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ABSTRACT: Salt marshes deliver vital ecosystem services by providing habitats, storing pollutants and atmospheric carbon, and re-
ducing flood and erosion risk in the coastal hinterland. Net losses in salt marsh areas, both modelled globally and measured region-
ally, are therefore of concern. Amongst other controls, the persistence of salt marshes in any one location depends on the ability of
their substrates to resist hydrodynamic forcing at the marsh front, along creek margins and on the vegetated surface. Where relative
sea level is rising, marsh elevation must keep pace with sea-level rise and landward expansion may be required to compensate for
areal loss at exposed margins. This paper reviews current understanding of marsh substrate resistance to the near-instantaneous (sec-
onds to hours) forcing induced by hydrodynamic processes. It outlines how variability in substrate properties may affect marsh sub-
strate stability, explores current understanding of the interactions between substrate properties and erosion processes, and how the
cumulative impact of these interactions may affect marsh stability over annual to decadal timescales.
Whilst important advances have been made in understanding how specific soil properties affect near-instantaneous marsh sub-

strate stability, less is known about how these properties interact and alter bulk substrate resistance to hydrodynamic forcing. Future
research requires a more systematic approach to quantifying biological and sedimentological marsh substrate properties. These prop-
erties must then be linked to specific observable erosion processes, particularly at the marsh front and along creek banks. A better
understanding of the intrinsic dynamics and processes acting on, and within, salt marsh substrates will facilitate improved prediction
of marsh evolution under future hydrodynamic forcing scenarios. Notwithstanding the additional complications that arise from
morphodynamic feedbacks, this would allow us to more accurately model the future potential protection from flooding and erosion
afforded by marshes, while also increasing the effectiveness of salt marsh restoration and recreation schemes. © 2020 The Authors.
Earth Surface Processes and Landforms published by John Wiley & Sons Ltd
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Introduction

The importance of marsh stability

Salt marshes are globally distributed, intertidal wetlands, occu-
pying distinct elevation ranges that vary depending on tidal re-
gime (Figure 1; Friess et al., 2012). In northwest Europe, for
example, they are generally found at elevations between the
mean high-water neap tide and highest astronomical tide levels
(Adam, 2002; Balke et al., 2016). On the east coast of the
United States, they can be found belowmean sea level, through
to the highest astronomical tide level (Figure 1). However, as
salt marshes in northwest Europe often experience a larger tidal

range than those on the US east coast, their vertical elevation
range can exceed that of marshes on the microtidal US east
coast. The frequency with which marshes are inundated by salt
water and thus affected by shallow water coastal processes
depends on their position within the tidal frame, and also
meteorological forcing (Steel, 1996). Salt marshes typically
comprise fine-grained sediment (Dronkers, 2005), colonized
by halophytic vegetation, once a given elevation is reached
(Allen, 2000; Huckle et al., 2004).

The existence of salt marsh landforms is of high societal im-
portance as their associated ecosystems provide important reg-
ulating, provisioning and cultural ecosystem services
(Boorman, 1999; Barbier et al., 2011; Foster et al., 2013;

EARTH SURFACE PROCESSES AND LANDFORMS
Earth Surf. Process. Landforms 46, 67–88 (2021)
© 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd
Published online 9 June 2020 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/esp.4912

https://orcid.org/0000-0002-8291-4070
https://orcid.org/0000-0003-1971-2932
https://orcid.org/0000-0003-4487-3551
https://orcid.org/0000-0003-0932-4725
https://orcid.org/0000-0002-0293-9463
https://orcid.org/0000-0003-0643-526X
https://orcid.org/0000-0001-6621-6945
https://orcid.org/0000-0003-2610-6201
https://orcid.org/0000-0001-5660-2615
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fesp.4912&domain=pdf&date_stamp=2020-06-09


Spalding et al., 2014). These include carbon sequestration
(Rogers et al., 2019), habitat provision (Spencer and Har-
vey, 2012) and pollutant immobilization (Crooks et al., 2011).
Salt marshes have an elevated position in the tidal frame and
high surface roughness due to microtopographic variability
and the presence of a vegetation canopy; in addition, these sur-
faces may be dissected by bifurcating channel networks. When
flooded, salt marshes are therefore efficient dissipaters of inci-
dent wave energy, including under storm surge conditions
(Loder et al., 2009; Möller et al., 2014; Möller and Chris-
tie, 2018). This dissipation is an integral morphodynamic feed-
back, with co-adjustment of process and form (Figure 2),
facilitating landform persistence. Such morphodynamic feed-
backs occur when the biota and hydrodynamics influence each
other through both lagged and instantaneous responses, which
often exaggerate the effect of a given change and the resultant
effect on the salt marsh landform. As marsh surfaces also store
floodwaters, these feedbacks also lower the risk of coastal
flooding and erosion (and thus the societal cost associated with

these processes) landward of the landform (Beaumont
et al., 2008; Pollard et al., 2018).

Spalding et al. (2014) recognize that marshes can provide sig-
nificant advantages over conventional hard engineering ap-
proaches in particular locations. This is both because of the
range of the ecosystem services they provide and also because,
with sufficient sediment supply, biophysical feedback mecha-
nisms (see Kirwan et al., 2016; Schuerch et al., 2018) allow
marshes to accrete vertically (and in some cases laterally) in re-
sponse to environmental forcing (e.g. accelerated sea-level
rise). As such, marshes can sustain their position in the tidal
frame. As a result, Vuik et al. (2019) used a probabilistic model-
ling approach and found that, over 100-year timescales, incor-
porating vegetated intertidal foreshores into flood protection
schemes can be more cost-effective than simply
raising/reinforcing fixed position sea walls/levees.

Given the importance of salt marshes, marsh margin retreat
and internal marsh dissection through erosion of cliffs and
creek banks is a topic of concern. Margin retreat and internal

FIGURE 1. Comparison between northwest European marshes and those on the eastern coast of the United States. Modified from Dame and
Lefeuvre (1994).

FIGURE 2. Morphodynamic feedbacks in salt marshes. Modified from Möller (2012).
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dissection have been recorded on many of the world’s shores
(Cooper et al., 2001; van der Wal and Pye, 2004; Baily and
Pearson, 2007; Crooks et al., 2011) and replicated in modelling
studies (e.g. Blankespoor et al., 2014). Reports of marsh margin
retreat vary from less than a few centimetres per year at, for ex-
ample, certain locations in the eastern United States (Leonardi
and Fagherazzi, 2014, 2015) to more than 10 m per year, as re-
ported, for example, for locations in the outer Thames Estuary
(Greensmith and Tucker, 1965). Marsh margin retreat rates
therefore appear to be highly site-specific.
Long-term marsh cliff retreat rates have been correlated to av-

erage wave power at the cliff and have been shown to follow
both linear (Marani et al., 2011; Priestas et al., 2015; Leonardi
et al., 2016; Finotello et al., 2020) and power-law trends
(Schwimmer, 2001; Mariotti and Fagherazzi, 2010). The pre-
cise relation between wave power and erosion rate is
site-dependent and likely varies with local biological, geo-
chemical and sedimentological properties, marsh morphology
and marsh elevation relative to tidal water levels
(McLoughlin, 2010; Tonelli et al., 2010; Leonardi and
Fagherazzi, 2015; Priestas et al., 2015).
Questions thus arise as to the processes causing marsh ero-

sion, not least regarding the potential existence of hydrody-
namic forcing thresholds (i.e. wave/tide-generated forces that,
when exceeded, cause the near-instantaneous removal of sedi-
ment and/or plants from the marsh surface or fringe). Once con-
solidated, the horizontal marsh surface has been shown to be
relatively resistant, for example to wave action (Spencer
et al., 2015a). This is in contrast to reported examples of marsh
margin erosion and evidence linking this erosion to hydrody-
namic forcing (e.g. Schwimmer, 2001; McLoughlin
et al., 2015). A number of studies have thus attempted to better
understand what makes marsh substrates (the minerogenic and
organic components of the bulk marsh material) resistant to ero-
sion by the action of water. This paper reviews these studies in
search of over-riding properties affecting marsh substrate be-
haviour under the action of water, how these interact and
how they may affect the dynamics of exposed substrates on
the surface, at creek banks and at the marsh edge. This paper
explores what these existing studies reveal about longer-term
(annual to decadal scale) trajectories of marsh loss, bearing in
mind that morphodynamic feedbacks play a key role in moder-
ating future force–response relationships. Finally, this paper
identifies areas for future research, which could ultimately im-
prove both modelling of future marsh extent in response to var-
ious forcing scenarios and also the efficacy of management
schemes (either for marsh restoration or creation).

