Ithaca, New York 14853, USA. 8Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences & Institute for Molecular Bioscience, The University of Queensland, Brisbane,
Queensland 4072, Australia. 9Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 10Carolina Center for Genome Sciences, University of
North Carolina, Chapel Hill, North Carolina 27599, USA. 11Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, North Carolina 27599, USA. {Present addresses: Department of Plant
and Microbial Biology, University of California, Berkeley, California 94720-3102, USA (A.E.); Taxon Biosciences, Inc., Tiburon, California 94920, USA (V.K.).
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Process overview

Step 1: From sample to sequences

Sampling

To address some of these questions, we have undertaken an
exhaustive characterization of the root-associated microbiome of
rice. Rice is a major crop plant and a staple food for half of the
world’s population. Metagenomic and proteomic approaches
have been used to identify different microbial genes present in
the rice microbiome (17, 18), but an extensive characterization of
microbiome composition and variation has not been performed.
Rice cultivation also contributes to global methane, accounting
for an estimated 10–20% of anthropogenic emissions, due to the
growth of methanogenic archaea in the vicinity of rice roots (19).
Here we have used deep sequencing of microbial 16S rRNA
genes to detect over 250,000 operational taxonomic units
(OTUs), with a structural resolution of three distinct compart-
ments (rhizosphere, rhizoplane, and endosphere) and extending
over multiple factors contributing to variation, both under con-
trolled greenhouse conditions as well as different field environ-
ments. The large datasets from the different conditions sampled
in this study were used for identification of putative microbial
consortia involved in processes such as methane cycling. Through
dynamic studies of the microbiome composition, we provide
insights into the process of root microbiome assembly.

Results
Root-Associated Microbiomes Form Three Spatially Separable Com-
partments Exhibiting Distinct and Overlapping Microbial Communities.
Sterilized rice seeds were germinated and grown under con-
trolled greenhouse conditions in soil collected from three rice
fields across the Central Valley of California (SI Appendix, Fig.
S1). We analyzed the bacterial and archaeal microbiomes from
three separate rhizocompartments: the rhizosphere, rhizoplane,
and endosphere (Fig. 1A). Because the root microbiome has
been shown to correlate with the developmental stage of the
plant (10), the root-associated microbial communities were
sampled at 42 d (6 wk), when rice plants from all genotypes were
well-established in the soil but still in their vegetative phase of
growth. For our study, the rhizosphere compartment was com-

posed of ∼1 mm of soil tightly adhering to the root surface that is
not easily shaken from the root (SI Appendix, Fig. S2). The
rhizoplane compartment microbiome was derived from the suite
of microbes on the root surface that cannot be removed by
washing in buffer but is removed by sonication (SI Appendix,
Materials and Methods). The endosphere compartment micro-
biome, composed of the microbes inhabiting the interior of the
root, was isolated from the same roots left after sonication.
Unplanted soil pots were used as a control to differentiate plant
effects from general edaphic factors.
The V4-V5 region of the 16S rRNA gene was amplified using

PCR and sequenced using the Illumina MiSeq platform. A total
of 10,554,651 high-quality sequences was obtained with a median
read count per sample of 51,970 (range: 2,958–203,371; Dataset
S2). The high-quality reads were clustered using >97% sequence
identity into 101,112 microbial OTUs. Low-abundance OTUs
(<5 total counts) were discarded, resulting in 27,147 OTUs. The
resulting OTU counts in each library were normalized using the
trimmed mean of M values method. This method was chosen due
to its sensitivity for detecting differentially abundant taxa com-
pared with traditional microbiome normalization techniques
such as rarefaction and relative abundance (20). Measures of
within-sample diversity (α-diversity) revealed a diversity gradient
from the endosphere to the rhizosphere (Fig. 1B and Dataset
S4). Endosphere communities had the lowest α-diversity and the
rhizosphere had the highest α-diversity. The mean α-diversity
was higher in the rhizosphere than bulk soil; however, the dif-
ference in α-diversity between these two compartments cannot be
considered as statistically significant (Wilcoxon test; Dataset S4).
Unconstrained principal coordinate analyses (PCoAs) of

weighted and unweighted UniFrac distances were performed to
investigate patterns of separation between microbial communi-
ties (SI Appendix, Materials and Methods). The UniFrac distance
is based on taxonomic relatedness, where the weighted UniFrac
(WUF) metric takes abundance of taxa into consideration whereas
the unweighted UniFrac (UUF) does not and is thus more sen-
sitive to rare taxa. In both the WUF and UUF PCoAs, the rhi-
zocompartments separate across the first principal coordinate,
indicating that the largest source of variation in root-associated
microbial communities is proximity to the root (Fig. 1C, WUF
and SI Appendix, Fig. S4, UUF). Moreover, the pattern of sepa-
ration is consistent with a gradient of microbial populations from
the exterior of the root, across the rhizoplane, and into the in-
terior of the root. Permutational multivariate analysis of variance
(PERMANOVA) corroborates that rhizospheric compartmen-
talization comprises the largest source of variation within the
microbiome data when using a WUF distance metric (46.62%,
P < 0.001; Dataset S5A). PERMANOVA using a UUF distance,
however, describes rhizospheric compartmentalization as having
the second largest source of variation behind soil type (18.07%,
P < 0.001; Dataset S5H). In addition to PERMANOVA, we also
performed partial canonical analysis of principal coordinates
(CAP) on both the WUF and UUF metrics to quantify the var-
iance attributable to each experimental variable (SI Appendix,
Materials and Methods). This technique differs from unconstrained
PCoA in that technical factors can be controlled for in the
analysis and the analysis can be constrained to any factor of in-
terest to better understand the quantitative impact of the factor
on the microbial composition. Using this technique to control for
soil type, cultivar, and technical factors (biological replicate, se-
quencing batch, and planting container), we found that in
agreement with the PERMANOVA results, microbial commu-
nities vary significantly between rhizocompartments (34.2% of
variance, P = 0.005, WUF, SI Appendix, Fig. S5A and 22.6% of
variance, P = 0.005, UUF, SI Appendix, Fig. S5C).
There are notable differences in the proportions of various

phyla across the compartments that are consistent across every
tested soil (Fig. 1D). The endosphere has a significantly greater
proportion of Proteobacteria and Spirochaetes than the rhizo-
sphere or bulk soil, whereas Acidobacteria, Planctomycetes, and
Gemmatimonadetes are mostly depleted in the endosphere

Fig. 1. Root-associated microbial communities are separable by rhizo-
compartment and soil type. (A) A representation of a rice root cross-section
depicting the locations of the microbial communities sampled. (B) Within-
sample diversity (α-diversity) measurements between rhizospheric compart-
ments indicate a decreasing gradient in microbial diversity from the rhizo-
sphere to the endosphere independent of soil type. Estimated species
richness was calculated as eShannon_entropy. The horizontal bars within boxes
represent median. The tops and bottoms of boxes represent 75th and 25th
quartiles, respectively. The upper and lower whiskers extend 1.5× the
interquartile range from the upper edge and lower edge of the box, re-
spectively. All outliers are plotted as individual points. (C) PCoA using the
WUF metric indicates that the largest separation between microbial com-
munities is spatial proximity to the root (PCo 1) and the second largest
source of variation is soil type (PCo 2). (D) Histograms of phyla abundances in
each compartment and soil. B, bulk soil; E, endosphere; P, rhizoplane; S,
rhizosphere; Sac, Sacramento.

E912 | www.pnas.org/cgi/doi/10.1073/pnas.1414592112 Edwards et al.
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§ Three compartments
q Bulk soil
q Rhizosphere soil
q Endosphere

LETTER
doi:10.1038/nature11237

Defining the core Arabidopsis thaliana root
microbiome
Derek S. Lundberg1,2*, Sarah L. Lebeis1*, Sur Herrera Paredes1*, Scott Yourstone1,3*, Jase Gehring1, Stephanie Malfatti4,
Julien Tremblay4, Anna Engelbrektson4{, Victor Kunin4{, Tijana Glavina del Rio4, Robert C. Edgar5, Thilo Eickhorst6, Ruth E. Ley7,
Philip Hugenholtz4,8, Susannah Green Tringe4 & Jeffery L. Dangl1,2,9,10,11

Land plants associate with a root microbiota distinct from the com-
plex microbial community present in surrounding soil. The micro-
biota colonizing the rhizosphere (immediately surrounding the root)
and the endophytic compartment (within the root) contribute to
plant growth, productivity, carbon sequestration and phytoremedia-
tion1–3. Colonization of the root occurs despite a sophisticated
plant immune system4,5, suggesting finely tuned discrimination of
mutualists and commensals from pathogens. Genetic principles
governing the derivation of host-specific endophyte communities
from soil communities are poorly understood. Here we report the
pyrosequencing of the bacterial 16S ribosomal RNA gene of more
than 600 Arabidopsis thaliana plants to test the hypotheses that the
root rhizosphere and endophytic compartment microbiota of plants
grown under controlled conditions in natural soils are sufficiently
dependent on the host to remain consistent across different soil
types and developmental stages, and sufficiently dependent on host
genotype to vary between inbred Arabidopsis accessions. We
describe different bacterial communities in two geochemically dis-
tinct bulk soils and in rhizosphere and endophytic compartments
prepared from roots grown in these soils. The communities in each
compartment are strongly influenced by soil type. Endophytic com-
partments from both soils feature overlapping, low-complexity com-
munities that are markedly enriched in Actinobacteria and specific
families from other phyla, notably Proteobacteria. Some bacteria
vary quantitatively between plants of different developmental stage
and genotype. Our rigorous definition of an endophytic compart-
ment microbiome should facilitate controlled dissection of plant–
microbe interactions derived from complex soil communities.

Roots influence the rhizosphere by altering soil pH, soil structure,
oxygen availability, antimicrobial concentration, and quorum-sensing
mimicry, and by providing an energy source of dead root material
and carbon-rich exudates6,7. The microbiota inhabiting this niche
can both benefit and undermine plant health; shifting this balance is
of agronomic interest. Mutualistic microbes may provide the plant with
physiologically accessible nutrients and phytohormones that improve
plant growth, may suppress phytopathogens or may help plants
withstand heat, salt and drought8,9. The rhizosphere community is a
subset of soil microbes that are subsequently filtered via niche utiliza-
tion attributes and interactions with the host to inhabit the endophytic
compartment10 (EC). Although a variety of microbes may enter and
become transient endophytes, those consistently found inside roots are
candidate symbionts or stealthy pathogens10,11. Notably, Arabidopsis
and other Brassicaceae are not well colonized by arbuscular mycorrhizal
fungi, implying that other microorganisms may fill this niche.

Microbial community structure differs across plant species12,13, and
there are reports of host-genotype-dependent differences in patterns of
microbial associations14,15. However, the divergent methods used in
those studies relied on small sample sizes and low-resolution phylotyp-
ing techniques potentially confounded by off-target sequences and
chimaeric amplicons. We developed a robust experimental system to
sample repeatedly the root microbiome using high-throughput
sequencing. Our results confirm many of the general conclusions from
earlier studies and, because of controlled experimental design and the
power of deep sequencing, provide a key step towards the definition of
this microbiome’s functional capacity and the host genes that poten-
tially contribute to microbial association phenotypes. Such plant genes
would constitute major agronomic targets.

We used 454 pyrosequencing to sequence 16S ribosomal RNA
(rRNA) gene amplicons for DNA prepared from eight diverse, inbred
A. thaliana accessions. Plants were grown from surface-sterile seeds in
climate-controlled conditions in two diverse soils, respectively termed
Mason Farm and Clayton (Supplementary Table 1; detailed in
Supplementary Information). For each soil, we assayed multiple indi-
viduals from each A. thaliana accession grown from sterile seeds in
both soils across independent full-factorial biological replicates, in
which all genotypes and bulk soils (pots without a plant) for a given
soil type were grown in parallel (Supplementary Table 2). We isolated
separate rhizosphere and EC fractions from individual plant root
systems (Supplementary Fig. 1 and Supplementary Table 2). We
established 1114F and 1392R as our primer pair (Supplementary
Information and Supplementary Fig. 2). Using an otupipe-based
pipeline (http://drive5.com/otupipe/), we grouped sequences into
97%-identical operational taxonomic units (OTUs), reduced noise
and removed chimaeras. We determined technical reproducibility
thresholds to conclude that OTUs defined by $25 reads in $5 samples
(hereafter 25 3 5) are individually ‘measurable OTUs’16,17 (Supplemen-
tary Figs 2 and 10). All data reported here are from one run of our
otupipe-based pipeline (Supplementary Fig. 3 and Supplementary
Database 1).

Excluding additional control samples, we ribotyped 1,248 samples
comprising 111 bulk soil, 613 rhizosphere and 524 EC samples,
generating 9,787,070 high-quality reads (Supplementary Figs 3 and
4a–c). After removing plant-sequence-derived OTUs, we obtained a
table of usable OTU read counts per sample containing 6,387,407
reads distributed across 18,783 OTUs. We normalized this table of
usable reads by rarefying to 1,000 reads per sample (Supplementary
Database 2a) or, alternatively, by dividing the reads per OTU in a
sample by the sum of usable reads in that sample, resulting in a table

1Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 2Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina
27599, USA. 3Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 4DOE Joint Genome Institute, Walnut Creek, California 94598,
USA. 5Taxon Biosciences, Inc., Tiburon, California 94920, USA. 6Soil Science, Faculty of Biology and Chemistry, University of Bremen, Bremen 28359, Germany. 7Department of Microbiology, Cornell
University, Ithaca, New York 14853, USA. 8Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences & Institute for Molecular Bioscience, The University of Queensland, Brisbane,
Queensland 4072, Australia. 9Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 10Carolina Center for Genome Sciences, University of
North Carolina, Chapel Hill, North Carolina 27599, USA. 11Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, North Carolina 27599, USA. {Present addresses: Department of Plant
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SUPPLEMENTARY INFORMATION RESEARCH

Supplementary Figure S1: Harvesting scheme. a) Using gloves and a flame-sterilized work surface, plants are 
RYHUWXUQHG��SRWV�DUH�UHPRYHG��DQG�VRLO�LV�FUXPEOHG�EUXVKHG�DZD\�OHDYLQJ����PP�rhizosphere soil on roots. b) The 
above-ground parts are cut away and rhizosphere soil is harvested from roots by shaking them in sterile phosphate 
buffer with Silwet L-77; the rinse is pelleted and becomes the rhizosphere R fraction. c) Roots are placed in a new 
tube with sterile phosphate buffer and sonicated for five 30 second bursts at low intensity (see Supplementary 
Methods). The surface-cleaned roots are then snap frozen and lyophilized to become the EC fraction. d) SEM 
showing intact root surface after rhizosphere soil has been removed, but prior to sonication. Scale = 100 microns. e) 
SEM showing a root-surface bacterium on root shown in d. Scale = 1 micron. f) SEM showing the disruptive clearing 
of nearly the entire root surface after sonication. Scale = 100 microns. 

