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(ALS) inhibiting herbicides has evolved 
within and among field populations of common 
ragweed (Ambrosia artemisiifolia L.)
Ingvild Loubet1,2, Lucie Meyer1, Séverine Michel1, Fanny Pernin1, Sébastien Carrère3, Benoit Barrès2, 
Valérie Le Corre1 and Christophe Délye1* 

Abstract 

Background Non-target site resistance (NTSR) to herbicides is a polygenic trait that threatens the chemical control 
of agricultural weeds. NTSR involves differential regulation of plant secondary metabolism pathways, but its precise 
genetic determinisms remain fairly unclear. Full-transcriptome sequencing had previously been implemented to iden-
tify NTSR genes. However, this approach had generally been applied to a single weed population, limiting our insight 
into the diversity of NTSR mechanisms. Here, we sought to explore the diversity of NTSR mechanisms in common 
ragweed (Ambrosia artemisiifolia L.) by investigating six field populations from different French regions where NTSR 
to acetolactate-synthase-inhibiting herbicides had evolved.

Results A de novo transcriptome assembly (51,242 contigs, 80.2% completeness) was generated as a reference 
to seek genes differentially expressed between sensitive and resistant plants from the six populations. Overall, 
4,609 constitutively differentially expressed genes were identified, of which none were common to all populations, 
and only 197 were shared by several populations. Similarly, population-specific transcriptomic response was observed 
when investigating early herbicide response. Gene ontology enrichment analysis highlighted the involvement 
of stress response and regulatory pathways, before and after treatment. The expression of 121 candidate constitu-
tive NTSR genes including CYP71, CYP72, CYP94, oxidoreductase, ABC transporters, gluco and glycosyltransferases 
was measured in 220 phenotyped plants. Differential expression was validated in at least one ragweed population 
for 28 candidate genes. We investigated whether expression patterns at some combinations of candidate genes could 
predict phenotype. Within populations, prediction accuracy decreased when applied to an additional, independent 
plant sampling. Overall, a wide variety of genes linked to NTSR was identified within and among ragweed popula-
tions, of which only a subset was captured in our experiments.

Conclusion Our results highlight the complexity and the diversity of NTSR mechanisms that can evolve in a weed 
species in response to herbicide selective pressure. They strongly point to a non-redundant, population-specific 
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Introduction
Common ragweed (Ambrosia artemisiifolia L.) is an 
invasive plant species native from North America [1] 
that has spread in Europe through multiple introduc-
tions [2]. Widely dispersed by human activities [3, 4], 
ragweed preferentially colonises disturbed environments 
[3], including agricultural fields. Because of its highly 
allergenic and allergy-inducing pollen, ragweed spread 
and proliferation are major public health concerns [5]. 
Furthermore, ragweed is a serious agricultural weed that 
can cause heavy yield losses in summer crops such as 
maize, soybean or sunflower [6, 7]. Thus, ragweed control 
in cropped areas is of primary importance for both pub-
lic health and farming competitiveness. In arable fields, 
ragweed is mainly controlled by herbicides. The most 
effective crop-selective herbicides against ragweed target 
acetolactate-synthase (ALS), a key enzyme in the biosyn-
thesis of branched-chain amino acids [8]. In France, the 
ALS inhibitors imazamox, an imidazolinone, and triben-
uron, a sulfonylurea, have broadly been applied since 
2010 to curb ragweed infestations, especially in fields cul-
tivated with herbicide-tolerant sunflower varieties. How-
ever, a lack of diversified agronomic practices set a high 
risk for resistance evolution in weeds [9]. In France, the 
first cases of ragweed resistance to ALS inhibitors were 
observed in 2013 [10]. The genetic determinants of her-
bicide resistance can be mutant alleles of the herbicides 
target gene (target-site-based resistance, TSR), and/or 
alleles of genes involved in plant secondary metabolism 
(non-target-site-based resistance, NTSR) [11]. Both types 
of resistance mechanisms have evolved in ragweed in 
France: while a diversity of TSR alleles has been identified 
in a large sample of ragweed field populations [12], two 
recent studies have shown that NTSR was by far the most 
widespread and frequent type of resistance [10, 12]. In 
addition, both studies suggested that a diversity of NTSR 
mechanisms had evolved among the surveyed popula-
tions. This prompted us to investigate the genetic bases 
of NTSR to ALS inhibitors in ragweed.

It has been proposed that NTSR is largely due to exac-
erbated herbicide detoxification and/or compartmenta-
tion, likely controlled by alleles at gene families involved 
in plant secondary metabolism that carry structural and/
or regulatory mutations [11, 13]. Whole-transcriptome 
scanning approaches comparing resistant and sensi-
tive plants are thus methods of choice to identify NTSR 

genetic bases [13]. Quite a few transcriptomic studies 
have been conducted to investigate the genetic determin-
isms of NTSR in various weed species (Table S1). Most 
NTSR genetic determinants identified so far belong to 
xenobiotic detoxification or defence pathways, which 
is consistent with exacerbated herbicide metabolism 
playing a major role in NTSR (e.g.[14–17]). However, as 
pointed out by [11], most published studies have focused 
on the most attractive candidate genes of all those iden-
tified, which generally encode detoxification enzymes. 
Thus, only part of the mechanisms potentially involved 
in NTSR has been scrutinised. Furthermore, perhaps 
because whole-transcriptome sequencing experiments 
remain expensive, the number and the diversity of the 
plants analysed are often limited. Furthermore, the vast 
majority of previous NTSR transcriptome studies com-
pared resistant and sensitive plants, each from a different 
population (Table S1), thereby comparing plants with dif-
ferent genetic backgrounds. A few studies have avoided 
this drawback by comparing resistant and sensitive sib-
lings from progenies derived from controlled crosses. 
However, this amounted to investigating the NTSR deter-
minants present in a few, specific individual plants (i.e., 
the NTSR parent plants). In all cases, these experimental 
designs did not allow exploration of possible interpopula-
tion variability in NTSR mechanisms. Last, validation is a 
crucial step in establishing the involvement of candidate 
genes in NTSR [14], and this has usually only been car-
ried out using plants from the same population or line 
used to identify the candidate genes in the first place. 
The limitations of this population-centred approach are 
that i.) it does not allow exploration of the diversity of 
resistance genes present at the level of a weed species’ 
range, or at least across a broad geographical area, and 
ii.) it does not allow validation of genetic determinants of 
NTSR at the species level, so that they could be used for 
broad-scale resistance diagnostics.

