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Abstract: Many novel medical therapies use nanoparticle-based drug delivery systems, includ-
ing nanomaterials through drug delivery systems, diagnostics, or physiologically active medicinal
products. The approval of nanoparticles with advanced therapeutic and diagnostic potentials for
applications in medication and immunization depends strongly on their synthesizing procedure,
efficiency of functionalization, and biological safety and biocompatibility. Nanoparticle biodistribu-
tion, absorption, bioavailability, passage across biological barriers, and biodistribution are frequently
assessed using bespoke and biological models. These methods largely rely on in vitro cell-based
evaluations that cannot predict the complexity involved in preclinical and clinical studies. Therefore,
assessing the nanoparticle risk has to involve pharmacokinetics, organ toxicity, and drug interactions
manifested at multiple cellular levels. At the same time, there is a need for novel approaches to
examine nanoparticle safety risks due to increased constraints on animal exploitation and the demand
for high-throughput testing. We focus here on biological evaluation methodologies that provide
access to nanoparticle interactions with the organism (positive or negative via toxicity). This work
aimed to provide a perception regarding the risks associated with the utilization of nanoparticle-based
formulations with a particular focus on assays applied to assess the cytotoxicity of nanomaterials.

Keywords: biological models; liposomes; nanoparticles; drug delivery; advanced technologies;
in vitro/in vivo correlation

1. Introduction

Nanotechnology is an interdisciplinary branch that studies particles sized between
1 and 100 nanometers at least at one dimension. Nano-sized particles exhibit a high surface
area-to-volume size ratio and show unique properties that enable a variety of applica-
tions in medical, engineering, agri-food, and related sectors. Moreover, the interactions
of nanoparticles (NPs) with biomolecules and their behavior in cell, tissue and organ-
ism contexts has allowed the development of nanoparticle-based therapy approaches [1].
Nanomedicine aims to overcome the limits of free therapies and biological hurdles that
vary across patient groups and diseases. Pharmaceutical dosage formulations based on NPs
and different drugs (such as cytostatics, proteins, peptides, ARN, antibiotics, and antiviral
and antiparasitic drugs) have become a high priority in pharmaceutical research. The use
of lipid nanoparticles as a carrier for siRNA and mRNA in a recently approved medication
and vaccine illustrates advances in the field. Novel engineered nanomaterials still hold
much promise for improving disease diagnosis and specific treatment [2]. The principal
advantage of NP-drug complexes is their ability to reach tissue and target organs while
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improving the drug’s intracellular penetration and distribution. In addition, nanodevices
for drug delivery may protect a drug from degradation and allow the modification of
drug pharmacokinetics.

Two main approaches regarding nanoparticle-based drug delivery are under develop-
ment: the optimization of delivery systems with a one-size-fits-all approach and the precise
engineering of nanoparticles (lipid-based, polymeric, and inorganic) for more individu-
alized medication administration, ushering in the time of targeted therapy [3]. Precision
treatments, in which individualized approaches increase therapeutic success, also help to
overcome patient heterogeneity [4]. Other medical applications of advanced nanomaterials
include tissue regeneration therapy, implants, imaging contrast agents and nanostructured
devices or devices that contain nanoparticles [5,6]. Since pathophysiology will continue to
grow as the global population ages and the world advances, putting a substantial physical
and financial impact on total social insurance systems, the development of bioactive NPs is
expected to grow tremendously in the future [7].

Nanoparticles and nano-formulations may act differently from their bulk molecules
and substances of the same composition. In particular, due to their small size and high sur-
face area, NPs can be significantly more effective than conventional materials of the same
composition [8]. Despite the pivotal clinical advantages, highly active NPs are likely to
have negative effects. There are several approved orally given nano-formulations that may
cause severe secondary effects due to their topical toxicities to the gastrointestinal system
and metabolic organs, such as the liver and kidney. Due to their small size and accumulated
surface charge, surface tension, and high chemical/structural complexity, nanoparticles
may penetrate different organs and cell compartments [9]. Typically, nanoparticles are
taken up through endocytosis by the cells in the liver, spleen, lungs and bone marrow [10].
Consequently, it is important to elucidate the fate of internalized NPs and immune re-
sponses to them because both can differ from those elicited by standard formulations
containing particles of larger sizes.

Engineered nanoparticles with pharmacological potential can be rapidly taken up
by a variety of cell types and have the potential to traverse intracellular and intercellular
barriers [11]. NPs can trigger the production of reactive oxygen species, activate the com-
plement system, or impair the functionality of membranes and cellular barriers, depending
on the kind, dose, and incubation period. These acts cause immediate or persistent damage
to the organism, which can result in catastrophic consequences such as inflammation, gene
mutations, and severe organ damage [11]. Therefore, the benefit-to-risk ratio has to be
estimated regarding the intended medical application.

In this paper, we discuss the existing applications of nanoparticle-based formulation
and the risks associated with the utilization of nanomaterials, with a particular focus on
biological evaluation. Additionally, a strong emphasis is given to assays mostly applied to
assess the possible cytotoxic nature of novel nanoparticle-based formulations.

