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Abstract: The Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera; Pyralidae), is one of the
most destructive insect pests of corn, for which chemical insecticides have been the primary method
of control, especially during outbreaks. Little information is currently available on the status of
insecticide resistance and associated mechanisms in O. furnacalis field populations. Invasions and
outbreaks of Spodoptera frugiperda in China in recent years have increased chemical application in
corn fields, which adds to the selection pressure on O. furnacalis. This study was conducted to
estimate the risk of insecticide resistance by investigating the frequency of insecticide resistant alleles
associated with target site insensitivity in field populations of O. furnacalis. Using the individual-PCR
genotype sequencing analysis, none of the six target-site insecticide resistant mutations were detected
in O. furnacalis field populations collected from 2019 to 2021 in China. These investigated insecticide
resistance alleles are common in resistant Lepidoptra pests and are responsible for resistance to
pyrethroids, organophosphorus, carbamates, diamide, and Cry1Ab. Our results support the low
insecticide resistance status in field O. furnacalis populations and betokens the unlikely development
of high resistance mediated by the common target-site resistance alleles. Additionally, the findings
would serve as references for further efforts toward the sustainable management of O. furnacalis.

Keywords: Ace 1 gene; diamide insecticides; genotype; insecticide susceptibility; RyR gene; L1014F
mutation

1. Introduction

Corn (Zea mays L.) is a major grain crop in China, and the Asian corn borer Ostrinia
furnacalis (Guenée) (Lepidoptera: Pyralidae) is one of the primary agricultural pests, fre-
quently causing huge economic costs to corn production [1]. The corn borer larvae damage
the ears and stalks by feeding through boring holes, and the damage consequently causes
fungal infections or ear contamination, which dramatically decreases the quantity and
quality of the corn [2]. Even minor corn borer damage to a corn crop can result in re-
ductions in its market value [3]. The corn yield losses caused by O. furnacalis amount to
approximately six to nine million tons every year in China [2]. Since resistant corn varieties,
including Bacillus thuringiensis (Bt) corn hybrids, are not commercially available in China,
integrated management measures have been adopted to reduce Asian corn borer infestation
levels, including physical control, biological control [4,5], and chemical control. Among
them, insecticide application is the primary strategy for O. furnacalis control in most of
the corn-growing regions, especially during outbreaks [6]. Several classes of insecticides,
including pyrethroids, organophosphorus, carbamates, and diamide insecticides, have
been employed to control O. furnacalis or other pests in the corn crop fields [3,7]. However,
extensive use of insecticides may result in harm to the environment and side effects on
non-target organisms and on human health, as well as causing insecticide resistance in
insect pests [8–11].
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Development of insecticide resistance is common among agricultural pests [12–16].
The high-level insecticide resistance in many agricultural pests is largely mediated by the
target site insensitivity due to a single base-pair substitution, while the low to medium
level of insecticide resistance is largely due to metabolite resistance mechanisms [12]. Insect
species of the same order, or even of different orders, may develop insecticide resistance
to the same type of insecticides due to target site insensitivity caused by the same muta-
tions [17]. For instance, mutations of A201S and/or F331W in acetylcholinesterase (AChE,
EC3.1.1.7) have been reported to lead to resistance to organophosphorus insecticides, such
as triazophos and chlorpyrifos, in many Lepidoptera pest insects, such as Chilo suppressalis
(pyralidae) [18,19], Plutella xylostella (Plutellidae) [20], and Cydia pomonella (Tortricidae) [21].
Mutations of G4946E and/or I4790M in the ryanodine receptor (RyR) caused resistance to di-
amide insecticides in Spodoptera frugiperda (Lepidoptera: Noctuidae) [22], P. xylostella [23,24],
Tuta absoluta (Lepidoptera: Gelechiidae) [25], and C. suppressalis [26,27]. The knockdown
resistance (kdr) mutation L1014F associated with voltage-gated sodium channel (VGSC)
insensitivity has been widely reported in several insects, such as Musca domestica (Diptera:
Muscidae) [28], Blattella germanica (Blattodea: Blattellidae) [29], Culex quinquefasciatus [30],
Anopheles arabiensis (Diptera: Culicidae) [31], Anopheles sinensis (Diptera: Culicidae) [17],
P. xylostella [32], and Xenopsylla cheopis (Siphonaptera: Pulicidae) [33], and has caused
resistance to pyrethroids.

