

Microbiome data analysis - Lecture Anouk Zancarini

▶ To cite this version:

Anouk Zancarini. Microbiome data analysis - Lecture. Master. Tools in molecular data analysis - module Microbiome, Netherlands. 2021. hal-04286457

HAL Id: hal-04286457 https://hal.inrae.fr/hal-04286457v1

Submitted on 15 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Microbiome data analysis

Anouk ZANCARINI

Content

What is microbiome?

Part 1

- Definitions
- Microbiome importance
- Scientific questions
- Differences between metagenomics and metabarcoding

How microbiota data are generated?

Part 2

- From samples to sequences
- From sequences to data sets

How microbiota data are analysed?

Part 3

- Alpha-diversity
- Data properties
- Data filtering
- Data normalisation
- Beta-diversity
- Microbial composition

Learning objectives

Define microbiome and state microbiome importance Identify differences between metabarcoding and metagenomics Explain how microbiota data are generated (including bias) Explain and preform data pre-processing Explain how microbiota data are analysed Define, perform and interpret alpha-diversity Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization Define, perform and interpret beta-diversity Generate and interpret multivariate data analyses Perform and interpret appropriate statistical tests Visualize and interpret microbial community composition

What is microbiome?

What is microbiome?

Part 1

- Definitions
- Microbiome importance
- Scientific questions
- Differences between metagenomics and metabarcoding

How microbiota data are generated?

Part 2

- From samples to sequences
- From sequences to data sets

How microbiota data are analysed?

Part 3

- Alpha-diversity
- Data properties
- Data filtering
- Data normalisation
- Beta-diversity
- Microbial composition

Definitions

Microbiota is the **assemblage of microorganisms** present in a defined environment. Microbiota includes archaea, bacteria, fungi, protists and viruses.

Metagenome is the **collection of genomes** and genes from the members of a microbiota.

Microbiome refers to the **entire habitat**, including the microorganisms (bacteria, archaea, lower and higher eurkaryotes, and viruses), their genomes (*i.e.*, genes), and the surrounding environmental conditions.

Microbiome importance

Human microbiome: our second genome

- ~10 times more cells than you
- ~100 times more genes than you
- ~1000s different species

The Human Microbiome Project

- Characterize human microbiome
- Analyse its role in human health and disease

Human microbiome links to health

- Influence metabolism
- Modulate drug interaction
- Link to irritable bowel syndrome, cancer, mental health, obesity, diabetes, asthma, etc.

Anouk Zancarini – Tools in molecular data analysis – March 2021

Adapted from Appanna V.D. (2018) The Human Microbiome: The Origin. In: Human Microbes - The Power Within. Springer, Singapore

6

Microbiome importance

Plant microbiome can improve plant growth and health

- Biofertilisation
- Phytostimulation
- Rhizoremediation
- Improve stress tolerance

Plant drives its microbiome

 Root exudates (nutrients and signalling molecules)

What is microbiome and its importance?

Test your knowledge...

Please answer the 3 questions in the following quiz https://bigdata_microbiome.presenterswall.nl/

What is microbiome and its importance?

Learning objectives

Define microbiome and state microbiome importance Identify differences between metabarcoding and metagenomics Explain how microbiota data are generated (including bias) Explain and preform data pre-processing Explain how microbiota data are analysed Define, perform and interpret alpha-diversity Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization Define, perform and interpret beta-diversity Generate and interpret multivariate data analyses Perform and interpret appropriate statistical tests Visualize and interpret microbial community composition

Main biological questions

- > Who is there?
- What are they doing?
- > Which microbe is associated with a specific phenotype? (*i.e.* feature selection)

Main biological questions

- > Who is there?
- What are they doing?
- Which microbe is associated with a specific phenotype? (*i.e.* feature selection)
- Unravel how microbiome is recruited?

Multi-omics approach and data integration

Methods to assess microbial composition and diversity

Metagenomics (shotgun sequencing)

- Sequence all DNA
- Higher cost
- Higher complexity
- Environmental contamination
- Functional information

Metabarcoding (amplicon sequencing)

- Sequence only specific gene
- Cheaper
- Less complex to analyse
- Primer amplification bias
- No functional information
- Difficult to identify species

A targeted approach: metabarcoding/amplicon sequencing

Requirements

- Gene ubiquitous
- With conserve and variable regions

For Bacteria analysis: 16S rRNA gene

Gene code for a RNA part of the ribosome

Adapted from Shahi et al 2017

For Fungi analysis: 18S rRNA gene or ITS

Yarza et al. 2014

Nature Reviews | Microbiology

Test your knowledge...

Please answer the 2 questions in the following quiz https://bigdata_microbiome.presenterswall.nl/

Learning objectives

Define microbiome and state microbiome importance Identify differences between metabarcoding and metagenomics Explain how microbiota data are generated (including bias) Explain and preform data pre-processing Explain how microbiota data are analysed Define, perform and interpret alpha-diversity Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization Define, perform and interpret beta-diversity Generate and interpret multivariate data analyses Perform and interpret appropriate statistical tests Visualize and interpret microbial community composition

A targeted approach: metabarcoding/amplicon sequencing

Requirements

- Gene ubiquitous
- With conserve and variable regions

For Bacteria analysis: 16S rRNA gene

Gene code for a RNA part of the ribosome

Adapted from Shahi et al 2017

For Fungi analysis: 18S rRNA gene or ITS

Yarza et al. 2014

Nature Reviews | Microbiology

How microbiota data are generated?

A research example: plant root microbiome

Objective: illustration through a concrete case

doi:10.1038/nature11237

Defining the core Arabidopsis thaliana root microbiome

Derek S. Lundberg^{1,2*}, Sarah L. Lebeis^{1*}, Sur Herrera Paredes^{1*}, Scott Yourstone^{1,3*}, Jase Gehring¹, Stephanie Malfatti⁴, Julien Tremblay⁴, Anna Engelbrektson⁴[†], Victor Kunin⁴[†], Tijana Glavina del Rio⁴, Robert C. Edgar⁵, Thilo Eickhorst⁶, Ruth E. Ley⁷, Philip Hugenholtz^{4,8}, Susannah Green Tringe⁴ & Jeffery L. Dangl^{1,2,9,10,11}

Please answer two quiz questions...