Marsh soil formation and stability

Salt marsh formation is a function of net sediment accumulation
under low-energy conditions. Over time, dewatering and com-
paction lead to the formation of a 3-D sedimentary body, the
characteristics of which reflect the allochthonous (externally
derived) and autochthonous (internally produced, organic) sed-
iment contribution (Allen, 2000). On natural salt marshes,
landscape-scale change is largely driven by accommodation
space, sediment availability and type (source) alongside varia-
tions in sea level (Spencer et al., 2016; Schuerch et al., 2018).
The composition of marsh substrates reflects a wide range of
factors, including geological setting, tidal setting, climatological
influence and anthropogenic intervention/land-use regime
(Crooks and Pye, 2000; Schuerch et al., 2016).
Once formed, the marsh platform has been shown to be re-

markably resistant to wave-driven erosion (Steers, 1953; Steers
et al., 1979; Spencer et al., 2015a, b). Marsh erosion occurs

mainly from the marsh edge, where incident wave energy is
highest, and can result in lateral retreat. Such erosion occurs if
resisting forces (structural, biological, frictional and cohesive
substrate strength) are exceeded by eroding forces (e.g. hydro-
dynamic forcing). This paper therefore refers to ‘marsh substrate
stability’ as the ability of the marsh substrates exposed horizon-
tally at the surface, or vertically and sub-vertically at exposed
marsh edges, to resist the near-instantaneous erosive force of
water generated, for example, by waves (Figure 3). In doing
so, this paper focuses on the event-based scale at which mate-
rial becomes entrained and eroded. Of particular relevance
here are the properties (organic and minerogenic) affecting sub-
strate stability, both at the granular scale and at the scale of the
entire soil matrix from the surface to well below the depth of the
root zone. Finally, it is important to recognize that, while the
action of water is often the prime driver of substrate erosion, it
may also facilitate other erosion processes or mechanisms
(e.g. where causing undercutting and bulk failure of marsh
cliffs; Allen, 1989; Francalanci et al., 2013). Likewise, substrate
erosion can also be facilitated by other processes/mechanisms
(e.g. where substrates are loosened due to animal burrowing
activities; Escapa et al., 2007).

Direct measurements of near-instantaneous marsh substrate
resistance (both in terms of marsh edge erosion and surface ero-
sion) are less common than indirect measurements. These di-
rect measurements use a variety of different methods,
including the shear vane, cohesive strength meter and cone
penetrometer. Shear vane measurements of in-situ undrained
marsh strength, for example, ranged over three orders of magni-
tude from approximately 0.2 to 25 kPa in North Carolina
(Howes et al., 2010). The cohesive strength meter measures
the sediment erosion threshold and the cone penetrometer
measures variations in shear strength and substrate composition
with depth. Measurements using these techniques on a man-
aged realignment site in Essex (UK) ranged from 1.53 to 4.28
Pa and 0.6 to 260 kPa, respectively (Watts et al., 2003). While
the range in these types of direct strength measurements is
likely partly an artefact of the measurement method deployed
(as different methods integrate over different volumes and mea-
sure different erosion processes), it also partly reflects the differ-
ence in the shear strength of marsh sediments between sites.

Independent of the method used to determine substrate resis-
tance, it appears that, under constant forcing conditions, sub-
strate resistance to erosion (particularly in a lateral direction)
is controlled by vegetation properties, the composition of the
soil matrix and biological activity therein, alongside interac-
tions between these factors (Howes et al., 2010). This paper
proposes that, for any assessment of the controls on the rate of
lateral retreat, a two-part stratigraphy can be assumed (e.g.
Bendoni et al., 2016). The uppermost section resistance is con-
trolled by the combination of live biological (roots/organisms)
and sediment properties. The lower (below live root) section re-
sistance is likely dependent mostly on sediment properties,
decomposed or decomposing organic matter and only limited
deeper live root systems, the extent of which largely depends
on the species present (Figures 3a and 4). Where biofilms are
present this becomes a three-part stratigraphy, with the erod-
ibility of the uppermost centimetre to grain-by-grain erosion be-
ing influenced by the presence of biofilms.

This cliff stratigraphy may thus determine the rate and mech-
anism of response to driving forces, although the depth, thick-
ness and distinctiveness of these two stratigraphic layers likely
varies considerably between locations. In some cases, for ex-
ample at Scolt Head Island in North Norfolk (UK), plant roots
are largely restricted to the uppermost silt/clay layer of sedi-
ment, with most roots reaching no deeper than 10–22 cm
(Figure 4; Chapman, 1960). Similarly, in Morecambe Bay
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(UK), the common saltmarsh grass (Puccinellia maritima) pro-
vides much of the marsh surface strength by creating a dense
root mat, which extends c. 14 cm below the surface, with tap
roots extending deeper (Figure 5; Allen, 1989). The lower
cliff/marsh sediment column is therefore susceptible to wave at-
tack, and any tension fractures that form within this section are

impeded in their vertical expansion by the presence of the root
mat-strengthened upper section (Allen, 1989). The nature and
rate of this response will, however, depend on substrate proper-
ties, as organic-rich sediments such as those in Louisiana (USA)
often have deeper roots, extending to ~30 cm depth (Howes
et al., 2010).

FIGURE 4. The varying lengths and structures of root systems for species from Plover Marsh, North Norfolk (UK) for species growing at 2.96 m ODN
(as of 1934). One inch is approximately equal to 2.54 cm, therefore the Limonium vulgare root extends to approximately 25 cm depth. Taken from
Chapman (1960, pp. 87–89).

FIGURE 3. Hydrodynamic forcing on the tidal flat surface, marsh cliff and marsh surface in side view, using the example tidal level of highest astro-
nomical tide (HAT) (a) and plan view (b). [Colour figure can be viewed at wileyonlinelibrary.com]
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Hydrostatic and hydrodynamic forcing

Tides, waves and storm surges exert spatially and temporally
varying hydrostatic and hydrodynamic forces on an intertidal
salt marsh substrate (Möller and Christie, 2018). The marsh ele-
vation relative to the water level upon inundation governs the
hydrostatic forces acting on the substrate. Using field observa-
tions at Tillingham Marsh (UK), Möller and Spencer (2002) re-
corded inundation depths above the marsh edge of between
0.12 and 0.84 m, with mean significant wave heights of 0.2
m, over a 10-month period. These water depth and wave height
conditions would have resulted in hydrostatic forces ranging
from 7.4 to 9.5 kPa.
Bed shear stresses caused by hydrodynamic forces are a ma-

jor control of whether sediment is entrained in suspension,
eroded or deposited on the marsh surface. On a salt marsh sur-
face, tide-induced currents are generally low (<0.2 m s�1,
Bouma et al., 2005; 0.08–0.33 m s�1; Van der Wal
et al., 2008), and bed shear stresses are typically too weak to
cause sediment suspension (Wang et al., 1993; Christiansen
et al., 2000). The tidal flats in front of marshes, however, typi-
cally experience much greater flow velocities of up to 1 m
s�1 (Le Hir et al., 2000) or 0.6 m s�1 (Bouma et al., 2005), as
do the salt marsh creeks where velocities reach up to 0.8 m
s�1 (Bouma et al., 2005) or 0.9 m s�1 (French and
Stoddart, 1992), potentially exerting critical shear stresses on
exposed marsh margins.

Shallow water waves produce oscillatory flows in the
near-bed region and typically have higher bed shear stresses
than tides alone. If waves and tides occur together, they interact
non-linearly, resulting in bed stresses 30–40% higher than the
sum of the wave and tide components (Soulsby, 1997). Induced
bed shear stresses are therefore affected by wave shoaling,
wave breaking, bottom roughness and local bed morphology
(Nielsen, 1992). As such, relative water depth is an important
parameter in understanding potential erosive forcing. Neverthe-
less, it is important to note that the effect of waves on a substrate
requires the interaction of particular meteorological conditions,
with tidal levels above the threshold when the tidal flat or
marsh surface floods. Consequently, the frequency and

magnitude of a given hydrodynamic forcing depends on the in-
teraction between meteorological and tidal conditions, and
also the relative elevation of the marsh within the tidal frame.

On tidal flats, wave-induced shear stresses mobilize the sed-
iment into suspension (Fagherazzi et al., 2006; Fagherazzi and
Wiberg, 2009; Zhou et al., 2016; Best et al., 2018) and are
thought to be a key control of erosion. On the salt marsh sur-
face, waves and tides are dissipated due to drag forces caused
by the presence of vegetation (Möller
et al., 1996, 1999, 2014). Energy dissipation is controlled by
the vegetation properties, including not only vegetation density
and stiffness (Bouma et al., 2010; Feagin et al., 2011; Ysebaert
et al., 2011; Tempest et al., 2015a; Paul et al., 2016; Rupprecht
et al., 2017; Silinski et al., 2018), and its seasonal variability
(Paul and Amos, 2011), but also the water level above the
marsh surface (Möller et al., 1999) and marsh edge morphology
(cliffed vs. ramped; Möller and Spencer, 2002). However, in
some cases, high bed shear stresses can be generated on salt
marsh surfaces under extreme conditions. For example, Howes
et al. (2010) found that bed shear stresses of 0.425–3.6 kPa
were likely generated by storm waves associated with the pas-
sage of Hurricane Katrina over Mississippi delta wetlands.
However, these bed shear stresses are much lower under ‘nor-
mal’ or ‘storm’ (rather than tropical storm) conditions, with Cal-
laghan et al. (2010) being unable to record wind wave- or
current-induced bed shear stresses exceeding 0.4 Pa in the
Westerschelde (Netherlands).

However, where vegetation is sparse, particularly in the
pioneer marsh, vegetation patches or individual shoots are
capable of increasing turbulence and thus cause local scour-
ing (Bouma et al., 2009; Feagin et al., 2009; Silinski
et al., 2016), as well as concentrating the flow between vege-
tation patches (Temmerman et al., 2007), which may locally
enhance shear stresses (Figure 3b).