Lundberg et al. 2012
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AmplificationDNA
extractionSampling

SUPPLEMENTARY INFORMATION

4  |  W W W. N A T U R E . C O M / N A T U R E

RESEARCH

Supplementary Figure S2: Primer test and technical reproducibility. a) Position on the 16S gene of each of the primers 
tested. b) Sequence of each primer used. c) Composition of the 13 samples tested. d) Log10 transformation of raw reads per 
OTU for one independent replicate (x-axis) vs. the other (y-axis), where both replicates were PCR-amplified and sequenced 
from the same sample (axes labels are transformed and cover a range of 0-10,000 reads). The intersection of the red lines 
shows where an OTU with 25 reads in both replicates would lie. e) Progressive drop-out analysis displaying the R2 correlation 
of the data in d DV�278V�ZLWK�ORZ�UHDG�QXPEHUV�DUH�GLVFDUGHG��:KHQ�RQO\�278V�ZLWK�����UHDGV�DUH�FRQVLGHUHG��UHG�OLQH��WKH�
R2 is acceptable at 0.87, a balance between reproducibility and data loss for low-abundance OTUs. In f-i, green circles are 
EC samples, blue triangles are R samples, and black squares are bulk soil samples. f) Total reads obtained from amplicons 
made with 804F, 926F, or 1114F paired with bar-coded 1392R. g) Percent of the ‘usable’ reads from f which are not identified 
as plant or chimeric OTUs. h) Shannon-:HLQHU�VSHFLHV�GLYHUVLW\�RI������XVDEOH�UHDGV��IRU�HDFK�VDPSOH�ZLWK�������UHDGV���i) 
&KDR��GLYHUVLW\�RI������XVDEOH�UHDGV�IURP�HDFK�VDPSOH��IRU�HDFK�VDPSOH�ZLWK�������� 

Adapted from Lundberg et al. 2012
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Process overview

Mixing samples in one sequencing run

Amplification
Next 

Generation 
Sequencing

DNA
extractionSampling Sequencing

data

Adapted from Metcalf, Jessica (2014): Overview of data generation, processing and analysis using QIIME. Figshare. https://doi.org/10.6084/m9.figshare.902219.v1

~25 million reads
for Illumina MiSeqA lot of errors get introduced
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Microbiota data analysis

q Define microbiome and state microbiome importance
q Identify differences between metabarcoding and metagenomics
q Explain how microbiota data are generated (including bias)
q Explain and preform data pre-processing
q Explain how microbiota data are analysed
q Define, perform and interpret alpha-diversity
q Address sparsity, under-sampling and uneven sampling depth 

using data filtering and normalization
q Define, perform and interpret beta-diversity
q Generate and interpret multivariate data analyses
q Perform and interpret appropriate statistical tests
q Visualize and interpret microbial community composition

Learning objectives



Process overview

Step 2: From sequences to microbiota data sets

§ De-multiplex (i.e. assign a sequence to a sample)
§ Remove adaptor and barcode
§ Remove low quality reads (i.e. filtering step)

Metcalf 2014

Important
Different ways to filter and trim the data
Trade-off between quality and amount of 

information retained

30Anouk Zancarini – Tools in molecular data analysis – March 2021

Sequencing data

Pre-processing



Process overview

Step 2: From sequences to microbiota data sets

§ De-multiplex (i.e. assign a sequence to a sample)
§ Remove adaptor and barcode
§ Remove low quality reads (i.e. filtering step)
§ Remove chimeras
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During PCR multiple sequence can combine to form a hybrid
Chimeras must be removed

Sequencing data

Pre-processing

Metcalf 2014



Process overview

Step 2: From sequences to microbiota data sets

§ De-multiplex (i.e. assign a sequence to a sample)
§ Remove adaptor and barcode
§ Remove low quality reads (i.e. filtering step)
§ Remove chimeras
§ Merged pair-end reads

Sequencing data

Pre-processing

Metcalf 2014
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Process overview

Step 2: From sequences to microbiota data sets

§ De-multiplex (i.e. assign a sequence to a sample)
§ Remove adaptor and barcode
§ Remove low quality reads (i.e. filtering step)
§ Remove chimeras
§ Merged pair-end reads
§ Sequence clustering in OTU

Sequencing data

Pre-processing

Metcalf 2014
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Defining the core Arabidopsis thaliana root
microbiome
Derek S. Lundberg1,2*, Sarah L. Lebeis1*, Sur Herrera Paredes1*, Scott Yourstone1,3*, Jase Gehring1, Stephanie Malfatti4,
Julien Tremblay4, Anna Engelbrektson4{, Victor Kunin4{, Tijana Glavina del Rio4, Robert C. Edgar5, Thilo Eickhorst6, Ruth E. Ley7,
Philip Hugenholtz4,8, Susannah Green Tringe4 & Jeffery L. Dangl1,2,9,10,11

Land plants associate with a root microbiota distinct from the com-
plex microbial community present in surrounding soil. The micro-
biota colonizing the rhizosphere (immediately surrounding the root)
and the endophytic compartment (within the root) contribute to
plant growth, productivity, carbon sequestration and phytoremedia-
tion1–3. Colonization of the root occurs despite a sophisticated
plant immune system4,5, suggesting finely tuned discrimination of
mutualists and commensals from pathogens. Genetic principles
governing the derivation of host-specific endophyte communities
from soil communities are poorly understood. Here we report the
pyrosequencing of the bacterial 16S ribosomal RNA gene of more
than 600 Arabidopsis thaliana plants to test the hypotheses that the
root rhizosphere and endophytic compartment microbiota of plants
grown under controlled conditions in natural soils are sufficiently
dependent on the host to remain consistent across different soil
types and developmental stages, and sufficiently dependent on host
genotype to vary between inbred Arabidopsis accessions. We
describe different bacterial communities in two geochemically dis-
tinct bulk soils and in rhizosphere and endophytic compartments
prepared from roots grown in these soils. The communities in each
compartment are strongly influenced by soil type. Endophytic com-
partments from both soils feature overlapping, low-complexity com-
munities that are markedly enriched in Actinobacteria and specific
families from other phyla, notably Proteobacteria. Some bacteria
vary quantitatively between plants of different developmental stage
and genotype. Our rigorous definition of an endophytic compart-
ment microbiome should facilitate controlled dissection of plant–
microbe interactions derived from complex soil communities.

Roots influence the rhizosphere by altering soil pH, soil structure,
oxygen availability, antimicrobial concentration, and quorum-sensing
mimicry, and by providing an energy source of dead root material
and carbon-rich exudates6,7. The microbiota inhabiting this niche
can both benefit and undermine plant health; shifting this balance is
of agronomic interest. Mutualistic microbes may provide the plant with
physiologically accessible nutrients and phytohormones that improve
plant growth, may suppress phytopathogens or may help plants
withstand heat, salt and drought8,9. The rhizosphere community is a
subset of soil microbes that are subsequently filtered via niche utiliza-
tion attributes and interactions with the host to inhabit the endophytic
compartment10 (EC). Although a variety of microbes may enter and
become transient endophytes, those consistently found inside roots are
candidate symbionts or stealthy pathogens10,11. Notably, Arabidopsis
and other Brassicaceae are not well colonized by arbuscular mycorrhizal
fungi, implying that other microorganisms may fill this niche.

Microbial community structure differs across plant species12,13, and
there are reports of host-genotype-dependent differences in patterns of
microbial associations14,15. However, the divergent methods used in
those studies relied on small sample sizes and low-resolution phylotyp-
ing techniques potentially confounded by off-target sequences and
chimaeric amplicons. We developed a robust experimental system to
sample repeatedly the root microbiome using high-throughput
sequencing. Our results confirm many of the general conclusions from
earlier studies and, because of controlled experimental design and the
power of deep sequencing, provide a key step towards the definition of
this microbiome’s functional capacity and the host genes that poten-
tially contribute to microbial association phenotypes. Such plant genes
would constitute major agronomic targets.

We used 454 pyrosequencing to sequence 16S ribosomal RNA
(rRNA) gene amplicons for DNA prepared from eight diverse, inbred
A. thaliana accessions. Plants were grown from surface-sterile seeds in
climate-controlled conditions in two diverse soils, respectively termed
Mason Farm and Clayton (Supplementary Table 1; detailed in
Supplementary Information). For each soil, we assayed multiple indi-
viduals from each A. thaliana accession grown from sterile seeds in
both soils across independent full-factorial biological replicates, in
which all genotypes and bulk soils (pots without a plant) for a given
soil type were grown in parallel (Supplementary Table 2). We isolated
separate rhizosphere and EC fractions from individual plant root
systems (Supplementary Fig. 1 and Supplementary Table 2). We
established 1114F and 1392R as our primer pair (Supplementary
Information and Supplementary Fig. 2). Using an otupipe-based
pipeline (http://drive5.com/otupipe/), we grouped sequences into
97%-identical operational taxonomic units (OTUs), reduced noise
and removed chimaeras. We determined technical reproducibility
thresholds to conclude that OTUs defined by $25 reads in $5 samples
(hereafter 25 3 5) are individually ‘measurable OTUs’16,17 (Supplemen-
tary Figs 2 and 10). All data reported here are from one run of our
otupipe-based pipeline (Supplementary Fig. 3 and Supplementary
Database 1).

Excluding additional control samples, we ribotyped 1,248 samples
comprising 111 bulk soil, 613 rhizosphere and 524 EC samples,
generating 9,787,070 high-quality reads (Supplementary Figs 3 and
4a–c). After removing plant-sequence-derived OTUs, we obtained a
table of usable OTU read counts per sample containing 6,387,407
reads distributed across 18,783 OTUs. We normalized this table of
usable reads by rarefying to 1,000 reads per sample (Supplementary
Database 2a) or, alternatively, by dividing the reads per OTU in a
sample by the sum of usable reads in that sample, resulting in a table
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Process overview

BRIEF COMMUNICATIONS
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We previously introduced the Divisive Amplicon Denoising 
Algorithm (DADA), a model-based approach for correcting 
amplicon errors without constructing OTUs5. DADA identified 
fine-scale variation in 454-sequenced amplicon data while out-
putting few false positives2,5.

Here we present DADA2, an open-source R package (https://
github.com/benjjneb/dada2, Supplementary Software) that extends 
and improves the DADA algorithm. DADA2 implements a new qual-
ity-aware model of Illumina amplicon errors. Sample composition is 
inferred by dividing amplicon reads into partitions consistent with 
the error model (Online Methods). DADA2 is reference free and 
applicable to any genetic locus. The DADA2 R package implements 
the full amplicon workflow: filtering, dereplication, sample infer-
ence, chimera identification, and merging of paired-end reads.

We compared DADA2 to four algorithms (Online Methods): 
UPARSE, an OTU-construction algorithm with the best published 
false-positive results9; MED, an algorithm with the best published 
fine-scale resolution in Illumina amplicon data11; and the popular 
mothur (average linkage) and QIIME (uclust) OTU methods7,8.

We benchmarked these algorithms on three mock commu-
nity data sets: Balanced, HMP, and Extreme (Online Methods 
and Supplementary Table 1), each sequenced at a depth of over 
500,000 highly overlapping paired-end Illumina MiSeq 2 × 250 
reads. The Balanced community contained 57 bacteria and archaea 
at nominally equal frequencies16, the HMP community contained 
21 bacteria at nominally equal frequencies17, and the Extreme com-
munity contained 27 bacterial strains at frequencies spanning five 
orders of magnitude and differing over the sequenced region by 
as little as 1 nucleotide (nt) (Online Methods and Supplementary 
Table 2). Sequence quality varied, as Balanced demonstrated higher 
(Mean Q = 35.9 forward/33.5 reverse) quality; Extreme, moderate 
(33.0/29.3) quality; and HMP, lower (32.3/28.7) quality.

We compared output sequences to the known reference 
sequences present in the reference strains making up these com-
munities. Output sequences that exactly matched a reference 
sequence were classified as Reference, and those that differed by 
one mismatch or gap were classified as One Off. Contaminants 
were identified in the yet unclassified sequences by performing a 
BLAST search against nucleotides (Online Methods). Sequences 
with an exact BLAST hit (100% identity, 100% coverage) were clas-
sified as Exact, and those with best hits containing one mismatch 
or gap were classified as One Off. Everything else was classified 
as Other. We evaluated sensitivity as the proportion of detected 
reference strains. Note that fine-scale variation was present in all 
mock communities, as some reference strains contained multiple 
distinguishable 16S rRNA sequence variants.

We compared the sample sequences output by DADA2 to 
the OTUs output by UPARSE (Fig. 1). Almost all variants with 
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We present the open-source software package DADA2 for 
modeling and correcting Illumina-sequenced amplicon errors 
(https://github.com/benjjneb/dada2). DADA2 infers sample 
sequences exactly and resolves differences of as little as  
1 nucleotide. In several mock communities, DADA2 identified 
more real variants and output fewer spurious sequences than 
other methods. We applied DADA2 to vaginal samples from a 
cohort of pregnant women, revealing a diversity of previously 
undetected Lactobacillus crispatus variants. 

The importance of microbial communities to human and envi-
ronmental health has motivated researchers to develop methods 
for the efficient characterization of these communities. The most 
common and cost-effective of these methods is the amplifica-
tion and sequencing of targeted genetic elements1. Amplicon 
sequencing of taxonomic marker genes such as the 16S rRNA 
gene in bacteria, the ITS region in fungi, and the 18S rRNA gene 
in eukaryotes provides a census of a community. Functional diver-
sity can be probed by targeting functional genes2.

Disentangling biological variation from amplicon sequencing 
errors presents unique challenges that have prompted the devel-
opment of amplicon-specific error-correction methods3–6. Most 
of these methods were designed for 454 pyrosequencing and are 
not applicable to Illumina sequencing.

Errors in Illumina-sequenced amplicon data are currently 
addressed by quality filtering and the construction of operational 
taxonomic units (OTUs): clusters of sequences that differ by less 
than a fixed dissimilarity threshold7–9 (typically 3%). Lumping 
together similar sequences reduces the rate at which errors are 
misinterpreted as biological variation (Supplementary Fig. 1), 
but OTUs underutilize the quality of modern sequencing by 
precluding the possibility of resolving fine-scale variation5,10–12. 
Fine-scale variation can be informative about ecological niches10, 
temporal dynamics12, and population structure2. Fine-scale vari-
ation differentiates pathogenic from commensal strains in some 
cases13,14 and can contain clinically relevant information for more 
complex microbiome-associated diseases15.
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Table 2). Sequence quality varied, as Balanced demonstrated higher 
(Mean Q = 35.9 forward/33.5 reverse) quality; Extreme, moderate 
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with an exact BLAST hit (100% identity, 100% coverage) were clas-
sified as Exact, and those with best hits containing one mismatch 
or gap were classified as One Off. Everything else was classified 
as Other. We evaluated sensitivity as the proportion of detected 
reference strains. Note that fine-scale variation was present in all 
mock communities, as some reference strains contained multiple 
distinguishable 16S rRNA sequence variants.
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gene in bacteria, the ITS region in fungi, and the 18S rRNA gene 
in eukaryotes provides a census of a community. Functional diver-
sity can be probed by targeting functional genes2.

Disentangling biological variation from amplicon sequencing 
errors presents unique challenges that have prompted the devel-
opment of amplicon-specific error-correction methods3–6. Most 
of these methods were designed for 454 pyrosequencing and are 
not applicable to Illumina sequencing.

Errors in Illumina-sequenced amplicon data are currently 
addressed by quality filtering and the construction of operational 
taxonomic units (OTUs): clusters of sequences that differ by less 
than a fixed dissimilarity threshold7–9 (typically 3%). Lumping 
together similar sequences reduces the rate at which errors are 
misinterpreted as biological variation (Supplementary Fig. 1), 
but OTUs underutilize the quality of modern sequencing by 
precluding the possibility of resolving fine-scale variation5,10–12. 
Fine-scale variation can be informative about ecological niches10, 
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Sequencing data

Pre-processing

§ A new pre-processing pipeline DADA2
§ Using Divisive Amplicon Denoising Algorithm (DADA) 

to correct amplicon errors without constructing OTU 
(i.e. Amplicon Sequence Variants or ASV)
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Merging

Sequencing data

Check quality

Filtering

Denoising

Chimeras 

removal

plotQualityProfile() visualize the quality profile

filterAndTrim() trims sequences to a specific length and filters based on quality

§ A new pre-processing pipeline DADA2

§ Using Divisive Amplicon Denoising Algorithm (DADA) 

to correct amplicon errors without constructing OTU 

(i.e. Amplicon Sequence Variants or ASV)

learnErrors() learn the error rates & dada() implements DADA

removeBimeraDenovo() identifies sequences that are exact bimeras (two-parent 

chimeras) of more abundant sequences

mergePairs() merges forward and reverse if they exactly overlap

ASV table makeSequenceTable() construct the amplicon sequence variant table

Taxonomy 

assignation
assignTaxonomy() assign taxonomy to the ASV
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Sequencing data

SILVA
database
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doi:10.1038/nature11237

Defining the core Arabidopsis thaliana root
microbiome
Derek S. Lundberg1,2*, Sarah L. Lebeis1*, Sur Herrera Paredes1*, Scott Yourstone1,3*, Jase Gehring1, Stephanie Malfatti4,
Julien Tremblay4, Anna Engelbrektson4{, Victor Kunin4{, Tijana Glavina del Rio4, Robert C. Edgar5, Thilo Eickhorst6, Ruth E. Ley7,
Philip Hugenholtz4,8, Susannah Green Tringe4 & Jeffery L. Dangl1,2,9,10,11

Land plants associate with a root microbiota distinct from the com-
plex microbial community present in surrounding soil. The micro-
biota colonizing the rhizosphere (immediately surrounding the root)
and the endophytic compartment (within the root) contribute to
plant growth, productivity, carbon sequestration and phytoremedia-
tion1–3. Colonization of the root occurs despite a sophisticated
plant immune system4,5, suggesting finely tuned discrimination of
mutualists and commensals from pathogens. Genetic principles
governing the derivation of host-specific endophyte communities
from soil communities are poorly understood. Here we report the
pyrosequencing of the bacterial 16S ribosomal RNA gene of more
than 600 Arabidopsis thaliana plants to test the hypotheses that the
root rhizosphere and endophytic compartment microbiota of plants
grown under controlled conditions in natural soils are sufficiently
dependent on the host to remain consistent across different soil
types and developmental stages, and sufficiently dependent on host
genotype to vary between inbred Arabidopsis accessions. We
describe different bacterial communities in two geochemically dis-
tinct bulk soils and in rhizosphere and endophytic compartments
prepared from roots grown in these soils. The communities in each
compartment are strongly influenced by soil type. Endophytic com-
partments from both soils feature overlapping, low-complexity com-
munities that are markedly enriched in Actinobacteria and specific
families from other phyla, notably Proteobacteria. Some bacteria
vary quantitatively between plants of different developmental stage
and genotype. Our rigorous definition of an endophytic compart-
ment microbiome should facilitate controlled dissection of plant–
microbe interactions derived from complex soil communities.