https://bigdata_microbiome.presenterswall.nl/

Step 1: From sample to sequences

Process overview

Sampling

- Three compartments
 - Bulk soil
 - □ Rhizosphere soil
 - □ Endosphere

Defining the core Arabidopsis thaliana root microbiome

Derek S. Lundberg^{1,2}*, Sarah L. Lebeis¹*, Sur Herrera Paredes¹*, Scott Yourstone^{1,3}*, Jase Gehring¹, Stephanie Malfatti⁴, Julien Tremblay⁴, Anna Engelbrektson⁴†, Victor Kunin⁴†, Tijana Glavina del Rio⁴, Robert C. Edgar⁵, Thilo Eickhorst⁶, Ruth E. Ley⁷, Philip Hugenholtz^{4,8}, Susannah Green Tringe⁴ & Jeffery L. Dangl^{1,2,9,10,11}

Step 1: From sample to sequences

Process overview

Sampling

- Three compartments
 - Bulk soil
 - Rhizosphere soil
 - □ Endosphere

Defining the core Arabidopsis thaliana root microbiome

Derek S. Lundberg^{1,2}*, Sarah L. Lebeis¹*, Sur Herrera Paredes¹*, Scott Yourstone^{1,3}*, Jase Gehring¹, Stephanie Malfatti⁴, Julien Tremblay⁴, Anna Engelbrektson⁴†, Victor Kunin⁴†, Tijana Glavina del Rio⁴, Robert C. Edgar⁵, Thilo Eickhorst⁶, Ruth E. Ley⁷, Philip Hugenholtz^{4,8}, Susannah Green Tringe⁴ & Jeffery L. Dangl^{1,2,9,10,11}

Lundberg et al. 2012

Process overview

Adapted from Lundberg et al. 2012

Step 1: From sample to sequences

Process overview

Adapted from Metcalf, Jessica (2014): Overview of data generation, processing and analysis using QIIME. Figshare. https://doi.org/10.6084/m9.figshare.902219.v1

Step 1: From sample to sequences

Learning objectives

Define microbiome and state microbiome importance Identify differences between metabarcoding and metagenomics Explain how microbiota data are generated (including bias) Explain and preform data pre-processing Explain how microbiota data are analysed Define, perform and interpret alpha-diversity Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization Define, perform and interpret beta-diversity Generate and interpret multivariate data analyses Perform and interpret appropriate statistical tests Visualize and interpret microbial community composition

Process overview

>GCACCTGAGGACAGGCATGAGGAA... >GCACCTGAGGACAGGGGAGGAGGA... >TCACATGAACCTAGGCAGGAGGAGAA... >CTACCGGAGGACAGGCATGAGGAT... >TCACATGAACCTAGGCAGGAGGAGAA... >GCACCTGAGGACAGGCAGGAGGAA... >CTACCGGAGGACAGGCAGGAGGAA... >CTACCGGAGGACACACAGGAGGAA... >GAACCTTCACATAGGCAGGAGGAA... >GCACCTGAGGACAGGCAGGAGGAA... >GCACCTGAGGACAGGCAGGAGGAA... >GAACCTTCACATAGGCAGGAGGAA...

Metcalf 2014

- De-multiplex (*i.e.* assign a sequence to a sample)
- Remove adaptor and barcode
- Remove low quality reads (*i.e.* filtering step)

Anouk Zancarini – Tools in molecular data analysis – March 2021

Good

Okav

Bad

Process overview

>GCACCTGAGGACAGGCATGAGGAA... >GCACCTGAGGACAGGGGAGGAGGAGA... >TCACATGAACCTAGGCAGGACGAA... >CTACCGGAGGACAGGCAGGAGGAA... >GCACCTGAGGACAGGCAGGAGGAGAA... >GCACCTGAGGACAGGCAGGAGGAGA... >CTACCGGAGGACAGGCAGGAGGAA... >GAACCTTCACATAGGCAGGAGGAGA... >GCACCTGAGGACAGGCAGGAGGAA... >GCACCTGAGGACAGGCAGGAGGAA... >GCACCTGAGGACAGGCAGGAGGAA...

Metcalf 2014

- De-multiplex (*i.e.* assign a sequence to a sample)
- Remove adaptor and barcode
- Remove low quality reads (*i.e.* filtering step)
- Remove chimeras

During PCR multiple sequence can combine to form a hybrid Chimeras must be removed

Process overview

>GCACCTGAGGACAGGCATGAGGAA... >GCACCTGAGGACAGGGGAGGAGGAGA... >TCACATGAACCTAGGCAGGACGAA... >CTACCGGAGGACAGGCATGAGGAT... >GCACCTGAGGACAGGCAGGAGGAA... >GCACCTGAGGACAGGCAGGAGGAGA... >CTACCGGAGGACAGGCAGGAGGAA... >GAACCTTCACATAGGCAGGAGGAGA... >GCACCTGAGGACAGGCAGGAGGAA... >GCACCTGAGGACAGGCAGGAGGAA... >GAACCTTCACATAGGCAGGAGGAA...

Metcalf 2014

- De-multiplex (*i.e.* assign a sequence to a sample)
- Remove adaptor and barcode
- Remove low quality reads (*i.e.* filtering step)
- Remove chimeras
- Merged pair-end reads

PCR amplification of bacterial 16S rRNA gene

Process overview

>GCACCTGAGGACAGGCATGAGGAA... >GCACCTGAGGACAGGGGGGGGGGGGGGG... >TCACATGAACCTAGGCAGGACGAA... >CTACCGGAGGACAGGCATGAGGAT... >TCACATGAACCTAGGCAGGAGGAA... >GCACCTGAGGACACGCAGGACGAC... >CTACCGGAGGACAGGCAGGAGGAA... >CTACCGGAGGACACACAGGAGGAA... >GAACCTTCACATAGGCAGGAGGAT... >TCACATGAACCTAGGGGCAAGGAA... >GCACCTGAGGACAGGCAGGAGGAA... >GAACCTTCACATAGGCAGGAGGAT...