Although the insecticide resistance status of O. furnacalis is not serious in the field as
reported by the Arthropod Pesticide Resistance Database (APRD) [34], the invasion and
outbreak of the fall armyworm in China in recent years necessitated extensive applica-
tion of insecticides for emergency control, which might have exerted selection pressure
on O. furnacalis [7,35,36]. The problem of insecticide resistance development cannot be
ignored in O. furnacalis. Unfortunately, almost no other information is currently avail-
able on the status of insecticide resistance and associated mechanisms in O. furnacalis.
Therefore, it is essential to estimate the insecticide susceptibility in field populations of
O. furnacalis.

In this study, we investigated the presence and frequencies of mutations associated
with target-site resistance that have been reported in many pest insects, including the
single-pair substitutions A201S and/or F331W in the AChE 1 (Ace1) gene, G4946E and
I4790M mutations in the ryanodine receptor, the kdr mutation of L1014F in sodium channel
protein para-like, and a 234Y insertion in the ABC transporter subfamily C2 (ABCC2) gene
causing Cry1Ab resistance in Bombyx mori [37]. The results of this study can help estimate
the risk of resistance to insecticides, understand the relative insecticide susceptibility status
in the corn borer, and further contribute to sustainable management in the field.

2. Materials and Methods
2.1. Collection of Field Populations from 2019 to 2021

From 2019 to 2021, a total of 1024 O. furnacalis larvae were collected from 12 provinces
located principally in southeast and northeast China, crossing the Huanghuaihai summer
corn region, the southwest corn region, and the northern spring corn region. One of the
populations was collected in 2020 from the experimental plots in Liaoning province, plant-
ing the transgenic corn expressing the Bt Cry1Ab protein [38], while all other populations
were collected from regular corn fields. The borer samples were individually stored in a
1.5 mL tube with 95% methanol immediately after they were collected from the plants and
then stored at −20 ◦C in the laboratory until use. The field collection details are shown in
Table 1.
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Table 1. Location and number of Ostrinia furnacalis samples collected in 2019–2021 in China.

Year Province
and Municipality Location Longitude,

Latitude
Number
Tested

2019

Guizhou Bijie 105.92◦ E, 26.84◦ N 50
Sichuan Chongzhou 103.67◦ E, 30.63◦ N 50
Anhui Bengbu 116.8◦ E, 33.02◦ N 60
Hebei Hengshui 115.28◦ E, 37.32◦ N 45

Tianjing Wuqing 117.03◦ E, 39.22◦ N 50
Liaoning Shenyang 123.56◦ E, 41.82◦ N 30

2020

Yunnan Puer 101.38◦ E, 22.33◦ N 25
Guizhou Bijie 105.92◦ E, 26.84◦ N 49

Chongqing Wushan 109.86◦ E, 31.1◦ N 30
Sichuan Chongzhou 103.67◦ E, 30.63◦ N 45
Jiangxi Yongxiu 115.81◦ E, 29.02◦ N 50
Anhui Bengbu 116.8◦ E, 33.02◦ N 50
Jiangsu Binghai 119.95◦ E, 34.1◦ N 45
Henan Nanyang 112.8◦ E, 32.68◦ N 30

Shandong Changqing 116.75◦ E, 36.55◦ N 50
Hebei Hengshui 115.28◦ E, 37.32◦ N 30
Tianjin Wuqing 117.03◦ E, 39.22◦ N 50

Liaoning Shenyang 123.56◦ E, 41.82◦ N 35
Liaoning a Shenyang 123.56◦ E, 41.82◦ N 35

2021

Jiangxi Yongxiu 115.81◦ E, 29.02◦ N 40
Anhui Bengbu 116.8◦ E, 33.02◦ N 50

Shandong Changqing 116.8◦ E, 33.02◦ N 40
Hebei Hengshui 115.28◦ E, 37.32◦ N 50
Tianjin Wuqing 117.03◦ E, 39.22◦ N 35

a: the population was collected in Liaoning province in 2020 from the experimental plots planting the transgenic
corn expressing the Bt Cry1Ab protein, kindly provided by Dr. Xueqing Yang (Shenyang Agricultural University).