Roots influence the rhizosphere by altering soil pH, soil structure,
oxygen availability, antimicrobial concentration, and quorum-sensing
mimicry, and by providing an energy source of dead root material
and carbon-rich exudates6,7. The microbiota inhabiting this niche
can both benefit and undermine plant health; shifting this balance is
of agronomic interest. Mutualistic microbes may provide the plant with
physiologically accessible nutrients and phytohormones that improve
plant growth, may suppress phytopathogens or may help plants
withstand heat, salt and drought8,9. The rhizosphere community is a
subset of soil microbes that are subsequently filtered via niche utiliza-
tion attributes and interactions with the host to inhabit the endophytic
compartment10 (EC). Although a variety of microbes may enter and
become transient endophytes, those consistently found inside roots are
candidate symbionts or stealthy pathogens10,11. Notably, Arabidopsis
and other Brassicaceae are not well colonized by arbuscular mycorrhizal
fungi, implying that other microorganisms may fill this niche.

Microbial community structure differs across plant species12,13, and
there are reports of host-genotype-dependent differences in patterns of
microbial associations14,15. However, the divergent methods used in
those studies relied on small sample sizes and low-resolution phylotyp-
ing techniques potentially confounded by off-target sequences and
chimaeric amplicons. We developed a robust experimental system to
sample repeatedly the root microbiome using high-throughput
sequencing. Our results confirm many of the general conclusions from
earlier studies and, because of controlled experimental design and the
power of deep sequencing, provide a key step towards the definition of
this microbiome’s functional capacity and the host genes that poten-
tially contribute to microbial association phenotypes. Such plant genes
would constitute major agronomic targets.

We used 454 pyrosequencing to sequence 16S ribosomal RNA
(rRNA) gene amplicons for DNA prepared from eight diverse, inbred
A. thaliana accessions. Plants were grown from surface-sterile seeds in
climate-controlled conditions in two diverse soils, respectively termed
Mason Farm and Clayton (Supplementary Table 1; detailed in
Supplementary Information). For each soil, we assayed multiple indi-
viduals from each A. thaliana accession grown from sterile seeds in
both soils across independent full-factorial biological replicates, in
which all genotypes and bulk soils (pots without a plant) for a given
soil type were grown in parallel (Supplementary Table 2). We isolated
separate rhizosphere and EC fractions from individual plant root
systems (Supplementary Fig. 1 and Supplementary Table 2). We
established 1114F and 1392R as our primer pair (Supplementary
Information and Supplementary Fig. 2). Using an otupipe-based
pipeline (http://drive5.com/otupipe/), we grouped sequences into
97%-identical operational taxonomic units (OTUs), reduced noise
and removed chimaeras. We determined technical reproducibility
thresholds to conclude that OTUs defined by $25 reads in $5 samples
(hereafter 25 3 5) are individually ‘measurable OTUs’16,17 (Supplemen-
tary Figs 2 and 10). All data reported here are from one run of our
otupipe-based pipeline (Supplementary Fig. 3 and Supplementary
Database 1).

Excluding additional control samples, we ribotyped 1,248 samples
comprising 111 bulk soil, 613 rhizosphere and 524 EC samples,
generating 9,787,070 high-quality reads (Supplementary Figs 3 and
4a–c). After removing plant-sequence-derived OTUs, we obtained a
table of usable OTU read counts per sample containing 6,387,407
reads distributed across 18,783 OTUs. We normalized this table of
usable reads by rarefying to 1,000 reads per sample (Supplementary
Database 2a) or, alternatively, by dividing the reads per OTU in a
sample by the sum of usable reads in that sample, resulting in a table

1Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 2Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina
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Ribosomal Data 
Project database

Greengenes
database

§ Looking for sequence homology with ref databases
§ Accuracy depends on quality and completeness       

of the database

Merging

Check quality

Filtering

Denoising

Chimeras 
removal

ASV table

Taxonomy 
assignation
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Process overview Data sets output
§ Sample metadata
§ Occurrence data
§ Observation metadata (taxonomic assignation)

~10,000	features	 Occurrence	data	

Observation	metadata	
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Microbiota data

Sequencing data

Merging

Check quality

Filtering

Denoising

Chimeras 
removal

ASV table

Taxonomy 
assignation



Example of the bacteria Escherichia coli O157:H7

Domain

Kingdom

Phylum

Class

Order

Family

Genus

Species

Bacteria

Eubacteria

Proteobacteria

Gammaproteobacteria

Enterobacterales

Enterobacteriaceae

Escherichia-Shigella

Escherichia coli
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Taxonomic assignment

Strain O157:H7



Example of the bacteria Escherichia coli O157:H7 -> ASV_6287

Domain

Kingdom

Phylum

Class

Order

Family

Genus

Species

Bacteria

Eubacteria

Proteobacteria

Gammaproteobacteria

Enterobacterales

Enterobacteriaceae

Undefined

Undefined
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Taxonomic assignment

Strain -
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How microbiota data are generated?

Test your knowledge…

• Please answer the 3 questions in the following quiz
https://bigdata_microbiome.presenterswall.nl/

Anouk Zancarini – Tools in molecular data analysis – March 2021
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In the tutorial, look at:
o Getting ready
o Inspect read quality profiles
o Filter and trim
o Learn the error rates
o Sample inference
o Merge paired reads
o Construct sequence table
o Remove chimeras
o Track reads through the pipeline
o Assign taxonomy

Tutorial link:
http://benjjneb.github.io/dada2/tutorial.html

Practice time: from sequences to microbiota data sets

Script on Canvas or link:
https://scienceparkstudygroup.github.io/microbiome-
lesson/02-data-preprocess-fastq-to-asv/index.html

http://benjjneb.github.io/dada2/tutorial.html
https://scienceparkstudygroup.github.io/microbiome-lesson/02-data-preprocess-fastq-to-asv/index.html


Microbiota data analysis

q Define microbiome and state microbiome importance
q Identify differences between metabarcoding and metagenomics
q Explain how microbiota data are generated (including bias)
q Explain and preform data pre-processing
q Explain how microbiota data are analysed
q Define, perform and interpret alpha-diversity
q Address sparsity, under-sampling and uneven sampling depth 

using data filtering and normalization
q Define, perform and interpret beta-diversity
q Generate and interpret multivariate data analyses
q Perform and interpret appropriate statistical tests
q Visualize and interpret microbial community composition

Learning objectives
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Part 1

• Definitions
• Microbiome 

importance

• Scientific questions
• Differences between 

metagenomics and 
metabarcoding

What is 
microbiome?

Part 2

• From samples to 
sequences

• From sequences to 
data sets

How microbiota 
data are generated?

How microbiota 
data are analysed?

Part 3

• Alpha-diversity
• Data properties
• Data filtering

• Data normalisation
• Beta-diversity
• Microbial composition

How microbiota data are analysed?

Anouk Zancarini – Tools in molecular data analysis – March 2021



Process overview

Step 3: From microbiota data sets to data visualisation

Alpha-diversityRaw occurrence 
data
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Alpha-diversity

§ Diversity within one sample/ecosystem

§ Alpha-diversity indices
q Richness represents the number of species observed (Sobs)

Sobs = 2 Sobs = 4

(usually calculated at feature level) 
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Richness
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https://bigdata_microbiome.presenterswall.nl/
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Supplementary Figure S4: Sequencing statistics and quality. a) Sequencing depth per sample in reads for the 
three sample fractions S, R, and EC. Each dot represents a single plant or soil sample. Within each fraction, the total 
(t), usable (u), and measurable (m) read counts are shown for all samples. The box plots contain the 1st and 3rd 
quartiles, split by the median; whiskers extend to include the farthest outliers. b) Rarefaction curves to 10,000 
sequences for cumulative reads from S, R, and EC fractions considering all usable OTUs (top) and only measurable 
OTUs (bottom) c) Table, split by sample fraction, summarizing: cumulative numbers of total high quality reads, 
‘usable’ (non-plant & non-chimera) reads, number of OTUs after the technical reproducibility ‘25x5’ threshold is 
applied, ‘measurable’ reads (reads contained in OTUs that pass the 25x5 threshold). d) Shannon diversity of 
individual samples from each fraction, calculated from the rarefaction-normalized table, before (left) and after (right) 
applying the 25x5 measurable OTU threshold. 
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Alpha-diversity
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Defining the core Arabidopsis thaliana root
microbiome
Derek S. Lundberg1,2*, Sarah L. Lebeis1*, Sur Herrera Paredes1*, Scott Yourstone1,3*, Jase Gehring1, Stephanie Malfatti4,
Julien Tremblay4, Anna Engelbrektson4{, Victor Kunin4{, Tijana Glavina del Rio4, Robert C. Edgar5, Thilo Eickhorst6, Ruth E. Ley7,
Philip Hugenholtz4,8, Susannah Green Tringe4 & Jeffery L. Dangl1,2,9,10,11

Land plants associate with a root microbiota distinct from the com-
plex microbial community present in surrounding soil. The micro-
biota colonizing the rhizosphere (immediately surrounding the root)
and the endophytic compartment (within the root) contribute to
plant growth, productivity, carbon sequestration and phytoremedia-
tion1–3. Colonization of the root occurs despite a sophisticated
plant immune system4,5, suggesting finely tuned discrimination of
mutualists and commensals from pathogens. Genetic principles
governing the derivation of host-specific endophyte communities
from soil communities are poorly understood. Here we report the
pyrosequencing of the bacterial 16S ribosomal RNA gene of more
than 600 Arabidopsis thaliana plants to test the hypotheses that the
root rhizosphere and endophytic compartment microbiota of plants
grown under controlled conditions in natural soils are sufficiently
dependent on the host to remain consistent across different soil
types and developmental stages, and sufficiently dependent on host
genotype to vary between inbred Arabidopsis accessions. We
describe different bacterial communities in two geochemically dis-
tinct bulk soils and in rhizosphere and endophytic compartments
prepared from roots grown in these soils. The communities in each
compartment are strongly influenced by soil type. Endophytic com-
partments from both soils feature overlapping, low-complexity com-
munities that are markedly enriched in Actinobacteria and specific
families from other phyla, notably Proteobacteria. Some bacteria
vary quantitatively between plants of different developmental stage
and genotype. Our rigorous definition of an endophytic compart-
ment microbiome should facilitate controlled dissection of plant–
microbe interactions derived from complex soil communities.

Roots influence the rhizosphere by altering soil pH, soil structure,
oxygen availability, antimicrobial concentration, and quorum-sensing
mimicry, and by providing an energy source of dead root material
and carbon-rich exudates6,7. The microbiota inhabiting this niche
can both benefit and undermine plant health; shifting this balance is
of agronomic interest. Mutualistic microbes may provide the plant with
physiologically accessible nutrients and phytohormones that improve
plant growth, may suppress phytopathogens or may help plants
withstand heat, salt and drought8,9. The rhizosphere community is a
subset of soil microbes that are subsequently filtered via niche utiliza-
tion attributes and interactions with the host to inhabit the endophytic
compartment10 (EC). Although a variety of microbes may enter and
become transient endophytes, those consistently found inside roots are
candidate symbionts or stealthy pathogens10,11. Notably, Arabidopsis
and other Brassicaceae are not well colonized by arbuscular mycorrhizal
fungi, implying that other microorganisms may fill this niche.

Microbial community structure differs across plant species12,13, and
there are reports of host-genotype-dependent differences in patterns of
microbial associations14,15. However, the divergent methods used in
those studies relied on small sample sizes and low-resolution phylotyp-
ing techniques potentially confounded by off-target sequences and
chimaeric amplicons. We developed a robust experimental system to
sample repeatedly the root microbiome using high-throughput
sequencing. Our results confirm many of the general conclusions from
earlier studies and, because of controlled experimental design and the
power of deep sequencing, provide a key step towards the definition of
this microbiome’s functional capacity and the host genes that poten-
tially contribute to microbial association phenotypes. Such plant genes
would constitute major agronomic targets.

We used 454 pyrosequencing to sequence 16S ribosomal RNA
(rRNA) gene amplicons for DNA prepared from eight diverse, inbred
A. thaliana accessions. Plants were grown from surface-sterile seeds in
climate-controlled conditions in two diverse soils, respectively termed
Mason Farm and Clayton (Supplementary Table 1; detailed in
Supplementary Information). For each soil, we assayed multiple indi-
viduals from each A. thaliana accession grown from sterile seeds in
both soils across independent full-factorial biological replicates, in
which all genotypes and bulk soils (pots without a plant) for a given
soil type were grown in parallel (Supplementary Table 2). We isolated
separate rhizosphere and EC fractions from individual plant root
systems (Supplementary Fig. 1 and Supplementary Table 2). We
established 1114F and 1392R as our primer pair (Supplementary
Information and Supplementary Fig. 2). Using an otupipe-based
pipeline (http://drive5.com/otupipe/), we grouped sequences into
97%-identical operational taxonomic units (OTUs), reduced noise
and removed chimaeras. We determined technical reproducibility
thresholds to conclude that OTUs defined by $25 reads in $5 samples
(hereafter 25 3 5) are individually ‘measurable OTUs’16,17 (Supplemen-
tary Figs 2 and 10). All data reported here are from one run of our
otupipe-based pipeline (Supplementary Fig. 3 and Supplementary
Database 1).

Excluding additional control samples, we ribotyped 1,248 samples
comprising 111 bulk soil, 613 rhizosphere and 524 EC samples,
generating 9,787,070 high-quality reads (Supplementary Figs 3 and
4a–c). After removing plant-sequence-derived OTUs, we obtained a
table of usable OTU read counts per sample containing 6,387,407
reads distributed across 18,783 OTUs. We normalized this table of
usable reads by rarefying to 1,000 reads per sample (Supplementary
Database 2a) or, alternatively, by dividing the reads per OTU in a
sample by the sum of usable reads in that sample, resulting in a table
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USA. 5Taxon Biosciences, Inc., Tiburon, California 94920, USA. 6Soil Science, Faculty of Biology and Chemistry, University of Bremen, Bremen 28359, Germany. 7Department of Microbiology, Cornell
University, Ithaca, New York 14853, USA. 8Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences & Institute for Molecular Bioscience, The University of Queensland, Brisbane,
Queensland 4072, Australia. 9Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 10Carolina Center for Genome Sciences, University of
North Carolina, Chapel Hill, North Carolina 27599, USA. 11Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, North Carolina 27599, USA. {Present addresses: Department of Plant
and Microbial Biology, University of California, Berkeley, California 94720-3102, USA (A.E.); Taxon Biosciences, Inc., Tiburon, California 94920, USA (V.K.).
*These authors contributed equally to this work.
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Bulk soil
Rhizosphere

Microbial
communities



§ Diversity within one sample/ecosystem (usually calculated at feature level)

§ Alpha-diversity indices
q Richness represents the number of species observed (Sobs)
q Chao1 estimates total richness (S1)

S1 = Sobs +  ___F1
2

2F2

Sobs Number of species
F1 Number of singletons
F2 Number of doubletons

48

Alpha-diversity

Total richness Observed richness
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REMARK: Difference between observed richness and Chao1
give you information about the sequencing depth

(enough if Richness = Chao1; not enough if Richness << Chao1)

REMARK: Chao1 
can only be 

calculated on 
raw data



§ Rarefaction curve

Total number of 
sequences/reads for 

this sample 

Richness (Sobs) 
Number of feature 
observed for this 

sample
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§ Rarefaction curve
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Sequencing depth
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§ Rarefaction curve
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Sequencing depth
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§ Rarefaction curve
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Sequencing depth
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§ Diversity within one sample/ecosystem (usually calculated at feature level)

§ Alpha-diversity indices

q Richness represents the number of species observed (Sobs)

q Chao1 estimates total richness (S1)

q Pielou’s evenness provide information about equity in species abundance

53Richness

Ev
en

ne
ss

E = -Σ pi ln pi /  ln(Sobs)
Sobs

i=1

pi proportion of individuals 

belonging to the ith species

E = 1E = 1

E = 0.52E = 0.81 Sobs = 2

Sobs = 2

Sobs = 4

Sobs = 4

Alpha-diversity



§ Diversity within one sample/ecosystem (usually calculated at feature level)

§ Alpha-diversity indices
q Richness represents the number of species observed (Sobs)
q Chao1 estimates total richness (S1)
q Pielou’s evenness provide information about equity in species abundance
q Shannon provides information about both richness and evenness (H’)

H’ = -Σ pi ln pi

Sobs

i=1

pi proportion of individuals 
belonging to the ith species

54

Alpha-diversity
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§ Diversity within one sample/ecosystem (usually calculated at feature level)

§ Alpha-diversity indices
q Richness represents the number of species observed (Sobs)
q Chao1 estimates total richness (S1)
q Pielou’s evenness provide information about equity in species abundance
q Shannon provides information about both richness and evenness (H’)

§ Statistical tests
q Normal distribution: t-test or ANOVA
q No normal distribution: Mann Whitney or Kruskal Wallis

55

Alpha-diversity
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In the tutorial, look at:
o Home page
o 1. Introduction
o 4. Alpha-diversity

Practice time: alpha-diversity 

Tutorial link:
https://scienceparkstudygroup.github.io/
microbiome-lesson/index.html
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Microbiota data analysis

q Define microbiome and state microbiome importance
q Identify differences between metabarcoding and metagenomics
q Explain how microbiota data are generated (including bias)
q Explain and preform data pre-processing
q Explain how microbiota data are analysed
q Define, perform and interpret alpha-diversity
q Address sparsity, under-sampling and uneven sampling depth 

using data filtering and normalization
q Define, perform and interpret beta-diversity
q Generate and interpret multivariate data analyses
q Perform and interpret appropriate statistical tests
q Visualize and interpret microbial community composition

Learning objectives



Occurrence table

~1
00

 sa
m

pl
es

~10,000 features

§ n << p
§ Sparse data (~80% of 0)

Filter the data in order to 
decrease low quality or 
uninformative features

59

Microbiota data properties
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Is a zero value a true zero, 
meaning that this feature is 
not present in the sample?