2. Drug Delivery Applications

Over the past few years, studies of nano-sized drug delivery systems have become a
flourishing research field, and many formulations have reached the market [12]. However,
the administration of some NPs is associated with an increased risk of toxicity, requiring
discontinuation of the therapy. Clinical pharmacologists make efforts to produce safe
nanomedicines by combining engineered nanoparticles with precise control over their sur-
face modifications (such as surface charge, covertness, size, shape, and targeting moieties)
and other characteristics that can be screened in order to find the best formulation assuring
a prolonged and tailored release with low toxicity. Moreover, the tendency is to make
drug delivery systems multifunctional and programmable by external signals or the local
environment, thereby transforming them into nanodevices.

The crucial requirement of efficiently established technology is to precisely deliver
drugs to diseased areas in the body together with tissue biodistribution and rapid metab-
olization and excretion from the body. Several methods to obtain drug delivery systems
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have been developed: (i) drug physical encapsulation into biocompatible nanoparticle
assemblies during the formulation process, (ii) the self-assembly of polymers in an aqueous
solution containing the drug, (iii) growing a single polymer chain from a solution con-
taining a drug in a controlled fashion, termed “drug-initiated”, and (iv) drug conjugation
with a nano-promoiety (Figure 1). Usually, the drug is inactive when conjugated but active
when the nanocarrier is cleaved. This method is frequently used for liposome-based and
polymer-based formulations, in which drugs are covalently bound to lipidic or polymer
scaffold building blocks. The cleavage may be induced by hydrolysis, enzymatic reactions,
or reduction, and the active drug is realized from the polymer. However, although simple
synthetic methods for producing nanoparticle-based emulsions are highly desired, the
development of nanocarriers often requires a series of synthetic steps to ensure stability
and protection and decrease toxicity. An emerging approach is based on paramagnetic
nanoparticles enabling the remote directing and management of the drug delivery opera-
tions, such as driving magnetic nanoparticles to the tumor and then either releasing the
drug load or just heating them to destroy the surrounding tissue [13–15].
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Figure 1. Principal formulation methods for drug encapsulation: (a) drug physical encapsulation
(adapted with permission from [16]), (b) self-assembly of polymers and drug (adapted from [17]),
(c) drug-initiated method (adapted from [12]), and (d) drug conjugation with a nano-promoiety.

Examples of nanocarriers that have gained traction in the pharmaceutical industry are
liposomes or lipid-based nanoparticles. Lipid nanoparticles, in particular, have undergone
extensive research and have effectively accessed the clinical field for the delivery of small
molecules, siRNA medicines, and messenger RNA (mRNA) [18,19]. Small interfering RNAs
(siRNAs) are used to mediate gene silencing in cells, and RNA interference (RNAi) is an
emerging cancer therapeutic method [20]. To obtain the efficient distribution of siRNAs into
cells in vivo, including tumor and/or host cells in the tumor microenvironment, success-
ful RNAi-mediated gene silencing requires overcoming numerous physiological barriers.
Lipid-based nanoparticle siRNA delivery techniques allow for overcoming these physiolog-
ical hurdles. Because of their significant negative charge, siRNAs can be integrated into NP
formulations via covalent connections with lipid components or electrostatic interactions
with the liposome surface [21]. Another example is the encapsulation of mRNA, which is a
new type of therapeutic agent that can be used to prevent and treat a variety of ailments.
To be functional in vivo, mRNA requires delivery mechanisms that are safe, effective, and
stable, as well as systems that allow for cellular uptake and mRNA release [19]. Lipid
nanoparticle–mRNA vaccines have started to be in clinical use against coronavirus disease
2019 (COVID-19), which really is a major step forward for mRNA therapies [22]. Protein re-
placement therapies, viral vaccines, cancer immunotherapies, cellular reprogramming, and
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genome editing are just a few of the instances where mRNA has demonstrated therapeutic
potential, attracting the interest of formulation scientists due to its low toxicity, excellent
drug solubility, substance release, and precise targeting.

3. Biological Barriers in Drug Delivery Therapy

The delivery of medications to a target place typically entails traversing biological
barriers. Biological barriers keep organs and tissues safe from physical, chemical, and
biological injury while also maintaining tissue homeostasis [23]. The biological barriers also
serve as key interfaces among organs and their exterior, such as body fluids. Endothelial or
epithelial cell layers are the fundamental components of biological barriers [24]. The barriers
are semi-permeable since they keep extraneous material out of the tissue while allowing
small molecules of specific characteristics to pass through. Consequently, tissue-specific
nanocarriers that can cross the biological barrier due to their small sizes, morphology,
and surface chemistry can transport bigger molecules [23]. Biological barriers could be a
direct target for treatment techniques [25] when NPs are used to disturb and weaken the
barrier in order to increase its permeability. The paracellular barrier, efflux of molecules,
the metabolic barrier, signaling between the body fluid and the tissue, and waste clearance
from the tissues are all affected by these functional changes. The features of biological
barriers constitute both a difficulty in drug delivery and an opportunity for developing
custom medication delivery systems that effectively reach the target region. The dynamics
of NP fluid in blood vessels depend on particles’ size, surface charge, rigidity, and structural
topography. By designing the physicochemical properties of an NP, its biodistribution and
half-life can be improved. Most formulations have been developed for intravenous drug
administration. The surface charge has been shown to crucially affect the pharmacokinetics
and biodistribution of nanoparticles in blood vessels through its role in protein adsorption.
Highly positively charged nanoparticles are usually more rapidly cleared from circulation
than highly negatively charged nanoparticles. In contrast, neutral, slightly positive and
slightly negative NPs may circulate in blood with prolonged half-lives [26].