Metcalf 2014

microbiome

- **De-multiplex** (*i.e.* assign a sequence to a sample)
- Remove adaptor and barcode
- Remove low quality reads (*i.e.* filtering step)
- **Remove chimeras**
- Merged pair-end reads
- Sequence clustering in OTU

Derek S. Lundberg^{1,2}*, Sarah L. Lebeis¹*, Sur Herrera Paredes¹*, Scott Yourstone^{1,3}*, Jase Gehring¹, Stephanie Malfatti⁴, Julien Tremblav⁴, Anna Engelbrektson⁴†, Victor Kunin⁴†, Tijana Glavina del Rio⁴, Robert C. Edgar⁵, Thilo Eickhorst⁶, Ruth E. Lev⁷, Philip Hugenholtz^{4,8}, Susannah Green Tringe⁴ & Jeffery L. Dangl^{1,2,9,10,11}

Process overview Sequencing data

- A new pre-processing pipeline DADA2
- Using Divisive Amplicon Denoising Algorithm (DADA) to correct amplicon errors without constructing OTU (*i.e.* Amplicon Sequence Variants or ASV)

BRIEF COMMUNICATIONS

DADA2: High-resolution sample inference from Illumina amplicon data

Benjamin J Callahan¹, Paul J McMurdie², Michael J Rosen³, Andrew W Han², Amy Jo A Johnson² & Susan P Holmes¹

Step 2: From sequences to microbiota data sets

- Looking for sequence homology with ref databases
- Accuracy depends on quality and completeness of the database

Derek S. Lundberg^{1,2}*, Sarah L. Lebels¹*, Sur Herrera Paredes¹*, Scott Yourstone^{1,3}*, Jase Gehring¹, Stephanie Malfatti⁴, Julien Tremblay¹, Anna Engelbrektson⁴*, Victor Kunin⁴*, Tijana Glavina del Rio⁴, Robert C. Edgar⁵, Thilo Eickhorst⁶, Ruth E. Ley⁷, Philip Hugenholtz⁴, Susand Green Tringe & Jeffer L. Dang^{12,3,0,11}

Step 2: From sequences to microbiota data sets

Process overview

Sequencing data

Data sets output

- Sample metadata
- Occurrence data
- Observation metadata (taxonomic assignation)

Seq_0006

0

0

0

Check quality Sample metadata Treatment_1 Treatment_2 Filtering 2 sample 01 A х Х sample 02 A ~10,000 features х sample_03 A sample 04 A Denoising Seq_0003 sample 05 Seq_0004 Seq_0005 Α sample 06 A 2 sample_01 0 0 samples sample 07 A 3 sample_02 0 0 9 sample 08 A 4 sample_03 0 0 10 sample 09 5 sample 04 Merging 11 sa 12 sa 13 sar 100 14 sa ASV table 15 sa 16 sa 17 sa 18 sa Chimeras 19 sa 20 sa 21 sa removal 22 sa 23 sa 24 sa 25 sa Taxonomy assignation Microbiota data

Observation metadata

mpic_05	~	-				A	B	C	D	E	ŀ	G
mple_10	Α	6	sample_05	0	1	Seq_id	Domain	Phylym	Class	Order	Family	Genus
mple_11	в	7	sample_06	0	2	Seq_0001	Bacteria	Chloroflexi	Anaerolineae	Anaerolineales	Anaerolineaceae	Bellilinea
mple_12	в	8	sample_07	0	3	Seq 0002	Bacteria	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas
mple_13	в	9	sample_08	0	4	Seq_0003	Bacteria	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Moraxellaceae	Enhydrobacter
mple_14	в	10	sample_09	0	5	Seq_0004	Bacteria	Actinobacteria	Actinobacteria	Propionibacteriales	Nocardioidaceae	Kribbella
mple_15	в	11	sample_10	153	6	Seq_0005	Bacteria	Planctomycetes	Phycisphaerae	Phycisphaerales	Phycisphaeraceae	Phycisphaera
mple_16	в	12	sample_11	32	7	Seq_0006	Bacteria	Actinobacteria	Thermoleophilia	Solirubrobacterales	Undefined	Undefined
mple 17	В	13	sample_12	97	8	Seg 0007	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Undefined
mple 18	В	14	sample_13	37	9	Seq 0008	Bacteria	Undefined	Undefined	Undefined	Undefined	Undefined
mple 19	в	15	sample_14	31	10	Seq 0009	Bacteria	Acidobacteria	Holophagae	Holophagales	Holophagaceae	Holophaga
mple 20	в	16	sample_15	12	11	Seq 0010	Bacteria	Bacteroidetes	Sphingobacteriia	Sphingobacteriales	Chitinophagaceae	Undefined
mple 21	С	17	sample_16	0	12	Seq_0011	Bacteria	Planctomycetes	Phycisphaerae	Undefined	Undefined	Undefined
mple 22	С	18	sample_17	0	13	Seq_0012	Bacteria	Proteobacteria	Deltaproteobacteria	Myxococcales	Sandaracinaceae	Sandaracinus
mple 23	С	19	sample_18	0	14	Seq_0013	Bacteria	Undefined	Undefined	Undefined	Undefined	Undefined
mnle 74	r	20	sample_19	0	15	Seq_0014	Bacteria	Bacteroidetes	Sphingobacteriia	Sphingobacteriales	Chitinophagaceae	Undefined
		21	sample_20	0	16	Seq_0015	Bacteria	Proteobacteria	Deltaproteobacteria	Myxococcales	Sandaracinaceae	Sandaracinus
		22	sample_21	0	17	Seq_0016	Bacteria	Actinobacteria	Acidimicrobiia	Acidimicrobiales	lamiaceae	lamia
		23	sample_22	0	18	Seq_0017	Bacteria	Chloroflexi	Anaerolineae	Anaerolineales	Anaerolineaceae	Unknown
		24	sample_23	0	19	Seq_0018	Bacteria	Undefined	Undefined	Undefined	Undefined	Undefined
		25	sample 24	0	20	Seq_0019	Bacteria	Actinobacteria	Thermoleophilia	Solirubrobacterales	Solirubrobacteraceae	Solirubrobacter
					21	Seq_0020	Bacteria	Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	Undefined
					22	Seq_0021	Bacteria	Proteobacteria	Deltaproteobacteria	Myxococcales	Undefined	Undefined
					23	Seq_0022	Bacteria	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Undefined	Undefined
					24	Seq_0023	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia
					25	Seq_0024	Bacteria	Proteobacteria	Undefined	Undefined	Undefined	Undefined

Occurrence data

0

0

Seg 0008

0

0

Seq_0007

0

0

0

Taxonomic assignment

Example of the bacteria *Escherichia coli* O157:H7

Taxonomic assignment

Example of the bacteria *Escherichia coli* O157:H7 -> ASV_6287

Step 2: From sequences to microbiota data sets

 > Data pre-processing: always a trade-off
> Detween quality and quantity
> OTU Operational Taxonomic Units ≠ ASV
> OTU Operational Taxonomic Units > Go from fasta files to three tables • occurrence table taxonomic assignation sample metadata

How microbiota data are generated?

Test your knowledge...