NOT 

Always!



§ Rarefaction curve
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Sequencing depth
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REMARK: If the sequencing depth is not enough, it will be difficult to 
compare difference between samples for low counts. 

Therefore, it will be better to remove features that have only low counts.



Process overview

Data filteringRaw occurrence
data

61

Step 3: From microbiota data sets to data visualisation

Alpha-diversity
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Challenge:
Remove uninformative 

& low quality reads
Trade-off between 

quantity and quality



Occurrence table

~1
00

 sa
m

pl
es

~10,000 features

§ n << p
§ Sparse data (~80% of 0)
§ Compositional data
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Microbiota data properties
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REMARK: We describe relative abundances



Occurrence table

~1
00

 sa
m

pl
es

~10,000 features

§ n << p
§ Sparse data (~80% of 0)
§ Compositional data
§ Different library sizes 

(total number of reads/ 
sequences per sample)
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Microbiota data properties
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Supplementary Figure S4: Sequencing statistics and quality. a) Sequencing depth per sample in reads for the 
three sample fractions S, R, and EC. Each dot represents a single plant or soil sample. Within each fraction, the total 
(t), usable (u), and measurable (m) read counts are shown for all samples. The box plots contain the 1st and 3rd 
quartiles, split by the median; whiskers extend to include the farthest outliers. b) Rarefaction curves to 10,000 
sequences for cumulative reads from S, R, and EC fractions considering all usable OTUs (top) and only measurable 
OTUs (bottom) c) Table, split by sample fraction, summarizing: cumulative numbers of total high quality reads, 
‘usable’ (non-plant & non-chimera) reads, number of OTUs after the technical reproducibility ‘25x5’ threshold is 
applied, ‘measurable’ reads (reads contained in OTUs that pass the 25x5 threshold). d) Shannon diversity of 
individual samples from each fraction, calculated from the rarefaction-normalized table, before (left) and after (right) 
applying the 25x5 measurable OTU threshold. 

Lundberg et al. 2012 64

Microbiota data properties: library size per sample
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LETTER
doi:10.1038/nature11237

Defining the core Arabidopsis thaliana root
microbiome
Derek S. Lundberg1,2*, Sarah L. Lebeis1*, Sur Herrera Paredes1*, Scott Yourstone1,3*, Jase Gehring1, Stephanie Malfatti4,
Julien Tremblay4, Anna Engelbrektson4{, Victor Kunin4{, Tijana Glavina del Rio4, Robert C. Edgar5, Thilo Eickhorst6, Ruth E. Ley7,
Philip Hugenholtz4,8, Susannah Green Tringe4 & Jeffery L. Dangl1,2,9,10,11

Land plants associate with a root microbiota distinct from the com-
plex microbial community present in surrounding soil. The micro-
biota colonizing the rhizosphere (immediately surrounding the root)
and the endophytic compartment (within the root) contribute to
plant growth, productivity, carbon sequestration and phytoremedia-
tion1–3. Colonization of the root occurs despite a sophisticated
plant immune system4,5, suggesting finely tuned discrimination of
mutualists and commensals from pathogens. Genetic principles
governing the derivation of host-specific endophyte communities
from soil communities are poorly understood. Here we report the
pyrosequencing of the bacterial 16S ribosomal RNA gene of more
than 600 Arabidopsis thaliana plants to test the hypotheses that the
root rhizosphere and endophytic compartment microbiota of plants
grown under controlled conditions in natural soils are sufficiently
dependent on the host to remain consistent across different soil
types and developmental stages, and sufficiently dependent on host
genotype to vary between inbred Arabidopsis accessions. We
describe different bacterial communities in two geochemically dis-
tinct bulk soils and in rhizosphere and endophytic compartments
prepared from roots grown in these soils. The communities in each
compartment are strongly influenced by soil type. Endophytic com-
partments from both soils feature overlapping, low-complexity com-
munities that are markedly enriched in Actinobacteria and specific
families from other phyla, notably Proteobacteria. Some bacteria
vary quantitatively between plants of different developmental stage
and genotype. Our rigorous definition of an endophytic compart-
ment microbiome should facilitate controlled dissection of plant–
microbe interactions derived from complex soil communities.

Roots influence the rhizosphere by altering soil pH, soil structure,
oxygen availability, antimicrobial concentration, and quorum-sensing
mimicry, and by providing an energy source of dead root material
and carbon-rich exudates6,7. The microbiota inhabiting this niche
can both benefit and undermine plant health; shifting this balance is
of agronomic interest. Mutualistic microbes may provide the plant with
physiologically accessible nutrients and phytohormones that improve
plant growth, may suppress phytopathogens or may help plants
withstand heat, salt and drought8,9. The rhizosphere community is a
subset of soil microbes that are subsequently filtered via niche utiliza-
tion attributes and interactions with the host to inhabit the endophytic
compartment10 (EC). Although a variety of microbes may enter and
become transient endophytes, those consistently found inside roots are
candidate symbionts or stealthy pathogens10,11. Notably, Arabidopsis
and other Brassicaceae are not well colonized by arbuscular mycorrhizal
fungi, implying that other microorganisms may fill this niche.

Microbial community structure differs across plant species12,13, and
there are reports of host-genotype-dependent differences in patterns of
microbial associations14,15. However, the divergent methods used in
those studies relied on small sample sizes and low-resolution phylotyp-
ing techniques potentially confounded by off-target sequences and
chimaeric amplicons. We developed a robust experimental system to
sample repeatedly the root microbiome using high-throughput
sequencing. Our results confirm many of the general conclusions from
earlier studies and, because of controlled experimental design and the
power of deep sequencing, provide a key step towards the definition of
this microbiome’s functional capacity and the host genes that poten-
tially contribute to microbial association phenotypes. Such plant genes
would constitute major agronomic targets.

We used 454 pyrosequencing to sequence 16S ribosomal RNA
(rRNA) gene amplicons for DNA prepared from eight diverse, inbred
A. thaliana accessions. Plants were grown from surface-sterile seeds in
climate-controlled conditions in two diverse soils, respectively termed
Mason Farm and Clayton (Supplementary Table 1; detailed in
Supplementary Information). For each soil, we assayed multiple indi-
viduals from each A. thaliana accession grown from sterile seeds in
both soils across independent full-factorial biological replicates, in
which all genotypes and bulk soils (pots without a plant) for a given
soil type were grown in parallel (Supplementary Table 2). We isolated
separate rhizosphere and EC fractions from individual plant root
systems (Supplementary Fig. 1 and Supplementary Table 2). We
established 1114F and 1392R as our primer pair (Supplementary
Information and Supplementary Fig. 2). Using an otupipe-based
pipeline (http://drive5.com/otupipe/), we grouped sequences into
97%-identical operational taxonomic units (OTUs), reduced noise
and removed chimaeras. We determined technical reproducibility
thresholds to conclude that OTUs defined by $25 reads in $5 samples
(hereafter 25 3 5) are individually ‘measurable OTUs’16,17 (Supplemen-
tary Figs 2 and 10). All data reported here are from one run of our
otupipe-based pipeline (Supplementary Fig. 3 and Supplementary
Database 1).

Excluding additional control samples, we ribotyped 1,248 samples
comprising 111 bulk soil, 613 rhizosphere and 524 EC samples,
generating 9,787,070 high-quality reads (Supplementary Figs 3 and
4a–c). After removing plant-sequence-derived OTUs, we obtained a
table of usable OTU read counts per sample containing 6,387,407
reads distributed across 18,783 OTUs. We normalized this table of
usable reads by rarefying to 1,000 reads per sample (Supplementary
Database 2a) or, alternatively, by dividing the reads per OTU in a
sample by the sum of usable reads in that sample, resulting in a table

1Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 2Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina
27599, USA. 3Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 4DOE Joint Genome Institute, Walnut Creek, California 94598,
USA. 5Taxon Biosciences, Inc., Tiburon, California 94920, USA. 6Soil Science, Faculty of Biology and Chemistry, University of Bremen, Bremen 28359, Germany. 7Department of Microbiology, Cornell
University, Ithaca, New York 14853, USA. 8Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences & Institute for Molecular Bioscience, The University of Queensland, Brisbane,
Queensland 4072, Australia. 9Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 10Carolina Center for Genome Sciences, University of
North Carolina, Chapel Hill, North Carolina 27599, USA. 11Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, North Carolina 27599, USA. {Present addresses: Department of Plant
and Microbial Biology, University of California, Berkeley, California 94720-3102, USA (A.E.); Taxon Biosciences, Inc., Tiburon, California 94920, USA (V.K.).
*These authors contributed equally to this work.
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seq_1 seq_2 seq_3 (…) seq_p total_reads
sample_1 500 80 20 5 10,000
sample_2 500 80 20 5 1,000
sample_3 50 8 2 0 1,000

(…)
sample_n 2000 0 2 0 10,000

§ Library size is the total number of reads per sample

65

Microbiota data properties: library size per sample
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In the tutorial, look at:
o 3. Data exploration and properties

Practice time: microbiota data properties

Tutorial link:
https://scienceparkstudygroup.github.io/
microbiome-lesson/03-data-exploration-
and-properties/index.html
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Process overview
Data

normalisation

68

Step 3: From microbiota data sets to data visualisation
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Data filteringRaw occurrence
data

Alpha-diversity



§ Different normalisation methods available (depend on your downstream analysis)
q Total Sum Normalisation: dividing the reads for each OTU in a sample by 

the total number of reads in that sample and multiplying by 100

seq_1 seq_2 seq_3 (…) seq_p total_reads
sample_1 500 80 20 5 10,000
sample_2 500 80 20 5 1,000
sample_3 50 8 2 0 1,000

seq_1 seq_2 seq_3 (…) seq_p total_reads
sample_1
sample_2
sample_3

69

Microbiota data normalisation
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§ Different normalisation methods available
q Total Sum Normalisation: dividing the reads for each OTU in a sample by 

the total number of reads in that sample and multiplying by 100

seq_1 seq_2 seq_3 (…) seq_p total_reads
sample_1 500 80 20 5 10,000
sample_2 500 80 20 5 1,000
sample_3 50 8 2 0 1,000

seq_1 seq_2 seq_3 (…) seq_p total_reads
sample_1 100
sample_2 100

sample_3 100
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Microbiota data normalisation
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§ Different normalisation methods available

q Total Sum Normalisation: dividing the reads for each OTU in a sample by 

the total number of reads in that sample and multiplying by 100

seq_1 seq_2 seq_3 (…) seq_p total_reads
sample_1 500 80 20 5 10,000

sample_2 500 80 20 5 1,000

sample_3 50 8 2 0 1,000

seq_1 seq_2 seq_3 (…) seq_p total_reads
sample_1 0.05 0.008 0.002 0.0005 100

sample_2 0.5 0.08 0.02 0.005 100

sample_3 0.05 0.008 0.002 0 100
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Microbiota data normalisation
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§ Different normalisation methods available

q Total Sum Normalisation: dividing the reads for each OTU in a sample by 

the total number of reads in that sample and multiplying by 100

q Rarefy: randomly subsampling each sample to the lowest read depth of 

any sample

seq_1 seq_2 seq_3 (…) seq_p total_reads
sample_1 500 80 20 5 10,000

sample_2 500 80 20 5 1,000

sample_3 50 8 2 0 1,000

seq_1 seq_2 seq_3 (…) seq_p total_reads
sample_1 1,000

sample_2 1,000

sample_3 1,000
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Microbiota data normalisation
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§ Different normalisation methods available

q Total Sum Normalisation: dividing the reads for each OTU in a sample by 

the total number of reads in that sample and multiplying by 100

q Rarefy: randomly subsampling each sample to the lowest read depth of 

any sample

seq_1 seq_2 seq_3 (…) seq_p total_reads
sample_1 500 80 20 5 10,000

sample_2 500 80 20 5 1,000

sample_3 50 8 2 0 1,000

seq_1 seq_2 seq_3 (…) seq_p total_reads
sample_1 1,000

sample_2 500 80 20 5 1,000

sample_3 50 8 2 0 1,000
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Microbiota data normalisation
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§ Different normalisation methods available
q Total Sum Normalisation: dividing the reads for each OTU in a sample by 

the total number of reads in that sample and multiplying by 100
q Rarefy: randomly subsampling each sample to the lowest read depth of 

any sample

seq_1 seq_2 seq_3 (…) seq_p total_reads
sample_1 500 80 20 5 10,000
sample_2 500 80 20 5 1,000
sample_3 50 8 2 0 1,000

seq_1 seq_2 seq_3 (…) seq_p total_reads
sample_1 52 8 1 0 1,000
sample_2 500 80 20 5 1,000
sample_3 50 8 2 0 1,000
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Microbiota data normalisation
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§ Different normalisation methods available
q Total Sum Normalisation: dividing the reads for each OTU in a sample by 

the total number of reads in that sample and multiplying by 100
q Rarefy: randomly subsampling each sample to the lowest read depth of 

any sample

LETTER
doi:10.1038/nature11237

Defining the core Arabidopsis thaliana root
microbiome
Derek S. Lundberg1,2*, Sarah L. Lebeis1*, Sur Herrera Paredes1*, Scott Yourstone1,3*, Jase Gehring1, Stephanie Malfatti4,
Julien Tremblay4, Anna Engelbrektson4{, Victor Kunin4{, Tijana Glavina del Rio4, Robert C. Edgar5, Thilo Eickhorst6, Ruth E. Ley7,
Philip Hugenholtz4,8, Susannah Green Tringe4 & Jeffery L. Dangl1,2,9,10,11

Land plants associate with a root microbiota distinct from the com-
plex microbial community present in surrounding soil. The micro-
biota colonizing the rhizosphere (immediately surrounding the root)
and the endophytic compartment (within the root) contribute to
plant growth, productivity, carbon sequestration and phytoremedia-
tion1–3. Colonization of the root occurs despite a sophisticated
plant immune system4,5, suggesting finely tuned discrimination of
mutualists and commensals from pathogens. Genetic principles
governing the derivation of host-specific endophyte communities
from soil communities are poorly understood. Here we report the
pyrosequencing of the bacterial 16S ribosomal RNA gene of more
than 600 Arabidopsis thaliana plants to test the hypotheses that the
root rhizosphere and endophytic compartment microbiota of plants
grown under controlled conditions in natural soils are sufficiently
dependent on the host to remain consistent across different soil
types and developmental stages, and sufficiently dependent on host
genotype to vary between inbred Arabidopsis accessions. We
describe different bacterial communities in two geochemically dis-
tinct bulk soils and in rhizosphere and endophytic compartments
prepared from roots grown in these soils. The communities in each
compartment are strongly influenced by soil type. Endophytic com-
partments from both soils feature overlapping, low-complexity com-
munities that are markedly enriched in Actinobacteria and specific
families from other phyla, notably Proteobacteria. Some bacteria
vary quantitatively between plants of different developmental stage
and genotype. Our rigorous definition of an endophytic compart-
ment microbiome should facilitate controlled dissection of plant–
microbe interactions derived from complex soil communities.