In this study, we explored the diversity of mechanisms 
underlying constitutive and early herbicide-induced 
NTSR to ALS inhibitors that have evolved in ragweed 
across France. In a first step, we analysed six popula-
tions of ragweed from different French regions where 
NTSR to imazamox and/or tribenuron had evolved. By 
sequencing the transcriptomes of plants from geographi-
cally distinct populations and measuring the expression 
of candidate genes in a large number of plants, we were 

evolution of NTSR to ALS inhibitors in ragweed. It also alerts on the potential of common ragweed for rapid adapta-
tion to drastic environmental or human-driven selective pressures.

Keywords Ambrosia artemisiifolia, Acetolactate-synthase (ALS) inhibitor, Herbicide, Non-target-site resistance, RNA 
sequencing, Transcriptomics, Resistance detection, Adaptive evolution
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able to identify genes linked to NTSR and to deepen our 
knowledge of the evolutionary patterns of NTSR between 
different locations. In a second step, the value of a set of 
constitutive candidate NTSR genes as resistance predic-
tors was assessed using a second independent and mas-
sive plant sampling.

Material and methods
Plant material
Six French ragweed populations where NTSR was identi-
fied as the only resistance mechanism to the ALS inhibi-
tors imazamox and/or tribenuron in a previous work [12] 
were selected for this study (populations ARA2, ARA8, 
NAQ8, NAQ9, CVL5, and OCC13, Figure S1). Ambrosia 
artemisiifolia is not listed as an endangered or protected 
species, and collection of seeds from these populations 
had previously been permitted by the Directorate-Gen-
eral for Alimentation of the French Ministry for Agricul-
ture within the framework of the governmental biological 
monitoring of the national territory that is part of axes 
1 and 3 of the Ecophyto II plan for the reduction of pes-
ticide use, and in particular within the framework of 
actions 5 of axis 1 (“Bulletin de santé du vegetal”) and 
12 of axis 3 (Non-Intentional Effects of pesticides) (Ref-
erence texts: Article L.251–1 of the French Rural and 
Maritime Fishing Code and Circular CAB/C2009-002 of 
4 March 2009). To ensure that any TSR mechanism was 
involved, systematic ALS gene sequencing of the resist-
ant plants phenotyped was performed as described in 
[12]. ALS gene expression between resistant and sensitive 
plants from the different population was measured by 
qPCR as described in [12] to ensure no overexpression of 
the herbicide target (Figure S2). These populations were 
issued from distinct geographical origins (mean Euclid-
ean distance = 249 kms) where NTSR to ALS inhibitors 
had evolved under different herbicide selective pressure 
and environmental conditions. The frequencies of plants 
resistant to imazamox and/or tribenuron in these popu-
lations are summarised in Table S2. Considering these 
frequencies, population ARA2 was used to seek genetic 
determinants of NTSR to imazamox while the other pop-
ulations were used to seek genetic determinants of NTSR 
to tribenuron.

Ragweed reference transcriptome
RNA extraction and PacBio sequencing
ALS inhibitors essentially act in active plant meristems 
[15] that are located at the apex of the shoots in dicotyle-
donous plants like ragweed [16]. We thus aimed at setting 
up a transcriptome including as many genes expressed 
in ragweed meristems as possible to be used as refer-
ence for the subsequent sequencing experiments. This 
implied sequencing the transcriptome of ragweed apical 

meristem before herbicide application (to further inves-
tigate constitutive NTSR), and at several time-points 
after herbicide application (to further investigate her-
bicide-induced NTSR). Transcriptome sequencing was 
performed from one single ragweed plant because of the 
high genetic variation observed among ragweed individ-
uals and populations [17]. As vegetative propagation of 
ragweed is not feasible, we implemented a different strat-
egy. Seedlings from the reference population P08 that 
exclusively consists of herbicide-sensitive plants were 
cultivated as described [12] until the four-leaf growth 
stage that is the stage recommended for ALS inhibitor 
spraying in the field. The apical bud and primordia of the 
fifth and sixth leaves were then collected using a dispos-
able scalpel blade, and the cut was patched with a drop-
let of masking gum. This triggered the development of 
four offshoots (one per leaf axillary bud). When the two 
first leaves of each offshoot were fully expanded, a time-
course experiment was conducted using imazamox at the 
maximum authorized French field rate (50 g imazamox 
per ha). Imazamox application was as described [12]. The 
apical bud and leaf primordia of one offshoot were sam-
pled 2, 12, 24 and 48 h after application of the herbicide 
treatment. Each of the five samples per plant were col-
lected in Eppendorf tubes containing two 3-mm diameter 
steel beads and placed in liquid nitrogen to avoid RNA 
degradation. Samples were stored immediately stored at 
-80°C until RNA extraction.

Total RNA was extracted using the Direct-zol RNA 
MiniPrep kit (Zymo research) following the manufactur-
er’s instructions. Total RNA concentration, sample qual-
ity and RNA integrity were checked using a NanoDrop 
spectrophotometer (LABTECH, Luton, UK) and Agi-
lent 2100 Bioanalyzer System (Agilent, Waldbroon, Ger-
many). Three plants which five RNA samples had both 
ratio values between 1.8 and 2.2 and a RIN > 7.5 were 
selected for mRNA purification. mRNA was purified with 
the AMBION Purist Mag Kit following manufacturer’s 
instructions. After mRNA extraction, all five mRNA sam-
ples per individual were pooled as an equimolar mixture. 
The three resulting pooled mRNA samples were sent 
to the GenoToul sequencing platform [18]. After qual-
ity control, the best-quality pooled mRNA sample was 
sequenced as 4 size fractions (≤ 2, 2–3, 3–6 and 5–10 kb) 
using a RSII sequencer (Pacific BioScience) with 2 Single 
Molecule Real Time sequencing (SMRT) cells per frac-
tion size.

