

Microbiome data analysis - Lecture

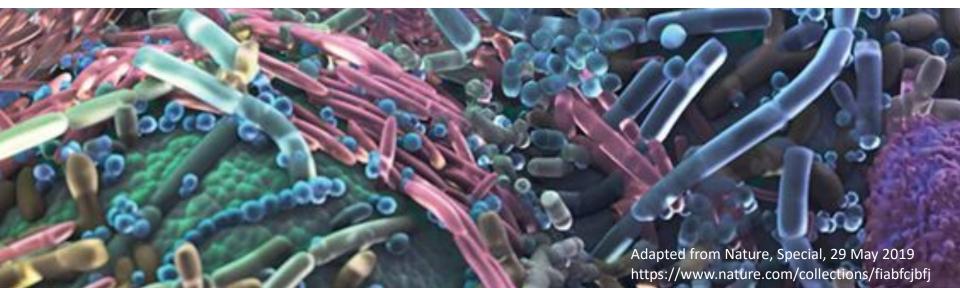
Anouk Zancarini

▶ To cite this version:

Anouk Zancarini. Microbiome data analysis - Lecture. Master. Tools in molecular data analysis - module Microbiome, Netherlands. 2021. hal-04286457

HAL Id: hal-04286457

https://hal.inrae.fr/hal-04286457


Submitted on 15 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Microbiome data analysis

Anouk ZANCARINI

Content

What is microbiome?

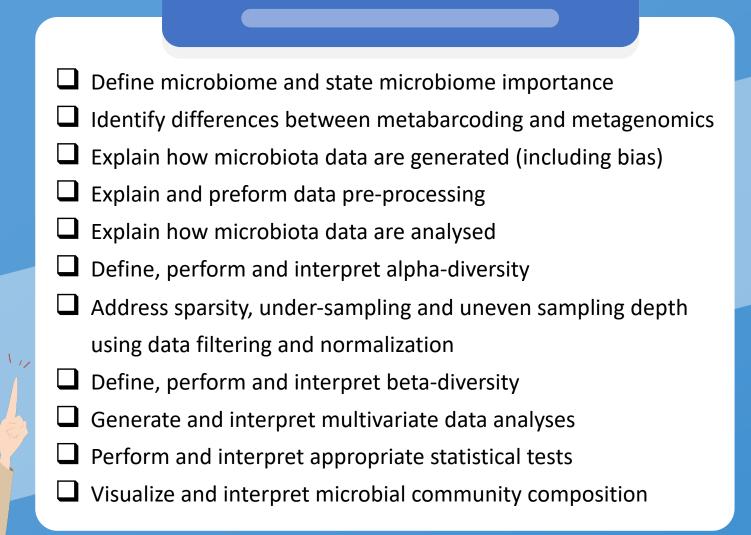
Part 1

- Definitions
- Microbiome importance
- Scientific questions
- Differences between metagenomics and metabarcoding

How microbiota data are generated?

Part 2

- From samples to sequences
- From sequences to data sets


How microbiota data are analysed?

Part 3

- Alpha-diversity
- Data properties
- Data filtering
- Data normalisation
- Beta-diversity
- Microbial composition

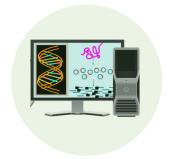
Learning objectives

What is microbiome?

What is microbiome?

Part 1

- Definitions
- Microbiome importance
- Scientific questions
- Differences between metagenomics and metabarcoding


How microbiota data are generated?

Part 2

- From samples to sequences
- From sequences to data sets

How microbiota data are analysed?

Part 3

- Alpha-diversity
- Data properties
- Data filtering
- Data normalisation
- Beta-diversity
- Microbial composition

Definitions

Microbiota is the **assemblage of microorganisms** present in a defined environment. Microbiota includes archaea, bacteria, fungi, protists and viruses.

Metagenome is the **collection of genomes** and genes from the members of a microbiota.

Microbiome refers to the **entire habitat**, including the microorganisms (bacteria, archaea, lower and higher eurkaryotes, and viruses), their genomes (*i.e.*, genes), and the surrounding environmental conditions.

Marchesi and Ravel *Microbiome* (2015) 3:31 DOI 10.1186/s40168-015-0094-5

EDITORIAL

Open Access

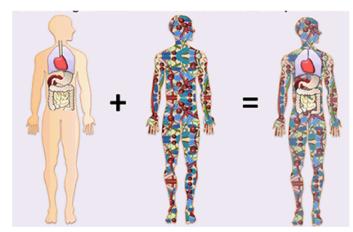
The vocabulary of microbiome research: a proposal

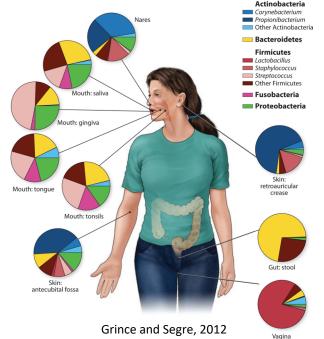
Julian R. Marchesi^{1,2} and Jacques Ravel^{3,4*}

Microbiome importance

Human microbiome: our second genome

- ~10 times more cells than you
- ~100 times more genes than you
- ~1000s different species

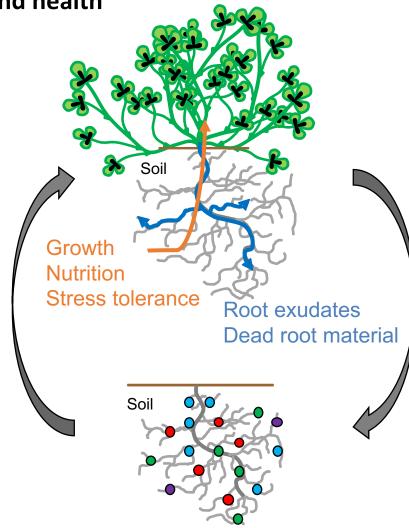

The Human Microbiome Project


- Characterize human microbiome
- Analyse its role in human health and disease

Human microbiome links to health

- Influence metabolism
- Modulate drug interaction
- Link to irritable bowel syndrome, cancer, mental health, obesity, diabetes, asthma, etc.

Adapted from Appanna V.D. (2018) The Human Microbiome: The Origin. In: Human Microbes - The Power Within. Springer, Singapore


Microbiome importance

Plant microbiome can improve plant growth and health

- Biofertilisation
- Phytostimulation
- Rhizoremediation
- Improve stress tolerance

Plant drives its microbiome

 Root exudates (nutrients and signalling molecules)

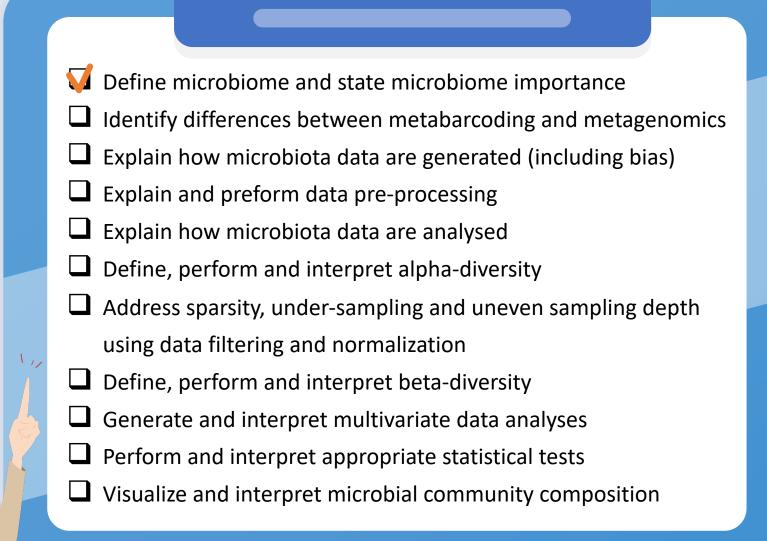
Microbial abundance, taxonomic and functional diversity

What is microbiome and its importance?

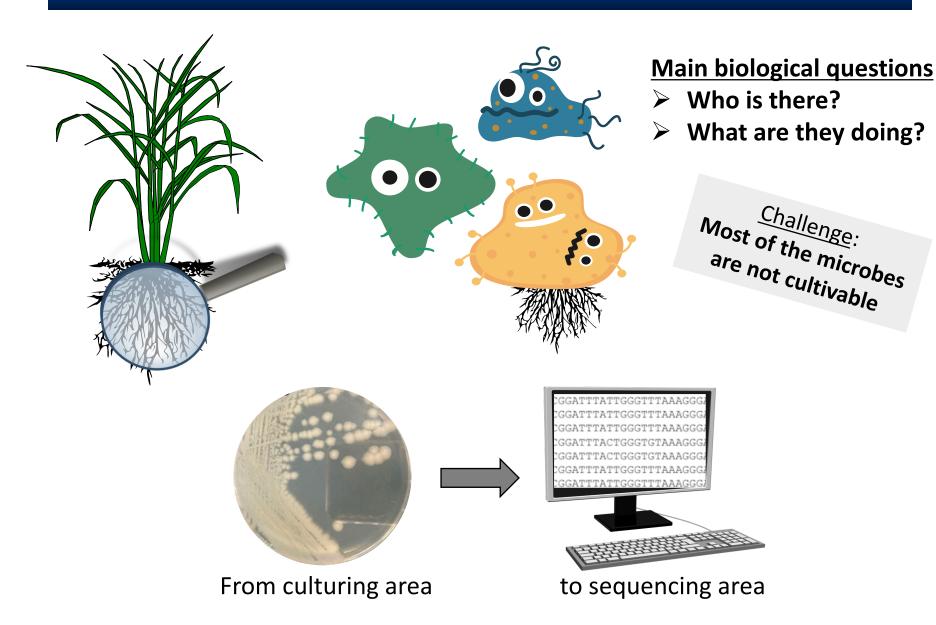
Test your knowledge...

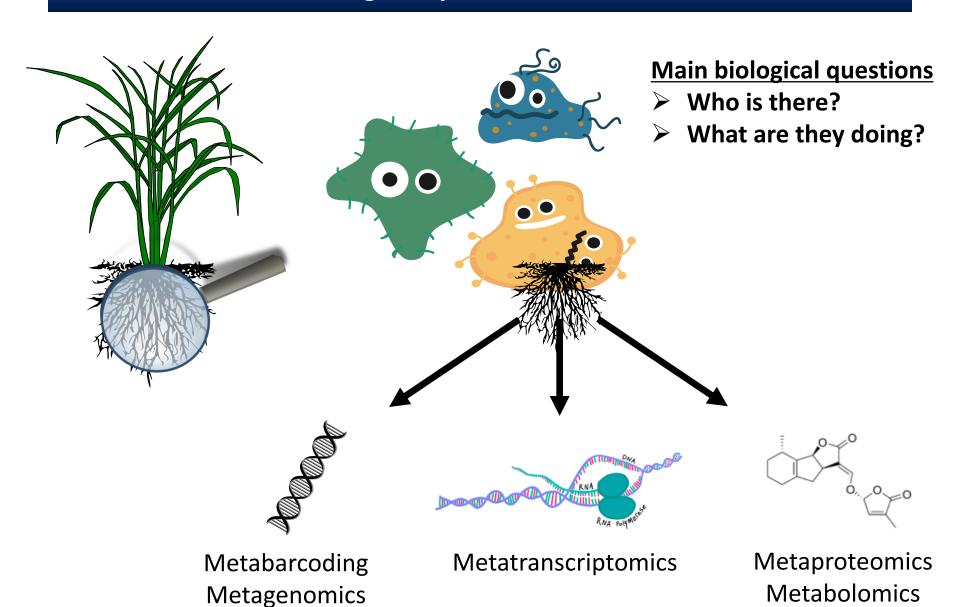
Please answer the 3 questions in the following quiz https://bigdata_microbiome.presenterswall.nl/

What is microbiome and its importance?