Roots influence the rhizosphere by altering soil pH, soil structure,
oxygen availability, antimicrobial concentration, and quorum-sensing
mimicry, and by providing an energy source of dead root material
and carbon-rich exudates6,7. The microbiota inhabiting this niche
can both benefit and undermine plant health; shifting this balance is
of agronomic interest. Mutualistic microbes may provide the plant with
physiologically accessible nutrients and phytohormones that improve
plant growth, may suppress phytopathogens or may help plants
withstand heat, salt and drought8,9. The rhizosphere community is a
subset of soil microbes that are subsequently filtered via niche utiliza-
tion attributes and interactions with the host to inhabit the endophytic
compartment10 (EC). Although a variety of microbes may enter and
become transient endophytes, those consistently found inside roots are
candidate symbionts or stealthy pathogens10,11. Notably, Arabidopsis
and other Brassicaceae are not well colonized by arbuscular mycorrhizal
fungi, implying that other microorganisms may fill this niche.

Microbial community structure differs across plant species12,13, and
there are reports of host-genotype-dependent differences in patterns of
microbial associations14,15. However, the divergent methods used in
those studies relied on small sample sizes and low-resolution phylotyp-
ing techniques potentially confounded by off-target sequences and
chimaeric amplicons. We developed a robust experimental system to
sample repeatedly the root microbiome using high-throughput
sequencing. Our results confirm many of the general conclusions from
earlier studies and, because of controlled experimental design and the
power of deep sequencing, provide a key step towards the definition of
this microbiome’s functional capacity and the host genes that poten-
tially contribute to microbial association phenotypes. Such plant genes
would constitute major agronomic targets.

We used 454 pyrosequencing to sequence 16S ribosomal RNA
(rRNA) gene amplicons for DNA prepared from eight diverse, inbred
A. thaliana accessions. Plants were grown from surface-sterile seeds in
climate-controlled conditions in two diverse soils, respectively termed
Mason Farm and Clayton (Supplementary Table 1; detailed in
Supplementary Information). For each soil, we assayed multiple indi-
viduals from each A. thaliana accession grown from sterile seeds in
both soils across independent full-factorial biological replicates, in
which all genotypes and bulk soils (pots without a plant) for a given
soil type were grown in parallel (Supplementary Table 2). We isolated
separate rhizosphere and EC fractions from individual plant root
systems (Supplementary Fig. 1 and Supplementary Table 2). We
established 1114F and 1392R as our primer pair (Supplementary
Information and Supplementary Fig. 2). Using an otupipe-based
pipeline (http://drive5.com/otupipe/), we grouped sequences into
97%-identical operational taxonomic units (OTUs), reduced noise
and removed chimaeras. We determined technical reproducibility
thresholds to conclude that OTUs defined by $25 reads in $5 samples
(hereafter 25 3 5) are individually ‘measurable OTUs’16,17 (Supplemen-
tary Figs 2 and 10). All data reported here are from one run of our
otupipe-based pipeline (Supplementary Fig. 3 and Supplementary
Database 1).

Excluding additional control samples, we ribotyped 1,248 samples
comprising 111 bulk soil, 613 rhizosphere and 524 EC samples,
generating 9,787,070 high-quality reads (Supplementary Figs 3 and
4a–c). After removing plant-sequence-derived OTUs, we obtained a
table of usable OTU read counts per sample containing 6,387,407
reads distributed across 18,783 OTUs. We normalized this table of
usable reads by rarefying to 1,000 reads per sample (Supplementary
Database 2a) or, alternatively, by dividing the reads per OTU in a
sample by the sum of usable reads in that sample, resulting in a table

1Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 2Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina
27599, USA. 3Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 4DOE Joint Genome Institute, Walnut Creek, California 94598,
USA. 5Taxon Biosciences, Inc., Tiburon, California 94920, USA. 6Soil Science, Faculty of Biology and Chemistry, University of Bremen, Bremen 28359, Germany. 7Department of Microbiology, Cornell
University, Ithaca, New York 14853, USA. 8Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences & Institute for Molecular Bioscience, The University of Queensland, Brisbane,
Queensland 4072, Australia. 9Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 10Carolina Center for Genome Sciences, University of
North Carolina, Chapel Hill, North Carolina 27599, USA. 11Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, North Carolina 27599, USA. {Present addresses: Department of Plant
and Microbial Biology, University of California, Berkeley, California 94720-3102, USA (A.E.); Taxon Biosciences, Inc., Tiburon, California 94920, USA (V.K.).
*These authors contributed equally to this work.
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Ø Rarefied at 1000 reads per sample

Microbiota data normalisation
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REMARK: When the sequencing depth is not enough and you have big differences in 
library sizes (~x10), it is better to rarefy your data than calculate percentage

SUPPLEMENTARY INFORMATION
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Supplementary Figure S4: Sequencing statistics and quality. a) Sequencing depth per sample in reads for the 
three sample fractions S, R, and EC. Each dot represents a single plant or soil sample. Within each fraction, the total 
(t), usable (u), and measurable (m) read counts are shown for all samples. The box plots contain the 1st and 3rd 
quartiles, split by the median; whiskers extend to include the farthest outliers. b) Rarefaction curves to 10,000 
sequences for cumulative reads from S, R, and EC fractions considering all usable OTUs (top) and only measurable 
OTUs (bottom) c) Table, split by sample fraction, summarizing: cumulative numbers of total high quality reads, 
‘usable’ (non-plant & non-chimera) reads, number of OTUs after the technical reproducibility ‘25x5’ threshold is 
applied, ‘measurable’ reads (reads contained in OTUs that pass the 25x5 threshold). d) Shannon diversity of 
individual samples from each fraction, calculated from the rarefaction-normalized table, before (left) and after (right) 
applying the 25x5 measurable OTU threshold. 
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§ Different normalisation methods available
q Total Sum Normalisation: dividing the reads for each OTU in a sample by 

the total number of reads in that sample and multiplying by 100
q Rarefy: randomly subsampling each sample to the lowest read depth of 

any sample
q DESeq-VS: a variance stabilizing transformation (used for RNA-seq analysis)

q edgeR-TMM: a trimmed mean of M-values normalisation
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Normalization and microbial differential
abundance strategies depend upon data
characteristics
Sophie Weiss1, Zhenjiang Zech Xu2, Shyamal Peddada3, Amnon Amir2, Kyle Bittinger4, Antonio Gonzalez2,
Catherine Lozupone5, Jesse R. Zaneveld6, Yoshiki Vázquez-Baeza7, Amanda Birmingham8, Embriette R. Hyde2

and Rob Knight2,7,9*

Abstract

Background: Data from 16S ribosomal RNA (rRNA) amplicon sequencing present challenges to ecological and
statistical interpretation. In particular, library sizes often vary over several ranges of magnitude, and the data
contains many zeros. Although we are typically interested in comparing relative abundance of taxa in the ecosystem of
two or more groups, we can only measure the taxon relative abundance in specimens obtained from the ecosystems.
Because the comparison of taxon relative abundance in the specimen is not equivalent to the comparison of
taxon relative abundance in the ecosystems, this presents a special challenge. Second, because the relative
abundance of taxa in the specimen (as well as in the ecosystem) sum to 1, these are compositional data. Because the
compositional data are constrained by the simplex (sum to 1) and are not unconstrained in the Euclidean space, many
standard methods of analysis are not applicable. Here, we evaluate how these challenges impact the performance of
existing normalization methods and differential abundance analyses.

Results: Effects on normalization: Most normalization methods enable successful clustering of samples according to
biological origin when the groups differ substantially in their overall microbial composition. Rarefying more
clearly clusters samples according to biological origin than other normalization techniques do for ordination
metrics based on presence or absence. Alternate normalization measures are potentially vulnerable to artifacts
due to library size.
Effects on differential abundance testing: We build on a previous work to evaluate seven proposed statistical
methods using rarefied as well as raw data. Our simulation studies suggest that the false discovery rates of
many differential abundance-testing methods are not increased by rarefying itself, although of course rarefying results
in a loss of sensitivity due to elimination of a portion of available data. For groups with large (~10×) differences in the
average library size, rarefying lowers the false discovery rate. DESeq2, without addition of a constant, increased
sensitivity on smaller datasets (<20 samples per group) but tends towards a higher false discovery rate with
more samples, very uneven (~10×) library sizes, and/or compositional effects. For drawing inferences regarding
taxon abundance in the ecosystem, analysis of composition of microbiomes (ANCOM) is not only very sensitive
(for >20 samples per group) but also critically the only method tested that has a good control of false discovery rate.

Conclusions: These findings guide which normalization and differential abundance techniques to use based on the
data characteristics of a given study.
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Waste Not, Want Not: Why Rarefying Microbiome Data Is
Inadmissible
Paul J. McMurdie, Susan Holmes*

Statistics Department, Stanford University, Stanford, California, United States of America

Abstract

Current practice in the normalization of microbiome count data is inefficient in the statistical sense. For apparently historical
reasons, the common approach is either to use simple proportions (which does not address heteroscedasticity) or to use
rarefying of counts, even though both of these approaches are inappropriate for detection of differentially abundant
species. Well-established statistical theory is available that simultaneously accounts for library size differences and biological
variability using an appropriate mixture model. Moreover, specific implementations for DNA sequencing read count data
(based on a Negative Binomial model for instance) are already available in RNA-Seq focused R packages such as edgeR and
DESeq. Here we summarize the supporting statistical theory and use simulations and empirical data to demonstrate
substantial improvements provided by a relevant mixture model framework over simple proportions or rarefying. We show
how both proportions and rarefied counts result in a high rate of false positives in tests for species that are differentially
abundant across sample classes. Regarding microbiome sample-wise clustering, we also show that the rarefying procedure
often discards samples that can be accurately clustered by alternative methods. We further compare different Negative
Binomial methods with a recently-described zero-inflated Gaussian mixture, implemented in a package called
metagenomeSeq. We find that metagenomeSeq performs well when there is an adequate number of biological replicates,
but it nevertheless tends toward a higher false positive rate. Based on these results and well-established statistical theory,
we advocate that investigators avoid rarefying altogether. We have provided microbiome-specific extensions to these tools
in the R package, phyloseq.
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Introduction

Modern, massively parallel DNA sequencing technologies have
changed the scope and technique of investigations across many
fields of biology [1,2]. In gene expression studies the standard
measurement technique has shifted away from microarray
hybridization to direct sequencing of cDNA, a technique often
referred to as RNA-Seq [3]. Analogously, culture independent [4]
microbiome research has migrated away from detection of species
through microarray hybridization of small subunit rRNA gene
PCR amplicons [5] to direct sequencing of highly-variable regions
of these amplicons [6], or even direct shotgun sequencing of
microbiome metagenomic DNA [7]. Even though the statistical
methods available for analyzing microarray data have matured to
a high level of sophistication [8], these methods are not directly
applicable because DNA sequencing data consists of discrete
counts of sequence reads rather than continuous values derived
from the fluorescence intensity of hybridized probes. In recent
generation DNA sequencing the total reads per sample (library size;
sometimes referred to as depths of coverage) can vary by orders of
magnitude within a single sequencing run. Comparison across
samples with different library sizes requires more than a simple

linear or logarithmic scaling adjustment because it also implies
different levels of uncertainty, as measured by the sampling
variance of the proportion estimate for each feature (a feature is a
gene in the RNA-Seq context, and is a species or Operational
Taxonomic Unit, OTU, in the context of microbiome sequenc-
ing). In this article we are primarily concerned with optimal
methods for addressing differences in library sizes from micro-
biome sequencing data.

Variation in the read counts of features between technical
replicates have been adequately modeled by Poisson random
variables [9]. However, we are usually interested in understand-
ing the variation of features among biological replicates in order
to make inferences that are relevant to the corresponding
population; in which case a mixture model is necessary to
account for the added uncertainty [10]. Taking a hierarchical
model approach with the Gamma-Poisson has provided a
satisfactory fit to RNA-Seq data [11], as well as a valid regression
framework that leverages the power of generalized linear models
[12]. A Gamma mixture of Poisson variables gives the negative
binomial (NB) distribution [10,11] and several RNA-Seq analysis
packages now model the counts, K, for gene i, in sample j
according to:

Kij*NB(sjmi,wi) ð1Þ
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Using high- throughput sequencing to examine microbial communi-

ties has become a common practice. These techniques are, however, 

not without their pitfalls, and it is important for researchers to use 

the most appropriate analytical methods for answering the ecologi-

cal questions at hand. One common pitfall stems from the fact that 

sequencing results in variable numbers of reads per sample. These 

differences in read depth often need to be corrected prior to anal-

yses, and many methods have been proposed for normalizing data.

Two of the oldest and most intuitive methods are (a) transform-

ing the data to proportions by dividing the reads for each operational 

taxonomic unit (OTU) in a sample by the total number of reads in 

that sample (also known as Total Sum Normalization [TSS]) and (b) 

rarefying the data by randomly subsampling each sample to the low-

est read depth of any sample. In recent years, however, both meth-

ods have been heavily criticized. Proportions are criticized because 

they do not account for heteroskedasticity (Weiss et al., 2017) and 

result in spurious correlations when comparing the abundance of 

specific OTUs relative to other OTUs (Jackson, 1997). Rarefying is 
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Abstract
1. Microbiome sequencing data often need to be normalized due to differences in 

read depths, and recommendations for microbiome analyses generally warn 

against using proportions or rarefying to normalize data and instead advocate al-

ternatives, such as upper quartile, CSS, edgeR-TMM, or DESeq-VS. Those recom-

mendations are, however, based on studies that focused on differential abundance 

testing and variance standardization, rather than community-level comparisons 
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may suppress differences in species evenness, potentially distorting community-

level patterns. Furthermore, the recommended methods use log transformations, 

which we expect to exaggerate the importance of differences among rare OTUs, 

while suppressing the importance of differences among common OTUs.

2. We tested these theoretical predictions via simulations and a real-world dataset.

3. Proportions and rarefying produced more accurate comparisons among commu-

nities and were the only methods that fully normalized read depths across sam-
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differences among communities when common OTUs differed, and they produced 

false positives when rare OTUs differed.

4. Based on our simulations, normalizing via proportions may be superior to other 

commonly used methods for comparing ecological communities.

� � + )� !	 "

Bray–Curtis, community comparisons, diversity, evenness, ordination, principal coordinates 

analysis, simulation
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Microbiota data normalisation
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In the tutorial, look at:
o 5. Data filtering and normalisation

Practice time: data filtering and normalisation

Tutorial link:
https://scienceparkstudygroup.github.io/
microbiome-lesson/05-data-filtering-and-
normalisation/index.html
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Microbiota data analysis

q Define microbiome and state microbiome importance
q Identify differences between metabarcoding and metagenomics
q Explain how microbiota data are generated (including bias)
q Explain and preform data pre-processing
q Explain how microbiota data are analysed
q Define, perform and interpret alpha-diversity
q Address sparsity, under-sampling and uneven sampling depth 

using data filtering and normalization
q Define, perform and interpret beta-diversity
q Generate and interpret multivariate data analyses
q Perform and interpret appropriate statistical tests
q Visualize and interpret microbial community composition

Learning objectives



Process overview
Filtered & 

normalised data

Beta-diversity

Composition

Core microbiome

Co-occurrence analyses

Functional predictions
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Step 3: From microbiota data sets to data visualisation
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Distances matrix

§ Diversity between two samples/ecosystems (feature level)
§ Calculate distances between samples
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Beta-diversity
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JAB = AB / (AB + A + B)

JAB: Jaccard similarity between samples A and B
AB: species present in A and B
A: species only present in A
B: species only present in B

§ Diversity between two samples/ecosystems (feature level)
§ Calculate distances between samples

q Jaccard (presence/absence in occurrence table)
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dBCAB = Σs=1 |AS – BS| / (nA + nB)

dBCAB: Bray Curtis distance
AS: number of reads for species S in sample A
BS: number of reads for species S in sample B
nA: total number of reads in sample A
nB: total number of reads in sample B

§ Diversity between two samples/ecosystems (feature level)
§ Calculate distances between samples

q Jaccard (presence/absence in occurrence table)
q Bray-Curtis (occurrence table)
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Beta-diversity



§ Diversity between two samples/ecosystems (feature level)
§ Calculate distances between samples

q Jaccard (presence/absence in occurrence table)
q Bray-Curtis (occurrence table)
q Unifrac (occurrence table and phylogeny)

q Unweighted
q Weighted 
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§ Diversity between two samples/ecosystems (feature level)
§ Calculate distances between samples
§ Visualisation (ordination plot)

Lundberg et al. 2012

of relative abundances (frequencies) (Supplementary Database 2b).
Using the 25 3 5 threshold, we defined 778 measurable OTUs repre-
senting 54% (3,463,632) of the usable reads (Supplementary Fig. 4c
and Supplementary Table 3). The diversity of the 778 measurable
OTUs in soil, rhizosphere and EC fractions showed expected relative
trends when compared with the diversity by fraction of all usable
OTUs (Supplementary Fig. 4d). We display the rarefaction-normalized
data; parallel analyses of frequency-normalized data are provided in
Supplementary Figures.