Reference transcriptome assembly and annotation
All reads that passed quality checks were used as start-
ing material for de novo assembly. The first step was to 
assemble the reads obtained for the 8 SMRT cells by ana-
lysing the transcripts per size fraction using the PacBIO 



Page 4 of 16Loubet et al. BMC Plant Biology          (2023) 23:510 

‘RS_IsoSeq.1’ pipeline and removing strict redundancy. 
Redundancy was further suppressed based on a mini-
mum identity of 99% and a maximum overhang of 50 
nucleotides. Coding sequences in contigs were sought 
using FrameDP [19], implemented on Uniprot-Plants and 
the sunflower proteome database [20]. Blast2GO [21] 
was used for the annotation of the FrameDP predicted 
peptides using InterProScan [22] and i blast (BLASTx) 
hits versus the NCBI non-redundant database [23]. Last, 
BUSCO (Version 3, [24] was run to check the complete-
ness of the assembled transcriptome.

Whole‑transcriptome sequencing
Plant material production
Five batches of phenotyped plant material (Table S3) 
were produced under the same experimental conditions 
at different period of time. Plants were grown in a green-
house to ensure control of environmental conditions. 
Seeds were stratified and set to germinate as described 
[12]. Seedlings at the cotyledon stage were transplanted 
into 96-well trays, allowing individualisation of each 
plant. The potting soil used was a mixture of loamy soil, 
sand, perlite and peat (60%, 15%, 15% and 10% respec-
tively). Seedlings were then transferred to the greenhouse 
(photoperiod of 16h, 20°C/15°C day/night, watering as 
needed). At the four-leaf stage, the apical bud and pri-
mordia of the fifth and sixth leaves from each seedling 
were collected as described above and stored at -80°C 
until total RNA extraction.

The apical bud of the seedlings in the four batches 
intended for the study of constitutive NTSR mecha-
nisms (before treatment modality, BT) was collected 
24 h before the application of the herbicide treatment. 
The apical bud of the batches of seedlings in the batch 
intended for the study of early herbicide-induced mecha-
nisms was collected two hours after herbicide application 
(2HAT modality). Seedlings from population ARA2 were 
sprayed with imazamox and seedlings from populations 
ARA8, NAQ8, NAQ9, CVL5, OCC13 were sprayed with 
tribenuron. Both herbicides were applied as described 
[12], at their respective maximum field rate allowed in 
France.

In addition to the plants from the field populations of 
interest, each batch included ten treated plants from the 
reference population P08 as a check for the efficacy of 
the herbicide application, and ten water-sprayed plants 
from each of the field populations of interest and from 
the reference population as an untreated control. Api-
cal buds from the control plants were collected under 
the same conditions as those from the plants intended 
for transcriptome sequencing to check that bud collec-
tion did not impact plant development. Four weeks after 
treatment, the phenotype (resistant or sensitive to the 

ALS inhibitor applied) of each sprayed plant was visually 
assessed as described [12], using untreated plants from 
each population as a reference.

Transcriptome sequencing
Four RNA sequencing (RNASeq) experiments were con-
ducted on independent plant batches. Three aimed at 
investigating constitutive NTSR (BT modality), and one 
targeted early-induced NTSR (2HAT modality) (Table 
S4). Total RNA from each individual apical bud was 
extracted following the same procedure described for the 
reference transcriptome experiment (see above). Sam-
ples with the highest RNA concentration and a RIN > 8 
were selected and pooled in equimolar mixtures accord-
ing to the experimental design summarised in Table S4. 
Each batch of RNA pools was sequenced on an Illumina 
HiSeq 3000 or NovaSeq 6000 sequencer (Table S4). The 
150-nucleotide pair-end sequences passing Illumina 
standard quality controls were mapped on the ragweed 
reference transcriptome using the glint aligner (version 
1.0.rc12.826_833, 2018) configured to keep only matched 
sequences with the best alignment and no gaps in the 
alignment (maximum number of mismatches = 10 nucle-
otides, minimum length = 80 nucleotides, maximum dis-
tance allowed between each pair = 10,000). Reads were 
allowed to map to multiple contigs to avoid bias of analy-
sis due to transcriptome redundancy. The total number of 
aligned reads per contig per sample was then computed 
and used to perform the differential expression analyses.

Identification of candidate NTSR and/or herbicide response 
genes
Constitutive NTSR candidate genes
Counts from each of the three BT RNASeq experiments 
(RNASeq 1, 2 and 3a) were analysed independently. After 
removing lowly expressed contigs (counts < 50), data 
were normalised using the EDASeq package [25] from 
R [26]. The whole-transcriptome expression patterns of 
the different RNA pools were visualised using principal 
component analyses (PCAs) performed on count data 
normalized by the DESeq2 package with the FactoMineR 
package [27] and plotted with the FactoExtra package 
[28]. Identification of differentially expressed (DE) genes 
between resistant and sensitive pools was performed 
with the DESeq2 package [29] for each population and 
experiment independently to identify genes governing 
population-specific NTSR mechanisms. Difference in 
expression between resistant and sensitive pools were 
tested with a Wald test as described in [29] and p-values 
were corrected using the Benjamini and Hochberg proce-
dure. These DE analyses were followed by Gene Ontology 
(GO) enrichment analyses using the topGO package [30] 
in R.



Page 5 of 16Loubet et al. BMC Plant Biology          (2023) 23:510  

A set of constitutive NTSR candidate genes was 
selected from each population based on the magnitude of 
the difference in gene expression between resistant and 
sensitive pools (fold-change lower or higher than 2 on a 
log2 scale) and the adjusted P-value for multiple testing 
using the Benjamini–Hochberg method [31] (P-adj < 0.1). 
Contig annotation was also checked before selection but 
was not a discriminating criterion. We selected genes 
whose function may be involved in herbicide detoxifi-
cation (e.g. cytochromes P450, glucosyl-transferases, 
ABC-transporters…) as well as resistance proteins, tran-
scription factors, regulatory proteins and proteins with 
unknown function.

Herbicide‑induced response in resistant and sensitive plants
Counts from the 2HAT modality were analysed in two 
steps and independently for each population. In the first 
step, genes DE between the resistant and sensitive pools 
in each population were sought as described above. The 
DE gene lists generated were compared among popula-
tions and to those obtained for the BT modality within 
each population. In a second step, the early response of 
each phenotype to herbicide application was assessed 
by seeking the genes DE between BT and 2HAT in the 
resistant pools or in the sensitive pools in each popula-
tion independently. GO enrichment analyses were then 
conducted as previously to characterise the early herbi-
cide response of each phenotype within each population.