Wave action also generates impact forces. These are particu-
larly important at cliffed marsh edges (Mariotti and
Fagherazzi, 2010). These forces are applied in a quasi-normal
direction to the scarp and increase with tidal elevation/water
depth, but fall rapidly upon marsh inundation (Tonelli
et al., 2010). Using numerical simulations, Tonelli
et al. (2010) found that maximum wave thrust stress can vary
between 0.5 and 2.6 kN m�3, depending on elevation and
marsh edge morphology. This direct wave influence on the
marsh edge has been inferred to be a major cause of observed
(mapped) marsh erosion in Essex (UK) (Cooper et al., 2001) and
also of field-based marsh erosion measurements in the east-
ern United States (Leonardi and Fagherazzi, 2014). Such sed-
iment removal may become the main marsh loss mechanism,
as shown by modelling studies (van de Koppel et al., 2005;
Mariotti and Fagherazzi, 2013).

Properties Affecting the Near-Instantaneous
Resistance of Exposed Marsh Surfaces

A wide range of properties have been shown to affect the ero-
sional resistance of marsh substrates exposed horizontally or
vertically to the hydrodynamic forces described above. The
properties affecting this resistance vary spatially and also oper-
ate on different spatial scales.

On an inter-particle (sub-millimetre) scale, resistance to ap-
plied bed shear stress is controlled by gravitational, frictional,
cohesive and adhesive forces and their effects on particle inter-
actions within the sediment (Grabowski et al., 2012). These
resisting forces define the substrate erodibility, which is often
quantified as an erosion threshold (Sanford, 2008). For un-
drained, cohesive muds, the in-situ critical erosion shear stress

FIGURE 5. Example of undercutting at the base of the cliff, while the
upper cliff overhangs and appears to be held in place due to tensile
strength provided by the roots. Photo by I. Moeller taken at Warton
Marsh, Morecambe Bay (UK) in July 2018. The knife in the photo is ap-
proximately 20 cm in length. [Colour figure can be viewed at
wileyonlinelibrary.com]
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is generally 0.1–1 Pa (Black, 1991). This is considerably lower
than the potential hydrodynamic forces to which these inter-
tidal sediments may be exposed, but comparable to the ‘nor-
mal’ bed shear stresses recorded at some sites. The bulk
substrate resistance is ultimately constrained by physical,
chemical and biological properties, including particle size dis-
tribution (PSD), water content, organic content (OC), bulk den-
sity, bulk sediment structure, porewater geochemistry, root
properties and the presence of extracellular polymeric sub-
stances (EPS) (Amos et al., 1992; Black and Paterson, 1997;
Grabowski et al., 2011). A summary of substrate properties
and implications for substrate stability is provided in Table 1.

Chemical and physical sediment characteristics

Geochemical properties, such as clay mineralogy and water
geochemistry, affect electrochemical particle attractions
(Grabowski et al., 2011). For example, smectites are the most
electrochemically active mineral, followed by micas, then kao-
linite (Grabowski et al., 2011). Consequently, smectites can re-
tain water and undergo considerable expansion upon wetting
(Carr and Blackley, 1986), thus becoming more erodible
(Torfs, 1995; Morgan, 2005).
The sodium adsorption ratio (SAR) also influences substrate

stability, as minerals absorb more water at high SAR and, when
combined with a high smectite component, this can produce a
highly porous and erodible substrate (Rowell, 1994; Brady and
Weil, 2002). However, this behaviour is also influenced by
porewater salinity. Laboratory studies have found that more sa-
line cohesive sediment is less erodible than that with lower sa-
linity (Parchure and Mehta, 1985). This is corroborated by field
studies on tidal flats, which have found that rain during low tide
can increase sediment erodibility, possibly due to the effect of
rain on inter-particle attraction (Tolhurst et al., 2006a).
Another geochemical control on substrate stability is that of

the presence of particular metals. Soluble iron or aluminium
can increase the strength of surface biofilms (Stoodley
et al., 2001; Möhle et al., 2007), and can lower the clay particle
double-layer thickness, thus improving cohesion and lowering
erodibility (Winterwerp and van Kesteren, 2004). Similarly,
field work by Crooks and Pye (2000) showed that actively ac-
creting Essex marshes (east coast UK) had low bulk densities,
high moisture contents, low undrained shear strength and were
poorly consolidated, compared to those in the Severn Estuary
(west coast UK). These physical substrate properties were likely
a result of porewater chemistry, as low calcium carbonate con-
tent in Essex allowed sodium ions to dominate the exchange
sites on clays, producing thick water films surrounding the clay
particles. This resulted in slow consolidation and therefore low
erosional resistance, the manifestation of which was a dissected
marsh morphology (Crooks and Pye, 2000).
Within a given marsh, sediment properties vary with both

distance from creeks and surface elevation. Larger particles
and flocs are generally deposited nearer the creeks, while finer
and single particles which are not incorporated into flocs are
deposited further from the creek edge (Christiansen
et al., 2000; Kim et al., 2013). Grain size also fines with dis-
tance inland as marsh surface elevation increases
(Horton, 1999; Strachan et al., 2016).
While distance from creeks and distance landward affect

spatial variability in PSD (French and Spencer, 1993; Fletcher
et al., 1994), vertical layers with distinct PSDs may also be pres-
ent. Storms, for example, can deposit a layer of coarser, inor-
ganic material (Turner et al., 2006; Schuerch et al., 2016),
with deposits becoming thinner and finer in a landward direc-
tion and exhibiting a well-defined basal contact with the

underlying marsh sediments (Hawkes and Horton, 2012;
Schuerch et al., 2016). Storm deposits vary within a marsh, with
intense storms depositing a coarser layer at higher elevations,
and more frequent, smaller storms causing accretion at lower
marsh elevations (Schuerch et al., 2012). Storms can also affect
surface and sub-surface sediment compaction, root
decomposition/growthandsoil shrinkage (Cahoon,2003,2006),
while burial and post-depositional processes outside of storm
events result in the decomposition of organic matter at depth
(Spencer et al., 2003).

All of the above properties have potential implications for the
material’s resistance to hydrodynamic forcing. Finer-grained
(silt/clay-dominated) or organic substrates, for example, are less
prone to surface or lateral erosion than those comprising
coarser, non-cohesive sediment (Houwing, 1999; Feagin
et al., 2009; Ford et al., 2016; Lo et al., 2017). This is likely
due to the cohesive nature of finer-grained sediments. There-
fore, vertical PSD variability and layering will likely mean that
coarser marsh edge layers will erode preferentially, thus dictat-
ing the rate and location of cliff undercutting (Figures 3 and 5).
As such, processes of marsh formation that affect variability in
sediment composition and structure may affect retreat that oc-
curs decades or centuries later.

Organic content

The organic content of a marsh substrate represents both partic-
ulate organic carbon and roots (both live and partially
decomposed). We focus on the latter later; this section looks
at the combination of the two, as many studies use loss on igni-
tion (which includes both organic components) to approximate
organic matter content.

As with PSD, the OC of sediments also varies with elevation,
with OC increasing at higher elevations (Horton, 1999;
Strachan et al., 2016). While organic-rich substrates are less
erodible on a grain-by-grain scale, Brain et al. (2011, 2015)
found greater compression in sediments with higher OC and
below-ground root content. These sediments tended to have
high initial void ratios (low density) and therefore more open,
unstable structures. Organic-rich sediments were also found
to be more compressible in marshes in Massachusetts (USA)
(Knott et al., 1987) and in southwest England (Massey
et al., 2006). For example, under storm conditions in microtidal
marshes in Louisiana, Florida and North Carolina (USA),
Cahoon et al. (1995) found that storm-induced hydrostatic pres-
sure can lower the marsh elevation by tens of millimetres in the
immediate storm aftermath. However, this compaction requires
highly organic, compressible sediment, characteristic of
marshes found on the east and Gulf of Mexico coasts of the
United States.