2.2. Individual Crude DNA Extraction

Prior to crude DNA extraction, the collected larvae were taken out from the storage
tube and then rinsed individually with distilled water. A small piece of head tissue (no
more than 1 cm × 1 cm) was cut from each larva and used in crude DNA extraction.

Crude DNA extraction was performed using a tissue lysate purchased from Mei5
Biotechnology Co., Ltd. (Beijing, China). Tissues were homogenized individually using
a stick sharpener in a 1.5 tube containing 20–30 µL tissue lysate. The homogenate was
incubated at 95 ◦C for 5 min in a heater and then centrifuged at 12,000× g for 5 min. The
supernatant was transferred to a 0.2 mL PCR tube individually and stored at −20 ◦C
until use. The crude genomic DNA extract obtained was used as a template for PCR
amplification of a region containing key SNPs that are diagnostic for insecticide mutations
as described below.

2.3. Examination of Insecticide Resistance Mutations

In this study, six target-site mutations that have been reported to be associated with
insecticide resistance in Lepidoptera insects were investigated. The resistance-related alleles
with mutations are listed in Table 2. To precisely design the primers for target alleles, we
initially compared the amino acid sequences of target genes between O. furnacalis and other
species (Figure 1) to locate the amino acid site of mutations. The comparison of amino acid
sequences was done at https://www.ebi.ac.uk/Tools/psa/emboss_needle/ (accessed on
15 March 2019). Amino acid site 317 of the Ace1 gene in O. furnacalis corresponds to site
314 in C. suppressalis and is equivalent to site 201 in Torpedo californica. Amino acid site
446 in the Ace1 gene in O. furnacalis corresponds to site 440 in Tetranychus evansi (Acari:
Tetranychidae) [39] and is equivalent to site 331 in T. californica. Amino acid sites 4733 and
4890 in RyR O. furnacalis correspond to sites 4790 and 4946, respectively, in P. xylostella,
in which G4946E and I4790M mutations associated with diamide resistance were first

https://www.ebi.ac.uk/Tools/psa/emboss_needle/
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reported. Amino acid site 1025 in the voltage-gated sodium channel (VGSC) in O. furnacalis
is equivalent to the 1014-site in M. domestica. Amino acid site 229 in ABCC2 in O. furnacalis
corresponds to the 234-site in Bombyx mori (Lepidoptera: Bombicidae), in which the 234-site
insertion associated with Cry1Ab resistance was first reported. We also examined this
insertion mutation in O. furnacalis individuals collected from transgenic corn expressing the
Cry1Ab protein in the experimental plots in Liaoning [38] beside field populations collected
from 12 sites in China. Based on the amino acid sequences containing the examined
mutations, the genomic DNA sequences were addressed to design the primer pairs to
amplify the PCR fragments of alleles. The primer pairs for the allele amplification are listed
in Table 3. Primer pairs were designed using the Primer-Blast tool on the NCBI database
available at https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi (accessed on
20 March 2019).

Table 2. The basic information of mutations examined in the present study.

Insecticide Class Target Gene Mutations References

Organophosphorus/Carbamate Acetylcholinesterase (AchEs) A201S, F331Y/W [18–20]
diamide insecticides ryanodine receptors (RyR) G4946E, I4790M [22–24]

Pyrethroids voltage-gated sodium channel (VGSC) Kdr L1014F [28,30,31]
Bt toxin (Cry Ab) ABC transporter (ABCC2) 234 site Y insert [37]
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amino acid sequence of O. furnacalis was compared with Chilo suppressalis [18]; (B) for F331Y/W
mutation in Acetylcholinesterase 1 gene, amino acid sequence of O. furnacalis was compared with
Tetranychus evansi [39]; (C) for I4790M mutation in Ryanodine receptors gene (RyR), amino acid
sequence of O. furnacalis was compared with Plutella xylostella [24]; (D) for G4946E mutation in RyR
gene, amino acid sequence of O. furnacalis was compared with Plutella xylostella [23]; (E) for L1014F
mutation in voltage-gated sodium channel (VGSC) gene, amino acid sequence of O. furnacalis was
compared with Musca domestica [28]; (F) for 234-site Y insert in ABC transporter (ABCC2) gene, amino
acid sequence of O. furnacalis was compared with Bombyx mori [37].