The functionality of biological barriers is known to be affected by various disorders. It
is worth noting that biological barriers are dynamic systems and that small perturbations
in their microenvironments may induce changes. The biological barriers, such as cross-
ing epithelial barriers, intracellular delivery, navigating tumor micro-environments, and
targeting immune cells, can be overcome by the nanoparticles used as the carrier to reach
the targeted site [27]. Modifications in dynamic barrier properties are sometimes difficult
to predict. This may represent a challenge for drug delivery development because the
irreversible manipulation of biological systems can cause severe side effects [28]. However,
this specific dynamic also presents an opportunity for the nanocarrier-based manipulation
of biological barriers and facilitation of drug delivery.

4. Nanoparticle Toxicity

The physical and chemical features of NPs, such as their size, shape, surface charge,
chemical compositions of the core and shell, morphology, and stability, can influence their
toxicity. Among them, size and shape seem to be crucial factors that influence the particles’
interaction with living systems. Understanding the mechanism of nanoparticle toxicity
provides a basis to redesign them and reduce the side effects of nano-formulations. The
redesign has to take into account both the decline of the major mode of toxicity and the need
to preserve the nanomaterial’s ability to perform its activity in its intended application.

4.1. Nanoparticle Size, Surface Area and Toxicity

The size of the NPs has a significant impact on their interactions with the transport
and defense systems of cells and the body and thus plays a central role in determining
particle activity in biomedical applications. In the case of inorganic NPs, their chemical
properties and solubility are size-dependent. Colloidal solutions can be prepared with
particles with diameters up to 100–200 nm under conditions where larger nanoparticles



Pharmaceutics 2023, 15, 612 5 of 17

of the same material usually precipitate. As mentioned above, to assess certain biological
barriers and compartments, small sizes are needed. The size restrictions may come from
steric effects or specific biological functions [29]. Although decreasing the nanocarrier’s
size offers many advantages, it can also enhance its toxicity. The in vivo evaluation of
subcellular location, tissue distribution, and toxicity of gold NPs in rats has shown that
small particles (10 and 30 nm) crossed the cell membrane and membrane of the nucleus
and damaged DNA, but particles of 60 nm did not have this effect [30]. In addition, it was
shown that gold NPs of 10 and 30 nm highly accumulated in the liver, kidney, and intestine,
while the highest accumulation of 60 nm gold NPs was observed in the spleen.

The increased specific surface area ensures that NPs adhere efficiently to the cell and
tissue surfaces. Particles smaller than 100 nm were efficiently adsorbed on the erythrocyte
surface without causing cell death or morphological abnormalities, whereas particles larger
than 600 nm distorted the membrane and entered the cells, causing erythrocyte death [31].
In some cases, engineered NPs with a high surface area and reactivity can generate a high
level of reactive oxygen species, even intracellular ROS, thus leading to cytotoxicity and
genotoxicity [32].

4.2. Nanoparticle Shape and Toxicity

Nanomaterials can be classified regarding their shape as 0D (spherical particles such
as carbon and quantum dots or nanoparticles), 1D (materials with one dimension < 100 nm,
such as nanowires, nanotubes, and nanorods), 2D (materials with two dimensions < 100 nm,
such as nanodisks and nanosheets) and 3D (material with three dimensions < 100 nm, such
as nanoflowers, nanoballs, and nanocones) [6]. Among nanomaterial spheres, ellipsoids,
cylinders, sheets, cubes, and rods are the most common shapes. Their toxicity is highly
influenced by their form. For instance, when the effect of needle-like, plate-like, rod-like,
and spherical hydroxyapatite NPs was tested on grown BEAS-2B cells, it was found that
plate-like and needle-like NPs killed a higher percentage of cells than spherical and rod-like
NPs [33].

4.3. Nanoparticle Chemical Composition and Toxicity

Although the size and shape of NPs have a substantial influence on their toxicity,
other aspects, such as the NP’s chemical composition and crystal structure, should not
be overlooked. It has been demonstrated that NPs can degrade, and the extent of this
degradation is dependent on environmental factors such as pH and ionic strength [32].
The most prevalent cause of NPs interacting with cells becoming hazardous is metal ion
leakage from the NP core. Toxicity is also affected by the NPs’ core makeup. Some metal
ions, such as Ag+ and Cd2+, are intrinsically poisonous, and their liberation induces cell
damage. Other metal ions, such as Fe3+/4+, Mg2+, and Zn2+, are essential oligo-elements
and therapeutically helpful, but in a high amount, can impair cellular processes, resulting
in significant toxicity [34]. This effect can be reduced by replacing toxic species with less
toxic substances that have similar properties or wrapping NP cores with robust polymer
shells, silica layers, or gold shells instead of weak ligands. The chemical stabilization of
the nanomaterials may prevent degradation and metal ion leakage into the body. The
constitution of the core, on the other hand, might be changed by doping with different
metals. For instance, the utilization of TiO2 has raised concerns about its toxicity, and
the European Union banned its use at the beginning of 2022. Recent research focused on
iron titanate (Fe2TiO5) nanoparticles presented as a possible biocompatible alternative to
TiO2 [35]. Fe2TiO5 NPs of an average particle size of 44 nm and rhombohedral morphology
caused no cell damage to human Caco-2 epithelial cells, as demonstrated by acridine orange
cell staining followed by flow cytometry analysis. Alternatively, a chelating agent can be
administrated together with the active nanomaterial or functionalized onto its surface to
prevent toxic metal migration into the body. Finally, the morphology of the nanoparticle
can be designed to minimize surface area and thus minimize dissolution [36].
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4.4. Nanoparticle Surface Charge and Toxicity