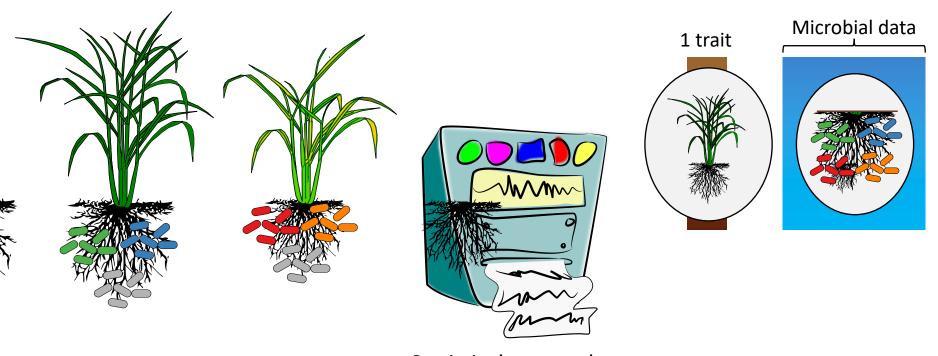

- > Microbiota = assemblage of microorganisms > Metagenome = collection of genomes
 - > Microbiome refers to the entire habitat
 - Microbiome is important in:

 ecosystem functioning

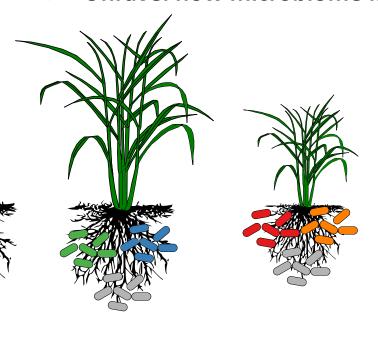

 plant growth and health

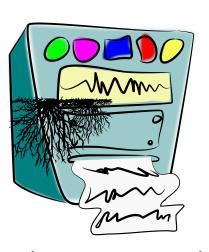


Learning objectives

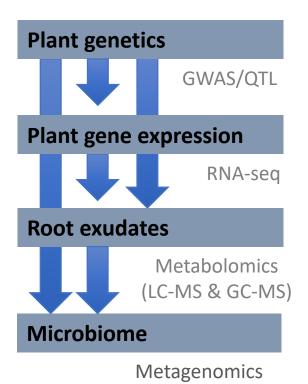


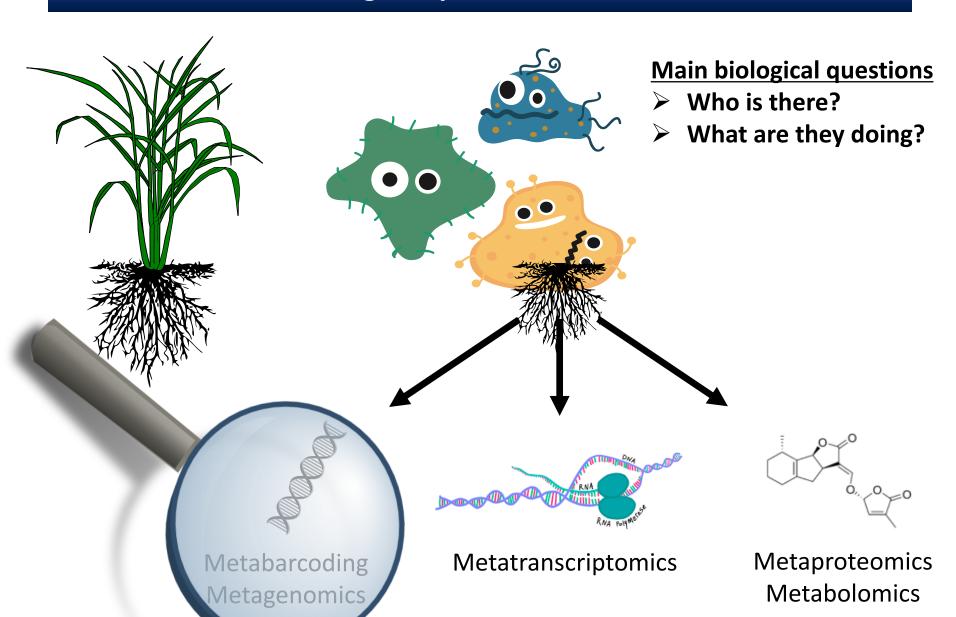
Main biological questions

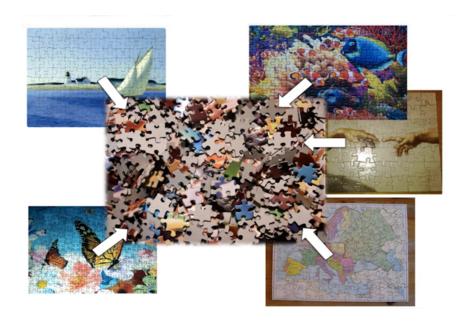

- Who is there?
- What are they doing?
- > Which microbe is associated with a specific phenotype? (i.e. feature selection)



Statistical approaches & machine learning


Main biological questions


- Who is there?
- What are they doing?
- Which microbe is associated with a specific phenotype? (i.e. feature selection)
- Unravel how microbiome is recruited?


Multi-omics approach and data integration

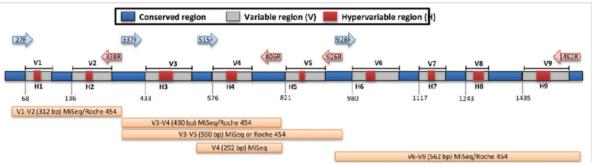
Methods to assess microbial composition and diversity

Metagenomics (shotgun sequencing)

- Sequence all DNA
- Higher cost
- Higher complexity
- Environmental contamination
- Functional information

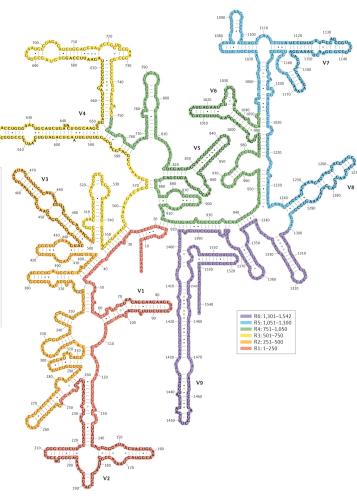
Metabarcoding (amplicon sequencing)

- Sequence only specific gene
- Cheaper
- Less complex to analyse
- Primer amplification bias
- No functional information
- Difficult to identify species


A targeted approach: metabarcoding/amplicon sequencing

Requirements

- Gene ubiquitous
- With conserve and variable regions


For Bacteria analysis: 16S rRNA gene

Gene code for a RNA part of the ribosome

Adapted from Shahi et al 2017

For Fungi analysis: 18S rRNA gene or ITS

Yarza et al. 2014

Nature Reviews | Microbiolog

Test your knowledge...

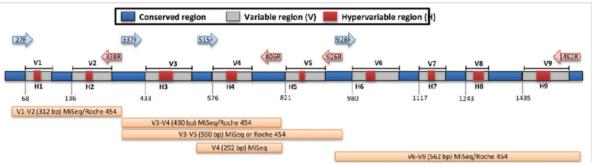
Please answer the 2 questions in the following quiz https://bigdata_microbiome.presenterswall.nl/

> Who is there? What are they doing? > Different approaches based on DNA · Metagenomics = all DNA · Metabarcoding = one specific

ubiquitous gene with conserved and variable regions (165 rRNA, 185 TRNA OT ITS)

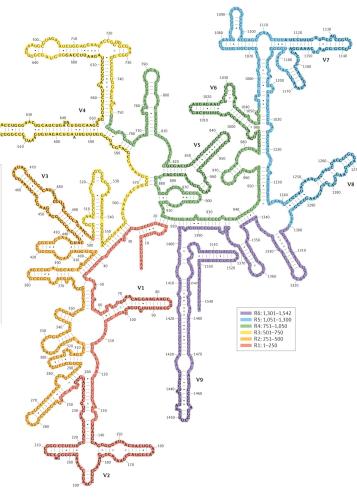
Learning objectives

	Define microbiome and state microbiome importance
	Identify differences between metabarcoding and metagenomics
	☐ Explain how microbiota data are generated (including bias)
	Explain and preform data pre-processing
	Explain how microbiota data are analysed
	☐ Define, perform and interpret alpha-diversity
	Address sparsity, under-sampling and uneven sampling depth
	using data filtering and normalization
//	☐ Define, perform and interpret beta-diversity
	☐ Generate and interpret multivariate data analyses
	☐ Perform and interpret appropriate statistical tests
	☐ Visualize and interpret microbial community composition


A targeted approach: metabarcoding/amplicon sequencing

Requirements

- Gene ubiquitous
- With conserve and variable regions


For Bacteria analysis: 16S rRNA gene

Gene code for a RNA part of the ribosome

Adapted from Shahi et al 2017

For Fungi analysis: 18S rRNA gene or ITS

Yarza et al. 2014

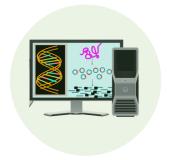
Nature Reviews | Microbiolog

How microbiota data are generated?

What is microbiome?

Part 1

- Definitions
- Microbiome importance
- Scientific questions
- Differences between metagenomics and metabarcoding


How microbiota data are generated?

Part 2

- From samples to sequences
- From sequences to data sets

How microbiota data are analysed?

Part 3

- Alpha-diversity
- Data properties
- Data filtering
- Data normalisation
- Beta-diversity
- Microbial composition

A research example: plant root microbiome

Objective: illustration through a concrete case

LETTER

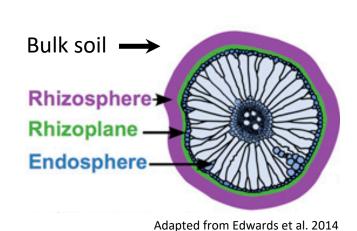
doi:10.1038/nature11237

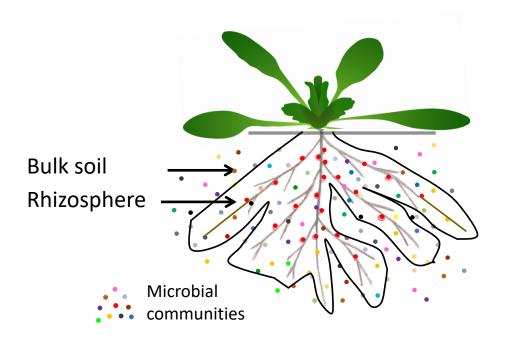
Defining the core *Arabidopsis thaliana* root microbiome

Derek S. Lundberg^{1,2*}, Sarah L. Lebeis^{1*}, Sur Herrera Paredes^{1*}, Scott Yourstone^{1,3*}, Jase Gehring¹, Stephanie Malfatti⁴, Julien Tremblay⁴, Anna Engelbrektson⁴†, Victor Kunin⁴†, Tijana Glavina del Rio⁴, Robert C. Edgar⁵, Thilo Eickhorst⁶, Ruth E. Ley⁷, Philip Hugenholtz^{4,8}, Susannah Green Tringe⁴ & Jeffery L. Dangl^{1,2,9,10,11}

Please answer two quiz questions...

https://bigdata_microbiome.presenterswall.nl/

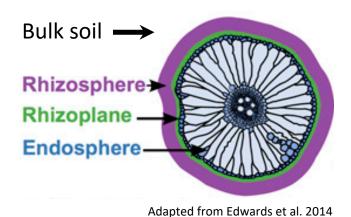

Process overview


Sampling

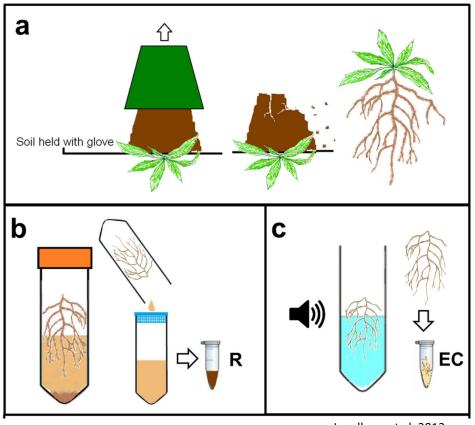
- Three compartments
 - □ Bulk soil
 - □ Rhizosphere soil
 - Endosphere

Defining the core *Arabidopsis thaliana* root microbiome

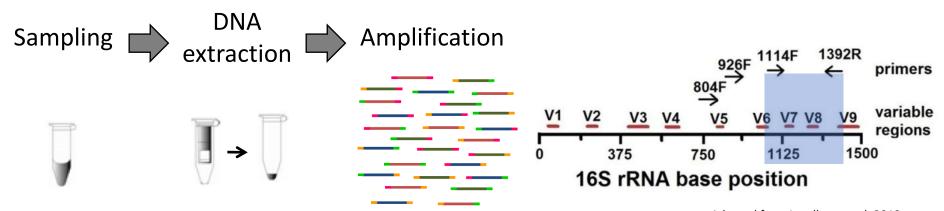
 $Derek S. \ Lundberg^{1,2*}, Sarah L. \ Lebeis^{1*}, Sur \ Herrera Paredes^{1*}, Scott \ Yourstone^{1,3*}, Jase \ Gehring^1, Stephanie \ Malfatti^4, \\ Julien \ Tremblay^4, Anna \ Engelbrektson^4†, \ Victor \ Kunin^4†, \ Tijana \ Glavina \ del \ Rio^4, \ Robert \ C. \ Edgar^5, \ Thilo \ Eickhorst^6, \ Ruth \ E. \ Ley^7, \\ Philip \ Hugenholtz^{4,8}, Susannah \ Green \ Tringe^4 \ \& \ Jeffery \ L. \ Dangl^{1,2,9,10,11}$