Table 3. The primer pairs used for amplification of a region containing key SNPs and the primers
used in sequencing.

Mutations Primer Pairs Size of PCR Products (bp) Sequencing Primer

Ace1-A201S Forward: ATCGTGTTGCATCACTTGGA
Reverse: CTGTTGCCGTTCCAGATTGC 246 Forward primer

Ace1-F331Y/W Forward: CAACAACGAGTGGGGTACCTT
Reverse: CTCGAACACTATCGCCTGCC 292 Reverse primer

RyR-G4946E Forward: GACTGGCGCTACCAAGTGT
Reverse: ATGCGTGACAGACTGCAAGA 181 Forward primer

RyR-I4790M Forward: GAAGTGGTGCACATAGACGAAGA
Reverse: GTGATCTCACCTTAAGATGGTAGTACC 124 Forward primer

Kdr-L1014F Forward: GGAACTTTACAGATTTCATGCACA
Reverse: TCTTAACGTTTTTGGTAATCAAG 191 Forward primer

234Y-insertion Forward: CGGCAAGCTCGTGAATCTTTTG
Reverse: CGGCCTGTATTGGCGTTATCAA 188 Forward primer

2.4. PCR Amplification and Sequencing

H5 Hiper mix purchased from Mei5 Biotechnology Co., Ltd. (Beijing, China) was
used to amplify the DNA fragments of target genes containing the examined resistance
mutations using the primers listed in Table 3. The reactions were performed in a final
volume of 30 µL with 10 µL H5 Hiper mix buffer, 1.5 µL primer (final concentration was
0.5 µM), 16.5–17.5 µL sterile water, and 1–2 µL of crude DNA homogenate, according to the
manufacturer’s instructions. The amplification consisted of 35 cycles (98 ◦C for 5 s, 60 ◦C
for 20 s, and 72 ◦C for 15 s), preceded by an initial phase at 98 ◦C for 30 s and followed by a
termination phase at 72 ◦C for 5 min. PCR fragments were purified and evaluated by DNA
gel electrophoresis and then sequenced by Sanger sequencing performed by Sangon Biotech
(Beijing, China) Co., Ltd. to get DNA sequences of PCR products. The sequencing primers
are also listed in Table 3. The correction of desired sequences was evaluated by using
the Basic Local Alignment Search Tool (BLASTn for nucleotide comparisons) available at
http://blast.ncbi.nlm.nih.gov/) (accessed on 10 August 2019; 12 October 2019; 1 December
2019), and then the chromatograms of sequences containing mutations were analyzed using
ChromasPro software (version 1.62).

3. Results
3.1. PCR Product Evaluation and Chromatograms of the Insecticide Resistance Mutations

The DNA fragments of the examined alleles encoding the corresponding desired muta-
tions were amplified in all tested individual samples from 2019 to 2021. Only a single DNA
band was amplified in each PCR reaction, and the size of all the amplified DNA fragments
was expected to include two DNA fragment lengths of 292 bp and 246 bp responsible for
two mutations, F331Y/W and A201S in Ace1, respectively; a fragment length of 191 bp
responsible for sodium channel mutation L1014F; two fragment lengths of 181 bp and
124 bp responsible for mutations G4946E and I4790M in RyR, respectively; and a fragment
length of 188 bp responsible for 234Y-insertion in ABCC2 (Figure 2). The representative
chromatograms for each mutation are shown in Figure 3. In all the tested individuals,
GCA or GCT encoding alanine was found at 317-site corresponding to the 201-site in AchE