We used principal coordinate analysis on pairwise, normalized,
weighted UniFrac distances between all samples, considering all usable
OTUs, to identify the main factors driving community composition
(Fig. 1a and Supplementary Fig. 5a). The first principal coordinate
(PCo1) revealed that the two bulk soils and their associated rhizospheres
were differentiated from the respective EC fractions. Soil type was the
main factor in the second component (PCo2). This pattern was recapi-
tulated by hierarchical clustering of pairwise Bray–Curtis dissimilarities
considering only measurable OTUs (Fig. 1b and Supplementary
Fig. 5b). Samples harvested at different developmental stages clustered
together, indicating that this variable does not have a major effect on
overall community composition (Fig. 1 and Supplementary Fig. 5a, b;
yng versus old, where yng refers to the time of appearance of an
inflorescence meristem and old refers to fruiting plants with greater
than 50% senescent leaves). Additional control samples from the
reference genotype Col-0 harvested from four independent digs of
Mason Farm soil underscored the reproducibility of these bacterial
community profiles (Supplementary Fig. 6). Together, these data
demonstrate that the interaction of diverse soil communities with
plants determines the assembly of the rhizosphere, leading to

winnowed ECs, that the ECs from at least these two diverse soils are
very different from the starting soil communities and that there is little
difference in communities over host developmental time.

We fitted a general linear mixed model (GLMM) to samples from
each set of plant fractions (rhizosphere or EC), plus the bulk soil
controls, to identify measurable OTUs whose abundances differ sig-
nificantly between plant and bulk soil as a result of soil type, develop-
mental stage, fraction and genotype (Supplementary Information and
Supplementary Database 3). This approach allowed us to quantify the
contribution from each variable to the community composition
(Supplementary Table 4). Controlling for sequencing plate effects,
plant fraction is the most important factor; its effect is strongest for
the EC, consistent with our UniFrac and Bray–Curtis analyses. Soil
type is less important, followed by experiment, developmental stage
and, finally, genotype, which had a small but consistent effect.

Hierarchical clustering of sample groups considering 256 OTUs
identified by the GLMM to differentiate rhizosphere and EC from soil
recapitulated the separation of EC from soil and rhizosphere (Fig. 2A
and Supplementary Fig. 7a, left; compare with Fig. 1 and Supplemen-
tary Fig. 5). Of these, 164 OTUs were enriched in EC samples (Fig. 2B,
a; dark and light red bars), defining an A. thaliana ‘EC microbiome’. Of
these 164, 97 were enriched in EC samples from both soil types
(Fig. 2B, a; dark red bars), potentially representing a core EC micro-
biome. By contrast, 67 of these 164 were enriched in EC to a greater
extent in one soil than the other (Fig. 2B, a; light red bars; Fig. 2B, b)).
Importantly, 32 OTUs were depleted in EC samples (Fig. 2B, a;
blue bars). Some OTUs exhibited rhizosphere enrichment; these
significantly overlapped the EC-enriched OTUs (P , 10216, one-sided
hypergeometric test) and also sometimes had a soil-type component
(Fig. 2B, c and d). Only a few rhizosphere-specific enrichments were
not also enriched in the EC (Supplementary Table 3). Hence, the
A. thaliana EC microbiome is enriched for both a shared set of
OTUs commonly assembled across two replicates from two diverse
soils, and a set of OTUs that are assembled from each soil.

We assessed taxonomic distributions, first those of the 778
measurable OTUs in soil, rhizosphere and EC fractions, and then
those of the 256 EC-enriched and 32 EC-depleted OTUs (Fig. 2A,
Supplementary Fig. 7a and Supplementary Table 3). Measurable
OTUs were distributed across seven dominant phyla (Fig. 2C and
Supplementary Fig. 7c) and contained ,50–70% of the usable reads
in all fractions (Supplementary Fig. 4c). Phyla distribution of the EC-
enriched OTUs reflected that of the entire EC. Conversely, the phyla
distribution of the EC-depleted OTUs typically resembled that of the
rhizosphere fraction (Fig. 2C). The lower Shannon diversity of the EC
fraction is consistent with enrichment for a subset of dominant phyla.
Specifically, the EC microbiome was dominated by Actinobacteria,
Proteobacteria and Firmicutes, and was depleted of Acidobacteria,
Gemmatimonadetes and Verrucomicrobia, when soil types were con-
sidered either together or separately (Fig. 2C, Supplementary Figs 7c
and 15 and Supplementary Table 5). Lower-order taxonomic analysis
(Fig. 2D and Supplementary Fig. 7d) demonstrated that enrichment of
a low-diversity Actinobacteria community in the EC was driven by a
subset of families, predominantly Streptomycetaceae.

Other phyla, such as Proteobacteria, were represented by both EC
enrichments and EC depletions at the family level (Fig. 2E and
Supplementary Fig. 7e). Strikingly, two alphaproteobacterial families,
Rhizobiaceae and Methylobacteriaceae, and two gammaproteobacter-
ial families, Pseudomonadaceae and Moraxellaceae, dominated the
EC population in their respective classes (Fig. 2F, a and c, and
Supplementary Fig. 7f, a and c). Equally striking was the EC
redistribution of particular alpha- and gammaproteobacterial families
that were common in soil and rhizosphere (Fig. 2F and Supplementary
Fig. 7f).

Specific OTUs, three from the family Streptomycetaceae and one
from the order Sphingobacteriales, demonstrate the robustness of EC
enrichments (Fig. 3a–d and Supplementary Fig. 11a–d). A few OTUs
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Figure 1 | Sample fraction and soil type drive the microbial composition of
root-associated endophyte communities. a, Principal coordinate analysis of
pairwise, normalized, weighted UniFrac distances between samples based on
rarefaction to 1,000 reads in unthresholded, usable OTUs. CL, Clayton; MF,
Mason Farm; R, rhizosphere; S, soil. b, Rarefied counts for the 25 3 5
thresholded, measurable OTUs from each of 24 soil, stage or fraction groups
were log2-transformed (Methods) to make 24 representative samples (branch
labels), and pairwise Bray–Curtis similarity was used to cluster these
representatives hierarchically (group-average linkage).
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§ Diversity between two samples/ecosystems (feature level)
§ Calculate distances between samples
§ Visualisation (ordination plot)

Lundberg et al. 2012

of relative abundances (frequencies) (Supplementary Database 2b).
Using the 25 3 5 threshold, we defined 778 measurable OTUs repre-
senting 54% (3,463,632) of the usable reads (Supplementary Fig. 4c
and Supplementary Table 3). The diversity of the 778 measurable
OTUs in soil, rhizosphere and EC fractions showed expected relative
trends when compared with the diversity by fraction of all usable
OTUs (Supplementary Fig. 4d). We display the rarefaction-normalized
data; parallel analyses of frequency-normalized data are provided in
Supplementary Figures.

We used principal coordinate analysis on pairwise, normalized,
weighted UniFrac distances between all samples, considering all usable
OTUs, to identify the main factors driving community composition
(Fig. 1a and Supplementary Fig. 5a). The first principal coordinate
(PCo1) revealed that the two bulk soils and their associated rhizospheres
were differentiated from the respective EC fractions. Soil type was the
main factor in the second component (PCo2). This pattern was recapi-
tulated by hierarchical clustering of pairwise Bray–Curtis dissimilarities
considering only measurable OTUs (Fig. 1b and Supplementary
Fig. 5b). Samples harvested at different developmental stages clustered
together, indicating that this variable does not have a major effect on
overall community composition (Fig. 1 and Supplementary Fig. 5a, b;
yng versus old, where yng refers to the time of appearance of an
inflorescence meristem and old refers to fruiting plants with greater
than 50% senescent leaves). Additional control samples from the
reference genotype Col-0 harvested from four independent digs of
Mason Farm soil underscored the reproducibility of these bacterial
community profiles (Supplementary Fig. 6). Together, these data
demonstrate that the interaction of diverse soil communities with
plants determines the assembly of the rhizosphere, leading to

winnowed ECs, that the ECs from at least these two diverse soils are
very different from the starting soil communities and that there is little
difference in communities over host developmental time.

We fitted a general linear mixed model (GLMM) to samples from
each set of plant fractions (rhizosphere or EC), plus the bulk soil
controls, to identify measurable OTUs whose abundances differ sig-
nificantly between plant and bulk soil as a result of soil type, develop-
mental stage, fraction and genotype (Supplementary Information and
Supplementary Database 3). This approach allowed us to quantify the
contribution from each variable to the community composition
(Supplementary Table 4). Controlling for sequencing plate effects,
plant fraction is the most important factor; its effect is strongest for
the EC, consistent with our UniFrac and Bray–Curtis analyses. Soil
type is less important, followed by experiment, developmental stage
and, finally, genotype, which had a small but consistent effect.

Hierarchical clustering of sample groups considering 256 OTUs
identified by the GLMM to differentiate rhizosphere and EC from soil
recapitulated the separation of EC from soil and rhizosphere (Fig. 2A
and Supplementary Fig. 7a, left; compare with Fig. 1 and Supplemen-
tary Fig. 5). Of these, 164 OTUs were enriched in EC samples (Fig. 2B,
a; dark and light red bars), defining an A. thaliana ‘EC microbiome’. Of
these 164, 97 were enriched in EC samples from both soil types
(Fig. 2B, a; dark red bars), potentially representing a core EC micro-
biome. By contrast, 67 of these 164 were enriched in EC to a greater
extent in one soil than the other (Fig. 2B, a; light red bars; Fig. 2B, b)).
Importantly, 32 OTUs were depleted in EC samples (Fig. 2B, a;
blue bars). Some OTUs exhibited rhizosphere enrichment; these
significantly overlapped the EC-enriched OTUs (P , 10216, one-sided
hypergeometric test) and also sometimes had a soil-type component
(Fig. 2B, c and d). Only a few rhizosphere-specific enrichments were
not also enriched in the EC (Supplementary Table 3). Hence, the
A. thaliana EC microbiome is enriched for both a shared set of
OTUs commonly assembled across two replicates from two diverse
soils, and a set of OTUs that are assembled from each soil.

We assessed taxonomic distributions, first those of the 778
measurable OTUs in soil, rhizosphere and EC fractions, and then
those of the 256 EC-enriched and 32 EC-depleted OTUs (Fig. 2A,
Supplementary Fig. 7a and Supplementary Table 3). Measurable
OTUs were distributed across seven dominant phyla (Fig. 2C and
Supplementary Fig. 7c) and contained ,50–70% of the usable reads
in all fractions (Supplementary Fig. 4c). Phyla distribution of the EC-
enriched OTUs reflected that of the entire EC. Conversely, the phyla
distribution of the EC-depleted OTUs typically resembled that of the
rhizosphere fraction (Fig. 2C). The lower Shannon diversity of the EC
fraction is consistent with enrichment for a subset of dominant phyla.
Specifically, the EC microbiome was dominated by Actinobacteria,
Proteobacteria and Firmicutes, and was depleted of Acidobacteria,
Gemmatimonadetes and Verrucomicrobia, when soil types were con-
sidered either together or separately (Fig. 2C, Supplementary Figs 7c
and 15 and Supplementary Table 5). Lower-order taxonomic analysis
(Fig. 2D and Supplementary Fig. 7d) demonstrated that enrichment of
a low-diversity Actinobacteria community in the EC was driven by a
subset of families, predominantly Streptomycetaceae.

Other phyla, such as Proteobacteria, were represented by both EC
enrichments and EC depletions at the family level (Fig. 2E and
Supplementary Fig. 7e). Strikingly, two alphaproteobacterial families,
Rhizobiaceae and Methylobacteriaceae, and two gammaproteobacter-
ial families, Pseudomonadaceae and Moraxellaceae, dominated the
EC population in their respective classes (Fig. 2F, a and c, and
Supplementary Fig. 7f, a and c). Equally striking was the EC
redistribution of particular alpha- and gammaproteobacterial families
that were common in soil and rhizosphere (Fig. 2F and Supplementary
Fig. 7f).

Specific OTUs, three from the family Streptomycetaceae and one
from the order Sphingobacteriales, demonstrate the robustness of EC
enrichments (Fig. 3a–d and Supplementary Fig. 11a–d). A few OTUs
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Figure 1 | Sample fraction and soil type drive the microbial composition of
root-associated endophyte communities. a, Principal coordinate analysis of
pairwise, normalized, weighted UniFrac distances between samples based on
rarefaction to 1,000 reads in unthresholded, usable OTUs. CL, Clayton; MF,
Mason Farm; R, rhizosphere; S, soil. b, Rarefied counts for the 25 3 5
thresholded, measurable OTUs from each of 24 soil, stage or fraction groups
were log2-transformed (Methods) to make 24 representative samples (branch
labels), and pairwise Bray–Curtis similarity was used to cluster these
representatives hierarchically (group-average linkage).
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How do we interpret an ordination plot such as PCA?

https://bigdata_microbiome.presenterswall.nl/
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of relative abundances (frequencies) (Supplementary Database 2b).
Using the 25 3 5 threshold, we defined 778 measurable OTUs repre-
senting 54% (3,463,632) of the usable reads (Supplementary Fig. 4c
and Supplementary Table 3). The diversity of the 778 measurable
OTUs in soil, rhizosphere and EC fractions showed expected relative
trends when compared with the diversity by fraction of all usable
OTUs (Supplementary Fig. 4d). We display the rarefaction-normalized
data; parallel analyses of frequency-normalized data are provided in
Supplementary Figures.

We used principal coordinate analysis on pairwise, normalized,
weighted UniFrac distances between all samples, considering all usable
OTUs, to identify the main factors driving community composition
(Fig. 1a and Supplementary Fig. 5a). The first principal coordinate
(PCo1) revealed that the two bulk soils and their associated rhizospheres
were differentiated from the respective EC fractions. Soil type was the
main factor in the second component (PCo2). This pattern was recapi-
tulated by hierarchical clustering of pairwise Bray–Curtis dissimilarities
considering only measurable OTUs (Fig. 1b and Supplementary
Fig. 5b). Samples harvested at different developmental stages clustered
together, indicating that this variable does not have a major effect on
overall community composition (Fig. 1 and Supplementary Fig. 5a, b;
yng versus old, where yng refers to the time of appearance of an
inflorescence meristem and old refers to fruiting plants with greater
than 50% senescent leaves). Additional control samples from the
reference genotype Col-0 harvested from four independent digs of
Mason Farm soil underscored the reproducibility of these bacterial
community profiles (Supplementary Fig. 6). Together, these data
demonstrate that the interaction of diverse soil communities with
plants determines the assembly of the rhizosphere, leading to

winnowed ECs, that the ECs from at least these two diverse soils are
very different from the starting soil communities and that there is little
difference in communities over host developmental time.

We fitted a general linear mixed model (GLMM) to samples from
each set of plant fractions (rhizosphere or EC), plus the bulk soil
controls, to identify measurable OTUs whose abundances differ sig-
nificantly between plant and bulk soil as a result of soil type, develop-
mental stage, fraction and genotype (Supplementary Information and
Supplementary Database 3). This approach allowed us to quantify the
contribution from each variable to the community composition
(Supplementary Table 4). Controlling for sequencing plate effects,
plant fraction is the most important factor; its effect is strongest for
the EC, consistent with our UniFrac and Bray–Curtis analyses. Soil
type is less important, followed by experiment, developmental stage
and, finally, genotype, which had a small but consistent effect.

Hierarchical clustering of sample groups considering 256 OTUs
identified by the GLMM to differentiate rhizosphere and EC from soil
recapitulated the separation of EC from soil and rhizosphere (Fig. 2A
and Supplementary Fig. 7a, left; compare with Fig. 1 and Supplemen-
tary Fig. 5). Of these, 164 OTUs were enriched in EC samples (Fig. 2B,
a; dark and light red bars), defining an A. thaliana ‘EC microbiome’. Of
these 164, 97 were enriched in EC samples from both soil types
(Fig. 2B, a; dark red bars), potentially representing a core EC micro-
biome. By contrast, 67 of these 164 were enriched in EC to a greater
extent in one soil than the other (Fig. 2B, a; light red bars; Fig. 2B, b)).
Importantly, 32 OTUs were depleted in EC samples (Fig. 2B, a;
blue bars). Some OTUs exhibited rhizosphere enrichment; these
significantly overlapped the EC-enriched OTUs (P , 10216, one-sided
hypergeometric test) and also sometimes had a soil-type component
(Fig. 2B, c and d). Only a few rhizosphere-specific enrichments were
not also enriched in the EC (Supplementary Table 3). Hence, the
A. thaliana EC microbiome is enriched for both a shared set of
OTUs commonly assembled across two replicates from two diverse
soils, and a set of OTUs that are assembled from each soil.