Because the interactions of NPs with biological systems are largely determined by
their surface charge, the surface charge of NPs plays an important role in their toxicity.
The capacity of positively charged NPs to easily enter cells, as opposed to negatively
charged and neutral NPs, explains their greater toxicity [37]. Positively charged NPs have a
greater ability to opsonize or adsorb proteins that aid phagocytosis, such as antibodies and
complement components, from blood and biological fluids. To modify the surface charge
of nanomaterials, they can be produced by synthetic routes that generate a negative surface
charge or can be designed to carry ligands such as polyethylene glycol that reduce protein
binding. In turn, such modifications in surface properties may discourage particles from
binding to cell surfaces and allow them to be controlled in terms of localization, which
is highly important in the development of effective methods for delivering therapeutic
medications to targets.

To reduce the production of reactive oxygen species, the band gap of the material
can be tuned either by using different elements or by doping, a shell layer can be added
to inhibit direct contact with the core, or antioxidant molecules can be tethered to the
nanoparticle surface. When redesigning nanoparticles, it will be important to test that the
redesign strategy actually reduces toxicity to organisms from the relevant environmental
compartments. It is also necessary to confirm that the nanomaterial still demonstrates the
critical physicochemical properties that inspired its inclusion in a product or device.

The use of microorganisms or plant extracts to synthesize nanoparticles allows for
obtaining nanoparticles with high biocompatibility. Recent research showed that nanopar-
ticles synthesized by such green synthesis methods have surfaces coated with proteins,
fibers, and carbohydrates that provide them greater biocompatibility than those of the same
size and shape but synthesized using chemical methods [38,39].

5. Biological Evaluation of Nanoparticle-Based Formulations

Biodistribution, metabolic destiny, non-degradable system resistance, specific ther-
apeutic difficulties, and immunogenicity are all considered in the biomedical evaluation
of nanomedicines. Thus, biological evaluation of nanoparticle-based formulations re-
quires the intensive toxicological research [40]. It is vital to determine the full range of
hazardous consequences that any nanomaterial may have when used intentionally or inad-
vertently. According to previous research, inflammatory stimuli, inflammatory cytokine
overproduction, increased reactive oxygen and nitrogen species production (RONS) are
associated with the majority of nanomaterial-induced initial toxic effects, enroute to any of
the apoptosis, necrosis, or autophagy-mediated cell death mechanisms, ultimately leading
to cytotoxicity [41,42].

Despite having the same size and chemical composition as their bulk biopharma-
ceuticals, NPs can cause unexpected toxicity due to their high surface-to-volume area,
which increases reactivity, generates band gap modifications, lowers their melting point,
and creates major adverse effects [15]. The routine in vitro evaluation of the toxicity and
genotoxicity of nanoparticles is performed before subjecting them to any test involving
animals in order to minimize the utility of the animals. Table 1 shows the main conventional
methods performed to assess the toxicity of nano-based formulations. In many studies,
several in vitro tests have been run to measure the toxicity of the nanoparticles because con-
ventional tests may fail to provide results in accordance with effects observed in vivo [43].
However, in vitro tests are useful for determining initial toxicity, whereas in vivo models
can provide information on subsequent consequences, including inflammation [43].
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Table 1. Conventional methods to demonstrate concerns for the bio-evaluation of nano-based
formulations.

Nanotoxicity Evaluation Conventional Methods Mechanism Concerns

Cytotoxicity

1. MTT
2. Resazurin
3. NRU assay
4. Neutral Red Dye
5. Thymidine
6. Bromodeoxyuridine assays

Metabolic activity and
proliferation assays

Detecting viable cell numbers
is insufficiently sensitive, and

dye interaction with NPs is
a problem.

1. TUNEL annexin-V
2. Caspase assays

Apoptosis

False positives in recognizing
necrotic cells and cells

undergoing DNA repair or
gene transcription.

1. Trypan blue
2. Propidium iodide
3. Adverse outcome

staining assays
Membrane integrity damage These low-sensitivity

techniques cannot be used.

Immuno-toxicity
1. ELISA
2. RT-PCR Antibody-antigen binding

Labor-intensive
and expensive.

Insufficient level of sensitivity.

Oxidative stress 1. C11-BIODIPY assay
2. TBA assays

Indirect methods.