Please answer the 3 questions in the following quiz https://bigdata_microbiome.presenterswall.nl/

Practice time: from sequences to microbiota data sets

In the tutorial, look at:

- \circ Getting ready
- Inspect read quality profiles
- o Filter and trim
- o Learn the error rates
- o Sample inference
- Merge paired reads
- Construct sequence table
- Remove chimeras
- Track reads through the pipeline
- Assign taxonomy

Tutorial link:

http://benjjneb.github.io/dada2/tutorial.html

Script on Canvas or link:

https://scienceparkstudygroup.github.io/microbiomelesson/02-data-preprocess-fastq-to-asv/index.html

Learning objectives

Define microbiome and state microbiome importance Identify differences between metabarcoding and metagenomics Explain how microbiota data are generated (including bias) Explain and preform data pre-processing Explain how microbiota data are analysed Define, perform and interpret alpha-diversity Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization Define, perform and interpret beta-diversity Generate and interpret multivariate data analyses Perform and interpret appropriate statistical tests Visualize and interpret microbial community composition

How microbiota data are analysed?

What is microbiome?

Part 1

- Definitions
- Microbiome importance
- Scientific questions
- Differences between metagenomics and metabarcoding

How microbiota data are generated?

Part 2

- From samples to sequences
- From sequences to data sets

How microbiota data are analysed?

Part 3

- Alpha-diversity
- Data properties
- Data filtering
- Data normalisation
- Beta-diversity
- Microbial composition

Process overview

~10,000 features **Occurrence data**

4	A	В	C	D	E	F	G	
1		Seq_0003	Seq_0004	Seq_0005	Seq_0006	Seq_0007	Seq_0008	5
2	sample_01	0	0	0	0	0	0	
3	sample_02	0	0	0	0	0	0	
4	sample_03	0	0	0	0	0	0	
5	sample_04	0	27	0	0	0	0	
6	sample_05	0	10	0	0	0	0	
7	sample_06	0	3	20	0	0	0	
8	sample_07	0	10	58	0	0	0	
9	sample_08	0	14	52	0	0	0	
10	sample_09	0	10	25	0	0	0	
11	sample_10	153	0	0	0	0	0	
12	sample_11	32	0	14	0	0	0	
13	sample_12	97	0	32	0	0	3	
14	sample_13	37	0	40	29	18	0	
15	sample_14	31	0	27	33	13	25	
16	sample_15	12	0	23	33	27	19	
17	sample_16	0	0	0	0	0	0	
18	sample_17	0	0	0	0	0	0	
19	sample_18	0	0	0	0	0	0	
20	sample_19	0	55	0	0	0	0	
21	sample_20	0	23	0	0	0	0	
22	sample_21	0	14	0	0	0	0	
23	sample_22	0	26	45	0	0	0	
24	sample_23	0	24	54	0	0	0	
25	sample 24	0	19	56	0	0	0	

~100 samples

- Diversity within one sample/ecosystem (usually calculated at feature level)
- Alpha-diversity indices
 - □ Richness represents the number of species observed (S_{obs})

Defining the core Arabidopsis thaliana root microbiome

Derek S. Lundberg^{1,2}*, Sarah L. Lebeis¹*, Sur Herrera Paredes¹*, Scott Yourstone^{1,3}*, Jase Gehring¹, Stephanie Malfatti⁴, Julien Tremblay⁴, Anna Engelbrektson⁴†, Victor Kunin⁴†, Tijana Glavina del Rio⁴, Robert C. Edgar⁵, Thilo Eickhorst⁶, Ruth E. Ley⁷, Philip Hugenholtz^{4,8}, Susannah Green Tringe⁴ & Jeffery L. Dangl^{1,2,9,10,11}

- Diversity within one sample/ecosystem (usually calculated at feature level)
- Alpha-diversity indices
 - Richness represents the number of species observed (S_{obs})
 - □ Chao1 estimates total richness (S₁)

$$S_1 = S_{obs} + \frac{F_1^2}{2F_2}$$
 S_{obs} Number of speciescan only be
calculated on
raw data $S_1 = S_{obs} + \frac{F_1^2}{2F_2}$ F_1 Number of singletonscan only be
calculated on
raw data

REMARK: Difference between observed richness and Chao1 give you information about the sequencing depth (enough if Richness = Chao1; not enough if Richness << Chao1)

REMARK: Chao1

Sequencing depth

Rarefaction curve

- Diversity within one sample/ecosystem (usually calculated at feature level)
- Alpha-diversity indices
 - □ Richness represents the number of species observed (S_{obs})
 - □ Chao1 estimates total richness (S₁)
 - Pielou's evenness provide information about equity in species abundance

$$E = -\sum_{i=1}^{Sobs} \ln p_i / \ln(S_{obs})$$

 p_i proportion of individuals belonging to the i^{th} species

- Diversity within one sample/ecosystem (usually calculated at feature level)
- Alpha-diversity indices
 - □ Richness represents the number of species observed (S_{obs})
 - **\Box** Chao1 estimates total richness (S₁)
 - □ Pielou's evenness provide information about equity in species abundance
 - □ Shannon provides information about both richness and evenness (H')

 $H' = -\sum_{i=1}^{Sobs} p_i \ln p_i$

p_i proportion of individuals belonging to the ith species

- Diversity within one sample/ecosystem (usually calculated at feature level)
- Alpha-diversity indices
 - □ Richness represents the number of species observed (S_{obs})
 - **\Box** Chao1 estimates total richness (S₁)
 - □ Pielou's evenness provide information about equity in species abundance
 - □ Shannon provides information about both richness and evenness (H')
 - Statistical tests
 - Normal distribution: t-test or ANOVA
 - □ No normal distribution: Mann Whitney or Kruskal Wallis

> Diversity within one sample/ecosystem > Observed richness = number of features observed > Should be calculated on raw data > Evenness = equity in feature abundance > Chao1 = total richness > Sequencing depth => did I catch all the diversity? > Shannon <= richness and evenness

Practice time: alpha-diversity

In the tutorial, look at:

- Home page
- \circ 1. Introduction
- 4. Alpha-diversity

Tutorial link:

https://scienceparkstudygroup.github.io/ microbiome-lesson/index.html

Learning objectives

Define microbiome and state microbiome importance Identify differences between metabarcoding and metagenomics Explain how microbiota data are generated (including bias) Explain and preform data pre-processing Explain how microbiota data are analysed Define, perform and interpret alpha-diversity Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization Define, perform and interpret beta-diversity Generate and interpret multivariate data analyses Perform and interpret appropriate statistical tests Visualize and interpret microbial community composition