Validation of constitutively expressed candidate NTSR 
genes
Constitutive NTSR candidate genes were selected on 
the basis of the expression levels measured by RNAseq 
in a relatively small number of plants organised in pools 
(Table S4). Within-population validation of the link 
between gene expression level and plant phenotype was 
performed using reverse-transcription followed by Flui-
digm® qPCR (RTqPCR) on individual plants from batch 
1, 2 and 3 (Table S3). cDNA was synthesized from 1 µg 
of total RNA extracted from individual plants using the 
Quantitect® Reverse Transcription Kit (Qiagen, Courta-
boeuf, France). Gene relative expression level was meas-
ured in individual plants according to the  2∆∆Ct method 
[32]. Expression data was normalised using three refer-
ence genes (ubiquitin, filamin, and GAPDH) and three 
standard RNA samples from the reference population 
P08. The reference genes had been validated in a pre-
liminary experiment where the relative expression of 10 
candidate reference genes was measured by RTqPCR 
on cDNAs from 250 resistant or sensitive plants in four 
ragweed populations. The candidate reference genes had 
been selected based on the literature [33, 34] and among 
genes showing a stable expression in our first RNASeq 

experiment (RNASeq 1, Table S4). The most stable ref-
erence genes were identified using the Genorm [35] and 
Normfinder [36] algorithms available in the “selectHKs” 
function of the NormqPCR package [37] for R and the 
“tidy_normfinder” function available at [38].

Fluidigm® qPCR was performed at the platform Gen-
tyane (INRAE, Clermont-Ferrand, France; [39]) follow-
ing the Fluidigm® recommended procedure and starting 
from 5 ng/µL cDNAs diluted in TE low EDTA (10mM 
tris–HCl, 0.1 mM EDTA, pH8). A ½ point dilution range 
was performed from a pool of ten samples to verify the 
efficiency of primers. After a preamplification step and 
exonuclease treatment, a mix was prepared for each of 
the primer and cDNA plates. Primers and cDNAs were 
diluted four times in the mix prepared. IFC Dynamic 
Arrays 96.96 (Fluidigm®) were then prepared manually 
from the diluted primers and cDNA. Runs were per-
formed on a Fluidigm BioMark HD Real-Time PCR sys-
tem (IFC controller HX). The expression of constitutive 
NTSR candidate genes was measured in all individual 
plants (biological replicates) in batches 1, 2 and 3a (Table 
S3), including the plants used for RNAseq experiments 
1, 2 and 3a. The expression of 91 candidate genes identi-
fied in RNAseqs 1 and 2 was first measured in all plants 
in batches 1 and 2 (Figure S3). Twenty-seven candidate 
genes were retained. Their expression and that of 30 
additional candidate genes identified in RNASeq 3a was 
measured in all plants in batch 3a (Figure S3). All Flui-
digm® qPCR data was pooled after verifying that gene 
expression levels in the three standard samples were 
identical in all runs. Genes linked to NTSR were identi-
fied within each population as the candidate genes with 
a significantly different relative expression level between 
resistant and sensitive plants, as checked by a Wilcoxon 
rank test.

Prediction of plant phenotypes based on constitutive 
candidate contig expression patterns
Identification of genes with constitutive expression pat-
terns related to NTSR would have a direct application for 
resistance diagnosis. This diagnosis is all the more chal-
lenging as the genetic determinants of NTSR are poly-
genic [13]. In this section, using the RTqPCR thanks to 
the data collected previously for a very large number of 
NTSR candidate genes, we sought to identify the opti-
mum gene combinations for predicting plant phenotype 
with the greatest accuracy. A two-step approach was 
conducted with 1) construction of the predicting models 
based on the expression data generated previously and 2) 
test of the models on expression data obtained for a new 
sampling of plants (batch 4, Table S3).

Firstly, linear discriminant analysis with LOOCV (Leave-
One-Out Cross Validation) resampling, implemented using 
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the “train” function in the Caret R package [40], was con-
ducted using the expression data obtained by Fluidigm® 
RTqPCR for all candidate NTSR genes from all plants in 
each of the populations ARA2, ARA8 and NAQ8 col-
lected in batches 1, 2 and 3a (Table S3). All candidate genes  
were ranked in each population according to their ability 
to discriminate plant phenotypes. The applied objective  
of this analysis was to evaluate our ability to detect resist-
ance based on the expression pattern of a small set of  
candidate genes, so that RTqPCR-based diagnosis is fea-
sible. We thus decided to seek the minimum combination 
of genes enabling to diagnose resistance with the greatest 
accuracy starting with the ten top-ranked genes in each 
population. Linear discriminant analysis and LOOCV res-
ampling was iterated eight times, removing the gene with 
the lowest contribution to phenotype prediction at each 
step. This approach allowed us to select the combination of 
genes that best predicted the phenotype within each popu-
lation based on the model accuracy (i.e., its sensitivity that 
is its ability to predict that a resistant plant is resistant, and 
its specificity that is its ability to predict that a sensitive 
plant is sensitive).

Secondly, we measured the expression levels of the 
genes composing the previously established gene combi-
nations on an independent batch of plants (batch 4, Table 
S3). Accuracy of the gene combination of each popula-
tion to predict the phenotype with this new expression 
data was evaluated with the “test” function of the Caret 
package. Expression data were obtained by classical 
RTqPCR performed in 384-well plates on cDNAs diluted 
24 times in RNA/DNA free water. A ½ point dose range 
was performed to check primers efficiency. Plates were 
manually prepared by adding 3 µL diluted cDNA and 7 
µL mix per well (one primer tested per plate). Runs were 
performed on a QuantStudio™ real-time PCR system 
(AppliedBiosystem). Gene relative expression level was 
measured in individual plants according to the  2∆∆Ct 
method as described before. Difference in expression 
between resistant and sensitive plants in this new sam-
pling for each gene that compose the different gene com-
bination established was additionally evaluated with a 
Wilcoxon rank test.