Marsh sediment compaction is further enhanced by the de-
composition of organic matter, which creates voids in the sub-
strate, and which also reduces the substrate compressive
strength against the overburden applied by newly deposited
sediments (Bartholdy et al., 2014). This then increases inunda-
tion frequency following a storm and can therefore affect plant
colonization and future organic matter content (Figure 6).
Marsh sediment compaction causes time-dependent post-
depositional lowering (autocompaction; Long et al., 2006),
generating increased bulk density with depth, even in the up-
permost sediment horizons (J. Bartholdy et al., 2010b). This
then affects substrate resistance as, where bulk densities are
higher, the susceptibility to erosion is lower (Winterwerp
et al., 2012) and substrate shear strength is higher (Watts
et al., 2003). For example, young marshes generally have a
lower bulk density than ‘mature’ marshes, so are more
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Table 1. Overview of the direct effects of substrate properties on marsh stability and the settings in which these studies have been undertaken, based
on marsh exposure and tidal range. Indirect effects (i.e. where a substrate’s properties influence another property or process, which then affects
stability) were excluded

Substrate
property

Effect on stability Geographical location (marsh type –
open coast/estuarine/back-barrier)
and tidal range (micro/meso/macro/mega)

References

Geochemistry Greater interstitial phosphorous and
inorganic nitrogen can increase
decomposition rates

Northern Jutland
(Denmark); fjord marshes

Mendelssohn et al. (1999)

Soluble iron or aluminium
can strengthen biofilms

Laboratory study
Laboratory study

Stoodley et al. (2001)
Möhle et al. (2007)

Clay mineralogy Affects water retention and
expansion upon wetting (which
makes the substrate more erodible)

Essex (UK); macrotidal and Severn Estuary
(UK); megatidal

Crooks and Pye (2000)

Particle size Finer cohesive sediments
are less erodible

Dutch Wadden Sea; manmade back-barrier
marshes; mesotidal (tidal range 2.4 m)

Houwing (1999)

Galveston Island, TX; back-barrier marsh;
microtidal

Feagin et al. (2009)

Essex and Morecambe Bay (UK);
open coast marshes; macrotidal

Ford et al. (2016)

Italian Northern Adriatic; lagoonal marshes;
microtidal (65–80 cm tidal amplitude)

Lo et al. (2017)

Bulk density Higher bulk densities reduce
erodibility

Essex (UK); managed realignment site;
estuarine marsh; macrotidal
(mean tidal range 4.5 m)

Conceptual framework

Watts et al. (2003)
Winterwerp et al. (2012)

Organic content Organic-rich substrates
are less erodible

Essex and Morecambe Bay (UK);
open coast marshes; macrotidal

Ford et al. (2016)

Massachusetts (USA); micro/mesotidal
(2.7 m tidal range and 1.2 m tidal range)

Knott et al. (1987)

Salinity More saline cohesive sediment
is less erodible

Laboratory tests
Westerschelde Estuary (Netherlands)
and Humber Estuary (UK)

Parchure and Mehta (1985)
Tolhurst et al. (2006)

Biofilm
presence
/absence

Increased resistance to erosion
in locations of EPS presence

Severn Estuary (UK); estuarine marsh;
megatidal

Underwood and Paterson (1993)

Sylt-Rømø Bight (Germany); back-barrier
marsh; mesotidal

Tolhurst et al. (1999)

Westerschelde Estuary (Netherlands);
mesotidal (mean tidal range 4 m)

Tolhurst et al. (2006)

No field measurements Le Hir et al. (2007)
Sediments from Eden Estuary (Scotland),
followed by laboratory analysis

Tolhurst et al. (2008)

Modelling approach Kakeh et al. (2016)
Jiangsu Province (China); macrotidal Chen et al. (2017)

Vegetation
canopy

Low-density vegetation or stiff stems
can increase turbulence and scour

Laboratory study Bouma et al. (2009)
Galveston Island, TX; back-barrier marsh;
microtidal

Feagin et al. (2009)

Root properties Roots provide tensile strength and
reduce surface or edge erodibility
and marsh lateral erosion rates

Westerschelde Estuary (Netherlands);
estuarine marshes; macrotidal
(spring tide range 4.4–5.5 m)

Van der Wal et al. (2008)

Modelling study Mariotti and Fagherazzi (2010)
Beaulieu Estuary (south England); estuarine marsh;
mesotidal (mean spring tidal range 3.7 m)

Chen et al. (2012)

Plum Island Estuary, MA (USA); estuarine/back-barrier
marsh; mesotidal (mean tide range 2.9 m)

Deegan et al. (2012)

Louisiana, Alabama and Mississippi (USA) marshes;
microtidal

Silliman et al. (2016)

Venice Lagoon; lagoonal marsh; microtidal
(tidal range ~60 cm)

Bendoni et al. (2016)

Northern Barataria Bay, LA Lin et al. (2016)
Northern Adriatic; lagoonal marshes; microtidal
(average tidal amplitudes of 65–80 cm)

Lo et al. (2017)

Westerschelde Estuary (Netherlands);
estuarine marshes; macrotidal
(spring tide range 4.4–5.5 m)

Wang et al. (2017)

(Continues)
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susceptible to erosion (van der Wal and Pye, 2004). As such, or-
ganic content affects the substrate bulk density both with depth
and over time, thus contributing to vertical variations in sub-
strate resistance.
OC and bulk density also affect within-marsh variation in

compressibility. At Skallingen (Denmark), surface bulk dry
density increased with percentage sand fraction but de-
creased with greater OC (J. Bartholdy et al., 2010b). This
reflected the distance to sediment source (marsh edge or
second-order creeks; A. T. Bartholdy et al., 2010a). As such,
bulk density falls with distance from the creek (Kim
et al., 2013). Bradley and Morris (1990) found that compress-
ibility was greater near the creek bank at two southeastern
US sites. At these sites, substrates were characterized by in-
creased silt/clay content, lower sand content, lower bulk den-
sity, higher porosity and higher OC. Therefore, it seems that
sediments are more compressible nearer to the sediment
source (creeks or marsh edge), which could reflect the more
open structures found in recently deposited sediments, which
have had little time to be compacted. Organic matter thus in-
creases substrate resistance to near-instantaneous

hydrodynamic forcing through physical (compaction) pro-
cesses. Furthermore, OC and bulk density are highly interde-
pendent, and also control the structure, density and
compressibility of marsh and tidal flat sediments (Brain
et al., 2012). Climatic changes (changes in temperature,
CO2 concentration, salinity and nutrients), grazing and hu-
man influence (through management strategies) may also af-
fect the compressive strength of intertidal sediments through
their influence on above- and below-ground vegetation and
soil properties (Brain et al., 2017; Davidson et al., 2017;
Spencer et al., 2017). This highlights the need to consider
substrate properties in a wider context (Figure 6).

OC also affects decomposition rates and thereby compaction
and bulk density. Both vary spatially within a marsh. In the Ven-
ice Lagoon, inorganic sediment content was greater near the
marsh edge, where inorganic sediment is deposited from the
nearby creek, and also because, although biomass production
is high, decomposition is relatively fast (Roner et al., 2016).
The authors also found greater OC in the inner marsh, where
there was limited sediment supply, low biomass productivity
and slow decomposition, as marsh interiors aggrade more

Table 1. (Continued)

Substrate
property

Effect on stability Geographical location (marsh type –
open coast/estuarine/back-barrier)
and tidal range (micro/meso/macro/mega)

References

Various Louisiana marshes Sasser et al. (2018)

Voids/cracks/sub-
surface
stratigraphy

Tension cracks can instigate
toppling failures

Venice Lagoon; lagoonal marshes; microtidal Francalanci et al. (2013)

Act as a lateral water pathway,
along which the flow can erode

Modelling study
Restored marshes, Blackwater
Estuary (UK); estuarine marshes; macrotidal

Xin et al. (2012)
Tempest et al. (2015a, b)

FIGURE 6. The cumulative impact of a suite of processes, attributes (marsh/tidal flat properties) and contextual factors (external influences on the
system) that affect the stability of a sub-metre block of marsh substrate at a given point in space and time. The timescale bar relates to the timescale
over which the processes operate (hours to days in the far left box, through to decades and longer in the far right box), not the timescale over which
attributes or contextual factors become important. Arrows denote the influence of one factor on another, and the directionality (or bidirectionality) of
this influence.
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slowly (Wagner et al., 2017). As an open structure of salt marsh
sediments is known to be less erodible and can compact over
time (Brain et al., 2011), it is likely that, in this case, the marsh
edge was less resistant to flow than the marsh interior. The pres-
ence of coarser, and thus more erodible, particle layers at the
marsh edge may additionally complicate this effect, resulting
in preferential erosion of particular marsh layers.

Salinity

On an inter-particle scale, higher salinity promotes flocculation
as sodium ions neutralize the negative sites on clay minerals
(Postma, 1967; Eisma, 1986; Mietta et al., 2009). Larger flocs
generally have a higher porosity and lower density (Spencer
et al., 2010), which may produce substrates which are poten-
tially less resistant to erosion (see Grabowski et al., 2011).
Within-marsh variability in salinity largely reflects the bal-

ance between the flux of tidal water, dilution by freshwater,
evaporation and sediment drainage. High salinities in the
mid-marsh are due to waterlogging, which can reflect PSD at
that location as the finer sediments drain more slowly and thus
generally have higher water contents (Paterson et al., 2000; Kim
et al., 2013). Therefore, salinity is often correlated with mois-
ture content and clay content (Moffett et al., 2010). As PSD
varies both vertically and laterally within a marsh, salinity
may also vary in a similar pattern (but also modified by other
factors), thus affecting substrate erodibility.
As salinity affects within-marsh vegetation zonation (Silvestri

et al., 2005), it can also influence the additional tensile strength
provided by roots at different locations within the marsh. Salin-
ity is also important at the between-marsh (kilometre) scale,
with Alldred et al. (2017) finding that below-ground root pro-
duction was greater in high-salinity marshes on Long Island,
NY. This is corroborated by Howes et al. (2010), who found that
high-salinity marshes in the Mississippi delta had a higher sed-
iment shear strength than their low-salinity counterparts, which
the authors attribute to deeper root systems in the high-salinity
marshes. Salinity is thus of importance to marsh substrate re-
sponse to physical stress, both directly (through inter-particle
cohesion) and indirectly (through affecting vegetation growth).