http://blast.ncbi.nlm.nih.gov/
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of T. californica, in which the A201S mutation was caused by a single-pair substitution
change from GCA/GCT to TCT/TCA (Figure 3A). The expected nucleotide substitution
for the Ace1-F331Y/W mutation would be TTT to TAT, but only TTT encoding amino acid
phenylalanine was examined in all samples (Figure 3B). A nucleotide substitution from
GGG/GGA/GGC to GAG can cause the RyR-G4946E mutation in P. xylostella; however,
only nucleotide polymorphisms (GGG/GGA/GGC) were found in O. furnacalis, which
encode amino acid glycine alone (Figure 3C). For the RyR-I4790M mutation, the expected
nucleotide substitution is ATA to ATG, but ATA encoding amino acid isoleucine was ex-
amined in all tested insects (Figure 3D). For the typical Kdr mutation L1014F based on a
nucleotide substitution changing CTT to TTT, only CTT encoding amino acid leucine in the
1025-site in O. furnacalis was identified (Figure 3E). The 234Y insertion was examined in
all tested samples of O. furnacalis, including individuals collected from Bt-corn; however,
no insertion of nucleotides encoding tyrosine was found in any tested sample. At the
234-site, the nucleotide codon ACA encoding amino acid threonine was identified in all
tested samples (Figure 3F).
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3.2. Individual Genotype Sequencing Results from 2019 to 2021

A total of 1024 larvae were tested in 2019 and 2021 using PCR genotype sequencing.
Based on the chromatogram analysis of each sequence, there was no desired mutation
found in any sample. The frequencies of susceptibility of these six resistance mutations
were 100% in O. furnacalis collected in 2019–2021 from 12 provinces in China, including
a population collected from Bt-corn. The genotype of all examined alleles was sensitive
homozygote (SS).

4. Discussion

Pyrethroids, organophosphorus, carbamates, and diamide insecticides are widely
used to control pest insects, including O. furnacalis [3,7]. However, the frequent use of insec-
ticides has caused insect pests to develop insecticide resistance worldwide. One of the most
important resistance mechanisms is the reduced sensitivity of insecticide target sites, which
is caused by the adoption of mutation(s) in the amino acid sequences of target genes [12].
Cases in which insect species of the same order, or even of different orders, developed insec-
ticide resistance to the same type of insecticides due to the target site insensitivity caused
by the same mutation(s) have been demonstrated in many studies [17,19–22,28,30,40]. Al-
though the insecticide resistance status of O. furnacalis is not serious in the field, as reported
by the Arthropod Pesticide Resistance Database (APRD) [34], little information is currently
available on the status of insecticide resistance and associated mechanisms in O. furnacalis.
Investigating the target-site-insensitivity-associated mutations in this pest could help pre-
dict a potential resistance status of field populations. In this study, we, for the first time,
tested the insecticide target-site-insensitivity-associated mutations in field populations of
O. furnacalis from 12 provinces in China using diagnostic PCRs with the sequencing of key
genes encoding the desired mutations.

Acetylcholinesterase (AchE) plays a key role in neurotransmission and is the spe-
cific target of organophosphate and carbamate insecticides. The mutations adopted in
AchE caused a conversion of AchE to an insecticide-insensitive form in several insect
species, such as Drosophila melanogaster (Diptera: Drosophiladae), M. domestica, Bactrocera
oleae (Diptera:Tephritidae), Anopheles gambiae (Diptera: Culicidae), Culex pipiens (Diptera:
Culicidae), Myzus persicae (Homoptera: Aphididae), Leptinotarsa decemlineata (Coleoptera:
Chrysomelidae), Cydia pomonella (Lepidoptera: Tortricidae), C. suppressalis, and P. xy-
lostella [18,20,40]. Point mutations that confer insensitivity to Ops and carbamates were
reported both in ace1 and ace2. This study investigated two typical mutations of A201S
and F331Y/W in the ace1 gene which are found in many pest insects, including C. sup-
pressalis [18,19], P. xylostella [20], Apolygus lucorum (Heteroptera: Miridae) [40], Bemisia
tabaci (Hemiptera: Aleyrodidae) [41,42], C. pomonella [21], B. oleae [43], and Tetranychus
evansi (Acari Tetranychidae) [39]. However, no mutations in ace1 were detected from any
of the tested samples in this study. This result might be associated with the wide use of
the novel diamide insecticides and the gradually decreased use of traditional organophos-
phate and carbamate insecticides for the control of corn crop pests in China in recent
years [5,27]. A reduction in insecticide use may reduce insecticide selection pressure on
the pest, consequently reducing the frequency of these mutations in field populations of
O. furnacalis.