In addition to cytotoxicity and genotoxicity, nanomaterials may induce inherited
genetic changes in genetic expression that emerge without changes in DNA sequence,
referred to as epigenetics. The interplay of three basic mechanisms—DNA methylation,
histone modifications, and RNA-mediated post-transcriptional regulation—determines
the epigenetic realm. Because of their pro-oxidative qualities, different nanomaterials
can indirectly alter DNA methylation [42]. DNA methyltransferases can be hampered by
oxidatively damaged DNA. These changes have the potential to affect DNA methylation
and histone modification patterns on a wide scale. However, there is still a scarcity of
data on nanomaterial-induced histone protein changes. In terms of the dysregulation of
microRNA (miRNA) expression profiles, several nanomaterials have shown epigenetic
effects [44].

Immunotoxicity can be induced by nanomaterials interacting with immune-competent
cells. Nanomaterials may trigger apoptosis and necrosis in immune cells, and their interac-
tions with the immune response can alter immune-specific signaling pathways, culminating
in alterations in immune cell function as evaluated by surface marker expression, cytokine
generation, cell differentiation, and immunological activation [45]. Furthermore, autoim-
mune reactions can be triggered by host-protein interactions with nanomaterials and their
persistence in the body [46].

Although a large amount of nanomedicine is dedicated to fighting cancer, the risk
of nanomaterials producing cancer is equally considerable [47]. Because of their small
surface-to-volume area and size, the carcinogenic potential of nanomaterials is thought
to be larger than that of conventional materials. Nanomaterials that may cause cancer
should be identified, and exposure to them should be limited. In vivo carcinogenicity
tests in laboratory animals are the “gold standard” method to evaluate the carcinogenic
potential of NPs. However, because the in vivo tests make use of a high number of animals,
are time-consuming, expensive, and need ethical approval by the authorities, different
in vitro cutting-edge technologies known as cell transformation assays have been devel-
oped. For instance, the cell transformation assay cab offers a revolutionary approach
that can predict cells’ potential to convert to cancer cells in a single step [48]. Typically,
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carcinogenicity studies in vitro are performed to complement in vitro genotoxicity test
batteries to identify non-genotoxic carcinogens. However, to reduce the risk of exposure to
carcinogenic nanomaterials that are constantly under development, the standardization of
testing methodologies is still required.

6. Experimental Models for Evaluating Nanoparticle-Based Formulations

Customized protocols or experimental models to evaluate the efficacy of targeting
and associated risks include distribution, clearance, haematology, serum chemistry, and
histopathology [49]. Figure 2 illustrates the complexity of some of these models. Biodistribu-
tion studies look at how nanoparticles find their way into a tissue or organ. Radiolabels can
be used to trace nanoparticles in dead or alive animals. The measurement of nanoparticle
excretion and metabolism at various time periods following exposure is used to deter-
mine their clearance [50]. Examining changes in serum chemistry and cell type following
nanoparticle exposure is another way to determine in vivo toxicity. The cytotoxicity level
induced by a nanoparticle is determined by the histopathology of the cell, tissue, or organ
following exposure [51]. Below, the conventional methods of evaluating the cytotoxicity of
the nanoparticles, such as proliferation tests, apoptosis assays, necrosis assays, oxidative
stress assays, and DNA damage assays, are described briefly.
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6.1. Proliferation Assays

Proliferation assays are employed to analyze metabolically active cells in order to char-
acterize cellular metabolism under exposure to NPs. The most often utilized tetrazolium
salt for the in vitro toxicity assessment of nanoparticles is 3-(4,5-Dimethyl-thiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) [52,53]. The procedure is advantageous since it
produces quick results, can be performed in a multiplex format, and requires minimal mod-
ification of the model cells [54]. The assay relies on the detection of tetrazolium salt, which
can be influenced by changes in culture media additions, media pH, ascorbate, and choles-
terol levels. Because the MTT test also produces formazan, soluble dye-producing assays
such as XTT or WST-1 are preferable [55,56]. Additionally, Neutral Red Dye, Resazurin and
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NRU assays are more likely to follow the metabolic activity mechanism. The major concern
of these assays is their sensitivity and inability to detect viable cell numbers. Furthermore,
some nanoparticles may adsorb in the same wavelength region as the dye used in the assay,
which impedes the analysis. The concern for proliferation assays is that there is a need
for a radioactive compound and harsh treatments of tissue sections [57]. For instance, the
incorporation of [3H] thymidine is a method for assessing cellular proliferation, although it
is avoided due to its toxicity and expensive cost.

6.2. Membrane Integrity Damage

The integrity of the membrane is utilized to determine the viability of the cells and
the necrosis caused by nanomaterials. The absorption of a dye such as Trypan Blue can
be used to determine membrane integrity. Trypan blue is a dye that enters dead cells but
not living cells. Cell membrane stability can therefore be assessed using a Trypan Blue
exclusion experiment [58–60].

Another approach consists of measuring cell leakage. For instance, cytotoxicity can be
assessed by measuring the activity of cytoplasmic enzymes released by cells with damaged
membranes. One such enzyme is the cytoplasmic enzyme lactate dehydrogenase (LDH),
which is found in all cells. When the plasma membrane is damaged, LDH is rapidly
released into the cell culture supernatant. The activity of LDH can be easily quantified
by measuring the production of NADH during the conversion of the substrate lactate to
pyruvate. During this reaction, the solution turns from yellow to red. The absorbance at
492 nm is directly proportional to the amount of LDH in the culture, i.e., to the number
of dead or damaged cells [61]. In addition, ultrastructural observation using electron
microscopy enables the detection of membrane damage and leakages of cell material [53].