Occurrence table

~100 samples

~10,000 features

	A	В	С	D	E	F	G	
1		Seq_0003	Seq_0004	Seq_0005	Seq_0006	Seq_0007	Seq_0008	S
2	sample_01	0	0	0	0	0		0
3	sample_02	0	0	0	0	0		0
4	sample_03	0	0	0	0	0		0
5	sample_04	0	27	0	0	0		0
6	sample_05	0	10	0	0	0		0
7	sample_06	0	3	20	0	0		0
8	sample_07	0	10	58	0	0		0
9	sample_08		14	52	0	6))	0
10	sample_09				·			0
11	sample_10	• •	s a zero	o value	a true a	zero, 🏾		0
12	sample_11				• • •			0
13	sample_12	n	neaning	g that th	his feat	ure is		3
14	sample_13		ot pro	ont in t	the com	مامک		0
15	sample_14		iot pres	sentin	the sam	ipier	2	25
16	sample_15	12		23		OT	1	19
17	sample_16	0	0	0		NOI		0
18	sample_17	0	0	0				0
19	sample_18	0	0	0		VIVI3)	5:	0
20	sample_19	0	55	0		AI		0
21	sample_20	0	23	0		0		0
22	sample_21	0	14	0	0	0		0
23	sample_22	0	26	45	0	0		0
24	sample_23	0	24	54	0	0		0
25	sample 24	0	19	56	0	0		0

[■] n << p

Sparse data (~80% of 0)

Filter the data in order to decrease low quality or uninformative features

REMARK: If the sequencing depth is not enough, it will be difficult to compare difference between samples for low counts. Therefore, it will be better to remove features that have only low counts.

Step 3: From microbiota data sets to data visualisation

Process overview

Remove uninformative & low quality reads Trade-off between quantity and quality

Occurrence table

~10,000 features

REMARK: We describe relative abundances

Occurrence table

~100 samples

~10,000 features

_	A	В	С	D	E	F	G
1		Seq_0003	Seq_0004	Seq_0005	Seq_0006	Seq_0007	Seq_0008 \$
2	sample_01	0	0	0	0	0	0
3	sample_02	0	0	0	0	0	0
4	sample_03	0	0	0	0	0	0
5	sample_04	0	27	0	0	0	0
6	sample_05	0	10	0	0	0	0
7	sample_06	0	3	20	0	0	0
8	sample_07	0	10	58	0	0	0
9	sample_08	0	14	52	0	0	0
10	sample_09	0	10	25	0	0	0
11	sample_10	153	0	0	0	0	0
12	sample_11	32	0	14	0	0	0
13	sample_12	97	0	32	0	0	3
14	sample_13	37	0	40	29	18	0
15	sample_14	31	0	27	33	13	25
16	sample_15	12	0	23	33	27	19
17	sample_16	0	0	0	0	0	0
18	sample_17	0	0	0	0	0	0
19	sample_18	0	0	0	0	0	0
20	sample_19	0	55	0	0	0	0
21	sample_20	0	23	0	0	0	0
22	sample_21	0	14	0	0	0	0
23	sample_22	0	26	45	0	0	0
24	sample_23	0	24	54	0	0	0
25	sample 24	0	19	56	0	0	0

- ' n << p
- Sparse data (~80% of 0)
- Compositional data
- Different library sizes (total number of reads/ sequences per sample)

Defining the core Arabidopsis thaliana root microbiome

Derek S. Lundberg^{1,2}*, Sarah L. Lebeis¹*, Sur Herrera Paredes¹*, Scott Yourstone^{1,3}*, Jase Gehring¹, Stephanie Malfatti⁴, Julien Tremblay⁴, Anna Engelbrektson⁴†, Victor Kunin⁴†, Tijana Glavina del Rio⁴, Robert C. Edgar⁵, Thilo Eickhorst⁶, Ruth E. Ley⁷, Philip Hugenholtz^{4,8}, Susannah Green Tringe⁴ & Jeffery L. Dangl^{1,2,9,10,11}

Library size is the total number of reads per sample

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	500	80	20		5	10,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000
()						
sample_n	2000	0	2		0	10,000

Microbiota data properties

Practice time: microbiota data properties

In the tutorial, look at:

 $\circ~$ 3. Data exploration and properties

Tutorial link:

https://scienceparkstudygroup.github.io/ microbiome-lesson/03-data-explorationand-properties/index.html

Step 3: From microbiota data sets to data visualisation

Process overview

Microbiota data normalisation

- Different normalisation methods available (depend on your downstream analysis)
 - Total Sum Normalisation: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	500	80	20		5	10,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000
			\mathbf{I}			
	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1						
sample_2						
sample_3						

- Different normalisation methods available
 - Total Sum Normalisation: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	500	80	20		5	10,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000
			\checkmark			
	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1						100
sample_2						100
sample 3						100

- Different normalisation methods available
 - Total Sum Normalisation: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	500	80	20		5	10,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000
			$\mathbf{\nabla}$			

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	0.05	0.008	0.002		0.0005	100
sample_2	0.5	0.08	0.02		0.005	100
sample_3	0.05	0.008	0.002		0	100
- Different normalisation methods available
 - Total Sum Normalisation: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100
 - Rarefy: randomly subsampling each sample to the lowest read depth of any sample

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	500	80	20		5	10,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000
			\mathbf{I}			
	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1						1,000
sample_2						1,000
sample_3						1,000

- Different normalisation methods available
 - Total Sum Normalisation: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100
 - Rarefy: randomly subsampling each sample to the lowest read depth of any sample

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	500	80	20		5	10,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000
			\mathbf{I}			
	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1						1,000
sample_2	500	80	20		5	1,000

- Different normalisation methods available
 - Total Sum Normalisation: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100
 - Rarefy: randomly subsampling each sample to the lowest read depth of any sample

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	500	80	20		5	10,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000
			\mathbf{I}			
	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	52	8	1		0	1,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000

- Different normalisation methods available
 - Total Sum Normalisation: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100
 - Rarefy: randomly subsampling each sample to the lowest read depth of any sample

REMARK: When the sequencing depth is not enough and you have big differences in library sizes (~x10), it is better to rarefy your data than calculate percentage