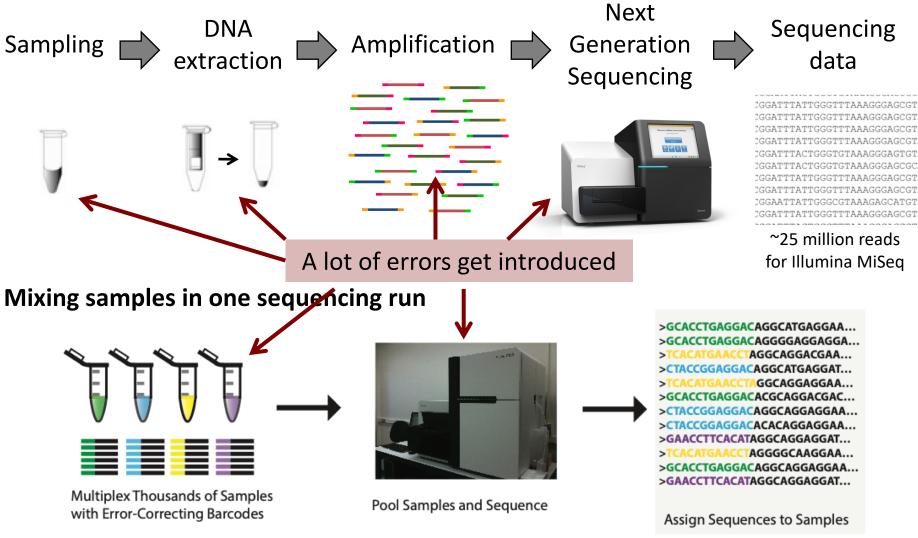
Process overview


Sampling

- Three compartments
 - □ Bulk soil
 - Rhizosphere soil
 - Endosphere


Defining the core *Arabidopsis thaliana* root microbiome

 $Derek \ S. \ Lundberg^{1,2*}, \ Sarah \ L. \ Lebeis^{1*}, \ Sur \ Herrera \ Paredes^{1*}, \ Scott \ Yourstone^{1,3*}, \ Jase \ Gehring^1, \ Stephanie \ Malfatti^4, \ Julien \ Tremblay^4, \ Anna \ Engelbrektson^4, \ Victor \ Kunin^4, \ Tijana \ Glavina \ del \ Rio^4, \ Robert \ C. \ Edgar^5, \ Thilo \ Eickhorst^6, \ Ruth \ E. \ Ley^7, \ Philip \ Hugenholtz^{4,8}, \ Susannah \ Green \ Tringe^4 \ \& \ Jeffery \ L. \ Dangl^{1,2,9,10,11}$


Lundberg et al. 2012

Process overview

Adapted from Lundberg et al. 2012

Process overview

Adapted from Metcalf, Jessica (2014): Overview of data generation, processing and analysis using QIIME. Figshare. https://doi.org/10.6084/m9.figshare.902219.v1

- community
- . Obtain same amount of sequences per sample

Learning objectives

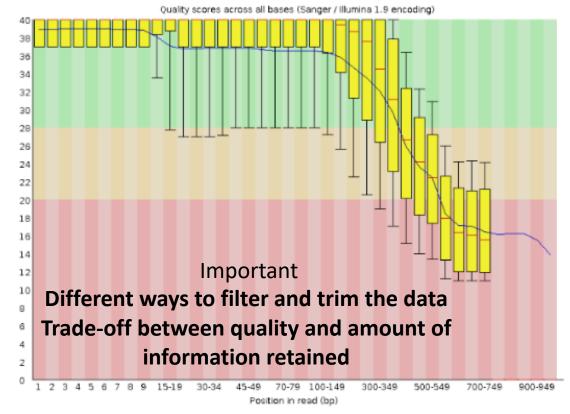
Define microbiome and state microbiome importance
Identify differences between metabarcoding and metagenomics
Explain how microbiota data are generated (including bias)
Explain and preform data pre-processing
Explain how microbiota data are analysed
Define, perform and interpret alpha-diversity
Address sparsity, under-sampling and uneven sampling depth
using data filtering and normalization
Define, perform and interpret beta-diversity
Generate and interpret multivariate data analyses
Perform and interpret appropriate statistical tests
Visualize and interpret microbial community composition

Process overview

Sequencing data

Pre-processing

>GCACCTGAGGACAGGCATGAGGAA...
>GCACCTGAGGACAGGGAGGAGGA...
>TCACATGAACCTAGGCAGGAGGACGAA...
>CTACCGGAGGACAGGACGAGA...
>TCACATGAACCTAGGCAGGAGGAA...
>GCACCTGAGGACACGCAGGACGAC...
>CTACCGGAGGACACACAGGAGGAA...
>CTACCGGAGGACACACAGGAGGAA...
>GAACCTTCACATAGGCAGGAGGAT...
>TCACATGAACCTAGGGGCAAGGAA...
>GCACCTGAGGACAGGAGAA...
>GCACCTGAGGACAGGAGAA...
>GAACCTTCACATAGGCAGGAGGAA...


Metcalf 2014

- De-multiplex (i.e. assign a sequence to a sample)
- Remove adaptor and barcode
- Remove low quality reads (i.e. filtering step)

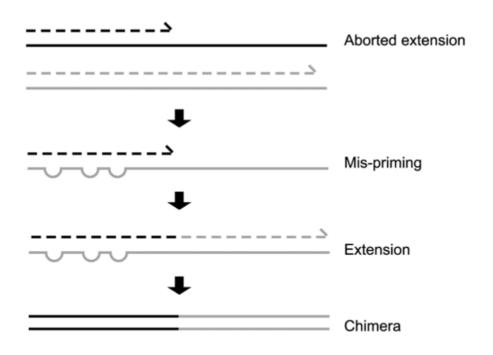
Good

Okay

Bad

Process overview

Sequencing data



Pre-processing

>GCACCTGAGGACAGGCATGAGGAA...
>GCACCTGAGGACAGGGAGGAGGA...
>TCACATGAACCTAGGCAGGACGAC...
>CTACCGGAGGACAGGACAGGAC...
>TCACATGAACCTAGGCAGGAGGAA...
>GCACCTGAGGACACGCAGGAGGAC...
>CTACCGGAGGACACACGGAGGAA...
>CTACCGGAGGACACACAGGAGGAA...
>GAACCTTCACATAGGCAGGAGGAA...
>TCACATGAACCTAGGGAGGAA...
>GCACCTGAGGACAGGAGAA...
>GCACCTGAGGACAGGAGAA...
>GAACCTTCACATAGGCAGGAGGAA...
>GAACCTTCACATAGGCAGGAGGAA...

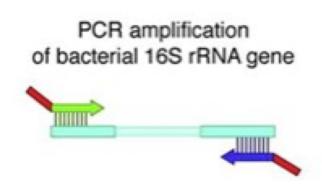
Metcalf 2014

- De-multiplex (i.e. assign a sequence to a sample)
- Remove adaptor and barcode
- Remove low quality reads (i.e. filtering step)
- Remove chimeras

During PCR multiple sequence can combine to form a hybrid Chimeras must be removed

Process overview

Sequencing data



Pre-processing

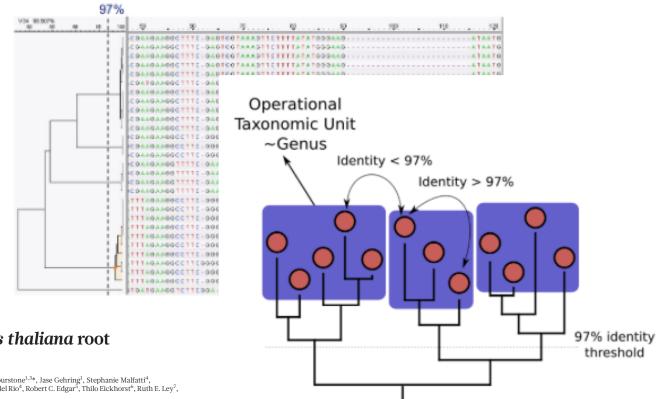
>GCACCTGAGGACAGGCATGAGGAA...
>GCACCTGAGGACAGGGAGGAGGA...
>TCACATGAACCTAGGCAGGACGAA...
>CTACCGGAGGACAGGACGAT...
>TCACATGAACCTAGGCAGGAGGAA...
>GCACCTGAGGACACGCAGGAGGAC...
>CTACCGGAGGACACACGCAGGAGGAA...
>CTACCGGAGGACACACAGGAGGAA...
>GAACCTTCACATAGGCAGGAGGAA...
>TCACATGAACCTAGGGAGGAA...
>GCACCTGAGGACAGGAGAA...
>GCACCTGAGGACAGGAGAA...
>GCACCTGAGGACAGGAGAA...
>GAACCTTCACATAGGCAGGAGGAA...

Metcalf 2014

- De-multiplex (i.e. assign a sequence to a sample)
- Remove adaptor and barcode
- Remove low quality reads (i.e. filtering step)
- Remove chimeras
- Merged pair-end reads

Process overview

Sequencing data



Pre-processing

>GCACCTGAGGACAGGCATGAGGAA...
>GCACCTGAGGACAGGAGGAGGAGA...
>TCACATGAACCTAGGCAGGACGAA...
>CTACCGGAGGACAGGACGAT...
>TCACATGAACCTAGGCAGGAGGAA...
>GCACCTGAGGACACGCAGGAGGAA...
>CTACCGGAGGACACGAGGAGGAA...
>CTACCGGAGGACACACAGGAGGAA...
>GAACCTTCACATAGGCAGGAGGAA...
>TCACATGAACCTAGGGCAGGAGAA...
>GCACCTGAGGACAGGAGAA...
>GAACCTTCACATAGGCAGGAGGAA...
>GAACCTTCACATAGGCAGGAGGAA...

Metcalf 2014

- De-multiplex (i.e. assign a sequence to a sample)
- Remove adaptor and barcode
- Remove low quality reads (i.e. filtering step)
- Remove chimeras
- Merged pair-end reads
- Sequence clustering in OTU

Defining the core *Arabidopsis thaliana* root microbiome

Derek S. Lundberg^{1,2*}, Sarah L. Lebeis^{1*}, Sur Herrera Paredes^{1*}, Scott Yourstone^{1,3*}, Jase Gehring¹, Stephanie Malfatti⁴, Julien Tremblay⁴, Anna Engelbrektson⁴†, Victor Kunin⁴†, Tijana Glavina del Rio⁴, Robert C. Edgar⁵, Thilo Eickhorst⁶, Ruth E. Ley⁷, Philip Hugenholtz^{1,8}, Susannah Green Tringe⁴ & Jeffery L. Dangl^{1,2,3,10,11}

Process overview

Sequencing data

Pre-processing

- A new pre-processing pipeline DADA2
- Using Divisive Amplicon Denoising Algorithm (DADA) to correct amplicon errors without constructing OTU (i.e. Amplicon Sequence Variants or ASV)

BRIEF COMMUNICATIONS

DADA2: High-resolution sample inference from Illumina amplicon data

Benjamin J Callahan¹, Paul J McMurdie², Michael J Rosen³, Andrew W Han², Amy Jo A Johnson² & Susan P Holmes¹

A new pre-processing pipeline DADA2 **Process overview** Using Divisive Amplicon Denoising Algorithm (DADA) Sequencing data to correct amplicon errors without constructing OTU (i.e. Amplicon Sequence Variants or ASV) Check quality plotQualityProfile() visualize the quality profile filterAndTrim() trims sequences to a specific length and filters based on quality Filtering Denoising IearnErrors() learn the error rates & dada() implements DADA Merging mergePairs() merges forward and reverse if they exactly overlap ASV table makeSequenceTable() construct the amplicon sequence variant table removeBimeraDenovo() identifies sequences that are exact bimeras (two-parent Chimeras chimeras) of more abundant sequences removal Taxonomy assignTaxonomy() assign taxonomy to the ASV assignation

Step 2: From sequences to microbiota data sets

Process overview

Sequencing data

Check quality

Filtering

Denoising

Merging

ASV table

Chimeras removal

Taxonomy assignation

- Looking for sequence homology with ref databases
- Accuracy depends on quality and completeness of the database