6.3. Apoptosis Assays

In the in vitro assessment of nanoparticle toxicity, apoptosis is one of the most used
indicators. Apoptosis and DNA damage are thought to be caused by excessive free radical
production [62]. For instance, silver nanoparticles triggered apoptosis in mouse embryonic
stem cells in vitro [63]. Apoptosis can be measured using the Annexin-V assay, Comet assay,
TUNEL assay, and the inspection of morphological alterations [64]. Cell death indicators
such as annexin-V and propidium iodide (PI) are commonly utilized in toxicity testing. The
assay is based on Annexin-V’s affinity to bind to phosphatidylserine in the cell membrane.
When bound to the membrane, Annexin-V fluoresces more brightly, indicating plasma
membrane externalization [65]. In HeLa cell lines exposed to gold nanoparticles, apoptosis
was induced using the Annexin V/PI [66]. The activation of the caspase-dependent process
causes the plasma membrane to externalize. PI is an impenetrable dye that only stains
the nucleus when the cell membrane integrity is compromised, which is associated with
the late stages of apoptosis [67]. One of the most extensively employed methods for the
detection of DNA damage in situ is TUNEL staining, which is performed in the TUNEL
assay. It can be used to detect DNA damage associated with non-apoptotic processes, such
as necrotic cell death brought on by hazardous chemicals. Nonetheless, the creation of
false-positive results in detecting necrotic cells and cells undergoing DNA repair and gene
transcription is always a challenge [68–70].

6.4. Oxidative Stress Assays

Nanoparticles may generate highly toxic reactive oxygen (ROS) and nitrogen species
(NO) [71]. Different types of ROS may be generated under the interaction of NPs with
water molecules. For instance, metal oxide nanoparticles were shown to produce singlet
oxygen, superoxide radicals, hydroxyl radicals, and hydrogen peroxide by reducing oxygen
dissolved in water. Interestingly, one type of NP can generate only one type of ROS, as in
the case of MgO and CaO particles, which produce only singlet oxygen, or may produce a
few different ROS, as is the case of ZnO NPs, which generate both hydroxyl radicals and
hydrogen peroxide, while nanoparticles of CuO, ZnMgO and FeMnO3 can produce all
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types of ROS [56]. The reaction of 2,2,6,6-tetramethylpiperidine (TEMP) with O2, a stable
radical that can be detected by X-band electron paramagnetic resonance (EPR), can be used
to detect these free radicals. However, the method is expensive and demands sophisticated
instrumentation [72]. The colorimetric C11-BIODIPY assay for lipid peroxidation and the
TBA assay for malondialdehyde can also be used to assess oxidative stress. The availability
of a variety of additional assays makes the evaluation considerably easier. These assays
include the Amplex Red assay for measuring lipid hydroperoxide, the 5,5′-dithiobis-(2-
nitrobenzoic acid) (DTNB) assay for measuring antioxidant depletion, and the Nitro blue
tetrazolium assay for measuring superoxide dismutase (SOD) activity [73].

The production of peroxyl and hydroxyl radicals and nitrogen species can be quantified
by the fluorescence of a 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) probe.
DCFH-DA can easily traverse cell membranes and may be applied to detect ROS inside
and outside of the cells. In contact with reactive species, DCFH-DA is hydrolyzed by a
two-electron oxidation to the fluorescent DCF carboxylate anion, which can be monitored
over time using a UV-vis spectrophotometer or using fluorescent microscopy [56].

7. Emerging Methods to Evaluate Toxicity of Nanoparticles

With the increasing quantity and variety of the new generation of synthesized nano-
materials, there is a great need for novel quick and reliable means to verify their safety [74].
Particularly, predictive models based on a large pool of reliable data are needed to establish
intelligent testing procedures. Predictive methods such as high-throughput screening tests
(HTS) and high content analysis (HCA) provide a risk analysis of nanomaterials by corre-
lation grouping and read-across approaches with regulatory needs [75]. Some emerging
methods developed for risk assessment, such as stem cell technology, tissue engineering,
QSAR assays, molecular docking (MD), and MD simulation, are briefly described.