We assessed taxonomic distributions, first those of the 778
measurable OTUs in soil, rhizosphere and EC fractions, and then
those of the 256 EC-enriched and 32 EC-depleted OTUs (Fig. 2A,
Supplementary Fig. 7a and Supplementary Table 3). Measurable
OTUs were distributed across seven dominant phyla (Fig. 2C and
Supplementary Fig. 7c) and contained ,50–70% of the usable reads
in all fractions (Supplementary Fig. 4c). Phyla distribution of the EC-
enriched OTUs reflected that of the entire EC. Conversely, the phyla
distribution of the EC-depleted OTUs typically resembled that of the
rhizosphere fraction (Fig. 2C). The lower Shannon diversity of the EC
fraction is consistent with enrichment for a subset of dominant phyla.
Specifically, the EC microbiome was dominated by Actinobacteria,
Proteobacteria and Firmicutes, and was depleted of Acidobacteria,
Gemmatimonadetes and Verrucomicrobia, when soil types were con-
sidered either together or separately (Fig. 2C, Supplementary Figs 7c
and 15 and Supplementary Table 5). Lower-order taxonomic analysis
(Fig. 2D and Supplementary Fig. 7d) demonstrated that enrichment of
a low-diversity Actinobacteria community in the EC was driven by a
subset of families, predominantly Streptomycetaceae.

Other phyla, such as Proteobacteria, were represented by both EC
enrichments and EC depletions at the family level (Fig. 2E and
Supplementary Fig. 7e). Strikingly, two alphaproteobacterial families,
Rhizobiaceae and Methylobacteriaceae, and two gammaproteobacter-
ial families, Pseudomonadaceae and Moraxellaceae, dominated the
EC population in their respective classes (Fig. 2F, a and c, and
Supplementary Fig. 7f, a and c). Equally striking was the EC
redistribution of particular alpha- and gammaproteobacterial families
that were common in soil and rhizosphere (Fig. 2F and Supplementary
Fig. 7f).

Specific OTUs, three from the family Streptomycetaceae and one
from the order Sphingobacteriales, demonstrate the robustness of EC
enrichments (Fig. 3a–d and Supplementary Fig. 11a–d). A few OTUs
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Figure 1 | Sample fraction and soil type drive the microbial composition of
root-associated endophyte communities. a, Principal coordinate analysis of
pairwise, normalized, weighted UniFrac distances between samples based on
rarefaction to 1,000 reads in unthresholded, usable OTUs. CL, Clayton; MF,
Mason Farm; R, rhizosphere; S, soil. b, Rarefied counts for the 25 3 5
thresholded, measurable OTUs from each of 24 soil, stage or fraction groups
were log2-transformed (Methods) to make 24 representative samples (branch
labels), and pairwise Bray–Curtis similarity was used to cluster these
representatives hierarchically (group-average linkage).
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Beta-diversity

§ Diversity between two samples/ecosystems (feature level)

§ Calculate distances between samples

§ Visualisation (ordination plot)

q Principal Coordinate Analysis (PCoA)                                                                  
=> can handle different types of distance measurements (such as Bray-Curtis)
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§ Diversity between two samples/ecosystems (feature level)
§ Calculate distances between samples
§ Visualisation (ordination plot)
§ Statistical comparison among sets of communities

q PERMANOVA: ANOVA type method based on sample to sample distances 
to compare within and between group distances & P-value by permutation
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§ Diversity between two samples/ecosystems (feature level)
§ Calculate distances between samples
§ Visualisation (ordination plot)
§ Statistical comparison among sets of communities

q PERMANOVA: ANOVA type method based on sample to sample distances 
to compare within and between group distances & P-value by permutation

q ANOSIM: Similar to Permanova, but analysis is performed on ranked 
distances
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In the tutorial, look at:
o 6. Beta-diversity

Practice time: beta-diversity 

Tutorial link:
https://scienceparkstudygroup.github.io/mic
robiome-lesson/06-beta-diversity/index.html
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Microbiota data analysis

q Define microbiome and state microbiome importance
q Identify differences between metabarcoding and metagenomics
q Explain how microbiota data are generated (including bias)
q Explain and preform data pre-processing
q Explain how microbiota data are analysed
q Define, perform and interpret alpha-diversity
q Address sparsity, under-sampling and uneven sampling depth 

using data filtering and normalization
q Define, perform and interpret beta-diversity
q Generate and interpret multivariate data analyses
q Perform and interpret appropriate statistical tests
q Visualize and interpret microbial community composition

Learning objectives



~10,000 features Occurrence data Observation metadata

§ Aggregate sequences according to their taxonomic assignment
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were either significantly enriched in rhizosphere but not in the EC
(Fig. 3e, f, Supplementary Fig. 11e, f and Supplementary Table 3), or
were associated with one of the two developmental stages (Fig. 3g, h,
Supplementary Fig. 11g, h and Supplementary Table 3). Data in Fig. 2,
Supplementary Fig. 7, Fig. 3, Supplementary Fig. 11 and Supplemen-
tary Table 3 demonstrate that entire taxa at various levels are enriched
in or depleted from the EC microbiome. Additionally, rhizosphere taxa
capable of colonizing the root vicinity are nonetheless prevented from
colonizing the EC.

Several OTUs differentiated inbred A. thaliana accessions.
Genotype-dependent enrichments and depletions were significant
but weak (Supplementary Tables 5 and 3). To identify accession-
dependent effects specific to a soil type or a developmental stage, we
fitted a partial GLMM that modelled each genotype against bulk soil
for each experiment or developmental stage group, and tested the
model’s predictions with a non-parametric Kruskal–Wallis test
corrected for multiple testing (Supplementary Information). We con-
sidered only those significant accession-dependent effects that were
present in the same direction in both biological replicates. We further
required that these OTUs have a consistent prediction in the full

GLMM, which narrowed the field to 12 OTUs (or 27 with frequency-
normalized data; Supplementary Table 3). In Fig. 3, we display relative
abundances of two such OTUs, one for each soil type, both
Actinobacteria (Fig. 3i, j and Supplementary Fig. 11i, j). That these
enrichments were detected by the full GLMM (which accounts for plate
effects due to 454 sequencing), and were sequenced over several plates
(Supplementary Fig. 14) supports a true genotype effect. Thus, a small
subset of the EC microbiome is likely to be quantitatively influenced by
host-genotype-dependent fine-tuning in specific soil environments.
This could allow compensatory contributions of the EC microbiome
and host genome variation to overall metagenome function.

Because the rhizoplane is stripped during preparation of EC
fractions, we confirmed the presence of live bacteria on roots using
catalysed reporter deposition and fluorescence in situ hybridization
(CARD–FISH) to whole Col-0 root segments18. Eubacteria were
common on unsonicated roots (Fig. 4a). Actinobacteria detected with
probe HGC69a were visible on the surface of roots grown in Mason
Farm soil, and co-localized with a subset of the eubacterial signals
using double CARD–FISH (Fig. 4b), suggesting that their enrichment
in EC fractions either comes from, or egresses through, the rhizoplane.
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Figure 2 | OTUs that differentiate the EC and
rhizosphere from soil. A, Heat map showing OTU
counts from the rarefied OTU table
(Supplementary Database 2a; log2-transformed)
from each of the 256 rhizosphere- and EC-
differentiating OTUs present across replicates.
Samples and OTUs are clustered on their Bray–
Curtis similarities (group-average linkage). The key
relates colours to the untransformed read counts.
Different hues of the same colour correspond to
different replicates as in Fig. 1. B, The strength of
GLMM predictions (best linear unbiased
predictors) is represented by bar height. a, OTUs
predicted as EC enriched (red, up) or EC depleted
(blue, down). b, OTUs higher in the EC in Mason
Farm soil than Clayton (brown, up) or higher in
Clayton soil than Mason Farm (gold, down). OTUs
in a that are not differentially affected by soil type
are shown there in darker hues. c, OTUs predicted
as rhizosphere enriched (as in a). d, OTUs higher in
rhizosphere in one soil type (as in b).
C, Histograms showing the distributions of phyla
present in the 778 measurable OTUs in soil,
rhizosphere and ECs compared with phyla present
in the subset of EC OTUs enriched (EC") or
depleted (EC#) relative to soil. Shannon diversity
(considering phyla as individuals) is given above
each bar. A differential number of asterisks above
the diversity values represents a significant
difference (P , 0.05, weighted analysis of variance;
Supplementary Methods and Supplementary Table
5). D, Distribution of families present among the
OTUs from the phylum Actinobacteria.
E, Distribution of families present among the
OTUs from the phylum Proteobacteria.
F, Distribution of families present among the
OTUs of three classes of the phylum
Proteobacteria: Alphaproteobacteria (a),
Betaproteobacteria (b) and Gammaproteobacteria
(c). Statistical evidence for presence, enrichment in
or depletion from EC is in Supplementary Table 6.
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§ Aggregate sequences according to their taxonomic assignment
§ Plot microbial composition

were either significantly enriched in rhizosphere but not in the EC
(Fig. 3e, f, Supplementary Fig. 11e, f and Supplementary Table 3), or
were associated with one of the two developmental stages (Fig. 3g, h,
Supplementary Fig. 11g, h and Supplementary Table 3). Data in Fig. 2,
Supplementary Fig. 7, Fig. 3, Supplementary Fig. 11 and Supplemen-
tary Table 3 demonstrate that entire taxa at various levels are enriched
in or depleted from the EC microbiome. Additionally, rhizosphere taxa
capable of colonizing the root vicinity are nonetheless prevented from
colonizing the EC.

Several OTUs differentiated inbred A. thaliana accessions.
Genotype-dependent enrichments and depletions were significant
but weak (Supplementary Tables 5 and 3). To identify accession-
dependent effects specific to a soil type or a developmental stage, we
fitted a partial GLMM that modelled each genotype against bulk soil
for each experiment or developmental stage group, and tested the
model’s predictions with a non-parametric Kruskal–Wallis test
corrected for multiple testing (Supplementary Information). We con-
sidered only those significant accession-dependent effects that were
present in the same direction in both biological replicates. We further
required that these OTUs have a consistent prediction in the full

GLMM, which narrowed the field to 12 OTUs (or 27 with frequency-
normalized data; Supplementary Table 3). In Fig. 3, we display relative
abundances of two such OTUs, one for each soil type, both
Actinobacteria (Fig. 3i, j and Supplementary Fig. 11i, j). That these
enrichments were detected by the full GLMM (which accounts for plate
effects due to 454 sequencing), and were sequenced over several plates
(Supplementary Fig. 14) supports a true genotype effect. Thus, a small
subset of the EC microbiome is likely to be quantitatively influenced by
host-genotype-dependent fine-tuning in specific soil environments.
This could allow compensatory contributions of the EC microbiome
and host genome variation to overall metagenome function.

Because the rhizoplane is stripped during preparation of EC
fractions, we confirmed the presence of live bacteria on roots using
catalysed reporter deposition and fluorescence in situ hybridization
(CARD–FISH) to whole Col-0 root segments18. Eubacteria were
common on unsonicated roots (Fig. 4a). Actinobacteria detected with
probe HGC69a were visible on the surface of roots grown in Mason
Farm soil, and co-localized with a subset of the eubacterial signals
using double CARD–FISH (Fig. 4b), suggesting that their enrichment
in EC fractions either comes from, or egresses through, the rhizoplane.
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Figure 2 | OTUs that differentiate the EC and
rhizosphere from soil. A, Heat map showing OTU
counts from the rarefied OTU table
(Supplementary Database 2a; log2-transformed)
from each of the 256 rhizosphere- and EC-
differentiating OTUs present across replicates.
Samples and OTUs are clustered on their Bray–
Curtis similarities (group-average linkage). The key
relates colours to the untransformed read counts.
Different hues of the same colour correspond to
different replicates as in Fig. 1. B, The strength of
GLMM predictions (best linear unbiased
predictors) is represented by bar height. a, OTUs
predicted as EC enriched (red, up) or EC depleted
(blue, down). b, OTUs higher in the EC in Mason
Farm soil than Clayton (brown, up) or higher in
Clayton soil than Mason Farm (gold, down). OTUs
in a that are not differentially affected by soil type
are shown there in darker hues. c, OTUs predicted
as rhizosphere enriched (as in a). d, OTUs higher in
rhizosphere in one soil type (as in b).
C, Histograms showing the distributions of phyla
present in the 778 measurable OTUs in soil,
rhizosphere and ECs compared with phyla present
in the subset of EC OTUs enriched (EC") or
depleted (EC#) relative to soil. Shannon diversity
(considering phyla as individuals) is given above
each bar. A differential number of asterisks above
the diversity values represents a significant
difference (P , 0.05, weighted analysis of variance;
Supplementary Methods and Supplementary Table
5). D, Distribution of families present among the
OTUs from the phylum Actinobacteria.
E, Distribution of families present among the
OTUs from the phylum Proteobacteria.
F, Distribution of families present among the
OTUs of three classes of the phylum
Proteobacteria: Alphaproteobacteria (a),
Betaproteobacteria (b) and Gammaproteobacteria
(c). Statistical evidence for presence, enrichment in
or depletion from EC is in Supplementary Table 6.
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Defining the core Arabidopsis thaliana root
microbiome
Derek S. Lundberg1,2*, Sarah L. Lebeis1*, Sur Herrera Paredes1*, Scott Yourstone1,3*, Jase Gehring1, Stephanie Malfatti4,
Julien Tremblay4, Anna Engelbrektson4{, Victor Kunin4{, Tijana Glavina del Rio4, Robert C. Edgar5, Thilo Eickhorst6, Ruth E. Ley7,
Philip Hugenholtz4,8, Susannah Green Tringe4 & Jeffery L. Dangl1,2,9,10,11

Land plants associate with a root microbiota distinct from the com-
plex microbial community present in surrounding soil. The micro-
biota colonizing the rhizosphere (immediately surrounding the root)
and the endophytic compartment (within the root) contribute to
plant growth, productivity, carbon sequestration and phytoremedia-
tion1–3. Colonization of the root occurs despite a sophisticated
plant immune system4,5, suggesting finely tuned discrimination of
mutualists and commensals from pathogens. Genetic principles
governing the derivation of host-specific endophyte communities
from soil communities are poorly understood. Here we report the
pyrosequencing of the bacterial 16S ribosomal RNA gene of more
than 600 Arabidopsis thaliana plants to test the hypotheses that the
root rhizosphere and endophytic compartment microbiota of plants
grown under controlled conditions in natural soils are sufficiently
dependent on the host to remain consistent across different soil
types and developmental stages, and sufficiently dependent on host
genotype to vary between inbred Arabidopsis accessions. We
describe different bacterial communities in two geochemically dis-
tinct bulk soils and in rhizosphere and endophytic compartments
prepared from roots grown in these soils. The communities in each
compartment are strongly influenced by soil type. Endophytic com-
partments from both soils feature overlapping, low-complexity com-
munities that are markedly enriched in Actinobacteria and specific
families from other phyla, notably Proteobacteria. Some bacteria
vary quantitatively between plants of different developmental stage
and genotype. Our rigorous definition of an endophytic compart-
ment microbiome should facilitate controlled dissection of plant–
microbe interactions derived from complex soil communities.

Roots influence the rhizosphere by altering soil pH, soil structure,
oxygen availability, antimicrobial concentration, and quorum-sensing
mimicry, and by providing an energy source of dead root material
and carbon-rich exudates6,7. The microbiota inhabiting this niche
can both benefit and undermine plant health; shifting this balance is
of agronomic interest. Mutualistic microbes may provide the plant with
physiologically accessible nutrients and phytohormones that improve
plant growth, may suppress phytopathogens or may help plants
withstand heat, salt and drought8,9. The rhizosphere community is a
subset of soil microbes that are subsequently filtered via niche utiliza-
tion attributes and interactions with the host to inhabit the endophytic
compartment10 (EC). Although a variety of microbes may enter and
become transient endophytes, those consistently found inside roots are
candidate symbionts or stealthy pathogens10,11. Notably, Arabidopsis
and other Brassicaceae are not well colonized by arbuscular mycorrhizal
fungi, implying that other microorganisms may fill this niche.

Microbial community structure differs across plant species12,13, and
there are reports of host-genotype-dependent differences in patterns of
microbial associations14,15. However, the divergent methods used in
those studies relied on small sample sizes and low-resolution phylotyp-
ing techniques potentially confounded by off-target sequences and
chimaeric amplicons. We developed a robust experimental system to
sample repeatedly the root microbiome using high-throughput
sequencing. Our results confirm many of the general conclusions from
earlier studies and, because of controlled experimental design and the
power of deep sequencing, provide a key step towards the definition of
this microbiome’s functional capacity and the host genes that poten-
tially contribute to microbial association phenotypes. Such plant genes
would constitute major agronomic targets.