Ribosomal Data Project database

Greengenes database

Defining the core *Arabidopsis thaliana* root microbiome

Derek S. Lundberg^{1,2}*, Sarah L. Lebeis¹*, Sur Herrera Paredes¹*, Scott Yourstone^{1,3}*, Jase Gehring¹, Stephanie Malfatti⁴, Julien Tremblay⁴, Anna Engelbrektson⁴, Victor Kunin⁴, Tijana Glavina del Rio⁴, Robert C. Edgar², Thilo Eickhorst⁶, Ruth E. Ley⁷, Philip Hugenhotz⁴*, Susannah Green Tringel & Jeffery L. Dangli^{1,2,0,0,11}

Step 2: From sequences to microbiota data sets

Process overview

Sequencing data

Check quality

Filtering

Denoising

Merging

ASV table

Chimeras removal

Taxonomy assignation

Microbiota data

Data sets output

- Sample metadata
- Occurrence data
- Observation metadata (taxonomic assignation)

Sample metadata

		- J														
	_	A		В	C											
	1		Trea	tmen	nt_1 Treatme	ent_2										
	2	sample_01	Α		X											
	3	sample_02	Α		X	~10 0	Ω	featui	202	Ω c	currer	200	data			
	4	sample_03	Α		X	10,0	JUU	Teatui	C 3	OU	currer	ICE	uata			
	5	sample_04	Α	_	A	В	C		D	E	F		G			
	6	sample_05	Α	1		Seq_0003	Seq_00	004 Seq_0	0005 S	eq_0006	Seq_0007	Sec	1_0008			
	7	sample_06	Α	2	sample_01	0		0	0	(0	0	0			
mples	8	sample_07	Α	3	sample_02	0		0	0	(0	0	0	Ohse	rvation me	tadata
≝	9	sample_08	Α	4	sample_03	0		0	0		0	0	0	Obje	i vation me	tadata
d	10	sample_09	Α	5	sample_04	0		A	В		С		D	E	F	G
∟	11	sample_10	Α	6	sample_05	0	1	Seg id	Domaii	n Phyl	vm	Class		Order	Family	Genus
رق	12	sample_11	В	7	sample_06	0	2	Seg 0001	Bacteri		roflexi	Anae	rolineae	Anaerolineales	Anaerolineaceae	Bellilinea
S	13	sample_12	В	8	sample_07	0	3	Seq_0002	Bacteri	ia Prot	eobacteria	Gami	maproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas
3	14	sample_13	В	9	sample_08	0	4	Seq_0003	Bacteri	ia Prot	eobacteria	Gami	maproteobacteria	Pseudomonadales	Moraxellaceae	Enhydrobacter
	15	sample_14	В	10	sample_09	0	5	Seq 0004	Bacteri	a Acti	nobacteria	Actin	obacteria	Propionibacteriales	Nocardioidaceae	Kribbella
Š	16	sample_15	В	11	sample_10	153	6	Seq 0005	Bacteri	a Plan	ctomycetes	Phyci	sphaerae	Phycisphaerales	Phycisphaeraceae	Phycisphaera
	17	sample_16	В	12		32	7	Seg 0006	Bacteri	ia Acti	nobacteria	Therr	noleophilia	Solirubrobacterales	Undefined	Undefined
	18	sample_17	В	13		97	8	Seq_0007	Bacteri	ia Prot	eobacteria	Betag	proteobacteria	Burkholderiales	Comamonadaceae	Undefined
	19	sample_18	В	14	sample_13	37	9	Seq_0008	Bacteri	ia Und	efined	Unde	fined	Undefined	Undefined	Undefined
	20	sample_19	В	15	sample_14	31	10	Seq_0009	Bacteri	a Acid	obacteria	Holop	phagae	Holophagales	Holophagaceae	Holophaga
	21	sample_20	В	16	sample_15	12	11	Seq_0010	Bacteri	a Bact	eroidetes	Sphin	ngobacteriia	Sphingobacteriales	Chitinophagaceae	Undefined
	22	sample_21	С	17	sample_16	0	12	Seq_0011	Bacteri	ia Plan	ctomycetes	Phyci	sphaerae	Undefined	Undefined	Undefined
	23	sample_22	С		sample_17	0	13	Seq_0012	Bacteri	a Prot	eobacteria	Delta	proteobacteria	Myxococcales	Sandaracinaceae	Sandaracinus
	24	sample_23	С		sample_18	0	14	Seq_0013	Bacteri	ia Und	efined	Unde	fined	Undefined	Undefined	Undefined
	25	samnle 24	r	20	sample_19	0	15	Seq_0014	Bacteri	a Bact	eroidetes	Sphin	ngobacteriia	Sphingobacteriales	Chitinophagaceae	Undefined
				21	sample_20	0	16	Seq_0015	Bacteri	ia Prot	eobacteria	Delta	proteobacteria	Myxococcales	Sandaracinaceae	Sandaracinus
				22	sample_21	0	17	Seq_0016	Bacteri	a Acti	nobacteria	Acidi	microbiia	Acidimicrobiales	lamiaceae	Iamia
				23	sample_22	0	18	Seq_0017	Bacteri	ia Chlo	roflexi	Anae	rolineae	Anaerolineales	Anaerolineaceae	Unknown
						0	19	Seq_0018	Bacteri	ia Und	efined	Unde	fined	Undefined	Undefined	Undefined
				25	sample 24	0	20	Seq_0019	Bacteri	a Acti	nobacteria	Therr	moleophilia	Solirubrobacterales	Solirubrobacteraceae	Solirubrobacter
							21	Seq_0020	Bacteri	a Prot	eobacteria	Alpha	aproteobacteria	Caulobacterales	Caulobacteraceae	Undefined
							22	Seq_0021	Bacteri	ia Prot	eobacteria	Delta	proteobacteria	Myxococcales	Undefined	Undefined
							23	Seq_0022	Bacteri	ia Prot	eobacteria	Alpha	aproteobacteria	Sphingomonadales	Undefined	Undefined
							24	Seq_0023	Bacteri	ia Prot	eobacteria	Betap	oroteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia
							25	Seq_0024	Bacteri	a Prot	eobacteria	Unde	fined	Undefined	Undefined	Undefined

Taxonomic assignment

Example of the bacteria *Escherichia coli* O157:H7

Domain	Bacteria			
Kingdom	Eubacteria			
Phylum	Proteobacteria			
Class	Gammaproteobacteria			
Order	Enterobacterales			
Family	Enterobacteriaceae			
Genus	Escherichia-Shigella			
Species	Escherichia coli			
Strain	O157:H7			

Taxonomic assignment

Example of the bacteria *Escherichia coli* O157:H7 -> ASV_6287

Domain	Bacteria			
Kingdom	Eubacteria			
Phylum	Proteobacteria			
Class	Gammaproteobacteria			
Order	Enterobacterales			
Family	Enterobacteriaceae			
Genus	Undefined			
Species	Undefined			
Strain	-			

Step 2: From sequences to microbiota data sets

Data pre-processing: always a trade-off
between quality and quantity

NOTU Operational Taxonomic Units # ASV

Amplicon Sequence Variants Go from fasta files to three tables · occurrence table · taxonomic assignation sample metadata

How microbiota data are generated?

Test your knowledge...

Practice time: from sequences to microbiota data sets

In the tutorial, look at:

- Getting ready
- Inspect read quality profiles
- Filter and trim
- Learn the error rates
- Sample inference
- Merge paired reads
- Construct sequence table
- Remove chimeras
- Track reads through the pipeline
- Assign taxonomy

Tutorial link:

http://benjjneb.github.io/dada2/tutorial.html

Script on Canvas or link:

https://scienceparkstudygroup.github.io/microbiome-lesson/02-data-preprocess-fastq-to-asv/index.html

Learning objectives

	Define microbiome and state microbiome importance
	Identify differences between metabarcoding and metagenomics
	Explain how microbiota data are generated (including bias)
	Explain and preform data pre-processing
	Explain how microbiota data are analysed
	Define, perform and interpret alpha-diversity
	lacktriangle Address sparsity, under-sampling and uneven sampling depth
,	using data filtering and normalization
	Define, perform and interpret beta-diversity
	Generate and interpret multivariate data analyses
	Perform and interpret appropriate statistical tests
	Visualize and interpret microbial community composition

How microbiota data are analysed?

What is microbiome?

Part 1

- Definitions
- Microbiome importance
- Scientific questions
- Differences between metagenomics and metabarcoding

How microbiota data are generated?

Part 2

- From samples to sequences
- From sequences to data sets

How microbiota data are analysed?

Part 3

- Alpha-diversity
- Data properties
- Data filtering
- Data normalisation
- Beta-diversity
- Microbial composition

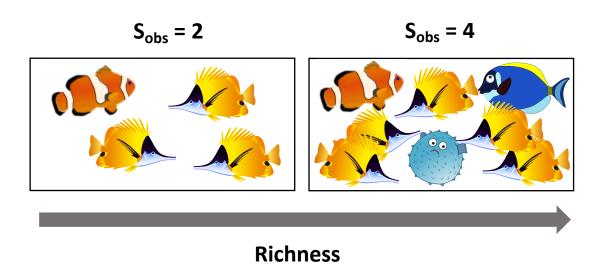
Step 3: From microbiota data sets to data visualisation

Process overview

Raw occurrence data

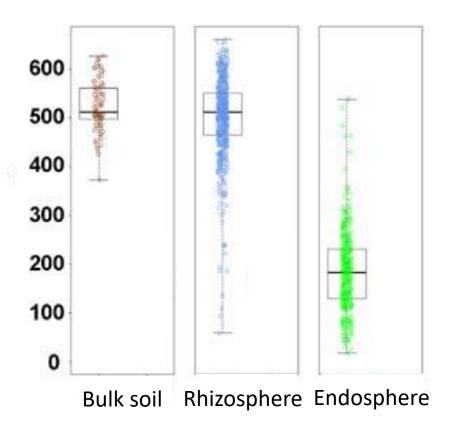
Alpha-diversity

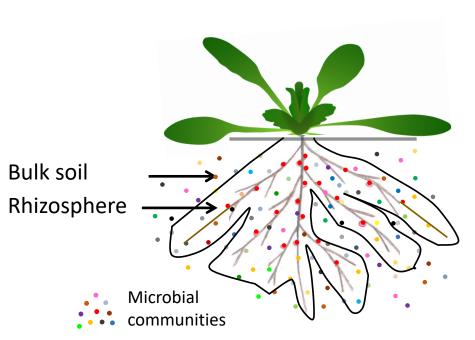
 \sim 10 000 features


??

Occurrence data

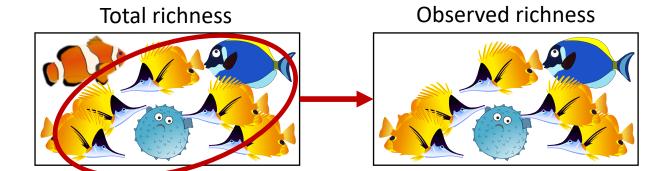
~100 samples


		10,0	JUU IE	itures	Occ	unenc	e uau	a
_	_ A	В	С	D	E	F	G	
1		Seq_0003	Seq_0004	Seq_0005	Seq_0006	Seq_0007	Seq_0008	5
2	sample_01	0	0	0	0	0	()
3	sample_02	0	0	0	0	0	()
4	sample_03	0	0	0	0	0	()
5	sample_04	0	27	0	0	0	()
6	sample_05	0	10	0	0	0	()
7	sample_06	0	3	20	0	0	()
8	sample_07	0	10	58	0	0	()
9	sample_08	0	14	52	0	0	()
10	sample_09	0	10	25	0	0	()
11	sample_10	153	0	0	0	0	()
12	sample_11	32	0	14	0	0	()
13	sample_12	97	0	32	0	0	3	3
14	sample_13	37	0	40	29	18	()
15	sample_14	31	0	27	33	13	25	5
16	sample_15	12	0	23	33	27	19	9
17	sample_16	0	0	0	0	0	()
18	sample_17	0	0	0	0	0	()
19	sample_18	0	0	0	0	0	()
20	sample_19	0	55	0	0	0	()
21	sample_20	0	23	0	0	0	()
22	sample_21	0	14	0	0	0	()
23	sample_22	0	26	45	0	0	()
24	sample_23	0	24	54	0	0	()
25	sample 24	0	19	56	0	0	()


- Diversity within one sample/ecosystem (usually calculated at feature level)
- Alpha-diversity indices
 - \square Richness represents the number of species observed (S_{obs})