Defining the core Arabidopsis thaliana root microbiome

Derek S. Lundberg^{1,2}*, Sarah L. Lebeis¹*, Sur Herrera Paredes¹*, Scott Yourstone^{1,3}*, Jase Gehring¹, Stephanie Malfatti⁴, Julien Tremblay⁴, Anna Engelbrektson⁴†, Victor Kunin⁴†, Tijana Glavina del Rio⁴, Robert C. Edgar⁵, Thilo Eickhorst⁶, Ruth E. Ley⁷, Philip Hugenholtz^{4,8}, Susannah Green Tringe⁴ & Jeffery L. Dangl^{1,2,9,10,11}

Rarefied at 1000 reads per sample

- Different normalisation methods available
 - Total Sum Normalisation: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100
 - Rarefy: randomly subsampling each sample to the lowest read depth of any sample
 - DESeq-VS: a variance stabilizing transformation (used for RNA-seq analysis)
 - **edgeR-TMM**: a trimmed mean of M-values normalisation

Practice time: data filtering and normalisation

In the tutorial, look at:

\circ 5. Data filtering and normalisation

Tutorial link:

https://scienceparkstudygroup.github.io/ microbiome-lesson/05-data-filtering-andnormalisation/index.html

Learning objectives

Define microbiome and state microbiome importance Identify differences between metabarcoding and metagenomics Explain how microbiota data are generated (including bias) Explain and preform data pre-processing Explain how microbiota data are analysed Define, perform and interpret alpha-diversity M Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization Define, perform and interpret beta-diversity Generate and interpret multivariate data analyses Perform and interpret appropriate statistical tests Visualize and interpret microbial community composition

Step 3: From microbiota data sets to data visualisation

Process overview

- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples

~10,000 features

_	A	В	C	D	E	F	G
1		Seq_0003	Seq_0004	Seq_0005	Seq_0006	Seq_0007	Seq_0008 5
2	sample_01	0	0	0	0	0	0
3	sample_02	0	0	0	0	0	0
4	sample_03	0	0	0	0	0	0
5	sample_04	0	27	0	0	0	0
6	sample_05	0	10	0	0	0	0
7	sample_06	0	3	20	0	0	0
8	sample_07	0	10	58	0	0	0
9	sample_08	0	14	52	0	0	0
10	sample_09	0	10	25	0	0	0
11	sample_10	153	0	0	0	0	0
12	sample_11	32	0	14	0	0	0
13	sample_12	97	0	32	0	0	3
14	sample_13	37	0	40	29	18	0
15	sample_14	31	0	27	33	13	25
16	sample_15	12	0	23	33	27	19
17	sample_16	0	0	0	0	0	0
18	sample_17	0	0	0	0	0	0
19	sample_18	0	0	0	0	0	0
20	sample_19	0	55	0	0	0	0
21	sample_20	0	23	0	0	0	0
22	sample_21	0	14	0	0	0	0
23	sample_22	0	26	45	0	0	0
24	sample_23	0	24	54	0	0	0
25	sample 24	0	19	56	0	0	0

Occurrence table

~100 samples

		A	В	С	D	E	F	G
			Sample_001	Sample_002	Sample_003	Sample_004	Sample_005	Sample_006
	2	Sample_001	0	0.23908	0.27290369	0.27015609	0.32592647	0.3145664
	3	Sample_002	0.23908	0	0.22634789	0.25973013	0.27045104	0.25883827
	4	Sample_003	0.27290369	0.22634789	0	0.25062083	0.22816982	0.19757623
	5	Sample_004	0.27015609	0.25973013	0.25062083	0	0.27561193	0.26790506
	6	Sample_005	0.32592647	0.27045104	0.22816982	0.27561193	0	0.26401294
	7	Sample_006	0.3145664	0.25883827	0.19757623	0.26790506	0.26401294	0
S	8	Sample_007	0.27750279	0.25117571	0.24768196	0.23136066	0.26097512	0.26521237
<u> </u>	9	Sample_008	0.27028096	0.23647505	0.23002234	0.26527989	0.23667924	0.27627939
d	10	Sample_009	0.24487707	0.2037796	0.21534121	0.2392009	0.25791478	0.25405073
F	11	Sample_010	0.24336437	0.22464665	0.20907403	0.24104616	0.24482683	0.26057474
F	12	Sample_011	0.23391494	0.20033022	0.1946183	0.21059208	0.23233099	0.23421601
S.	13	Sample_012	0.29459701	0.24303626	0.23158839	0.24929185	0.24848669	0.26619079
\frown	14	Sample_013	0.27217455	0.23425838	0.22840974	0.22761805	0.25302484	0.26064818
S	15	Sample_014	0.30012914	0.30274836	0.31117419	0.30476292	0.34465027	0.32685011
Ĕ	16	Sample_015	0.2874034	0.23435385	0.22702622	0.25405974	0.23900746	0.25213861
ż	17	Sample_016	0.33154211	0.30263442	0.27035691	0.26775634	0.25289654	0.29847605
•	18	Sample_017	0.32073908	0.24673584	0.2151443	0.27444787	0.25190747	0.24776896
	19	Sample_018	0.26445217	0.25381752	0.24220773	0.2286839	0.26106624	0.27887498
	20	Sample_019	0.23640549	0.22388878	0.22726691	0.25204175	0.25267839	0.2775048
	21	Sample_020	0.27353721	0.22872632	0.22164178	0.24194033	0.24002447	0.24630637
	22	Sample_021	0.25650649	0.25042642	0.25012303	0.2111056	0.26602264	0.2784565
	23	Sample_022	0.26840071	0.21753216	0.22134455	0.242505	0.23195371	0.25991912
	24	Sample_023	0.31321353	0.24643452	0.26071617	0.27940406	0.28314079	0.28243396
	25	Sample_024	0.24583754	0.20350925	0.20950697	0.23671077	0.22333763	0.25635586

Distances matrix

- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples
 - □ Jaccard (presence/absence in occurrence table)

$J_{AB} = AB / (AB + A + B)$

J_{AB}: Jaccard similarity between samples A and BAB: species present in A and BA: species only present in AB: species only present in B

- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples
 - □ Jaccard (presence/absence in occurrence table)
 - □ Bray-Curtis (occurrence table)

$$dBC_{AB} = \Sigma_{s=1} |A_s - B_s| / (n_A + n_B)$$

 dBC_{AB} : Bray Curtis distance A_S: number of reads for species S in sample A B_S: number of reads for species S in sample B n_A: total number of reads in sample A n_B: total number of reads in sample B

- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples
 - Jaccard (presence/absence in occurrence table)
 - Bray-Curtis (occurrence table)
 - Unifrac (occurrence table and phylogeny)
 - Unweighted
 - □ Weighted

- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples
- Visualisation (ordination plot)

Anouk Zancarini – Tools in molecular data analysis – March 2021

- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples
- Visualisation (ordination plot)

Anouk Zancarini – Tools in molecular data analysis – March 2021

How do we interpret an ordination plot such as PCA?