Results
AMBELbase, a high‑quality reference transcriptome 
resource for common ragweed
A reference transcriptome for ragweed was assem-
bled from a pool of mRNA extracted from apical buds 
and leaf primordia collected on a single ragweed plant 
before and at several time-points after application of 
the ALS inhibitor imazamox. The 109,560 PacBio qual-
ity reads obtained totalised 225.1 Mb. After suppress-
ing redundancy, 51,242 contigs ranging in size from 301 

to 11,889 nucleotides with a N50 value of 2,349 nucleo-
tides were obtained (110.5 Mb in total) and subjected 
to coding sequence search and functional annotation. 
BUSCO analysis estimated our reference transcrip-
tome to be 80.2% complete with 34.2% complete and 
single-copy orthologs, 46% complete and duplicated 
orthologs (likely because of ragweed high heterozygo-
sity [17], 2.6% fragmented orthologs and 17.2% miss-
ing orthologs out of a total of 1,440 ortholog groups 
searched. The contigs and their predicted peptides are 
available at [41].

Identification of constitutive NTSR candidate genes
PCAs on transcriptome expression data were performed 
independently for each of the three ‘constitutive’ RNASeq 
experiments to visualize relationship between plant pools 
(See Fig.  1 for experiment RNASeq 3a, which included 
all six populations, and Figure S4 for the other RNASeq 
experiments). The first two axes of the PCAs explained 
together 25.1%, 32.3 and 79.8%, respectively, of the vari-
ance present in the expression data from RNAseq3a, 2 
and 1. Overall, the plant pools were grouped according to 
their population of origin rather than according to their 
resistance phenotype (Fig. 1, Figure S4). Given the differ-
ence in the overall expression profile between each popu-
lation, constitutive NTSR candidate genes were sought 
in each population independently (i.e., gene expression 
was compared between the resistant and the sensitive 
plant pools within each population) and the lists of genes 
obtained were compared among populations. In popu-
lation ARA2 with imazamox-resistant plants, a total of 
3,616 genes with significant DE were identified. In the 
five other populations with tribenuron-resistant plants, 
a total of 995 DE genes were identified (270 in popula-
tion ARA8, 181 in population CVL5, 337 in population 
NAQ8, 64 in population NAQ9 and 141 in population 
OCC13). No DE gene was common to all populations 
nor to the five populations with tribenuron-resistant 
plants, but some genes were DE in two to four popula-
tions (Fig. 2, Table S6). Yet, most of the DE genes identi-
fied were specific to one population.

GO enrichment analyses were performed on DE genes 
identified in each population and did not identify any 
Biological Process (BP) or Molecular Function (MF) 
common to all populations studied (Table S7). Terms 
related to gene expression regulation or plant defence 
and secondary metabolism processes were common to 
four or three populations, respectively (Table S7).

Overall, although similarities existed among some 
populations, no DE genes, BP or MF common to all 
populations or to the five populations with tribenuron-
resistant plants were identified. Candidate NTSR genes 
were therefore selected in each population independently 
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for further validation. A total of 121 candidate genes 
DE between resistant and sensitive pools in at least one 
population were retained (45 from population ARA2, 12 
from population ARA8, 17 from population OCC13, 42 
from population NAQ8, nine from population CVL5, and 
three from population NAQ9, Table S8), of which nine 
were common to several populations.

Identification of herbicide‑induced NTSR candidate genes
As in ‘constitutive’ RNASeq experiments, a strong 
population effect was observed in the ‘induced’ 

RNASeq experiment (2HAT modality) (Figure S5). 
Overall, no gene was significantly DE between all 
resistant and all sensitive pools 2 h after herbicide 
application (2HAT). Genes DE between resistant and 
sensitive pools 2HAT were thus sought in each popu-
lation individually (Table S9). Comparison of the lists 
of genes identified in each population showed that no 
genes were commonly DE in the six populations or in 
the five populations with tribenuron resistant plants. 
One gene was DE in four populations, six in three pop-
ulations and 33 in two populations (Table S10). GO 

Fig. 1 Principal component analysis of the global expression profiles of plant RNA pools in batch 3a (before treatment (BT) modality, field 
populations ARA2, ARA8, NAQ8, NAQ9, OCC13 and CVL5) obtained from experiment RNASeq 3a. Each pool is indicated by a label showing 
the name of the population, the phenotype of the plants in the pool, and the pool number (i.e., the replicate number for one given population 
and phenotype). Circles represent the 95% confidence interval around the barycentre of the samples of each population. Plants in population ARA2 
pools are resistant or sensitive to imazamox; plants in the others pools are resistant or sensitive to tribenuron
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analysis independently performed on each list showed 
that no BP or MF were common to all the populations 
(Table S11).

Comparison of the list of genes constitutively DE 
(resistant BT vs. sensitive BT) and DE following her-
bicide application (resistant 2HAT vs. sensitive 2HAT) 
in each of the six populations indicated that one to 13 
genes were DE between resistant and sensitive pools 
both before and after treatment (Table S9). Of the 121 
constitutive NTSR candidate genes previously selected, 
14 were also significantly DE between resistant pools 
and sensitive pools 2HAT (Table  1). Six of the candi-
dates with a higher expression in resistant pools before 
treatment in one population and after treatment in 
another were predicted to code for proteins that could 
be directly involved in NTSR (two cytochromes P450 
in families 71 and 72, one oxidoreductase, one dehy-
drogenase, one germacrene synthase, and one protein 
induced by the jasmonic acid pathway).

Differences in gene expression caused by herbicide 
application in resistant pools or in sensitive pools
The response of each phenotype to treatment (resistant 
2HAT versus resistant BT and sensitive 2HAT versus 
sensitive BT) was assessed within each population. The 
number of genes DE after herbicide application ranged 
from 795 to 4287 in resistant pools and from 3734 to 
10,174 in sensitive pools, depending on the population 
(Table S12). We then sought genes DE after treatment in 
resistant pools (resistant 2HAT versus resistant BT) com-
mon to multiple populations. None was DE after treat-
ment in all resistant pools from all populations. Eight 
were significantly DE in three populations, and 123 in 
two populations.