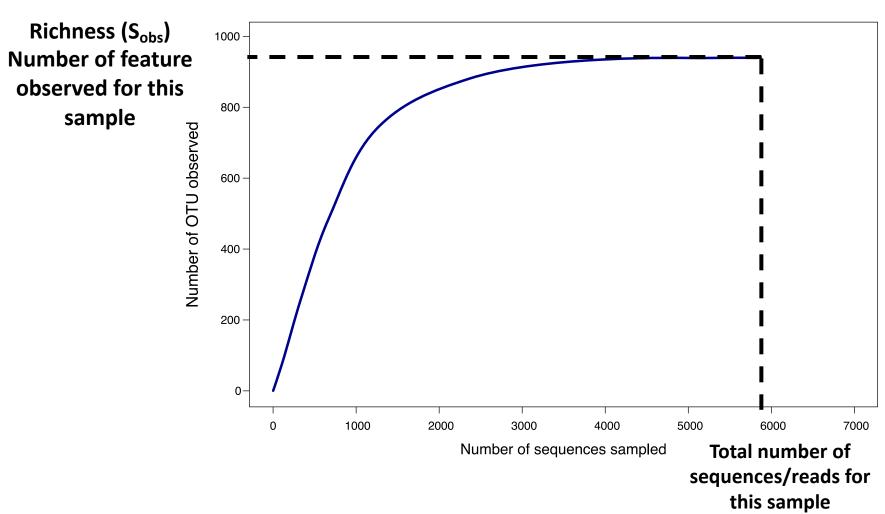
Defining the core *Arabidopsis thaliana* root microbiome

Derek S. Lundberg 1,2* , Sarah L. Lebeis 1* , Sur Herrera Paredes 1* , Scott Yourstone 1,3* , Jase Gehring 1 , Stephanie Malfatti 4 , Julien Tremblay 4 , Anna Engelbrektson 4 †, Victor Kunin 4 †, Tijana Glavina del Rio 4 , Robert C. Edgar 5 , Thilo Eickhorst 6 , Ruth E. Ley 7 , Philip Hugenholtz 4,8 , Susannah Green Tringe 4 & Jeffery L. Dang 1,2,9,10,11

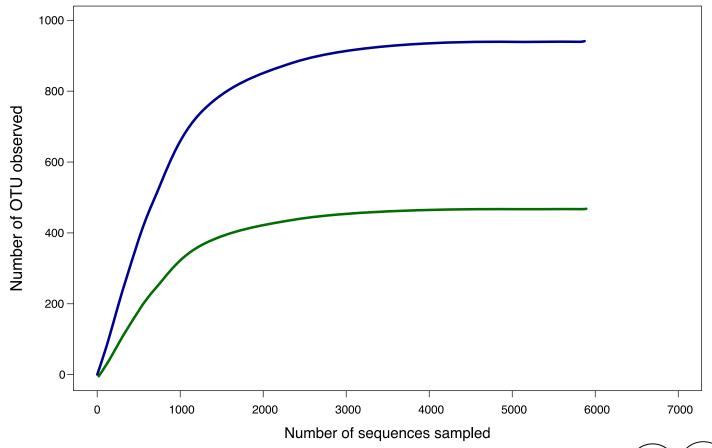


- Diversity within one sample/ecosystem (usually calculated at feature level)
- Alpha-diversity indices
 - Richness represents the number of species observed (S_{obs})
 - Chao1 estimates total richness (S₁)

$$S_1 = S_{obs} + \frac{F_1^2}{2F_2}$$

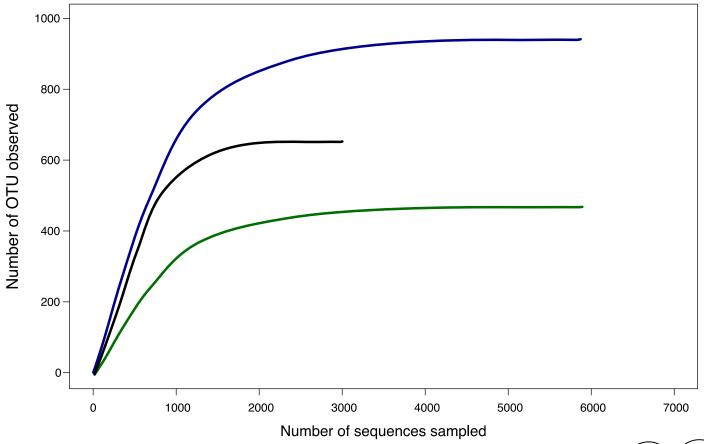

S_{obs} Number of speciesF₁ Number of singletonsF₂ Number of doubletons

REMARK: Chao1
can only be
calculated on
raw data



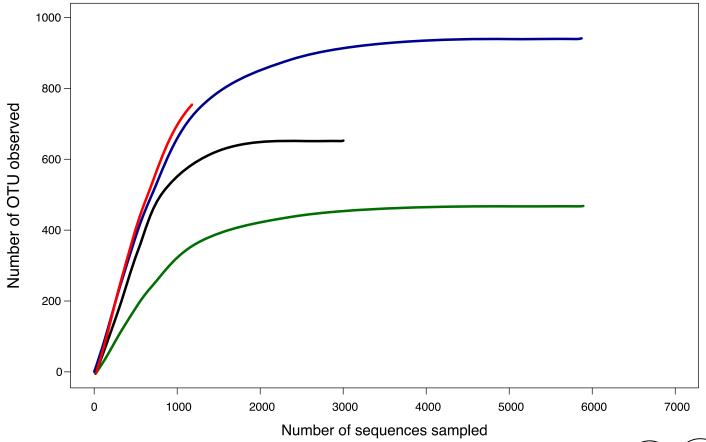
REMARK: Difference between observed richness and Chao1 give you information about the sequencing depth (enough if Richness = Chao1; not enough if Richness << Chao1)

Rarefaction curve

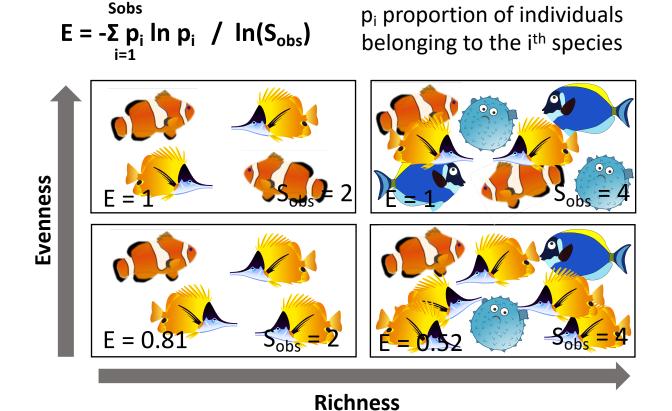


Rarefaction curve

Rarefaction curve



??


https://bigdata_microbiome.presenterswall.nl/

Rarefaction curve

- Diversity within one sample/ecosystem (usually calculated at feature level)
- Alpha-diversity indices
 - \square Richness represents the number of species observed (S_{obs})
 - □ Chao1 estimates total richness (S₁)
 - □ Pielou's evenness provide information about equity in species abundance

- Diversity within one sample/ecosystem (usually calculated at feature level)
- Alpha-diversity indices
 - \square Richness represents the number of species observed (S_{obs})
 - □ Chao1 estimates total richness (S₁)
 - □ Pielou's evenness provide information about equity in species abundance
 - □ Shannon provides information about both richness and evenness (H')

$$H' = \sum_{i=1}^{Sobs} p_i \ln p_i$$

p_i proportion of individuals belonging to the ith species

- Diversity within one sample/ecosystem (usually calculated at feature level)
- Alpha-diversity indices
 - \square Richness represents the number of species observed (S_{obs})
 - □ Chao1 estimates total richness (S₁)
 - □ Pielou's evenness provide information about equity in species abundance
 - □ Shannon provides information about both richness and evenness (H')
 - Statistical tests
 - Normal distribution: t-test or ANOVA
 - □ No normal distribution: Mann Whitney or Kruskal Wallis

- > Diversity within one sample/ecosystem
 - > Observed richness = number of features observed > Should be calculated on raw data

 - > Evenness = equity in feature abundance > Chao1 = total richness

 - > Sequencing depth => did I catch all the diversity? > Shannon <= richness and evenness

Practice time: alpha-diversity

In the tutorial, look at:

- Home page
- 1. Introduction
- 4. Alpha-diversity

Tutorial link:

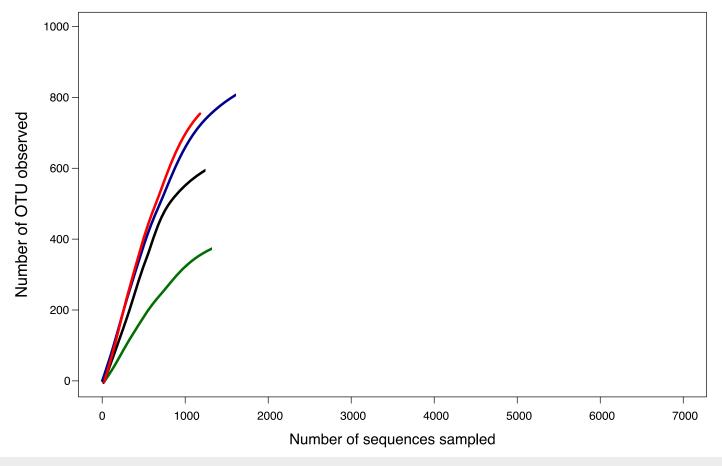
https://scienceparkstudygroup.github.io/ microbiome-lesson/index.html

Learning objectives

Define microbiome and state microbiome importance
Identify differences between metabarcoding and metagenomics
Explain how microbiota data are generated (including bias)
Explain and preform data pre-processing
Explain how microbiota data are analysed
Define, perform and interpret alpha-diversity
Address sparsity, under-sampling and uneven sampling depth
using data filtering and normalization
Define, perform and interpret beta-diversity
☐ Generate and interpret multivariate data analyses
Perform and interpret appropriate statistical tests
Visualize and interpret microbial community composition

Microbiota data properties

Occurrence table

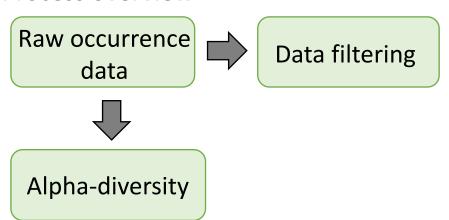

~10,000 features

				10,000	lcatai	CJ							
		A	В	С	D	E	F	G					
	1		Seq_0003	Seq_0004	Seq_0005	Seq_0006	Seq_0007	Seq_0008	5				
	2	sample_01	(0	0	0	0		0				
	3	sample_02	(0	0	0	0		0				
	4	sample_03	(0	0	0	0		0				
	5	sample_04	(27	0	0	0		0				
	6	sample_05	(10	0	0	0		0				
	7	sample_06	(3	20	0	0		0				
S	8	sample_07			58	0	0		0				
$\frac{1}{2}$	9	sample_08		14	52	0	6))	0				
~100 samples	10	sample_09							0				
Ξ	11	sample_10	•	 Is a zero value a true zero, 									
SS	12	sample_11					•		0				
0	13	sample_12	r	neaning	g that ti	nis reat	ure is		3				
Ö	14	sample_13		act prod	cont in	tha can	nnla2		0 25				
7	15	sample_14		not present in the sample?									
,	16	sample_15	14	·	23	33	TON		19				
	17	sample_16	(0		NOI		0				
	18	sample_17	(0	0		•	ر د ا	0				
	19	sample_18	(VING/	5:	0				
	20	sample_19	(55	0		HIV		0				
	21	sample_20	(23	0		0		0				
	22	sample_21	(0	0		0				
	23	sample_22	(0	0		0				
	24	sample_23	(54	0	0		0				
	25	sample 24	(19	56	0	0		0				

- n << p
- Sparse data (~80% of 0)

Filter the data in order to decrease low quality or uninformative features

Rarefaction curve



REMARK: If the sequencing depth is not enough, it will be difficult to compare difference between samples for low counts.

Therefore, it will be better to remove features that have only low counts.