Why do we use ordination plot such as PCA?

Visualisation of multivariate data

		A	В	C
			Seq_0003	Seq_0004
	2	sample_01	0	0
	3	sample_02	0	0
	4	sample_03	0	0
	5	sample_04	0	27
	6	sample_05	0	10
	7	sample_06	0	3
S	8	sample_07	0	10
Ð	9	sample_08	0	14
D	10	sample_09	0	10
	11	sample_10	153	0
	12	sample_11	32	0
ŝ	13	sample_12	97	0
	14	sample_13	37	0
X	15	sample_14	31	0
Ξ	16	sample_15	12	0
``	17	sample_16	0	0
•	18	sample_17	0	0
	19	sample_18	0	0
	20	sample_19	0	55
	21	sample_20	0	23
	22	sample_21	0	14
	23	sample_22	0	26
	24	sample_23	0	24
	25	sample 24	0	19

Occurrence table

Reduce the dimensionality of a data set

~10,000 features

		А	В	С	D	E	F	G	
			Seq_0003	Seq_0004	Seq_0005	Seq_0006	Seq_0007	Seq_0008	S
	2	sample_01	0	0	0	0	0	()
	3	sample_02	0	0	0	0	0	()
	4	sample_03	0	0	0	0	0	()
	5	sample_04	0	27	0	0	0	()
	6	sample_05	0	10	0	0	0	()
	7	sample_06	0	3	20	0	0	()
S	8	sample_07	0	10	58	0	0	()
Ð	9	sample_08	0	14	52	0	0	()
D	10	sample_09	0	10	25	0	0	()
	11	sample_10	153	0	0	0	0	()
Ē	12	sample_11	32	0	14	0	0	()
ŝ	13	sample_12	97	0	32	0	0	3	3
$\overline{\mathbf{O}}$	14	sample_13	37	0	40	29	18	()
X	15	sample_14	31	0	27	33	13	25	;
Ä	16	sample_15	12	0	23	33	27	19)
).	17	sample_16	0	0	0	0	0	()
•	18	sample_17	0	0	0	0	0	()
	19	sample_18	0	0	0	0	0	()
	20	sample_19	0	55	0	0	0	()
	21	sample_20	0	23	0	0	0	()
	22	sample_21	0	14	0	0	0	()
	23	sample_22	0	26	45	0	0	()
	24	sample_23	0	24	54	0	0	()
	25	sample 24	0	19	56	0	0	()