Presence of extracellular polymeric substances

EPS are secreted by bacteria and microphytobenthos (particu-
larly diatoms; Malarkey et al., 2015) and can form
erosion-resistant biofilms (Tolhurst et al., 2008). Although evi-
dence for the stabilizing effect of biofilms comes primarily from
unvegetated tidal flat environments, rather than salt marsh sur-
faces, it is clear that erosion-resistant biofilms can play a signif-
icant role in stabilizing the substrate on or near the salt marsh
platform. Their presence can increase the surface erosion
threshold by up to fivefold (Le Hir et al., 2007) and they can
also be found on exposed vertical surfaces. This creates spatial
and temporal variation in erodibility, depending on biofilm
presence or absence (Tolhurst et al., 1999, 2006b). Given that
microbiological assemblages preferentially colonize
fine-grained (clay/silt-dominated) sediments (Dyer
et al., 2000), EPS presence can further amplify the higher ero-
sion resistance of finer-grained sediments.
On tidal flats, this stabilizing effect of EPS was originally

thought to be short-lived so, following biofilm erosion (during
high shear stress; Fagherazzi andWiberg, 2009), the underlying
substrate was thought to revert to the same resistance as bare
substrate (Le Hir et al., 2007). However, using an erosion cham-
ber and sediments from tidal flats on the Jiangsu coast (China),

Chen et al. (2017) demonstrated that high EPS content in the
sub-surface also binds individual grains and stabilizes the sedi-
ment, allowing the bed to progressively adjust to its abiotic
strength following surface biofilm erosion. In these experi-
ments, the biofilm not only increased the critical shear stress,
but also the time duration that the surface could withstand
threshold conditions (often by up to approximately 2min dur-
ing a 17-min flume experiment), with the biofilm initially
degrading before sediment erosion occurred (Chen
et al., 2017). The contribution of sub-surface EPS to substrate re-
sistance was also recorded by Malarkey et al. (2015), based on
laboratory experiments in a recirculating flume.

Diatoms seasonally colonize the substrate, so biofilm influ-
ence is greatest in late spring and summer, but can be negligible
in winter (Underwood and Paterson, 1993). Similarly,
microphytobenthos biomass is greatest in the uppermost
centimetre during the day, but falls overnight (Guarini
et al., 2000; Blanchard et al., 2001), resulting in a diurnal cycle
of productivity. Nevertheless, biofilms are thought to be the
main substrate component that controls tidal flat equilibrium el-
evation and stability (Kakeh et al., 2016). As tidal flat lowering
can affect the hydrodynamic force reaching the marsh edge,
the stability of unvegetated tidal flat surfaces is a key control
on salt marsh stability (see below). Similarly, the relative impor-
tance of EPS for substrate stability is probably greater on the
tidal flat than the salt marsh (as vegetation is absent and thus in-
cident forcing is likely higher). However, a lack of work on EPS
in salt marsh platforms means that, to the best of the authors’
knowledge, the role of EPS for marsh substrate stability is poorly
quantified. For a full review on biostabilization, see Paterson
et al. (2018).

Presence of live vegetation and roots

Erosion on the marsh platform itself is often minimal
(Temmerman et al., 2005; D’Alpaos et al., 2007; Spencer
et al., 2015b) and this is partly attributed to the presence of veg-
etation, which can stabilize sediment, prevent surface erosion
and reduce boundary-layer water velocities and thus hydrody-
namic energy.

As well as influencing the hydrodynamic forcing applied to
the substrate layer itself, the motion (bending) of
above-ground vegetation under waves/currents can also desta-
bilize surface sediment directly (Spencer and Möller, 2012),
producing pockmarks following the removal of individual veg-
etation elements. Vegetation stems may break when hydrody-
namic forcing reaches a species-dependent critical mean
orbital velocity (0.3–1.2 m s�1; Vuik et al., 2018), which can
then reduce the wave attenuation capacity of salt marshes, thus
increasing the erosional forces. The fact that plants are present
both above and below ground challenges the conceptual dis-
tinction between soil-external and soil-internal processes. For
example, field and flume studies show that coarser,
below-ground organic material (roots) may move under wave
action and dislodge sediment, thus potentially enhancing
wave-induced erosion both at the surface and on the vertical
marsh face (Coops et al., 1996; Feagin et al., 2009).

Notwithstanding the close connection between the above-
and below-ground attributes of salt marsh surfaces, the contri-
bution of below-ground biomass to marsh substrate stability
has been under-researched compared to the above-ground
component (Bouma et al., 2014). For a variety of different envi-
ronments, Gyssels et al. (2005) clearly demonstrated how roots
increase substrate stability and thus erosion resistance. Evi-
dence for this has been found particularly in the upper section
of salt marsh cliffs (Mariotti and Fagherazzi, 2010), and roots
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have been recognized as important for reducing erodibility and
thus marsh lateral erosion rates (Lin et al., 2016; Silliman
et al., 2016; Lo et al., 2017; Sasser et al., 2018). Roots can in-
crease marsh stability and reduce sediment erodibility (Wang
et al., 2017), both on the marsh surface (Coops et al., 1996;
Chen et al., 2012; Francalanci et al., 2013) and at the marsh
edge (Deegan et al., 2012; Silliman et al., 2012). This is partic-
ularly important in winter, when the lower above-ground bio-
mass reduces the wave attenuation capacity. As a
consequence, incident hydrodynamic energy may be higher
(Schoutens et al., 2019). However, the role of below-ground
roots for marsh stability will partly depend on the species, and
root structures, present (Figure 4), as well as factors such as soil
aeration, as increased soil aeration can increase plant biomass
(Linthurst, 1979).
Numerous studies in freshwater environments have

established that the effect of roots on substrate strength is gener-
ally twofold: roots increase aggregate stability (Pohl
et al., 2009; Du et al., 2010; Li and Li, 2011) and reinforce
the soil matrix by providing tensile strength (Gray and
Barker, 2004; Vannoppen et al., 2015). Soil aggregate stability
is a key component of soil structure (see Amezketa, 1999). Soil
aggregates are defined as a cluster of particles between which
the forces holding the particles together are greater than those
between adjacent aggregates (Martin et al., 1955). Live roots in-
crease aggregate stability by providing a surface for aggregate
formation (Reubens et al., 2007), producing root exudates
which bind the soil (Jones et al., 2009) and increasing substrate
particulate OC which in turn increases soil structural integrity
(Bronick and Lal, 2005; Fattet et al., 2011). As increased aggre-
gate stability reduces sediment erodibility (Knapen et al., 2007;
Wang et al., 2012), roots reduce the sediment erosion caused
by waves and currents acting over the marsh surface and along
the cliff edge (i.e. particle detachment due to exceedance of the
critical shear stress). Plant roots therefore directly reduce sub-
strate erodibility through increasing soil aggregate stability, an
effect which is enhanced by increased root density or longer
roots in a given substrate volume (root length density; De Baets
and Poesen, 2010; Knapen and Poesen, 2010; Zhang
et al., 2013).
While the soil matrix generally becomes stronger with com-

pression, roots provide tensile strength, therefore the effects of
both components are complementary to each other (Simon
and Collison, 2002). Tensile strength provided by roots varies
seasonally, being highest in the summer months (Morris and
Haskin, 1990). The mechanical reinforcement provided by
roots will depend, amongst other factors, on root depth, density
and diameter (van Eerdt, 1985; Mickovski et al., 2007, 2009;
Stokes et al., 2009; Loades et al., 2010; Vannoppen
et al., 2016). These controls vary with vegetation species and
salinity (Visser et al., 2000; De Baets et al., 2008; Mitsch and
Gosselink, 2015).
Using cores from the northern Adriatic Sea and volume loss

in a wave mesocosm as a measure of erodibility, Lo
et al. (2017) demonstrated that below-ground root matter can
increase the erosional resistance of sandy marsh sediments
more than in silt/clay-dominated substrates. This enhanced re-
sistance to concentrated flow erosion is particularly evident
with a fibrous root structure, rather than if tap roots dominate
the sediment column (Vannoppen et al., 2015, 2017). Never-
theless, for landslide or failure-type processes, Ghestem
et al. (2014) found that vertical tap roots were more effective
at stabilizing a slope in the laboratory than a root structure with
a mixture of oblique and vertical roots, or one consisting of rhi-
zomes with offshoots. However, quantitative studies relating
measured substrate shear strength, root properties and detach-
ment rates in any environment are scarce, due to the difficulties

in measuring substrate shear strength in rooted soils (Katuwal
et al., 2013; Yu et al., 2014).

Increased substrate density and intact roots increase the sub-
strate shear strength (van Eerdt, 1985; Mickovski et al., 2009),
particularly in the upper part of the sediment column. There-
fore, the lower stratigraphic column and/or localized areas of
waterlogging, where roots are largely decomposed or dead,
are likely to have reduced strength, such as in pools (Schepers
et al., 2017) and below 30 cm depth (Howes et al., 2010;
Turner, 2011). However, at least for deeper soils, this may be
partially counteracted by greater bulk/particulate organic mat-
ter contents and compaction (Allen, 1999) and thus a stronger
soil matrix. Using erosion pin measurements in the Venice La-
goon, Bendoni et al. (2016) corroborated this upper cliff root re-
inforcement, above a weaker lower cliff, and found that a less
resistant cliff toe can lead to bulk failures and increase the cu-
mulative retreat rate, thus partially negating the stabilizing influ-
ence of near-surface roots. This root reinforcement in the upper
layers of themarsh stratigraphy was highlighted by Allen (1989),
who found this to be particularly important in marshes in
Morecambe Bay and the Solway Firth, northwest England. At
these sites, the sediments were sand-dominated and susceptible
to grain-by-grain erosion in the lower layers, but were strength-
ened considerably in the upper layers by roots. This was less
apparent in muddier sediments in the Severn Estuary. As a re-
sult, the Morecambe Bay and Solway Firth marshes appeared
to retreat through cantilever or beam failure following under-
cutting (Allen, 1989).