Step 3: From microbiota data sets to data visualisation

Process overview

Remove uninformative
& low quality reads
quantity and quality

Microbiota data properties

Occurrence table

~10,000 features

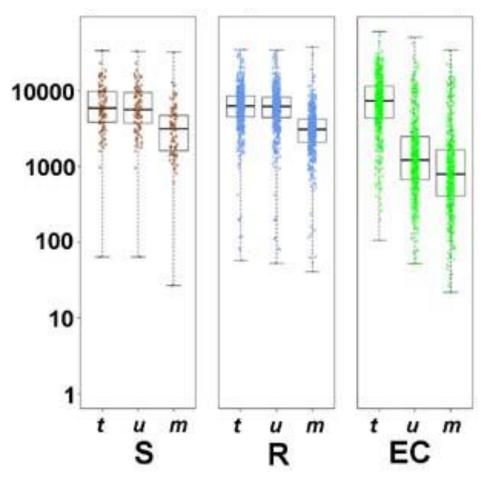
REMARK: We describe relative abundances

~100 samples

Microbiota data properties

Occurrence table

~10,000 features


					-		
	A	В	С	D	E	F	G
1		Seq_0003	Seq_0004	Seq_0005	Seq_0006	Seq_0007	Seq_0008
2	sample_01	0	0	0	0	0	0
3	sample_02	0	0	0	0	0	0
4	sample_03	0	0	0	0	0	0
5	sample_04	0	27	0	0	0	0
6	sample_05	0	10	0	0	0	0
7	sample_06	0	3	20	0	0	0
8	sample_07	0	10	58	0	0	0
9	sample_08	0	14	52	0	0	0
10	sample_09	0	10	25	0	0	0
11	sample_10	153	0	0	0	0	0
12	sample_11	32	0	14	0	0	0
13	sample_12	97	0	32	0	0	3
14	sample_13	37	0	40	29	18	0
15	sample_14	31	0	27	33	13	25
16	sample_15	12	0	23	33	27	19
17	sample_16	0	0	0	0	0	0
18	sample_17	0	0	0	0	0	0
19	sample_18	0	0	0	0	0	0
20	sample_19	0	55	0	0	0	0
21	sample_20	0	23	0	0	0	0
22	sample_21	0	14	0	0	0	0
23	sample_22	0	26	45	0	0	0
24	sample_23	0	24	54	0	0	0
25	sample 24	0	19	56	0	0	0

- n << p</p>
- Sparse data (~80% of 0)
- Compositional data
- Different library sizes
 (total number of reads/ sequences per sample)

Microbiota data properties: library size per sample

Defining the core *Arabidopsis thaliana* root microbiome

Derek S. Lundberg^{1,2*}, Sarah L. Lebeis^{1*}, Sur Herrera Paredes^{1*}, Scott Yourstone^{1,3*}, Jase Gehring¹, Stephanie Malfatti⁴, Julien Tremblay⁴, Anna Engelbrektson⁴†, Victor Kunin⁴†, Tijana Glavina del Rio⁴, Robert C. Edgar⁵, Thilo Eickhorst⁶, Ruth E. Ley⁷, Philip Hugenholtz^{4,8}, Susannah Green Tringe⁴ & Jeffery L. Dangl^{1,2,9,10,11}

Microbiota data properties: library size per sample

Library size is the total number of reads per sample

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	500	80	20		5	10,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000
()						
sample_n	2000	0	2		0	10,000

Microbiota data properties

- Microbiota data usually sparse => need filtering especially when sequencing depth was not enough > Uneven Library size => need normalisation
 for sample comparison

Practice time: microbiota data properties

In the tutorial, look at:

3. Data exploration and properties

Tutorial link:

https://scienceparkstudygroup.github.io/ microbiome-lesson/03-data-explorationand-properties/index.html

Step 3: From microbiota data sets to data visualisation

Process overview

Microbiota data normalisation

- Different normalisation methods available (depend on your downstream analysis)
 - □ **Total Sum Normalisation**: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	500	80	20		5	10,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1						
sample_2						
sample_3						

Microbiota data normalisation

- Different normalisation methods available
 - □ **Total Sum Normalisation**: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	500	80	20		5	10,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1						100
sample_2						100
sample_3						100

Microbiota data normalisation

- Different normalisation methods available
 - □ **Total Sum Normalisation**: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	500	80	20		5	10,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	0.05	0.008	0.002		0.0005	100
sample_2	0.5	0.08	0.02		0.005	100
sample_3	0.05	0.008	0.002		0	100

- Different normalisation methods available
 - □ **Total Sum Normalisation**: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100
 - □ Rarefy: randomly subsampling each sample to the lowest read depth of any sample

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	500	80	20		5	10,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1						1,000
sample_2						1,000
sample_3						1,000

- Different normalisation methods available
 - □ **Total Sum Normalisation**: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100
 - □ Rarefy: randomly subsampling each sample to the lowest read depth of any sample

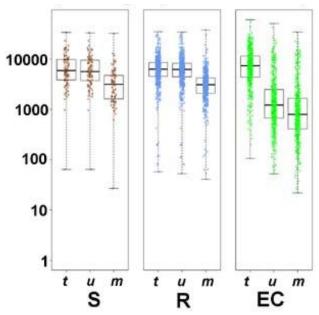
	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	500	80	20		5	10,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1						1,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000

- Different normalisation methods available
 - □ **Total Sum Normalisation**: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100
 - □ Rarefy: randomly subsampling each sample to the lowest read depth of any sample

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	500	80	20		5	10,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000

	seq_1	seq_2	seq_3	()	seq_p	total_reads
sample_1	52	8	1		0	1,000
sample_2	500	80	20		5	1,000
sample_3	50	8	2		0	1,000


- Different normalisation methods available
 - □ **Total Sum Normalisation**: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100
 - Rarefy: randomly subsampling each sample to the lowest read depth of any sample

REMARK: When the sequencing depth is not enough and you have big differences in library sizes (~x10), it is better to rarefy your data than calculate percentage

Defining the core *Arabidopsis thaliana* root microbiome

Derek S. Lundberg^{1,2*}, Sarah L. Lebeis^{1*}, Sur Herrera Paredes^{1*}, Scott Yourstone^{1,3*}, Jase Gehring¹, Stephanie Malfatti⁴, Julien Tremblay⁴, Anna Engelbrektson⁴†, Victor Kunin⁴†, Tijana Glavina del Rio⁴, Robert C. Edgar⁵, Thilo Eickhorst⁶, Ruth E. Ley⁷, Philip Hugenholtz^{4,8}, Susannah Green Tringe⁴ & Jeffery L. Dangl^{1,2,9,10,11}

Rarefied at 1000 reads per sample

- Different normalisation methods available
 - □ **Total Sum Normalisation**: dividing the reads for each OTU in a sample by the total number of reads in that sample and multiplying by 100
 - □ Rarefy: randomly subsampling each sample to the lowest read depth of any sample
 - □ **DESeq-VS**: a variance stabilizing transformation (used for RNA-seq analysis)
 - □ edgeR-TMM: a trimmed mean of M-values normalisation

> Different normalisation methods for · For community level analysis (TSN or sample comparison · For differential abundance testing Better to use rarefying when sequencing depth is not enough and there are big differences in Library sizes

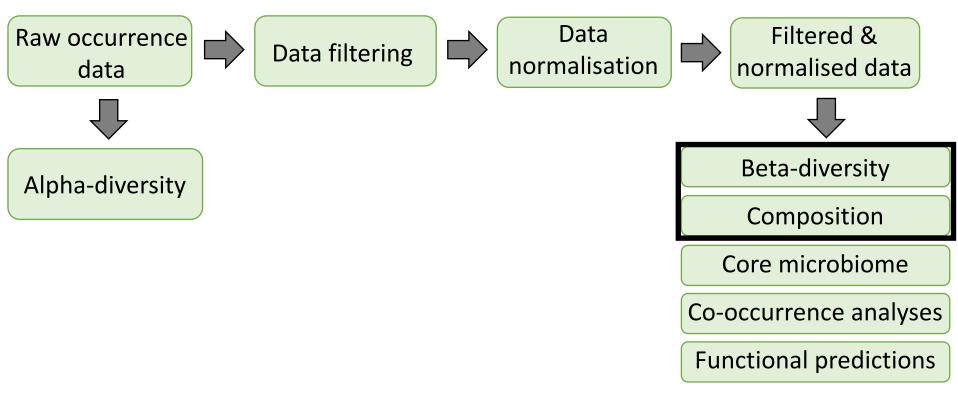
Practice time: data filtering and normalisation

In the tutorial, look at:

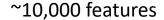
5. Data filtering and normalisation

Tutorial link:

https://scienceparkstudygroup.github.io/ microbiome-lesson/05-data-filtering-andnormalisation/index.html


Learning objectives

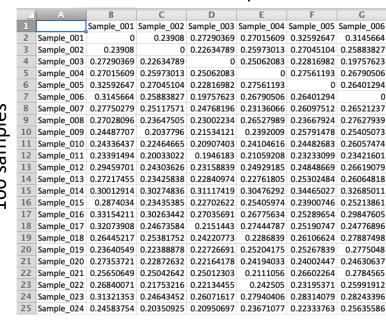
Define microbiome and state microbiome importance
Identify differences between metabarcoding and metagenomics
Explain how microbiota data are generated (including bias)
Explain and preform data pre-processing
Explain how microbiota data are analysed
Define, perform and interpret alpha-diversity
Address sparsity, under-sampling and uneven sampling depth
using data filtering and normalization
Define, perform and interpret beta-diversity
Generate and interpret multivariate data analyses
Perform and interpret appropriate statistical tests
Visualize and interpret microbial community composition



Step 3: From microbiota data sets to data visualisation

Process overview

- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples



		A	В	C	D	E	F	G	
			Seq_0003	Seq_0004	Seq_0005	Seq_0006	Seq_0007	Seq_0008	
- 7	2	sample_01	0	0	0	0	0	0	
- 3	3	sample_02	0	0	0	0	0	0	
4	4	sample_03	0	0	0	0	0	0	
	5	sample_04	0	27	0	0	0	0	
(6	sample_05	0	10	0	0	0	0	
	7	sample_06	0	3	20	0	0	0	
- 8	8	sample_07	0	10	58	0	0	0	
9	9	sample_08	0	14	52	0	0	0	
1	.0	sample_09	0	10	25	0	0	0	
1	.1	sample_10	153	0	0	0	0	0	
1	.2	sample_11	32	0	14	0	0	0	
1	.3	sample_12	97	0	32	0	0	3	
1	.4	sample_13	37	0	40	29	18	0	
1	.5	sample_14	31	0	27	33	13	25	
1	.6	sample_15	12	0	23	33	27	19	
1	.7	sample_16	0	0	0	0	0	0	
1	.8	sample_17	0	0	0	0	0	0	
1	.9	sample_18	0	0	0	0	0	0	
2	0.	sample_19	0	55	0	0	0	0	
2	1	sample_20	0	23	0	0	0	0	
2	22	sample_21	0	14	0	0	0	0	
2	23	sample_22	0	26	45	0	0	0	
2	24	sample_23	0	24	54	0	0	0	
2	25	sample 24	0	19	56	0	0	0	

~100 samples

Distances matrix

- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples
 - □ **Jaccard** (presence/absence in occurrence table)

$$J_{AB} = AB / (AB + A + B)$$

JAB: Jaccard similarity between samples A and B

AB: species present in A and B

A: species only present in A

B: species only present in B

- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples
 - □ Jaccard (presence/absence in occurrence table)
 - Bray-Curtis (occurrence table)

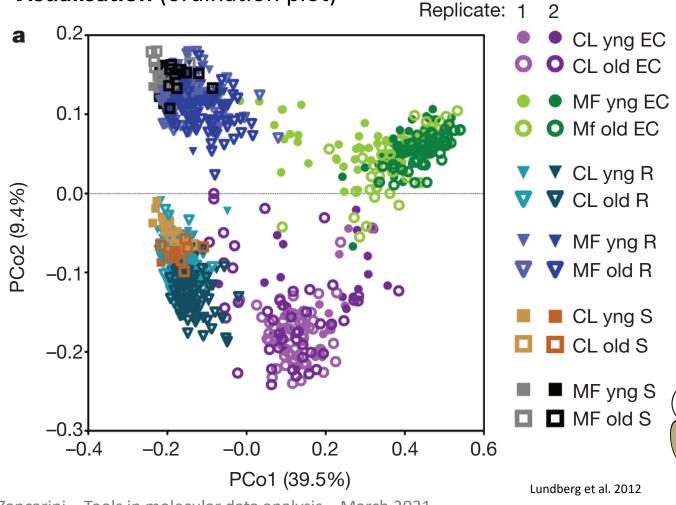
$$dBC_{AB} = \Sigma_{s=1} |A_S - B_S| / (n_A + n_B)$$

dBC_{AB}: Bray Curtis distance

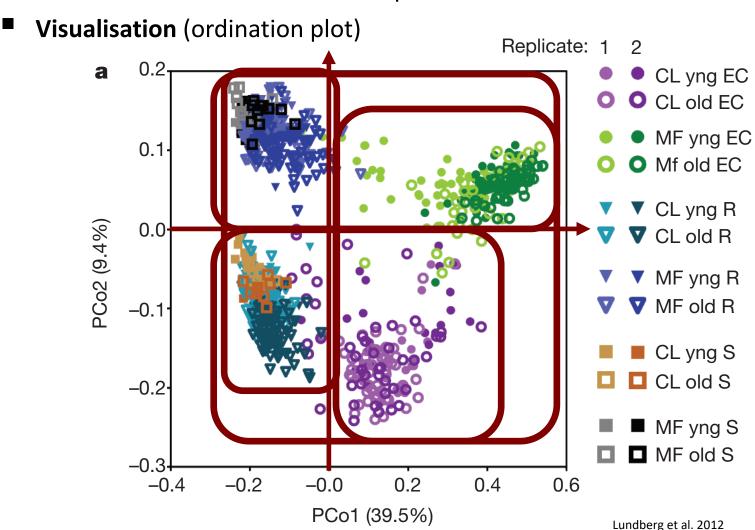
A_S: number of reads for species S in sample A