A GO enrichment analysis identified BPs enriched in 
both resistant and sensitive plants in five of the six pop-
ulations, mostly related to stress perception and stress 
response (response to biotic stimulus, response to exter-
nal stimulus, response to endogenous stimulus, response 

Fig. 2 Number of genes DE in one or several of the five populations with plants resistant to tribenuron
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to stress) (Fig. 3). They also included regulatory pathways 
(regulation of gene expression, epigenetic, phosphorelay 
signal transduction system, signal transduction, signal-
ling, cell communication) within four of the six popula-
tions studied (Fig. 3). In resistant plants specifically, BPs 
related to stress perception, regulatory changes and plant 
secondary metabolism were enriched. This concerned 
transport (transport, organophosphate ester transport, 
transmembrane transport) for populations NAQ8, NAQ9 
and ARA8, the catabolism of complex, organic molecules 
(heterocycle/organic cyclic compound catabolic pro-
cess) in population ARA8, protein modifications (protein 
modification process, cell protein modification) in popu-
lations OCC13 and NAQ9. In sensitive plants specifically, 
BPs mostly associated with plant primary metabolism 
(growth, cell cycle, photosynthesis, reproduction) (Fig. 3) 
were enriched in all populations. Protein translation was 
also enriched after treatment in four populations.

Validation of constitutive NTSR candidate genes
Relative expression of the 121 constitutive candidate 
genes selected (Table S8) was measured in the 220 indi-
vidual plants in batches 1, 2 and 3a that included the 149 
plants sequenced as pools in the RNAseq experiments 
and 71 additional plants (see details in Table S3). Of the 
121 candidate genes, 28 (23%) identified in one of the 
populations ARA2, ARA8 or NAQ8 were confirmed to 
be significantly DE between resistant and sensitive plants 
(Fig.  4). No candidate gene identified in populations 
OCC13, CVL5 or NAQ9 was validated.

In population ARA2, 15 genes were significantly DE 
between the resistant and the sensitive plants (Fig.  4A). 
They included two ABC transporters (ABC-1 and ABC-
2), one resistance protein (DRP-1), one LRR recep-
tor (F-box FBD LRR), one polygalacturonase inhibitor 
(PGIP), and three cytochromes P450 (CYP71-1, CYP72-
1, and CYP94) from families 71, 72, and 94 that showed 
significantly higher relative expression levels in resist-
ant plants compared to sensitive ones. One efflux pump 
(PUMP), one hydrolase (HDL) and one esterase (EST-1) 
showed significantly lower relative expression levels in 
resistant plants compared to sensitive ones. In popula-
tion ARA8, eight genes were significantly DE between the 
resistant and the sensitive plants (Fig. 4B). They included 
one resistance protein (DRP-1), one phosphatase (Phs), 
one oxidoreductase (OX), one glycosyltransferase (GT-
3), one hydrolase (HDL), one transporter (TBC), and 
one enzyme involved in terpene synthesis (GMC) that 
showed significantly higher relative expression levels in 
resistant plants compared to sensitive ones. One ABC 
transporter (ABC-3) showed significantly lower relative 
expression levels in resistant plants compared to sensi-
tive ones. In population NAQ8, seven genes were signifi-
cantly DE between the resistant and the sensitive plants 
(Fig. 4C). They included one resistance protein (DRP-2), 
one oxidoreductase (OX), one phosphatase (Phs), one 
dehydrogenase (DH), and one enzyme involved in ter-
pene synthesis (GMC) that showed significantly higher 
relative expression levels in resistant plants compared 
to sensitive ones. One ABC transporter (ABC-4) and 

Fig. 3 Result of GO enrichment analysis for genes DE after herbicide application in each phenotype in the six populations studied. The BP terms 
displayed are significant at the elim-Fisher test (p-value < 0.05) and represent at least 1% of the DE genes in the population of interest. A terms 
associated with DE genes specific to resistant plants, B terms associated with DE genes shared by resistant and sensitive plants, C terms associated 
with DE genes specific to sensitive plants
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one protease (PROT) showed significantly lower relative 
expression levels in resistant plants compared to sensi-
tive ones. Five genes were validated in two populations: 
GT-3 and HDL in populations ARA2 and ARA8, and OX, 
GMC and Phs in populations ARA8 and NAQ8.

Predicting plant phenotype using expression data 
of a combination of NTSR candidate genes
Identification of genes with constitutive expression 
profiles related to NTSR would have direct application 
for resistance diagnosis, but requires the identifica-
tion of all the genes involved in the construction of this 
resistance. Therefore, we investigated whether a small 
set of candidate genes, rather than a single gene, would 
better predict the phenotype. All 121 constitutive 
candidate NTSR genes for which expression data was 
obtained in individual plants were ordered according to 

their respective contributions to plant phenotype pre-
diction in each of populations ARA2, ARA8 and NAQ8 
using linear discriminant analysis with LOOCV of their 
relative expression levels (Table S5) and the ‘top ten’ 
in each population were selected. The respective sets 
of ten genes were then used in a LOOCV resampling 
with eight iterations to assess the relevance of plant 
phenotype prediction based on the expression data of 
a gene combination (Fig.  5). Statistics for each model 
are detailed in Table S13. Overall, there was no clear 
trends in the relationship between the number of genes 
included in the model and phenotype prediction accu-
racy (Fig. 5).

In population ARA2, the accuracy of the models 
ranged from 80% to 87.5%, its sensitivity from 75 to 
85% and its specificity from 74 to 95%. The gene com-
bination maximising accuracy for this population was 

Fig. 4 Relative expression levels measured in individual plants resistant (red) or sensitive (blue) to imazamox (population ARA2, A) or tribenuron 
(populations ARA8, B, and NAQ8, C) for the candidate genes validated in each population

Fig. 5 Variation of the accuracy (circle), sensitivity (triangle) and specificity (square) of the eight models designed to predict plants phenotype 
thanks to expression levels in ARA2 (A), ARA8 (B) and NAQ8 (C) populations
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PGI + GT-2 + ABC-2 + Ki-1 (accuracy = 87.5%, sensitiv-
ity = 85%; specificity 90%) (Fig. 5A).

In population ARA8, the accuracy of the different mod-
els ranged from 67 to 74%, its sensitivity from 67 to 90% 
and its specificity from 55 to 78%. The gene combination 
maximising accuracy for this population was ABC-3 + D
RP-1 + GMC + OX + Phs + GT-3 (accuracy = 74%, sensi-
tivity = 76%, specificity = 72%) (Fig. 5B).