Decomposition is a key control on the strength of the sub-
root-mat layer and varies with geochemical substrate proper-
ties, often being positively correlated with the presence of inter-
stitial phosphorous and inorganic nitrogen (Mendelssohn
et al., 1999). The rate of decomposition also depends on both
the nature of the organic material (Duarte et al., 2010; Jones
et al., 2016) and the nutrient content of the sediment
(Turner, 2011). For example, the herbaceous stems of the gener-
ally woody scrub Arthrocnemummacrostachyum have little lig-
nification and so decompose faster than other components
(Simões et al., 2011). Also, salt marshes with increased nutrient
levels see increased microbial decomposition of organic matter,
and reduced biomass allocation to below-ground plant compo-
nents, both of which reduce the structural integrity of creek
banks (Deegan et al., 2012). As such, the extent to which de-
composition has taken place will likely affect the tensile
strength provided by any remaining, partially decomposed
roots in this lower section.

The linkages between vegetation/root type/density, organic
matter and compaction, amongst others, are illustrated in
Figure 6. There is evidence that lower substrate erodibility oc-
curs in locations with increased plant species richness and
greater root biomass (Ford et al., 2016). This is particularly im-
portant in erosion-prone sandy sediments, such as in
Morecambe Bay (UK), compared to the relatively
erosion-resistant clays of Essex (UK) (Ford et al., 2016).

Although vegetation generally increases substrate resistance,
Feagin et al. (2009) used flume and field studies to provide ev-
idence that vegetation may not directly reduce lateral marsh
edge erosion but, rather, may indirectly influence the erosion
rate by altering soil properties (e.g. density, PSD). Chen
et al. (2012) also noted that vegetation influences substrate
properties and erodibility, as the relative importance of roots
and downcore consolidation for creek bank stability depends
on vegetation type. This vegetation–sediment interaction
means that sediments colonized by certain species (e.g. the
woody shrub sea purslane, Atriplex portulacoides) are more re-
sistant to flow-induced erosion, while those colonized by other
species (e.g. the sea rush, Juncus maritimus) provide greater
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resistance to mass movement. Using micro-CT scanning to
characterize the root structure at the same site in southern En-
gland, Chen et al. (2019) inferred that the fine, but dense, root
mat provided by A. portulacoides plays a key role in providing
resistance to flow-induced erosion. As such, the vegetation type
(and thus root structure) is important, and seems to have a
greater stabilizing effect on cohesive sediments, but this stabi-
lizing effect also depends on the substrate composition (and
thus consolidation). Again, this demonstrates the complex links
between various substrate components (see Figure 6).

Presence of voids and cracks

Voids or cracks within the substrate may be particularly evi-
dent at the marsh edge and can aid the initiation of marsh
edge failures. As noted previously, marshes can erode later-
ally by cliff undercutting, followed by toppling or slumping
failure of the upper cliff. Toppling failures are often instigated
by tension cracks – quasi-vertical cracks produced from the
surface down as the outer part of the cliff or bank begins to
topple (Francalanci et al., 2013). This happens particularly
when there is water inside the tension crack, or where there
are low water levels in front of the marsh edge (Bendoni
et al., 2014). Tension cracks form in late summer due to sub-
strate shrinkage and reduced moisture content (Allen, 1989;
Morris et al., 1992). This reduced moisture content can occur
due to lower rainfall in the summer months, or also as a re-
sult of low summer spring tides which allow time for sedi-
ment desiccation and cracking, as is the case on the UK
east coast (Smith et al., 1998; Spencer et al., 2012). However,
tension cracks may themselves also form due to tidal fluctua-
tions and the resultant cyclic oscillations of mean and effec-
tive stresses exerted by the tides (Cola et al., 2008). As
substrate shrinkage and moisture content are known to vary
with sediment type, tension crack formation (and thus the oc-
currence of toppling failure) likely also depends on intrinsic
substrate properties (Figure 6).
Deeper sub-surface stratigraphy can influence lateral water

pathways in both natural (Xin et al., 2012) and restored
marshes (Tempest et al., 2015b). Where marshes have devel-
oped in coastal embayments, they are often characterized
by a high-permeability sandy layer overlain by a
lower-permeability silt/clay layer (Xin et al., 2009; Carol
et al., 2011). Based on modelling analyses, Xin et al. (2012)
found that the underlying sandy layer facilitated drainage of
the upper layer during the falling tide. While a reduction in
water content would likely directly increase the substrate
shear strength (Watts et al., 2003), the decline in local soil
water saturation may increase aeration of the uppermost soil
layer, which can indirectly improve plant growth (Li
et al., 2005; Xin et al., 2010). This would increase substrate
strength. Preferential flow paths through the uppermost soil
layer to the lower soil layer can also be initiated due to bio-
turbation by invertebrates and the subsequent creation of
macropores (see below; Xin et al., 2009). On a smaller scale,
the deposition of coarser storm-related units will also affect
water movement and thus water content, as coarser substrates
can drain faster. This effect on water movement will affect
the erosion of particles situated along the pathways of
water flow.

Presence of macrobenthos/invertebrates

Macrobenthos can increase substrate porosity by creating
macropores (voids) within the sediment through burrowing

and bioturbation. At the Skeffling mudflat, Humber Estuary
(UK), Paterson et al. (2000) found that porosity increased to-
wards the shoreline, likely due to a smaller particle size
and thus increased water content (as drainage was poorer)
and a higher macrobenthos density. As increasing porosity
lowers the bulk substrate yield strength (the applied stress at
which the resultant material deformation is irreversible; Barry
et al., 2013), and sub-surface porosity is a good predictor of
surface erodibility (Wiberg et al., 2013), invertebrates directly
affect marsh substrate strength.

Surface deposit feeding bivalves such as Macoma balthica,
Scrobicularia plana and Cerastoderma edule bioturbate sur-
face tidal flat sediments, which reduces the density of the
sediments and increases sediment erodibility (Widdows
et al., 2004). This has been found for a variety of sites, in-
cluding the Molenplaat tidal flat, Westerschelde
(Netherlands) (Widdows et al., 2000a), mudflats in the Hum-
ber Estuary (UK) (Widdows et al., 2000b) and also in labora-
tory flume studies (Widdows et al., 1998). Other
macrobenthos (e.g. Hydrobia ulvae and Corophium volutator)
have been found to have a similar ‘bio-destabilizing’ effect
on intertidal substrates on both tidal flats and salt marshes
in Essex (UK) (Widdows et al., 2006). There may be some
temporal variability associated with this grazing activity;
Macoma balthica, for example, is known to increase in pop-
ulation density following cold winters (Widdows
et al., 2000b). As such, inter-annual changes to the
near-instantaneous resistance of intertidal substrates have
been correlated with inter-annual changes in these ‘bio-
destabilizing’ biota (Widdows and Brinsley, 2002).

In the Bahía Blanca Estuary (Argentina), Escapa
et al. (2007) found that substrates inhabited by crabs gener-
ally had a higher water content and lower shear strength,
thus implying that bioturbation and biological processes af-
fect, or are affected by, the substrate properties. However, in
the same estuary, Escapa et al. (2008) noted that crab bur-
rows can affect sediment trapping and removal, with crab
burrowing promoting sediment trapping in the inner marsh
and on the open mudflat, but also increasing marsh edge sedi-
ment erosion. As such, crabs may produce contrasting geo-
morphic impacts even within a given marsh system.

Crab burrowing induced oxidized conditions in the upper
10–15 cm of a Spartina alterniflora-dominated marsh in South
Carolina (USA), thus allowing decomposition of
below-ground biomass, which lowered the substrate shear
strength (Wilson et al., 2012). Therefore, bioturbation can in-
crease porosity and reduce below-ground live biomass and
bulk density, which reduces substrate strength. However, as
invertebrates generally colonize fine-grained sediments (Dyer
et al., 2000), the influence of invertebrates will likely vary lat-
erally and vertically within the marsh–tidal flat system, pro-
ducing spatial variability in erodibility. Separating cause and
effect is also difficult, as invertebrates influence the substrate
properties, but their choice of location and their abundance
is also determined by the initial substrate properties. Once
again, this demonstrates the complex inter-connections be-
tween individual resistance-related substrate properties (see
Figure 6).