B_S: number of reads for species S in sample B

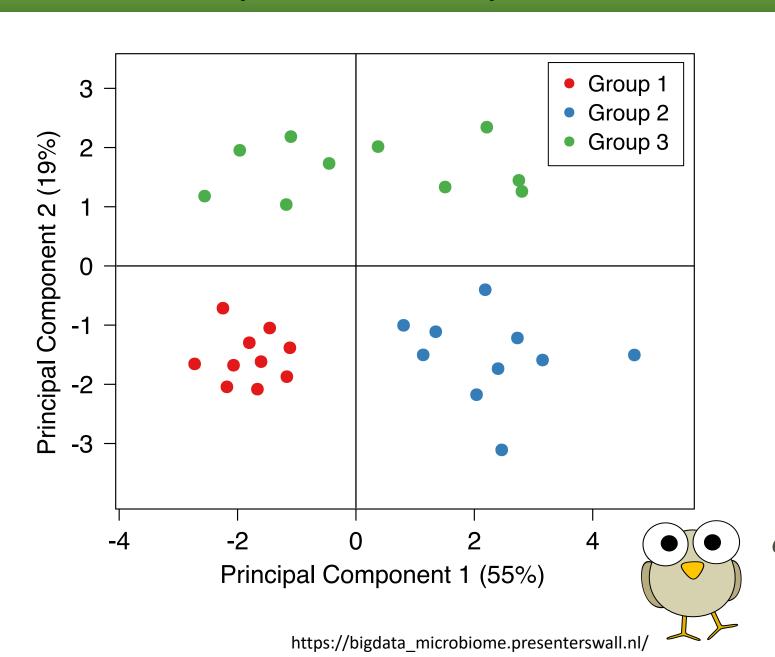
n_A: total number of reads in sample A


n_B: total number of reads in sample B

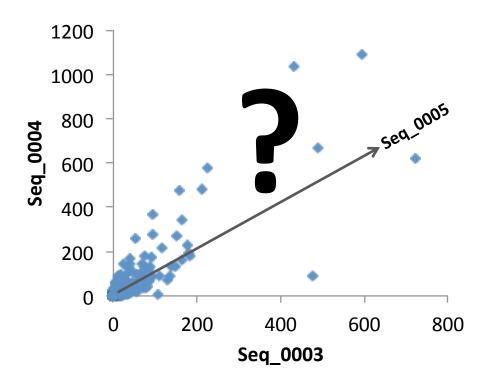
- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples
 - □ Jaccard (presence/absence in occurrence table)
 - Bray-Curtis (occurrence table)
 - Unifrac (occurrence table and phylogeny)
 - Unweighted
 - Weighted



- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples


Visualisation (ordination plot)

- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples


How do we interpret an ordination plot such as PCA?

Why do we use ordination plot such as PCA?

Visualisation of multivariate data

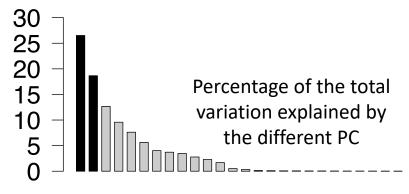
		A	В	C			
			Seq_0003	Seq_0004			
	2	sample_01	0	0			
	3	sample_02	0	0			
	4	sample_03	0	0			
	5	sample_04	0	27			
	6	sample_05	0	10			
	7	sample_06	0	3			
S	8	sample_07	0		10		
<u>e</u>	9	sample_08	0	14			
~100 samples	10	sample_09	0	10			
	11	sample_10	153	0			
Æ	12	sample_11	32	0			
Š	13	sample_12	97	0			
$\overline{}$	14 samp	sample_13	37	0			
$\stackrel{\sim}{\sim}$	15	sample_14	31	0			
$\overline{}$	16	sample_15	12	0			
2	17	sample_16	0	0			
	18	sample_17	0	0			
	19	sample_18	0	0			
	20	sample_19	0	55			
	21	sample_20	0	23			
	22	sample_21	0	14			
	23	sample_22	0	26			
	24	sample_23	0	24			
	25	sample 24	0	19			

Why do we use ordination plot such as PCA?

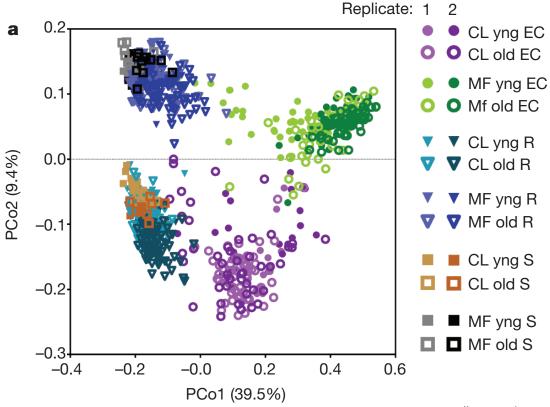
Reduce the dimensionality of a data set

~10,000 features

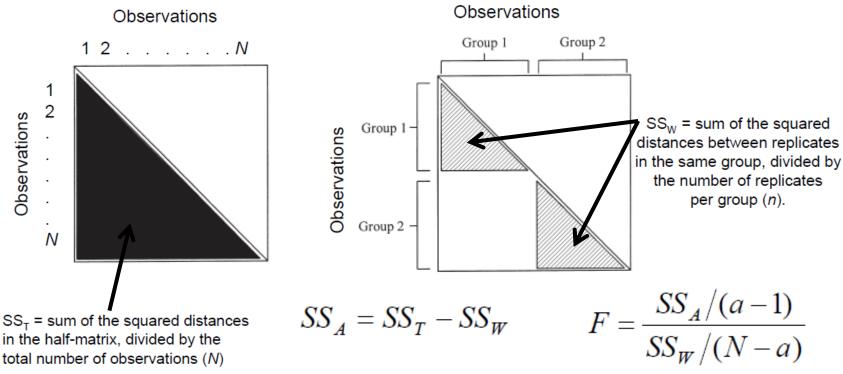
		A	В	С	D	E	F	G
			Seq_0003	Seq_0004	Seq_0005	Seq_0006	Seq_0007	Seq_0008
	2	sample_01	0	0	0	0	0	0
	3	sample_02	0	0	0	0	0	0
	4	sample_03	0	0	0	0	0	0
	5	sample_04	0	27	0	0	0	0
	6	sample_05	0	10	0	0	0	0
	7	sample_06	0	3	20	0	0	0
	8	sample_07	0	10	58	0	0	0
	9	sample_08	0	14	52	0	0	0
.	10	sample_09	0	10	25	0	0	0
	11	sample_10	153	0	0	0	0	0
	12	sample_11	32	0	14	0	0	0
	13	sample_12	97	0	32	0	0	3
	14	sample_13	37	0	40	29	18	0
	15	sample_14	31	0	27	33	13	25
	16	sample_15	12	0	23	33	27	19
	17	sample_16	0	0	0	0	0	0
	18	sample_17	0	0	0	0	0	0
	19	sample_18	0	0	0	0	0	0
	20	sample_19	0	55	0	0	0	0
	21	sample_20	0	23	0	0	0	0
	22	sample_21	0	14	0	0	0	0
	23	sample_22	0	26	45	0	0	0
	24	sample_23	0	24	54	0	0	0
	25	sample 24	0	19	56	0	0	0


~100 samples

		A	В	C	D	E	F	G	
			PC1	PC2	PC3	PC4	PC5	PC6	5
	2	sample_01	0	0	0	0	0	0	
	3	sample_02	0	0	0	0	0	0	
	4	sample_03	0	0	0	0	0	0	
	5	sample_04	0	27	0	0	0	0	
	6	sample_05	0	10	0	0	0	0	
	7	sample_06	0	3	20	0	0	0	
S	8	sample_07	0	10	58	0	0	0	
a)	9	sample_08	0	14	52	0	0	0	
ᅙ	10	sample_09	0	10	25	0	0	0	
	11	sample_10	153	0	0	0	0	0	
_	12	sample_11	32	0	14	0	0	0	
sambies	13	sample_12	97	0	32	0	0	3	
	14	sample_13	37	0	40	29	18	0	
201	15	sample_14	31	0	27	33	13	25	
ゴ	16	sample_15	12	0	23	33	27	19	
•	17	sample_16	0	0	0	0	0	0	
	18	sample_17	0	0	0	0	0	0	
	19	sample_18	0	0	0	0	0	0	
	20	sample_19	0	55	0	0	0	0	
	21	sample_20	0	23	0	0	0	0	
	22	sample_21	0	14	0	0	0	0	
	23	sample_22	0	26	45	0	0	0	
	24	sample_23	0	24	54	0	0	0	
	25	sample 24	0	19	56	0	0	0	


~30 features

Component table


- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples
- Visualisation (ordination plot)
 - Principal Coordinate Analysis (PCoA)

=> can handle different types of distance measurements (such as Bray-Curtis)

Lundberg et al. 2012

- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples
- Visualisation (ordination plot)
- Statistical comparison among sets of communities
 - □ **PERMANOVA**: ANOVA type method based on sample to sample distances to compare within and between group distances & P-value by permutation

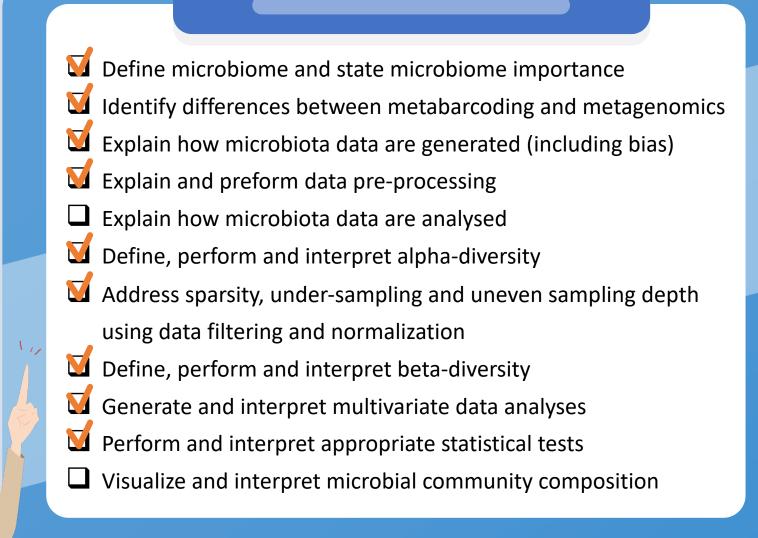
- Diversity between two samples/ecosystems (feature level)
- Calculate distances between samples
- Visualisation (ordination plot)
- Statistical comparison among sets of communities
 - □ **PERMANOVA**: ANOVA type method based on sample to sample distances to compare within and between group distances & P-value by permutation
 - ANOSIM: Similar to Permanova, but analysis is performed on ranked distances

- > Diversity between two samples/ecosystems

 - > Different distance measurements: Jaccard (occurrence table: presence/absence) . Bray-Curtis (occurrence table: abundance)

 - · Unifrac (occurrence table and phylogeny) > Visualisation using ordination plot (PCOA)