Various stem cell sources, such as fibromatosis-derived stem cells (FSCs), mesenchy-
mal stem cells (MSCs), cardiac stem cells (CDCs), and embryonic stem cells, are currently
available for toxicity assessment (ESCs) [76]. The successful integration of iPSCs with ge-
netic diversity into cardiotoxicity in vitro testing has enabled the creation of the pluripotent
stem cell-based model for evaluating the safety of engineered NPs [77]. HLCs derived
from iPSCs have also been proposed as an alternative in vitro hepatotoxicity model for
studying NP toxicity. The hepatotoxicity of silver NPs was assessed using HLCs generated
from iPSCs [78]. Similarly, human iPSC-derived cardiomyocytes (hiPSC-CMs) were used
to test the toxicity of ZnO NPs for cardiac safety [79]. Furthermore, iPSCs can be used
as testing platforms for the toxic and therapeutic activity of NPs. In order to replace ani-
mal testing, optimal biopolymer-based 3D organ structures may be created and used to
assess NP toxicity [80–82]. For cell growth and differentiation, 3D organ structure mod-
els involve a combination of synthetic or natural biological materials and stem cells that
provide cell-to-cell interactions and suitable cell signaling pathways, as well as facilitate
growth in all directions during the cell culture process [83]. Organ-on-a-chip systems fill
the gap between conventional in vitro methods and animal and human studies. One of
the main advantages of using organ-on-a-chip methods relies on their ability to produce
high-fidelity models of human tissues and organs and their native microenvironment (such
as the extracellular matrix, flow, geometry, and mechanical stiffness), which potentially
provide new possibilities to systemically assess nanoparticle toxicity using established
detection assays [84]. A recent study pointed out the toxic nature of cysteine-coated ZnO
NPs using conventional cell culture experiments [85]. However, the dynamic conditions
in the microfluidic lung-on-a-chip device indicated decreased cytotoxicity, suggesting
the importance of considering organ-on-a-chip technology for assessing the toxicity of
nanoparticles. Despite its advancing and diverse applications, organ-on-a-chip testing
lacks standardization, which prevents comparisons between results from one study to
the other.

Toxicity analyses using conventional cell-based or animal tests are fraught with ethi-
cal quandaries, together with financial and time constraints. As a result, computational
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toxicology is widely used in biomedical research to measure toxic effects on a variety of
biological systems. In silico modeling is a fairly recent field that combines experimen-
tal and computational methodologies to provide a potent tool for deciphering systems
at the atomic level. The method explores the physicochemical and structural character-
istics of the nanomaterial as potential new pharmaceuticals for disease prevention and
treatment. Currently, nano-specific databases, including the Online Chemical Modeling
Environment (OCHEM), NanoDatabank, NanoHub, NanoMILE, and ModNanoTox, are
available to conduct NP risk assessments [86]. In silico modeling based on bioinformatics
and computational techniques can also be combined with experimental assays to provide a
detailed method for measuring the potential risks of NPs. Molecular docking, quantitative
structure–activity relationship (QSAR) studies, and molecular dynamics (MD) simulations
are the three common types of computational approaches used in nanotoxicology studies
as alternatives to animal testing [87,88].

Docking studies, in a nutshell, are simulation techniques that anticipate how small
particles interact with large biomolecules such as proteins and nucleic acids. The first step
in a docking study is to generate all possible conformations and orientations of each ligand
based on the shape of the definite binding site in the protein structure. The second step
entails using scoring functions to estimate favorable interactions between the protein and
the docked ligand, leading to improvements. The docking scores calculated by the scoring
functions are used after the docking study procedure to classify each correctly installed
ligand in its binding site, which can then be used to define the highest affinity ligand for
the target protein [89].

As an alternative to using animal models, some studies have recently used docking
techniques to assess the binding conformations of ligands for toxicity evaluations [90].
The docking strategy can be used to investigate the chemical bonding of NPs with target
enzymes. Molecular docking has also been used to assess the potential toxicity of various
NPs with biological macromolecules such as CuO, TiO2, Fe3O4, Au, Ag, ZnO, Mn2O3, and
Fe3O4 [89–91]. Although the application of molecular docking techniques to study the
biological behavior of NPs is still relatively new, they have highlighted some common
patterns of NP interactions with various metabolites and macromolecules [90]. As a result,
docking interpretation between NPs and biological molecules has gained prominence in
the field of nanotoxicology as an innovative method for predicting potential toxicity.

MD simulation is an in silico method that is widely used to investigate the chemical
and physical properties of different molecular entities. This computational method enables
the creation of toxicity prediction models that can orient NP design and development.
As a result, this method provides an alternative strategy for investigating the toxicity of
chemical compounds [92]. Modern MD simulations not only assist in understanding the
time-dependent actions of atomic and molecular physical movements but also provide
thermodynamic and kinetic properties of biomaterials at the nanoscale. MD simulations
with all-atom resolution have been extensively performed to estimate the optimal levels
of PEGylation in liposomes and other nanocarriers in order to optimize drug delivery
efficiency [93,94]. Molecular dynamics modeling is a particularly powerful tool to assess
the behavior of nanocarriers in the bloodstream, the efficiency of drug loading and con-
trolled release, and the interaction of NPs with biological membranes and barriers [95].
Overall, MD simulations seem to be a perfect tool for obtaining molecular-level insights into
precise nanocarrier interaction in a biological system [89]. However, the method demands
supercomputing resources and thus, for many, is too expensive to be carried out.

Quantitative structure–activity relationship (QSAR) modeling is based on mathemat-
ical statistics and machine learning knowledge that allow for estimating the biological
activity and toxicity of various chemicals. The QSAR model’s primary goal is to define an
appropriate function that has a direct correlation between chemical structure and biological
activity [96]. This has the potential to further summarize physiochemical and biological
analyses to predict toxicity effects or establish ideal nanomaterials. Several QSAR modeling
studies have been conducted to better comprehend the nanotoxicity of chemical substitutes
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such as NPs, metal oxides, and fullerenes [97–99]. To avoid animal testing, some govern-
ments use QSAR tools for toxic hazard prediction. In recent times, researchers have used
QSAR models to assess the potential toxic effects of nanomaterial manufacturing [100].
Moreover, QSAR assays can be applied to predict the potential and efficiency of some
drug delivery systems, as shown for heterolipids as delivery materials for nucleic acid
therapeutics [101].