Pyrethroid insecticides have been widely used to control pest insects. Unfortunately,
many of the pests have developed resistance to pyrethroids due to mutations associated
with VGSC insensitivity. The knockdown resistance (kdr) mutation L1014F (house fly) has
been widely reported in several insects, such as Musca domestica [28], Blattella germanica
(Blattaria, Blattellidae) [29], C. quinquefasciatus [30], Anopheles arabiensis (Diptera: Culici-
dae) [31], P. xylostella [32], and Xenopsylla cheopis (Siphonaptera: Pulicidae) [33], among
the others. Pyrethroid insecticides are commonly used to control cotton bollworms Heli-
coverpa armigera (Lepidoptera: Noctuidae) and Agrotis ypsilon (Lepidoptera: Noctuidae) in
cornfields. Interestingly, L1014F was not detected in the field populations of O. furnacalis
in this study. Additionally, the L1014F mutation is rarely reported in H. armigera and
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A.ypsilon [44,45]. This information might indicate low selection pression on this resistant
mutation in pests in cornfields.

Diamide insecticides such as flubendiamide and chlorantraniliprole target insect
ryanodine receptors (RyR). Diamide insecticides have been widely used in the control of
lepidopterans pests, such as O. furnacalis and S. frugiperda, due to their broad-spectrum
high efficacy on numerous pests and excellent safety profile. Diamide insecticide resistance
in lepidopteran pests was first reported in P. xylostella [23], followed by T. absoluta [46] and
C. suppressalis [26], and very recently found in S. exigua [22,47]. The amino acid mutations,
G4946E and I4790M, present in the RyR transmembrane domain and causing diamide
resistance were first detected in P. xylostella [23,48], then in T. absoluta [25], C. suppressalis [49],
and S. frugiperda [22]. In our tests of such mutations in RyR in O. furnacalis, the frequencies
of glutamine in amino acid position 4946 and of isoleucine in position 4790 were 100%,
indicating that the insecticide resistance mechanism of G4946E and I4790M mutations in
RyR has not evolved in O. furnacalis. This result suggests that the development of diamide
insecticide resistance caused by G4946E and I4790M mutations have not yet happened
in field populations of O. furnacalis, and O. furnacalis is relatively susceptible to diamide
insecticides regardless of metabolic resistance. In another study, Lv et al. [50] reported
that the frequency of such mutations in relation to diamide insecticides was very low in
13 populations of S. frugiperda in China. In combination, these studies suggest that diamide
insecticides are still effective in controlling pests including S. frugiperda and O. furnacalis in
the corn crop fields in China. However, diamide insecticides have been extensively used in
recent years to control the populations of the fall armyworm in China [7,36]; the frequencies
of G4946E and I4790M mutations need to be further investigated in either O. furnacalis or
S. frugiperda.