Occurrence table

~100 samples

~30 features

	4	А	B	С	D	E	F	G
			PC1	PC2	PC3	PC4	PC5	PC6 S
	2	sample_01	0	0	0	0	0	0
	3	sample_02	0	0	0	0	0	0
	4	sample_03	0	0	0	0	0	0
	5	sample_04	0	27	0	0	0	0
	6	sample_05	0	10	0	0	0	0
	7	sample_06	0	3	20	0	0	0
)	8	sample_07	0	10	58	0	0	0
2	9	sample_08	0	14	52	0	0	0
Σ	10	sample_09	0	10	25	0	0	0
-	11	sample_10	153	0	0	0	0	0
	12	sample_11	32	0	14	0	0	0
5	13	sample_12	97	0	32	0	0	3
```	14	sample_13	37	0	40	29	18	0
5	15	sample_14	31	0	27	33	13	25
í	16	sample_15	12	0	23	33	27	19
•	17	sample_16	0	0	0	0	0	0
	18	sample_17	0	0	0	0	0	0
	19	sample_18	0	0	0	0	0	0
	20	sample_19	0	55	0	0	0	0
	21	sample_20	0	23	0	0	0	0
	22	sample_21	0	14	0	0	0	0
	23	sample_22	0	26	45	0	0	0
	24	sample_23	0	24	54	0	0	0
	25	sample 24	0	19	56	0	0	0

#### **Component table**



- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples
- Visualisation (ordination plot)

## Principal Coordinate Analysis (PCoA)

=> can handle different types of distance measurements (such as Bray-Curtis)



Anouk Zancarini – Tools in molecular data analysis – March 2021

Lundberg et al. 2012

- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples
- Visualisation (ordination plot)
- Statistical comparison among sets of communities
  - PERMANOVA: ANOVA type method based on sample to sample distances to compare within and between group distances & P-value by permutation



- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples
- Visualisation (ordination plot)
- Statistical comparison among sets of communities
  - PERMANOVA: ANOVA type method based on sample to sample distances to compare within and between group distances & P-value by permutation
  - ANOSIM: Similar to Permanova, but analysis is performed on ranked distances



## **Practice time: beta-diversity**

## In the tutorial, look at:

○ 6. Beta-diversity



## **Tutorial link:**

https://scienceparkstudygroup.github.io/mic robiome-lesson/06-beta-diversity/index.html

## Learning objectives

Define microbiome and state microbiome importance Identify differences between metabarcoding and metagenomics Explain how microbiota data are generated (including bias) Explain and preform data pre-processing Explain how microbiota data are analysed Define, perform and interpret alpha-diversity M Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization Define, perform and interpret beta-diversity Generate and interpret multivariate data analyses Perform and interpret appropriate statistical tests Visualize and interpret microbial community composition

### Aggregate sequences according to their taxonomic assignment

#### A B C D В C D E G Seq_0003 Seg 0006 S 1 Seq_id Domain Phylym Class Order Seg 0004 Seg 0005 Seg 0007 Seg 0008 sample 01 2 Seq_0001 Bacteria Chloroflexi Anaerolineae Anaerolineales 2 0 0 0 0 0 0 Seg 0002 3 Gammaproteobacteria Pseudomonadales 3 sample_02 0 0 0 0 0 0 Bacteria Proteobacteria 4 0 0 0 0 0 0 4 Seg 0003 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales sample_03 5 Seq_0004 Bacteria Actinobacteria Actinobacteria Propionibacteriales 5 sample_04 0 27 0 0 0 0 0 10 0 0 0 0 6 Seq_0005 Bacteria Planctomycetes Phycisphaerae Phycisphaerales 6 sample_05 Seq_0006 0 7 Bacteria Actinobacteria Thermoleophilia Solirubrobacterales 7 sample 06 0 3 20 0 0 0 58 0 8 Seq_0007 Bacteria Proteobacteria Betaproteobacteria **Burkholderiales** 8 sample_07 10 0 0 9 Undefined Undefined Undefined Seq_0008 Bacteria 9 sample_08 0 14 52 0 0 0 10 sample 09 0 10 25 0 0 0 10 Seg 0009 Bacteria Acidobacteria Holophagae Holophagales 0 11Seg 0010 Bacteria Bacteroidetes Sphingobacteriia Sphingobacteriales 11 sample 10 153 0 0 0 0 12 sample 11 32 0 14 0 0 0 12 Seq_0011 Bacteria Planctomycetes Phycisphaerae Undefined 13 Seq_0012 Deltaproteobacteria Myxococcales 97 0 3 Bacteria Proteobacteria 13 sample 12 0 32 0 Seq_0013 14 sample_13 37 29 18 0 14 Bacteria Undefined Undefined Undefined 0 40 15 Seq_0014 **Bacteroidetes** Sphingobacteriia Sphingobacteriales Bacteria 15 sample_14 31 0 27 33 13 25 16 Seq_0015 12 0 23 33 27 19 Bacteria Proteobacteria Deltaproteobacteria Myxococcales 16 sample_15 17 Seg 0016 Actinobacteria Acidimicrobiia Acidimicrobiales Bacteria 17 sample 16 0 0 0 0 0 0 18 sample 17 0 0 0 0 0 0 18 Seq_0017 Bacteria Chloroflexi Anaerolineae Anaerolineales Seq_0018 19 Bacteria Undefined Undefined Undefined 0 0 19 sample 18 0 0 0 0 20 Seq_0019 Thermoleophilia 0 55 0 0 0 Bacteria Actinobacteria Solirubrobacterales Solirubrobacteraceae 20 sample_19 0 21 Seq 0020 Bacteria Proteobacteria Alphaproteobacteria Caulobacterales 21 sample_20 0 23 0 0 0 0 22 Seq_0021 Bacteria Proteobacteria Deltaproteobacteria Myxococcales 22 sample 21 0 0 0 0 14 0 23 Seq_0022 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales 23 sample_22 0 26 45 0 0 0 24 Seq 0023 Betaproteobacteria Burkholderiales 24 sample 23 0 24 54 0 0 0 Bacteria Proteobacteria 25 Seq_0024 Bacteria Proteobacteria Undefined Undefined 0 19 56 0 0 0 25 sample 24

#### ~10,000 features

**Occurrence data** 

#### **Observation metadata**

Anaerolineaceae

Moraxellaceae

Undefined

Undefined

Undefined

Undefined

lamiaceae

Undefined

Undefined

Undefined

Undefined

Nocardioidaceae

Phycisphaeraceae

Comamonadaceae

Holophagaceae

Chitinophagaceae

Sandaracinaceae

Chitinophagaceae

Sandaracinaceae

Anaerolineaceae

Caulobacteraceae

Burkholderiaceae

Pseudomonadaceae

Family

G

Genus

Bellilinea

Kribbella

Pseudomonas

Enhydrobacter

Phycisphaera

Undefined

Undefined

Undefined

Holophaga

Undefined

Undefined

Undefined

Undefined

Unknown

Undefined

Undefined

Undefined

Undefined

Undefined

Burkholderia

Solirubrobacter

lamia

Sandaracinus

Sandaracinus

- Aggregate sequences according to their taxonomic assignment.
- Plot microbial composition



## All phyla

## Proteobacteria



## Defining the core Arabidopsis thaliana root microbiome

Derek S. Lundbergt^{2,as}, Sarah L. Lebeks^{1,4}, Sur Herrera Paredes^{1,a}, Scott Vourstone^{1,3,4}, Jase Gehring¹, Stephanie Malfatti⁴, Julien Tremblay⁴, Anna Engelbrektson⁴t, Victor Kunin⁴t, Tijan Glavina del Rio⁴, Robert C. Edgar³, Thilo Eickhorst⁶, Ruth E. Ley⁷, Philip Hugenholtz^{4,3}, Susanah Green Tringe⁴ & Jeffery L. Dangl^{1,4,20,0,11}

Lundberg et al. 2012

## **Microbial composition**

- Aggregate sequences according to their taxonomic assignment
- Plot microbial composition



## **Practice time: microbial composition**

## In the tutorial, look at:

○ 7. Bacterial community composition



## **Tutorial link:**

https://scienceparkstudygroup.github.io/ microbiome-lesson/07-bacterialcomposition/index.html

## Other classic microbiota analyses and perspectives

Gene family copy

reference aenome

Predicted gene

content per ASV

ASV abundances

User Input

Final Output

Pre-calculated Input

Intermediate Input

numbers per

- Co-occurrence analyses
- Functional prediction (e.g. PICRUST)
- New sequencing technologies
  - Long reads for a better identification

Tree of ASVs and

reference sequences

Step 4: Determine gene

sample

family abundance per

Key:

Step 3: Infer gene

of ASVs (castor)

family copy numbers

No amplification

Step 2: Place ASVs into

Aligned ASVs

GAPPA)

reference tree (EPA-NG and

Reference tree and

multiple-sequence

Step 1: Align ASVs to reference sequences (HMMER)

Predicted sample

pathway abundances

Step 5: Infer pathway

abundances (MinPath)

alignment

Amplicon Sequence

Variants (ASVs) or

Operational Taxonomic Units



Predicted sample gene family profiles

Map of gene

families to pathways

## Microbiota analysis : data analysis overview



## Microbiota analysis : results discussion

- Scientific context, research question and experimental design
- Data properties (*i.e.* sparsity and library size)
- Data filtering and normalisation
- Alpha-diversity
- Beta-diversity
- Microbial composition
- Conclusion

## Learning objectives

Define microbiome and state microbiome importance Identify differences between metabarcoding and metagenomics Explain how microbiota data are generated (including bias) Explain and preform data pre-processing Explain how microbiota data are analysed Define, perform and interpret alpha-diversity M Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization Define, perform and interpret beta-diversity Generate and interpret multivariate data analyses Perform and interpret appropriate statistical tests Visualize and interpret microbial community composition

## Microbiota data analysis assignment

- Scientific context, research question and experimental design
- Data properties (*i.e.* sparsity and library size)
- Data filtering and normalisation
- Alpha-diversity
- Beta-diversity
- Microbial composition
- Conclusion
- Rmarkdown report in pdf
- Think about reproducibility
  - What have you done?
  - Why?
- Include, describe and interpret your plots & statistical results

Detailed instructions available on Canvas