8. Challenges of New Approaches

The main challenges associated with nanoparticle-based emulsions are the sufficient
protection of the integrity of the active drug, effective transportation across the biological
barriers, and maintaining low toxicity. The toxicity of formulations has to be challenged
not only on the cellular level but also in the context of affected tissues and under conditions
of long-term exposure [102]. The advancement of in vitro and in silico tests has entailed
technical challenges, such as establishing reliable culture conditions with in vivo-like
levels to perform hazard testing. Non-mammalian alternative systems have emerged as
an ideal strategy for overcoming the ethical concerns associated with traditional animal
models in NP safety assessment. Non-mammalian models such as Caenorhabditis elegans
(C. elegans), Drosophila (Drosophila melanogaster), the African clawed frog (Xenopus laevis),
insect (Galleria mellonella), chicken chorioallantoic membrane (Gallus gallus), and zebrafish
(Danio rerio) could be found to be acceptable approaches to guarantee the efficiency of
toxicity assessments [103–106]. Nanoparticle-based drug delivery systems may suffer from
limitations in terms of their low encapsulation efficiency, leakage before reaching the target,
poor stability, and weak biological performance. Most published works have focused
on the optimization of encapsulation methods and the improvement of the storage and
thermal stability of the formulation. However, there are still methodological challenges in
elucidating both in vitro and in vivo release mechanisms. Extensive research on new types
of nanocarriers has shown that specific materials may improve the release performance.
For instance, the self-assembled Amph-PVP nanoparticle was shown to successfully entrap
indomethacin and deliver it to inflammatory sites, allowing for its prolonged release [107].
Similarly, 5-fluorouracil-loaded nanoparticles have shown promise as a delivery system
in anticancer therapy [108], while N-vinylpyrrolidone polymer nanoparticles have been
shown to be a promising drug delivery system since they are safe to use on both basal and
activated endothelium [109].

9. Conclusions and Perspectives

Nanotechnology is a fast-developing science that entails the invention and develop-
ment of nanoscale materials and devices. The use of nanotechnology in medicine enables
us to tackle the problems and limitations of both drug delivery and diagnostics. The incor-
poration of an active pharmaceutical drug into a nanocarrier may prevent drug side effects
and even increase the efficacy of conventional medications. Targeted nanoparticle delivery
is now being researched extensively in cancer, inflammation, and infection treatments. An-
ticancer applications have been created for more than 20% of the therapeutic nanoparticles
already in clinics or under clinical investigation. Moreover, the related research has focused
on nanoparticle-mediated therapy for a variety of disorders, including neurodegenerative,
infectious, autoimmune, and other diseases. Since 2009, the Food and Drug Administration
(FDA) and the European Medicines Agency (EMA) have approved nano-drug formulations
as therapeutic nanoparticle applications for targeted delivery systems in a variety of disor-
ders [110]. It is critical to first analyze nano-based formulations in order to overcome these
challenges in medicine. There are a variety of traditional procedures for evaluating these
formulations, but they all have significant drawbacks, leading to the development of novel
approaches for delivering medications more efficiently by evaluating the safety levels of
nanoformulations. The toxicity is multifactorial as it depends not only on the formulation’s
physicochemical properties and composition but also on the route of administration and
dose. The increased use of nano-formulations necessitates greater attention to biological
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evaluations in order to ensure safety standards. Furthermore, a higher number of novel
in vitro and in silica models should be supported in order to reduce the use of in vivo
procedures to a minimum.

Many drug delivery systems have low efficacy, and usually, less than 5% of the
injected dose is able to reach the targeted site [111]. This may arise from the structural
heterogeneity of the targets and the biological barriers that limit the accessibility of the
target. Nanocarriers sensitive to exogenous or endogenous stimuli (such as pH, temperature
and redox potential) are therefore designed as an alternative to targeted drug delivery. The
large variety of stimuli, together with a diversity of responsive nanomaterials, can be used
to trigger drug release at the right place and time. Nevertheless, most targeted drug delivery
and stimuli-responsive systems have limited chances of reaching the clinic stage because of
insufficient biocompatibility and tissue accumulation caused by low degradability. In lieu of
this, research at a comprehensive and collaborative level is important for the development
of safe and efficient nanoparticle-based drug delivery systems in medicine.
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SiRNAs Small interfering RNAs
RNAi RNA interference
RONS Reactive oxygen and nitrogen species production
ENPs Engineered nanoparticles
miRNA MicroRNA
HTS High-throughput screening test
HCA High content analysis
MTT 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide
TEMP 2,2,6,6-tetramethylpiperidine
SOD Superoxide dismutase activity
DTNB A5,5′-dithiobis-(2-nitrobenzoic acid) assay
PI Propidium iodide
FSCs Fibromatosis-derived stem cells
MSCs Mesenchymal stem cells
CDCs Cardiac stem cells
ESCs Embryonic stem cells
hiPSC-CMs Human iPSC-derived cardiomyocytes
OCHEM Online Chemical Modeling Environment
QSAR Quantitative structure–activity relationship
MD Molecular dynamics simulations
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