We used 454 pyrosequencing to sequence 16S ribosomal RNA
(rRNA) gene amplicons for DNA prepared from eight diverse, inbred
A. thaliana accessions. Plants were grown from surface-sterile seeds in
climate-controlled conditions in two diverse soils, respectively termed
Mason Farm and Clayton (Supplementary Table 1; detailed in
Supplementary Information). For each soil, we assayed multiple indi-
viduals from each A. thaliana accession grown from sterile seeds in
both soils across independent full-factorial biological replicates, in
which all genotypes and bulk soils (pots without a plant) for a given
soil type were grown in parallel (Supplementary Table 2). We isolated
separate rhizosphere and EC fractions from individual plant root
systems (Supplementary Fig. 1 and Supplementary Table 2). We
established 1114F and 1392R as our primer pair (Supplementary
Information and Supplementary Fig. 2). Using an otupipe-based
pipeline (http://drive5.com/otupipe/), we grouped sequences into
97%-identical operational taxonomic units (OTUs), reduced noise
and removed chimaeras. We determined technical reproducibility
thresholds to conclude that OTUs defined by $25 reads in $5 samples
(hereafter 25 3 5) are individually ‘measurable OTUs’16,17 (Supplemen-
tary Figs 2 and 10). All data reported here are from one run of our
otupipe-based pipeline (Supplementary Fig. 3 and Supplementary
Database 1).

Excluding additional control samples, we ribotyped 1,248 samples
comprising 111 bulk soil, 613 rhizosphere and 524 EC samples,
generating 9,787,070 high-quality reads (Supplementary Figs 3 and
4a–c). After removing plant-sequence-derived OTUs, we obtained a
table of usable OTU read counts per sample containing 6,387,407
reads distributed across 18,783 OTUs. We normalized this table of
usable reads by rarefying to 1,000 reads per sample (Supplementary
Database 2a) or, alternatively, by dividing the reads per OTU in a
sample by the sum of usable reads in that sample, resulting in a table
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Queensland 4072, Australia. 9Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 10Carolina Center for Genome Sciences, University of
North Carolina, Chapel Hill, North Carolina 27599, USA. 11Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, North Carolina 27599, USA. {Present addresses: Department of Plant
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were either significantly enriched in rhizosphere but not in the EC
(Fig. 3e, f, Supplementary Fig. 11e, f and Supplementary Table 3), or
were associated with one of the two developmental stages (Fig. 3g, h,
Supplementary Fig. 11g, h and Supplementary Table 3). Data in Fig. 2,
Supplementary Fig. 7, Fig. 3, Supplementary Fig. 11 and Supplemen-
tary Table 3 demonstrate that entire taxa at various levels are enriched
in or depleted from the EC microbiome. Additionally, rhizosphere taxa
capable of colonizing the root vicinity are nonetheless prevented from
colonizing the EC.

Several OTUs differentiated inbred A. thaliana accessions.
Genotype-dependent enrichments and depletions were significant
but weak (Supplementary Tables 5 and 3). To identify accession-
dependent effects specific to a soil type or a developmental stage, we
fitted a partial GLMM that modelled each genotype against bulk soil
for each experiment or developmental stage group, and tested the
model’s predictions with a non-parametric Kruskal–Wallis test
corrected for multiple testing (Supplementary Information). We con-
sidered only those significant accession-dependent effects that were
present in the same direction in both biological replicates. We further
required that these OTUs have a consistent prediction in the full

GLMM, which narrowed the field to 12 OTUs (or 27 with frequency-
normalized data; Supplementary Table 3). In Fig. 3, we display relative
abundances of two such OTUs, one for each soil type, both
Actinobacteria (Fig. 3i, j and Supplementary Fig. 11i, j). That these
enrichments were detected by the full GLMM (which accounts for plate
effects due to 454 sequencing), and were sequenced over several plates
(Supplementary Fig. 14) supports a true genotype effect. Thus, a small
subset of the EC microbiome is likely to be quantitatively influenced by
host-genotype-dependent fine-tuning in specific soil environments.
This could allow compensatory contributions of the EC microbiome
and host genome variation to overall metagenome function.

Because the rhizoplane is stripped during preparation of EC
fractions, we confirmed the presence of live bacteria on roots using
catalysed reporter deposition and fluorescence in situ hybridization
(CARD–FISH) to whole Col-0 root segments18. Eubacteria were
common on unsonicated roots (Fig. 4a). Actinobacteria detected with
probe HGC69a were visible on the surface of roots grown in Mason
Farm soil, and co-localized with a subset of the eubacterial signals
using double CARD–FISH (Fig. 4b), suggesting that their enrichment
in EC fractions either comes from, or egresses through, the rhizoplane.
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Figure 2 | OTUs that differentiate the EC and
rhizosphere from soil. A, Heat map showing OTU
counts from the rarefied OTU table
(Supplementary Database 2a; log2-transformed)
from each of the 256 rhizosphere- and EC-
differentiating OTUs present across replicates.
Samples and OTUs are clustered on their Bray–
Curtis similarities (group-average linkage). The key
relates colours to the untransformed read counts.
Different hues of the same colour correspond to
different replicates as in Fig. 1. B, The strength of
GLMM predictions (best linear unbiased
predictors) is represented by bar height. a, OTUs
predicted as EC enriched (red, up) or EC depleted
(blue, down). b, OTUs higher in the EC in Mason
Farm soil than Clayton (brown, up) or higher in
Clayton soil than Mason Farm (gold, down). OTUs
in a that are not differentially affected by soil type
are shown there in darker hues. c, OTUs predicted
as rhizosphere enriched (as in a). d, OTUs higher in
rhizosphere in one soil type (as in b).
C, Histograms showing the distributions of phyla
present in the 778 measurable OTUs in soil,
rhizosphere and ECs compared with phyla present
in the subset of EC OTUs enriched (EC") or
depleted (EC#) relative to soil. Shannon diversity
(considering phyla as individuals) is given above
each bar. A differential number of asterisks above
the diversity values represents a significant
difference (P , 0.05, weighted analysis of variance;
Supplementary Methods and Supplementary Table
5). D, Distribution of families present among the
OTUs from the phylum Actinobacteria.
E, Distribution of families present among the
OTUs from the phylum Proteobacteria.
F, Distribution of families present among the
OTUs of three classes of the phylum
Proteobacteria: Alphaproteobacteria (a),
Betaproteobacteria (b) and Gammaproteobacteria
(c). Statistical evidence for presence, enrichment in
or depletion from EC is in Supplementary Table 6.
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§ Aggregate sequences according to their taxonomic assignment
§ Plot microbial composition

were either significantly enriched in rhizosphere but not in the EC
(Fig. 3e, f, Supplementary Fig. 11e, f and Supplementary Table 3), or
were associated with one of the two developmental stages (Fig. 3g, h,
Supplementary Fig. 11g, h and Supplementary Table 3). Data in Fig. 2,
Supplementary Fig. 7, Fig. 3, Supplementary Fig. 11 and Supplemen-
tary Table 3 demonstrate that entire taxa at various levels are enriched
in or depleted from the EC microbiome. Additionally, rhizosphere taxa
capable of colonizing the root vicinity are nonetheless prevented from
colonizing the EC.

Several OTUs differentiated inbred A. thaliana accessions.
Genotype-dependent enrichments and depletions were significant
but weak (Supplementary Tables 5 and 3). To identify accession-
dependent effects specific to a soil type or a developmental stage, we
fitted a partial GLMM that modelled each genotype against bulk soil
for each experiment or developmental stage group, and tested the
model’s predictions with a non-parametric Kruskal–Wallis test
corrected for multiple testing (Supplementary Information). We con-
sidered only those significant accession-dependent effects that were
present in the same direction in both biological replicates. We further
required that these OTUs have a consistent prediction in the full

GLMM, which narrowed the field to 12 OTUs (or 27 with frequency-
normalized data; Supplementary Table 3). In Fig. 3, we display relative
abundances of two such OTUs, one for each soil type, both
Actinobacteria (Fig. 3i, j and Supplementary Fig. 11i, j). That these
enrichments were detected by the full GLMM (which accounts for plate
effects due to 454 sequencing), and were sequenced over several plates
(Supplementary Fig. 14) supports a true genotype effect. Thus, a small
subset of the EC microbiome is likely to be quantitatively influenced by
host-genotype-dependent fine-tuning in specific soil environments.
This could allow compensatory contributions of the EC microbiome
and host genome variation to overall metagenome function.

Because the rhizoplane is stripped during preparation of EC
fractions, we confirmed the presence of live bacteria on roots using
catalysed reporter deposition and fluorescence in situ hybridization
(CARD–FISH) to whole Col-0 root segments18. Eubacteria were
common on unsonicated roots (Fig. 4a). Actinobacteria detected with
probe HGC69a were visible on the surface of roots grown in Mason
Farm soil, and co-localized with a subset of the eubacterial signals
using double CARD–FISH (Fig. 4b), suggesting that their enrichment
in EC fractions either comes from, or egresses through, the rhizoplane.
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Figure 2 | OTUs that differentiate the EC and
rhizosphere from soil. A, Heat map showing OTU
counts from the rarefied OTU table
(Supplementary Database 2a; log2-transformed)
from each of the 256 rhizosphere- and EC-
differentiating OTUs present across replicates.
Samples and OTUs are clustered on their Bray–
Curtis similarities (group-average linkage). The key
relates colours to the untransformed read counts.
Different hues of the same colour correspond to
different replicates as in Fig. 1. B, The strength of
GLMM predictions (best linear unbiased
predictors) is represented by bar height. a, OTUs
predicted as EC enriched (red, up) or EC depleted
(blue, down). b, OTUs higher in the EC in Mason
Farm soil than Clayton (brown, up) or higher in
Clayton soil than Mason Farm (gold, down). OTUs
in a that are not differentially affected by soil type
are shown there in darker hues. c, OTUs predicted
as rhizosphere enriched (as in a). d, OTUs higher in
rhizosphere in one soil type (as in b).
C, Histograms showing the distributions of phyla
present in the 778 measurable OTUs in soil,
rhizosphere and ECs compared with phyla present
in the subset of EC OTUs enriched (EC") or
depleted (EC#) relative to soil. Shannon diversity
(considering phyla as individuals) is given above
each bar. A differential number of asterisks above
the diversity values represents a significant
difference (P , 0.05, weighted analysis of variance;
Supplementary Methods and Supplementary Table
5). D, Distribution of families present among the
OTUs from the phylum Actinobacteria.
E, Distribution of families present among the
OTUs from the phylum Proteobacteria.
F, Distribution of families present among the
OTUs of three classes of the phylum
Proteobacteria: Alphaproteobacteria (a),
Betaproteobacteria (b) and Gammaproteobacteria
(c). Statistical evidence for presence, enrichment in
or depletion from EC is in Supplementary Table 6.
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were either significantly enriched in rhizosphere but not in the EC
(Fig. 3e, f, Supplementary Fig. 11e, f and Supplementary Table 3), or
were associated with one of the two developmental stages (Fig. 3g, h,
Supplementary Fig. 11g, h and Supplementary Table 3). Data in Fig. 2,
Supplementary Fig. 7, Fig. 3, Supplementary Fig. 11 and Supplemen-
tary Table 3 demonstrate that entire taxa at various levels are enriched
in or depleted from the EC microbiome. Additionally, rhizosphere taxa
capable of colonizing the root vicinity are nonetheless prevented from
colonizing the EC.

Several OTUs differentiated inbred A. thaliana accessions.
Genotype-dependent enrichments and depletions were significant
but weak (Supplementary Tables 5 and 3). To identify accession-
dependent effects specific to a soil type or a developmental stage, we
fitted a partial GLMM that modelled each genotype against bulk soil
for each experiment or developmental stage group, and tested the
model’s predictions with a non-parametric Kruskal–Wallis test
corrected for multiple testing (Supplementary Information). We con-
sidered only those significant accession-dependent effects that were
present in the same direction in both biological replicates. We further
required that these OTUs have a consistent prediction in the full

GLMM, which narrowed the field to 12 OTUs (or 27 with frequency-
normalized data; Supplementary Table 3). In Fig. 3, we display relative
abundances of two such OTUs, one for each soil type, both
Actinobacteria (Fig. 3i, j and Supplementary Fig. 11i, j). That these
enrichments were detected by the full GLMM (which accounts for plate
effects due to 454 sequencing), and were sequenced over several plates
(Supplementary Fig. 14) supports a true genotype effect. Thus, a small
subset of the EC microbiome is likely to be quantitatively influenced by
host-genotype-dependent fine-tuning in specific soil environments.
This could allow compensatory contributions of the EC microbiome
and host genome variation to overall metagenome function.

Because the rhizoplane is stripped during preparation of EC
fractions, we confirmed the presence of live bacteria on roots using
catalysed reporter deposition and fluorescence in situ hybridization
(CARD–FISH) to whole Col-0 root segments18. Eubacteria were
common on unsonicated roots (Fig. 4a). Actinobacteria detected with
probe HGC69a were visible on the surface of roots grown in Mason
Farm soil, and co-localized with a subset of the eubacterial signals
using double CARD–FISH (Fig. 4b), suggesting that their enrichment
in EC fractions either comes from, or egresses through, the rhizoplane.
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Figure 2 | OTUs that differentiate the EC and
rhizosphere from soil. A, Heat map showing OTU
counts from the rarefied OTU table
(Supplementary Database 2a; log2-transformed)
from each of the 256 rhizosphere- and EC-
differentiating OTUs present across replicates.
Samples and OTUs are clustered on their Bray–
Curtis similarities (group-average linkage). The key
relates colours to the untransformed read counts.
Different hues of the same colour correspond to
different replicates as in Fig. 1. B, The strength of
GLMM predictions (best linear unbiased
predictors) is represented by bar height. a, OTUs
predicted as EC enriched (red, up) or EC depleted
(blue, down). b, OTUs higher in the EC in Mason
Farm soil than Clayton (brown, up) or higher in
Clayton soil than Mason Farm (gold, down). OTUs
in a that are not differentially affected by soil type
are shown there in darker hues. c, OTUs predicted
as rhizosphere enriched (as in a). d, OTUs higher in
rhizosphere in one soil type (as in b).
C, Histograms showing the distributions of phyla
present in the 778 measurable OTUs in soil,
rhizosphere and ECs compared with phyla present
in the subset of EC OTUs enriched (EC") or
depleted (EC#) relative to soil. Shannon diversity
(considering phyla as individuals) is given above
each bar. A differential number of asterisks above
the diversity values represents a significant
difference (P , 0.05, weighted analysis of variance;
Supplementary Methods and Supplementary Table
5). D, Distribution of families present among the
OTUs from the phylum Actinobacteria.
E, Distribution of families present among the
OTUs from the phylum Proteobacteria.
F, Distribution of families present among the
OTUs of three classes of the phylum
Proteobacteria: Alphaproteobacteria (a),
Betaproteobacteria (b) and Gammaproteobacteria
(c). Statistical evidence for presence, enrichment in
or depletion from EC is in Supplementary Table 6.
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Microbial composition



In the tutorial, look at:
o 7. Bacterial community composition

Practice time: microbial composition 

Tutorial link:
https://scienceparkstudygroup.github.io/
microbiome-lesson/07-bacterial-
composition/index.html
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§ Co-occurrence analyses
§ Functional prediction (e.g. PICRUST)
§ New sequencing technologies

q Long reads for a better identification
q No amplification

MinION

PacBio
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Microbiota analysis : data analysis overview

Alpha-diversity

Amplification

Next Generation 
Sequencing

DNA extraction

Sampling

Quality checks

Filtering, 
denoising, merging

Chimera removal

Raw occurrence 
data

Sequencing 
data

Data
filtering

Data
Normalisation 

Filtered & 
normalised data

Cleaned raw 
occurrence 

data

Beta-diversity

Composition

Core microbiome

Co-occurrences

Functional 
prediction
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Microbiota analysis : results discussion
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§ Scientific context, research question and experimental design
§ Data properties (i.e. sparsity and library size)
§ Data filtering and normalisation
§ Alpha-diversity
§ Beta-diversity
§ Microbial composition
§ Conclusion



Microbiota data analysis

q Define microbiome and state microbiome importance
q Identify differences between metabarcoding and metagenomics
q Explain how microbiota data are generated (including bias)
q Explain and preform data pre-processing
q Explain how microbiota data are analysed
q Define, perform and interpret alpha-diversity
q Address sparsity, under-sampling and uneven sampling depth 

using data filtering and normalization
q Define, perform and interpret beta-diversity
q Generate and interpret multivariate data analyses
q Perform and interpret appropriate statistical tests
q Visualize and interpret microbial community composition

Learning objectives



Microbiota data analysis assignment

104Anouk Zancarini – Tools in molecular data analysis – March 2021

§ Scientific context, research question and experimental design

§ Data properties (i.e. sparsity and library size)

§ Data filtering and normalisation

§ Alpha-diversity

§ Beta-diversity

§ Microbial composition

§ Conclusion

§ Rmarkdown report in pdf

§ Think about reproducibility

• What have you done?

• Why?

§ Include, describe and interpret your plots & statistical results

Detailed instructions 
available on Canvas