In population NAQ8 the accuracy of the differ-
ent models ranged from 59 to 69%, its sensitivity from 
72 to 89% and its specificity from 36 to 55%. The gene 
combination maximising accuracy for this population 
was GMC + DRP-2 + ABC-4 (accuracy = 69%, sensitiv-
ity = 89%, specificity = 36%) (Fig. 5C).

The respective models including the optimal gene 
combination identified in each of the three populations 
ARA2, ARA8 and NAQ8 were tested on a new and 
independent batch of plants (93 plants from population 
ARA2, 129 from population ARA8 and 114 from popula-
tion NAQ8; batch 4, Table S3). This batch did not include 
any plant used to establish the gene combinations in 
question, so that the relevance of the genes included in 
the models could be assessed for NTSR diagnosis.

In population ARA2, the accuracy of the model was 
61% for the plants in batch 4 (-26.5% compared to the 
plants in batches 1, 2 and 3a used to build the model), 
with a sensitivity of 86% (+ 1%) and a specificity of 42% 
(-48%). For population ARA8, the accuracy obtained was 
46% (-28%) with a sensitivity of 70% (-6%) and a speci-
ficity of 26% (-46%). For population NAQ8, the accuracy 
obtained was 48% (-21%) with a sensitivity of 77% (-12%) 
and a specificity of 22% (-14%).

Discussion
Identifying the genes underlying NTSR to herbicides with-
out a priori knowledge of the resistance mechanisms and 
considering the genetic diversity of a weed species requires 
the use of a combination of high-throughput sequencing 
and careful experimental design. In this study, we analysed 
a set of geographically diverse field populations of ragweed 
where resistance to ALS-inhibiting herbicides had evolved 
under the selective pressure of recurrent herbicide applica-
tions. We identified a wide variety of constitutive or herbi-
cide-induced genes potentially involved in NTSR to ALS 
inhibitors. These genes were mostly population-specific.

A wide variety of NTSR mechanisms evolved 
among and within ragweed populations in France
ALS inhibitors are leaf-applied herbicides that essentially 
act at the level of the aerial meristems within a few hours 
of application [15]. To study the constitutive and early-
induced mechanisms of NTSR to ALS inhibitors in rag-
weed, we established a transcriptome of the vegetative and 

aerial parts of a ragweed plant, including samples taken 
before and after treatment. This transcriptome showed 
a completeness of 80%, with a high number of duplicated 
BUSCO orthologs that is most likely a consequence of the 
naturally high heterozygosity of ragweed [17]. Our ragweed 
transcriptome is the most comprehensive resource avail-
able to date for ragweed transcriptomic studies. It was used 
as a reference for transcriptome sequencing experiments 
conducted on six ragweed field populations.

Transcriptome sequencing of plants from the different 
population revealed that expression profiles were specific 
to each population, regardless of their geographical ori-
gin or their resistance profile to imazamox or tribenu-
ron. None of the identified constitutive or induced NTSR 
candidate genes were common to all populations studied, 
and very few (0.007%) were shared by several popula-
tions. Furthermore, the constitutively DE genes identified 
in the different populations did not necessarily contrib-
ute to the same biological processes or molecular func-
tions. This suggests that a variety of metabolic pathways 
specifically activated in resistant plants may be involved 
in NTSR in ragweed. The diversity of NTSR mechanisms 
also appears to be considerable within populations: com-
binations of constitutive NTSR candidate genes initially 
found to be optimal for predicting plant phenotypes in 
one plant sampling from one population did not accu-
rately predict the phenotype of plants in another, inde-
pendent sampling from the same population. Additional 
results (Table S14) showed that genes with expression 
patterns linked to NTSR in one sampling from a given 
population were not necessarily linked to NTSR in a sec-
ond sampling from the same population. This suggests 
that our RNA sequencing experiments merely captured 
a subset of the mechanisms involved in NTSR in each 
of the ragweed populations investigated, and that these 
mechanisms are thus most likely highly diverse within 
a population. This tremendous diversity may be due to 
the unprecedented number of plants used for ragweed 
transcriptome sequencing experiments (from 90 to 129 
plants per population) compared to other similar stud-
ies (Table S1, mean = 24 ± 56 plants). Overall, our results 
revealed a non-redundant evolution of NTSR to ALS 
inhibitors in common ragweed populations. Independent 
evolution among populations may result from local adap-
tation in response to different selection pressures [42]. 
Indeed, [10] showed through recurrent selection that 
evolution of NTSR in ragweed populations is rapid and 
involves partially divergent mechanisms depending on 
the selection pressure exerted. The ragweed populations 
in our study were collected in different regions in France. 
As cropping systems, crop rotations and therefore inher-
ent agronomic practices, such as herbicide spraying pro-
grams, are specific to each field and each grower, these 
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populations had likely been subjected to different selec-
tion pressures and agronomical practices.

Furthermore, ragweed populations are characterized by 
a high genetic diversity at neutral markers [17]. This sug-
gests large effective population sizes and a high amount 
of standing genetic variation at adaptive genes, which is 
expected to foster ragweed adaptation [43] and herbicide 
resistance evolution [44, 45]. The high genetic diversity of 
ragweed may also have facilitated the evolution of mul-
tiple NTSR mechanisms among and within populations, 
as observed for TSR in this species [12]. A diversity of 
xenobiotic metabolism pathways, constitutive and/or 
induced in answer to herbicide treatment, had also been 
observed in previous studies investigating the evolution 
of resistance in several weed populations. In their work, 
[46] demonstrated through recurrent selection on Alo-
pecurus myosuroides that plants from the same popula-
tion subjected to different selection pressures developed 
distinct NTSR mechanisms. On the same species, [47] 
showed similar results by comparing transcriptome and 
QTLs from two populations where NTSR had indepen-
dently been selected for. [48] indicated that the evolu-
tion of NTSR to glyphosate in different populations of 
Ipomoea purpurea followed an evolutionary pattern that 
was divergent for several loci. All these examples are 
of ‘recent’ evolution of resistance, as is the case for the 
resistance of ragweed to ALS inhibitors in France that is 
still emerging and remains confined to a relatively limited 
number of fields [12]. Yet, when resistance has evolved 
over a period long enough that ‘primary’ NTSR mecha-
nisms have been ‘filtered’ for resistance patterns and/or 
associated fitness cost in weed populations, redundant 
evolution can be observed (e.g., 50). It remains to be seen 
whether this will be the case in ragweed.