Biological activity (e.g. crabs, ragworms and amphipods)
can increase sediment susceptibility to erosion by
waves/tides and can reorganize sediment structure and
microtopography (de Deckere et al., 2001; Escapa
et al., 2007; Szura et al., 2017; Vu et al., 2017). Ragworms
and amphipods have also been proposed as a cause of marsh
erosion (Hughes and Paramor, 2004; Paramor and
Hughes, 2004), however this argument has been questioned
due to a lack of procedural control (Wolters et al., 2005).
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Presence of animals (grazing)

Marsh grazing can take many different forms (e.g. grazing by
sheep, cattle, geese and others), but all types of grazing likely
affect marsh substrate stability. While grazing in some locations
increases vegetation species richness (Ford et al., 2013a), graz-
ing can also reduce vegetation species diversity, with grasses
such as Puccinellia spp. frequently dominating grazed sites
(Kiehl et al., 1996). What is clear, however, is that grazed sites
generally have a lower marsh canopy height and reduced
above-ground biomass and litter volumes (Ford et al., 2013b;
Davidson et al., 2017). It can be argued that a lower marsh can-
opy height will reduce the wave attenuation capacity of a
marsh, thus affecting the driving force versus resisting force bal-
ance. Similarly, grazing can also create patches of bare ground
(Bakker, 1985), with the expectation that such patches will be
considerably more erodible than those with a vegetation cover.
Such bare soil patches also generally undergo higher rates of
evaporation, resulting in higher soil salinity, which can further
reduce vegetation species richness in the surrounding area (Di
Bella et al., 2014, 2015).
Sediment compaction by grazing due to repeated trampling

by animals is also a well-known phenomenon (e.g. Lam-
bert, 2000), and is most prevalent in clay/silt/organic-rich sedi-
ments, where compaction can produce anoxic conditions and
can thus reduce decomposition rates of organic matter
(Schrama et al., 2013). At least with large grazers (e.g. cattle),
this can result in increased biomass distribution towards the
roots and thus increased below-ground biomass (Elschot
et al., 2015), which can increase stability. While compaction
at depth is expected due to autocompaction (compaction of
sediment under its own weight; Allen, 1999), grazing-induced
compaction is generally only apparent in the uppermost sedi-
ment layers (upper 20 cm; Elschot et al., 2013), where it can in-
crease the sediment bulk density. Such compaction may thus
reduce erodibility of the marsh surface (Pagès et al., 2019).
The effect of grazing can therefore affect soil stability via a
range of interconnected processes through influencing the pres-
ence, density and type of biota present, as well as soil chemistry
and redox potential (Davidson et al., 2017).

Marsh Substrate Stability and Landform
Change

This paper has focused on how a number of attributes condi-
tion substrate response to hydrodynamic forcing over
near-instantaneous scales (i.e. an immediate driving force ap-
plied by water and the resistance of the substrate to this due
to its chemical, physical and biological properties). It is clear,
however, that while often studied in isolation to determine the
relationship between individual attributes and substrate stab-
ility, many of these attributes are in fact closely interlinked.
Furthermore, substrate stability may alter over time, as pro-
cesses such as soil formation and organic decomposition take
place over years to decades and result in a cumulative effect
on resistance to forcing. As the scale of interest moves to larger
spatial scales and longer timescales, morphodynamic feed-
backs (Figure 2), as well as the complex interactions between
substrate properties, become important (Figure 7). It therefore
becomes necessary to explore the importance of (a) the possi-
ble implications of relationships between individual attributes
and their joint effect on substrate stability, (b) the role of the
wider geological, environmental and human management con-
text that may determine these inter-relationships and (c) the
morphodynamic feedback that connects substrate formation
to landform evolution and vice versa.

Potential connectivity between substrate attributes

Several studies have linked sediment type to erodibility, but of-
ten refer to the substrate as either ‘sandy’ or ‘muddy’ – based
on at worst, qualitative impressions and at best, the median
grain size (e.g. Bouma et al., 2016) – and/or use solely the PSD
as an indicator of sediment properties (e.g. Bendoni
et al., 2016). While these studies can provide vital information
on the role of PSD in determining soil stability, physical and
chemical sediment properties, such as PSD, clay mineralogy
and organic carbon, are likely to be tightly linked (Grabowski
et al., 2011). Therefore, future studies should more explicitly ac-
knowledge and address the spatial and temporal variability of
such inter-relationships between substrate properties. This
would improve understanding of how substrate properties, and
thus the stability of exposed marsh sections, might vary in the
future.

In addition to the inter-relationships between properties, it is
important to better understand how those properties change
over time and what drives such change, thus allowing forecast-
ing of how substrate properties might change in future. For ex-
ample, the fact that root growth, which influences stability, is
itself affected by soil chemistry. Soil chemistry also acts as a
control on stability in its own right but, over longer periods of
time, can determine root growth and structure (Bouma
et al., 2001a). Notwithstanding variability in root type between
plant species (e.g. Bouma et al., 2001b), root growth and soil
chemistry may thus, amongst other influences, result in the par-
ticular root network structure, density and depth that become
important for the stability of the marsh substrate at any given
point in time. As yet, little is known of such time-dependent
interactions.

In summary, while existing studies suggest patterns of spatial
variability in some properties (e.g. PSD, OC; Kim et al., 2013;
Strachan et al., 2016), this review shows that future studies
need to focus more on how these properties link together to
translate into the bulk resistance of the substrate to hydrody-
namic forcing (Figure 6). A better understanding of
within-marsh spatial variability in substrate properties and their

FIGURE 7. Spatial and temporal scales involved in salt marsh evolu-
tion, and thus substrate composition and properties. Modified from
Spencer and Moeller (2012), based on the original by Cowell and
Thom (1994).
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interactions may allow us to derive spatially distributed sub-
strate stability proxies. These proxies could then be used in
two- or three-dimensional morphodynamic models to forecast
future marsh change and can then be trialled against direct ob-
servations of marsh change.
Figure 8 illustrates schematically how two or more parame-

ters could be combined into such an index. Figure 8a depicts
a hypothetical marsh platform with multiple bifurcating chan-
nel (creek) networks, interior bare ground and marsh margin
shell sand (chenier) ridges. Figure 8b shows how particle size
varies within a marsh, with larger particles near the creek edges
and marsh edge. Figure 8c shows how organic content in-
creases with elevation. Similar layers for other substrate proper-
ties could be produced, and converted into weightings across
the layer to summarize how important this particular property
is for providing marsh resistance in a given location. Various
layers of substrate properties (i.e. layer B and layer C) could
then be combined linearly or non-linearly to produce an over-
all map or index of marsh resistance (Figure 8d), however
constraining these functions from which to create the index re-
mains a challenge. A similar analysis could be created for spe-
cific sediment depths within a marsh.

Context dependency and spatial variability of
substrate resistance

It is clear from the literature reviewed above that salt marsh
substrate properties are highly dependent on regional (e.g. geo-
logical and climatological) context. It is also clear that this
regional context, alongside smaller-scale and within-marsh var-
iations in physical, chemical and biological process regimes,
causes substrate resistance to be highly spatially variable be-
tween and within marsh systems. Figure 6 lists some of the con-
textual controls on substrate stability, how these may interact
and also how contextual factors influence the marsh attributes,
and the attributes and processes influence each other in an iter-
ative manner over time.

At the regional scale, geology, climatology, sea-level trends
and other factors form key controls on salt marsh processes,
evolution and, thus, substrate properties (Figure 7). Geological
context, for example, will exert a control on clay mineralogy as
a determinant of inter-particle cohesion and thus susceptibility
to erosion by water. Through its effect on plant growth, hy-
drology and soil biogeochemistry, the climate (and therefore
the future climate) exerts an important control on root density,
soil salinity, organic matter content, etc. All of these properties
have been shown to relate to substrate resistance to hydrody-
namic forcing (Figure 6; Howes et al., 2010; Wang
et al., 2017; Sasser et al., 2018).

At the individual marsh scale, hydrodynamic exposure and
human management (e.g. Deegan et al., 2012) are examples
of processes that can exert marsh-wide controls on substrate
resistance/stability (Figure 6), albeit with potentially significant
within-marsh variability. A more energetic hydrodynamic set-
ting, contrasting offshore geology or different fluvial discharge,
for example, may result in marshes composed of coarser sedi-
ments (such as in the case of Morecambe Bay, UK;
Pringle, 1995). The active management (e.g. grazing) or restora-
tion (e.g. through managed realignment) of salt marshes is
widely recognized as affecting vegetation and sediment proper-
ties (Kadiri et al., 2011; Spencer et al., 2017). It is thus likely to
constitute an important control on the attributes relating to sub-
strate resistance to hydrodynamic forcing, not least due to the
tight connection between biological, physical and chemical
processes, all of which have been shown to control substrate re-
sistance (Chapman, 1941; Adam, 1978).