Transgenic corn expressing the Bt insecticidal protein has been commercially planted
to control the European corn borer Ostrinia nubilalis (Hübner) in many countries, and
farmers have benefitted from the rapid application of this transgenic technology in the
form of reduced insect damage [51]. Although Bt corn hybrids have not been commercially
planted in China, many transgenic Bt corn varieties targeting lepidopterans are undergoing
regulatory trials, and two varieties of Bt corn were recently issued safety certificates by
the Ministry of Agriculture and Rural Affairs of the People’s Republic of China (http:
//www.moa.gov.cn/ztzl/zjyqwgz/spxx/201912/t20191230_6334015.htm) (accessed on
5 September 2022), which implies that the commercialization of Bt corn may come soon [51].
Li et al. ([51]) investigated the susceptibility and resistance allele frequency of fifteen
populations of O. furnacalis collected in the Huanghuaihai summer corn region of China to
Cry1Ab, Cry1Ac, and Cry1F toxins, and they found that all populations were susceptible
to these three Cry toxins and estimated that resistance allele frequency was rare in this
region. Liu et al. [52] used the F2 screening method for estimating the expected frequency
of resistance alleles in the 13 ACB populations to Bt corn (Bt11 × GA21) expressing the
Cry1Ab toxin, and pointed out that the sensitivity of ACB to Cry1Ab was still at a high
level, and there were no viable resistant individuals in the field at present. In this study, by
directly genotyping the Cry1Ab resistance-associated mutation, we also conclude that a
tyrosine (Y) insertion at 234-position in the ABC transporter subfamily C2 (ABCC2) gene
was not found in either the non-Bt corn populations (collected from 12 regions in China) or
a Bt corn population of O. furnacalis that had been subjected to Cry1Ab toxins [38]. This
234-Y insertion in the ABCC2 gene was first reported in Bombyx mori, which led to Cry1Ab
resistance [37]. Using the CRISPR/Cas9 technique, ABCC2 was also proven to be the
functional receptor to Cry1Fa in O. furnacali [53]. The findings by Li et al. [51], Liu et al. [52],
and this study provide essential knowledge for making the suggestions to commercialize
Bt corn, monitor resistance development, and evaluate resistance management strategies in
the future in China.

In addition to the use of insecticides to control O. furnacalis in cornfields, trichogramma-
based biological control has been suggested to be an effective approach for controlling
O. furnacalis since its use was initiated in the 1970s in China and worldwide [54]. For

http://www.moa.gov.cn/ztzl/zjyqwgz/spxx/201912/t20191230_6334015.htm
http://www.moa.gov.cn/ztzl/zjyqwgz/spxx/201912/t20191230_6334015.htm
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example, a large-scale release of the parasitoid wasp Trichogramma dendrolimi Matsumura
(Hymenoptera: Trichogrammatidae) from 2000 to 2015 in the Jilin province, supported by
public finances in China, proved to be effective for the control of this pest, as well as led to
a decrease in insecticide use across the province [4]. Therefore, with the wide application
of Trichogramma-based biological control for the control of the corn borer in China in
recent years, it is not surprising that due to the reduction of pesticide selection pressure, no
examined insecticide-resistance-associated mutations were identified from the 12 provinces
in China sampled in this study.

In total, using the PCR genotype sequencing analysis, we investigated the frequency
of six well-known insecticide-resistance-associated mutations corresponding to a range of
insecticides, including pyrethroids, organophosphorus, carbamates, diamide insecticides,
and Cry1Ab, in field populations of O. furnacalis from 12 regions in China. The results
show that no targe-site resistance-related alleles were detected. Our results support the
low insecticide resistance status of field O. furnacalis populations and betoken the unlikely
development of high resistance mediated by the common target-site resistance alleles
in this pest currently. They also reveal that most insecticides mentioned in this study
that correspond to the examined target genes can effectively control O. furnacalis in the
field. However, other pests in cornfields, such as S. frugiperda, should also be taken
into account when using insecticides to control O. furnacalis. It has been shown that the
frequency of G4946E/I4790M mutations in the RyR gene in S. fru-giperda is also extremely
low [50], suggesting that amide insecticides, whether used to control O. furnacalis or
S. frugiperda, are currently among the most effective ones. However, it should also be
used in rotation with other insecticides, taking into account both biological controls to
reduce the usage of amide insecticides. In addition, as with similar results observed in
other studies [51,52], we did not detect the mutation associated with Bt protein toxins in O.
furnacalis field populations. This result also lays a foundation for resistance detection of
transgenic corn in the near future, once the widespread planting in China has occurred [52].
The metabolic enzymes, such as P450 and carboxylesterase, have been widely studied in
insecticide resistance to organophosphate, pyrethroids, and diamide and in the adaptation
to contaminants in pest insects [55–64]. In the future, significant attention should be paid
to the metabolic resistance mechanisms of O. furnacalis to insecticides, and it remains to be
further investigated whether O. furnacalis in the field has developed low- to moderate-level
resistance to amide insecticides due to metabolic resistance mechanisms.
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