NTSR, a complex interplay between multiple protective 
and regulatory genes
The genes associated with NTSR identified in our study 
allowed to predict resistance in only a subset of the plants 
in the populations studied, indicating that some, but 
not all, of the genes presumably involved in NTSR were 
identified. This finding highlights the complexity and the 
diversity of NTSR mechanisms in ragweed. It is consist-
ent with the diversity of genes and gene families linked 
to NTSR observed in previous studies among species, 
among herbicides, and among populations of the same 
species (Table S15). Yet, many of the functions assigned 
to the candidate genes identified in ragweed were con-
sistent with existing knowledge about the mechanisms 
endowing NTSR [13]. Describes NTSR as a set of mecha-
nisms constitutive and/or induced by herbicide stress 
that involve the expression of “protective” and “regula-
tory” genes. Both categories of genes were identified in 

our study. Regulatory genes are involved in signalling 
and regulation of the stress response [13]. In response to 
herbicide application, the stress signal is carried to reg-
ulatory genes and triggers regulatory cascade(s) that, in 
turn, activate or enhance herbicide metabolization and 
enable the plant to survive [49]. GO enrichment analysis 
in our study suggested that genes or pathways regulating 
gene expression were DE in a constitutive and/or induced 
manner in resistant plants in several populations. Protec-
tive genes are involved in the four-step degradation of 
xenobiotics, including herbicides [50], that briefly consist 
into (1) increasing the solubility of the herbicide mol-
ecule (e.g., by reactions catalysed by cytochromes P450); 
(2) conjugation with water-soluble metabolites (e.g., 
through the action of gluco/glyco/gluthation/amino acid 
transferases); (3) transport into the vacuole or the cell 
walls (e.g., via ABC transporters); (4) final degradation. 
Protective genes are the genes most commonly reported 
in NTSR studies, including studies addressing ALS 
inhibitors (Table S15). Our study is no exception, and 
GO enrichment analyses identified molecular functions 
related to oxygenase, oxidoreductase and transmembrane 
transport activities in ragweed. Also, 16 ragweed candi-
date genes (e.g. CYP72-1, CYP94, GT-1 to 4, ABC-1 to 
4) may be directly related to herbicide degradation [50]. 
Furthermore, several of our candidates showed strong 
homology with NTSR candidate genes identified in other 
studies. CYP72-1 identified in ragweed population ARA2 
was the most likely ragweed homolog of a CYP72 gene 
DE between glufosinate-resistant and glufosinate-sensi-
tive plants from A. palmeri [51] (77% homology, e-value 
5.6E-07) and of a CYP72 gene DE between Myosoton 
aquaticum plants resistant or sensitive to the ALS inhibi-
tor tribenuron [52] (77.4% homology, e-value 9.74E-11). 
This CYP72 cytochrome P450 family was also involved 
in diclofop detoxification in L. rigidum [53] and in NTSR 
to ALS inhibitors in E. phyllopogon [54]. CYP71-1 iden-
tified in ragweed population ARA2 belongs to a P540 
family that has been shown to play a role in the detoxi-
fication of ALS inhibitors in in soybean and wheat [55, 
56] and in the weed Descurainia Sophia [57]. CYP94 
identified in ragweed population ARA2 showed strong 
homology to a CYP94 gene linked to resistance to ALS 
inhibitors in E. phyllopogon [54] (79% homology, e-value 
0.005) and to resistance to glufosinate in A. palmeri [51] 
(70.8% homology, e-value 2.08E-25). ABC-1, ABC-3 
and ABC-5 identified respectively in ARA2, NAQ8 and 
OCC13 populations, was homolog of two genes (c50054_
g1 and c39205_g1) identified as DE between Myosoton 
aquaticum plants resistant or sensitive to the ALS inhibi-
tor tribenuron [52] (from 71.61% to 74.06% homology, 
min e-value 3.05e-08). GT-5 identified in ARA2 popula-
tion showed homology with one gene identified as DE 
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between resistant and sensitive plants to mesosulfuron of 
Aegilops tauschii [58] (84% homology, e-value 1.31e-09).

Our study was designed to allow screening a wide vari-
ety of NTSR mechanisms without making any assumptions 
related to their function. Therefore, we also considered 
and validated candidate genes whose direct involvement in 
herbicide degradation or regulation of the stress response 
is not obvious. This is the case for two disease resistance 
proteins (DRP1 and 2) and one enzyme involved in ter-
pene synthesis (GMC, a germacrene synthase). Disease 
resistance proteins are involved in the response of plants to 
pathogenic stress or disease [59], and previous studies also 
associated an increased expression of disease resistance 
proteins in weed species with herbicide resistance [46, 60, 
61]. While germacrene synthase is mostly associated with 
the response of plants to insects or microorganisms [62], 
a germacrene-D-synthase was identified in glyphosate-
resistant plants of Ipomoea purpurea [63]. Such genes may 
well be NTSR markers (i.e., genes linked to NTSR pathways 
without being directly involved).

Conclusion
Our study highlights the complexity and the diversity 
of NTSR mechanisms that can evolve in a weed species 
in response to herbicide selective pressure. In a previous 
work [12], we uncovered a tremendous diversity of TSR 
mutations having evolved in French ragweed populations. 
The present study complements and extends these find-
ings by demonstrating that ragweed also has the capacity 
to harness a diversity of NTSR mechanisms that similarly 
varies within and among populations. Our work adds to 
the current body of evidence supporting the hypothesis 
of primarily non-redundant evolution of NTSR to herbi-
cides in weeds, demonstrating the ability of plants to adopt 
different evolutionary pathways in response to herbicide-
induced selective pressures. Furthermore, our results 
imply that common ragweed populations in arable fields 
have ample standing genetic variation allowing for rapid 
evolution of not only resistance to herbicides, but also, 
most likely, to other drastic environmental or human-
driven selective pressures.
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