Practice time: beta-diversity

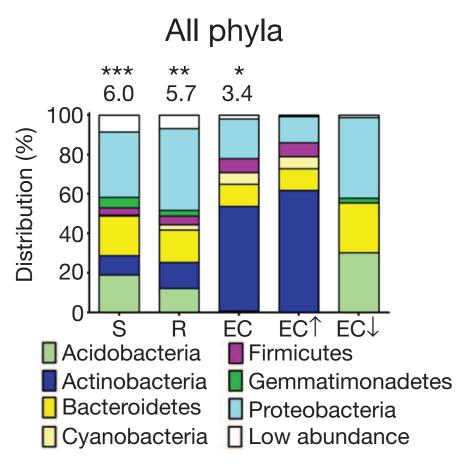


Tutorial link:

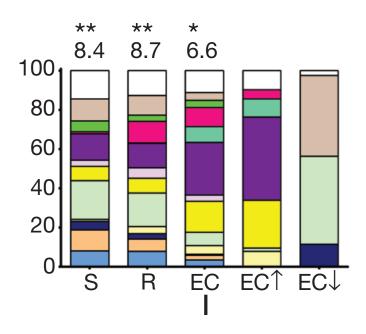
https://scienceparkstudygroup.github.io/microbiome-lesson/06-beta-diversity/index.html

Learning objectives

Microbial composition


Aggregate sequences according to their taxonomic assignment

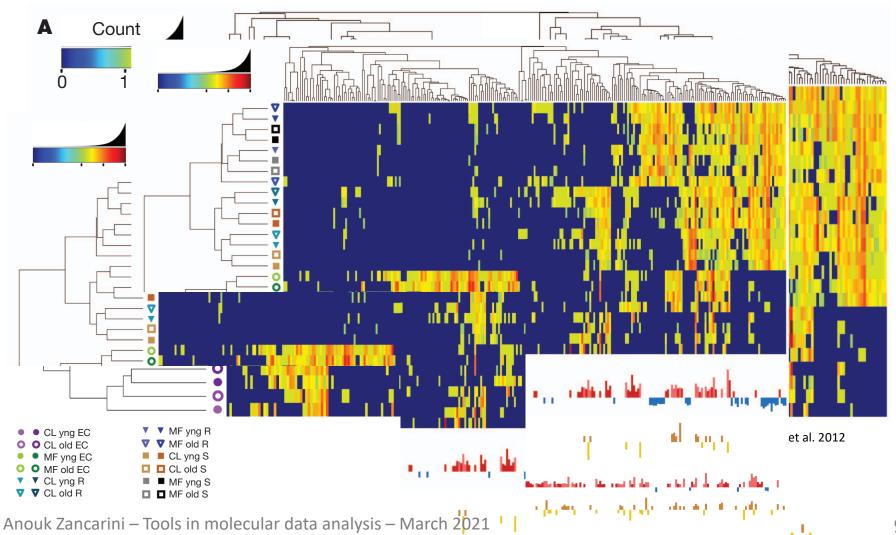
Observation metadata


		~10,	000 fea	tures	Oc	curren	ce data						Obse	rvation met	tadata
	A	В	С	D	E	F	G		_ A	В	С	D	E	F	G
1		Seq_0003	Seq_0004	Seq_0005	Seq_0006	Seq_0007	Seq_0008	9 1	Seq_id	Domain	Phylym	Class	Order	Family	Genus
2	sample_01	O	0	C) () (0	2	Seq_0001	Bacteria	Chloroflexi	Anaerolineae	Anaerolineales	Anaerolineaceae	Bellilinea
3	sample_02	0	0	C) () (0	3	Seq_0002	Bacteria	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas
4	sample_03	0	0	C) () (0	4	Seq_0003	Bacteria	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Moraxellaceae	Enhydrobacter
5	sample_04	0	27	C) () (0	5	Seq_0004	Bacteria	Actinobacteria	Actinobacteria	Propionibacteriales	Nocardioidaceae	Kribbella
6	sample_05	0	10	C) () (0	6	Seq_0005	Bacteria	Planctomycetes	Phycisphaerae	Phycisphaerales	Phycisphaeraceae	Phycisphaera
7	sample_06	0	3	20) () (0	7	Seq_0006	Bacteria	Actinobacteria	Thermoleophilia	Solirubrobacterales	Undefined	Undefined
8	sample 07	0	10	58	3 () (0	8	Seq_0007	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Comamonadaceae	Undefined
9	sample 08	0	14	52	2 () (0	9	Seq_0008	Bacteria	Undefined	Undefined	Undefined	Undefined	Undefined
10	sample 09	0	10	25	5 () (0	10	Seq_0009	Bacteria	Acidobacteria	Holophagae	Holophagales	Holophagaceae	Holophaga
11	sample_10	153	0	C) () (0	11	Seq_0010	Bacteria	Bacteroidetes	Sphingobacteriia	Sphingobacteriales	Chitinophagaceae	Undefined
12	sample 11	32	2 0	14	1 () (0	12	Seq_0011	Bacteria	Planctomycetes	Phycisphaerae	Undefined	Undefined	Undefined
13	sample 12	97	7 0	32	2 () (3	13	Seq_0012	Bacteria	Proteobacteria	Deltaproteobacteria	Myxococcales	Sandaracinaceae	Sandaracinus
14	sample_13	37	7 0	40	29	9 18	3 0	14	Seq_0013	Bacteria	Undefined	Undefined	Undefined	Undefined	Undefined
15	sample_14	31	. 0	27	7 33	3 13	25	15	Seq_0014	Bacteria	Bacteroidetes	Sphingobacteriia	Sphingobacteriales	Chitinophagaceae	Undefined
16	sample 15	12		23	3	3 27		16	Seq_0015	Bacteria	Proteobacteria	Deltaproteobacteria	Myxococcales	Sandaracinaceae	Sandaracinus
17	sample 16	0	0	C) () (0	17	Seq_0016	Bacteria	Actinobacteria	Acidimicrobiia	Acidimicrobiales	lamiaceae	lamia
18	sample 17	0	0	C) () (0	18	Seq_0017	Bacteria	Chloroflexi	Anaerolineae	Anaerolineales	Anaerolineaceae	Unknown
19	sample_18	C	0	C) () (0	19	Seq_0018	Bacteria	Undefined	Undefined	Undefined	Undefined	Undefined
20	sample 19	0	55	C) () (0	20	Seq_0019	Bacteria	Actinobacteria	Thermoleophilia	Solirubrobacterales	Solirubrobacteraceae	Solirubrobacter
21	sample 20	0	23	C) () (0	21	Seq_0020	Bacteria	Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	Undefined
22	sample_21	0	14	C) () (0	22	Seq_0021	Bacteria	Proteobacteria	Deltaproteobacteria	Myxococcales	Undefined	Undefined
23	sample_22	0) (0	23	Seq_0022	Bacteria	Proteobacteria	Alphaproteobacteria	Sphingomonadales	Undefined	Undefined
24	sample_23	0) (_	24	Seq_0023	Bacteria	Proteobacteria	Betaproteobacteria	Burkholderiales	Burkholderiaceae	Burkholderia
25	sample 24	0) (0	25	Seq_0024	Bacteria	Proteobacteria	Undefined	Undefined	Undefined	Undefined

Microbial composition

- Aggregate sequences according to their taxonomic assignment
- Plot microbial composition

Proteobacteria


Defining the core Arabidopsis thaliana root microbiome

Derek S. Lundberg^{1,2}s, Sarah L. Lebeis¹*, Sur Herrera Paredes¹s, Scott Vourstonel^{1,3}s, Jase Gehring¹, Stephanie Malfatti⁴, Julien Tremblay⁴, Anna Engelbrektson⁴t, Victor Kunin⁴t, Tijana Glavina del Rio⁴, Robert C. Edgar³, Thilo Eickhorst⁶, Ruth E. Ley⁷, Philip Hugenholtz^{2,4}, Susannah Green Tringe⁶ & Jeffery L. Dangl^{1,2}(9,1).

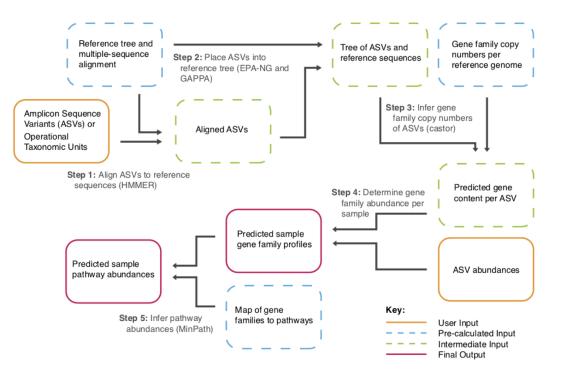
Lundberg et al. 2012

Microbial composition

- Aggregate sequences according to their taxonomic assignment
- Plot microbial composition

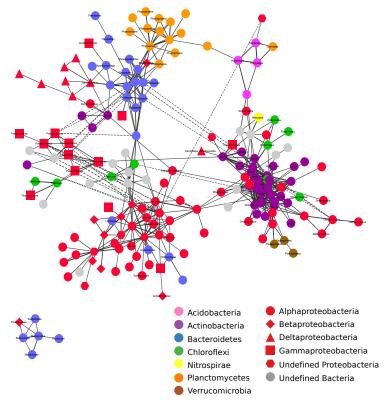
Practice time: microbial composition

In the tutorial, look at:

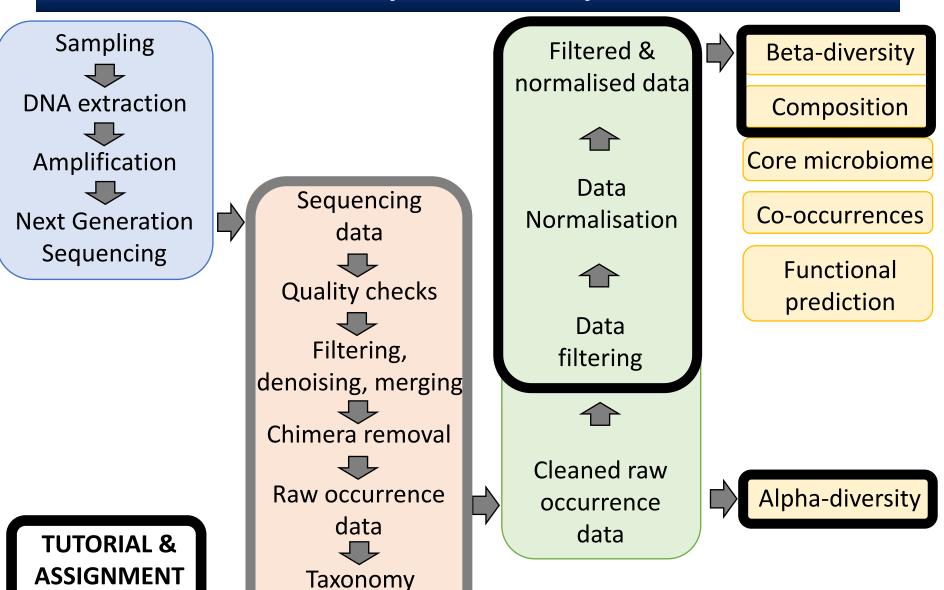

7. Bacterial community composition

Tutorial link:

https://scienceparkstudygroup.github.io/ microbiome-lesson/07-bacterialcomposition/index.html

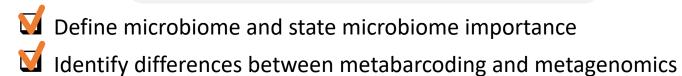

Other classic microbiota analyses and perspectives

- Co-occurrence analyses
- Functional prediction (e.g. PICRUST)
- New sequencing technologies
 - □ Long reads for a better identification
 - No amplification



PacBio

Microbiota analysis : data analysis overview



assignment

Microbiota analysis: results discussion

- Scientific context, research question and experimental design
- Data properties (i.e. sparsity and library size)
- Data filtering and normalisation
- Alpha-diversity
- Beta-diversity
- Microbial composition
- Conclusion

Learning objectives

Explain how microbiota data are generated (including bias)

Explain and preform data pre-processing

Explain how microbiota data are analysed

Define, perform and interpret alpha-diversity

Address sparsity, under-sampling and uneven sampling depth using data filtering and normalization

Define, perform and interpret beta-diversity

Generate and interpret multivariate data analyses

Perform and interpret appropriate statistical tests

Visualize and interpret microbial community composition

Microbiota data analysis assignment

- Scientific context, research question and experimental design
- Data properties (i.e. sparsity and library size)
- Data filtering and normalisation
- Alpha-diversity
- Beta-diversity
- Microbial composition
- Conclusion
- Rmarkdown report in pdf
- Think about reproducibility
 - What have you done?
 - Why?
- Include, describe and interpret your plots & statistical results

Detailed instructions available on Canvas