At the within-marsh scale, one of the more obvious spatial
patterns in salt marsh substrate properties controlling their re-
sponse (in terms of lateral retreat) to hydrodynamic forcing is
the stratification of the marsh. This divides the marsh into a
more or less distinct upper, root-dominated and lower, more
compacted and often more homogenous layer, yet many stud-
ies that report on substrate resistance do not explicitly acknowl-
edge this vertical layering. In the horizontal dimension, the
armouring and cohesive effect of biological organisms, such
as diatoms and algae, can be very localized with individual

FIGURE 8. An example of an approach in which a base layer of the marsh extent and features (A) is overlain by layers showing the within-marsh
variation in substrate properties for a given marsh (B, C) to produce an overall map of marsh resistance (D).
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patches of higher resistance less than metres in size (Weerman
et al., 2012). Furthermore, the existence of more complex,
three-dimensional (sub-)surface structures such as chenier or
storm deposits of coarser gravel or shell materials reported on
some US and UK marshes (Greensmith and Tucker, 1975;
Visser et al., 2000; Hawkes and Horton, 2012) introduces sig-
nificant within-marsh variability in erosion resistance.
To fully understand why and how an individual marsh may

respond to a particular hydrodynamic forcing event, it thus be-
comes necessary to understand two things. Firstly, the regional
and local context within which the marsh is situated and sec-
ondly, the horizontal and vertical spatial variation in marsh
substrate properties within the marsh system. This could poten-
tially be achieved through extensive field surveys and an ability
to identify specific substrate properties from aerial or drone im-
agery. Such an understanding would make it possible to assess
the role such variations in substrate properties play in the
longer-term evolution of the salt marsh landform.

Role of substrate properties in salt marsh
morphodynamics

Salt marsh morphodynamics refer to the inter-annual to de-
cadal change in marsh morphology. When considering the role
of individual substrate properties in such longer-term (decadal
scale) landform evolution, it is important to note that the salt
marsh landform is tightly associated with adjacent sedimentary
units, most importantly, the fronting tidal flat or creek
bank/slope and any barriers located to the seaward side.
Unvegetated surfaces provide less resistance to hydrodynamic
forcing than vegetated marshes (Kirwan et al., 2010; Spencer
et al., 2015b) and wave energy is dissipated less than on the
marsh (Möller et al., 1996, 1999). The resulting higher hydro-
dynamic energy over the unvegetated adjacent surfaces may
thus result in a higher relative mobility of tidal flat compared
to marsh sediments, tidal flat lowering and the formation of
marsh cliffs (Bassoullet et al., 2000; O’Brien et al., 2000), par-
ticularly during winter (Callaghan et al., 2010). It can also re-
lease sediments that then contribute to accretion on the marsh
surface (Reed et al., 1985; Fagherazzi and Priestas, 2010;
Fagherazzi et al., 2013; Schuerch et al., 2019). Given identical
forcing conditions, the evolution of the marsh over longer
(annual to decadal) timescales is thus not merely a function of
substrate properties of the marsh and those exposed at the cliff,
but also of those of the fronting tidal flat (Mariotti and
Fagherazzi, 2010).
Evans et al. (2019) provide evidence for the importance of

morphodynamic feedbacks in driving salt marsh morphological
change through time. Edge erosion can, for example, inhibit
further marsh loss when eroded material is deposited on the
tidal flat, lowering the water depth and reducing wave power
at the vegetated margin (Bendoni et al., 2016; Mariotti and
Canestrelli, 2017).
Marsh edge change can also be cyclical, with marshes un-

dergoing phases of progradation, followed by erosion. Such be-
haviour has been noted on marshes in Morecambe Bay (UK)
(Pringle, 1995) and in The Wash (UK) (Kestner, 1962), and
has been linked to the migration of tidal channels. Cyclical ex-
pansion has been noted at Raahede (Denmark) (Pedersen and
Bartholdy, 2007). Here, formation of a shore-parallel creek
landward of the marsh edge, followed by deposition of
fine-grained sediments on patches of relatively high elevation
on the seaward side of the creek, was shown to establish a
new marsh, resulting in a stepped morphology containing relict
marsh cliffs.

Where the above mechanisms have led to the exposure of
marsh substrates at a near-vertical cliff face, however, substrate
properties likely exert a strong influence on how marsh margin
morphology evolves. While the marsh elevation relative to the
tidal frame controls where waves act (Tonelli et al., 2010), evi-
dence also exists for cliff undercutting at points of substrate
weakness by tidal and wave action (see Figure 3), followed by
cantilever, toppling failures or gravitational slumping once the
overlying section weight exceeds the combined sediment and
tensile root mass strength, causing episodic failure under grav-
ity (Allen, 1989, 2000; Francalanci et al., 2013; Bendoni
et al., 2014; Turner et al., 2016; Leonardi et al., 2018). This
mass wasting can significantly increase suspended sediment
concentrations (Ganju et al., 2013) and may result from local
depth-dependent wave field variations at the cliff toe (Bendoni
et al., 2016). Mass wasting can account for 50–70% of total
marsh edge retreat in some locations, with the removal of parti-
cles from the marsh margin through particle entrainment and/or
hydraulic pressure (impact forces) likely accounting for the re-
maining erosion (Priestas et al., 2015). The movement of plant
roots can assist the dislodgement of material (Feagin
et al., 2009). Our understanding of the precise role of each pro-
cess (mass wasting, particle entrainment, root movement) and
the interaction of all these processes in cliff retreat is largely lim-
ited by a lack of direct observations, as most studies rely on
before/after tidal/wave-impact cliff surveys.

Models of marsh evolution under future climate change sce-
narios frequently use an erodibility coefficient to describe the
erosion resistance of the substrate (e.g. Mariotti and Carr, 2014).
In van de Koppel et al.’s (2005) model, for example, the cliffed
boundary retreats at a rate modulated by the incident wave
forcing, tidal flat dynamics and marsh cliff stability. Cliff stabil-
ity is assumed to be a spatially homogenous property and is
poorly defined through a fixed critical erosion shear stress. As
such, there are neither direct observations of marsh edge ero-
sion processes, nor are there models which adequately param-
eterize the properties identified above as influencing rates and
location of erosion.

Marsh edge retreat may also represent a form of ‘self-
organization’ whereby marsh expansion into deeper water
reaches an exposure threshold triggering cliff formation and re-
cession (Kestner, 1962; van de Koppel et al., 2005; Singh
Chauhan, 2009). Wang et al. (2017) found that the relative im-
portance of external versus intrinsic factors for marsh edge ero-
sion in the Westerschelde (Netherlands), depends on the scale
of analysis. Pioneer vegetation fronting the cliff and wind expo-
sure were most important at larger landscape scales, foreshore
morphology at intermediate within-site scales and differences
in cliff erodibility (due to sediment composition and
below-ground biomass) at local centimetre to metre scales.

This paper has highlighted several key areas for future re-
search. Firstly, the need to understand both the horizontal and
vertical variation in marsh substrate properties. Secondly, the
necessity to determine precisely how these substrate properties
act together to affect the bulk resistance of the substrate to hy-
drodynamic forcing. Thirdly, the need to better understand the
spatial and temporal variability of inter-relationships between
substrate properties and therefore how these properties and thus
stability might vary in the future.

An improved understanding of the spatial variability of tidal
wetland properties, and their influence on the rates and occur-
rence of erosion processes, will help ascertain how these prop-
erties may alter morphodynamic behaviour over long
timescales (decades to centuries). In practice, this increased un-
derstanding will both improve projections of future marsh ex-
tent and have key implications for the success of future salt
marsh restoration and recreation (e.g. in ‘managed
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realignment’) schemes. Such schemes are becoming increas-
ingly popular for sustainable flood risk management and habitat
creation, particularly in Europe (Esteves and Williams, 2017).
The focus, however, has largely been on restoring or reproduc-
ing the ‘natural’marsh vegetation types and vegetation structure,
to improve habitat provision and/or biodiversity (Morris, 2012).
Considerably less attention has been paid to the stability of the
marsh soils that are produced as a result of such restoration prac-
tices. For this, an improved understanding of both the spatial var-
iability and the interdependence of sedimentological, chemical,
hydrological and geotechnical properties is required, as well as
how these properties may alter morphodynamic behaviour and
thus stability over longer timescales.

Summary

The body of literature linking individual physical, chemical or
biological properties to the susceptibility of salt marsh sub-
strates to erosion by near-instantaneous hydrodynamic forcing
has grown steadily over the past two decades. However, less
is known about the way in which – and the degree to which –
individual substrate properties interlink to affect substrate stabil-
ity over time and across space (as we illustrate schematically in
Figure 6).
Over time, the dominant factors affecting substrate resistance

will vary. In a ‘young’ marsh, PSD and thus offshore or terres-
trial geology may be most important. As a marsh ages, the cu-
mulative impact of marsh processes and interactions over
time become more dominant (French and Stoddart, 1992). Fac-
tors such as management history (grazing or turf cutting) may
become significant through their influence on plant diversity
and thus root properties (e.g. Davidson et al., 2017). This time
dependence is further amplified as morphodynamic feedbacks
are instigated (e.g. Evans et al., 2019) and forcing and
resistance/stability themselves become interlinked.
Future studies must consider covariance between proper-

ties as well as their combined influence on substrate stability
(Figure 6), and illuminate better some key relationships be-
tween attributes and processes, such as how roots affect the
substrate OC or porosity, especially at depth, or how roots
themselves directly contribute to substrate strength.
Finally, a better understanding of within-marsh spatial vari-

ability in substrate properties and their interactions may allow
researchers to derive spatially distributed substrate stability
proxies. Ultimately, and alongside a wider consideration of
sediment delivery, sea-level rise, human management actions,
etc., such an approach is necessary to improve the success of
managed realignment schemes, and to improve our ability to
understand and predict how particular marshes will respond
to changes in biological, climatological and hydrodynamic
conditions resulting from future climate scenarios.
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