
HAL Id: hal-04297927
https://hal.inrae.fr/hal-04297927v1

Submitted on 29 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Super-reparametrizations of weighted CSPs: properties
and optimization perspective

Tomáš Dlask, Tomáš Werner, Simon de Givry

To cite this version:
Tomáš Dlask, Tomáš Werner, Simon de Givry. Super-reparametrizations of weighted CSPs: properties
and optimization perspective. Constraints, 2023, 28 (2), pp.277-319. �10.1007/s10601-023-09343-6�.
�hal-04297927�

https://hal.inrae.fr/hal-04297927v1
https://hal.archives-ouvertes.fr

Constraints (2023) 28:277–319
https://doi.org/10.1007/s10601-023-09343-6

Super-reparametrizations of weighted CSPs: properties
and optimization perspective

Tomáš Dlask1 · Tomáš Werner1 · Simon de Givry2

Accepted: 21 February 2023 / Published online: 16 May 2023
© The Author(s) 2023

Abstract
The notion of reparametrizations of Weighted CSPs (WCSPs) (also known as equivalence-
preserving transformations of WCSPs) is well-known and finds its use in many algorithms
to approximate or bound the optimal WCSP value. In contrast, the concept of super-
reparametrizations (which are changes of the weights that keep or increase the WCSP
objective for every assignment) was already proposed but never studied in detail. To fill this
gap, we present a number of theoretical properties of super-reparametrizations and compare
them to those of reparametrizations. Furthermore, we propose a framework for computing
upper bounds on the optimal value of the (maximization version of) WCSP using super-
reparametrizations. We show that it is in principle possible to employ arbitrary (under some
technical conditions) constraint propagation rules to improve the bound. For arc consistency
in particular, the method reduces to the knownVirtual AC (VAC) algorithm.We implemented
the method for singleton arc consistency (SAC) and compared it to other strong local consis-
tencies in WCSPs on a public benchmark. The results show that the bounds obtained from
SAC are superior for many instance groups.

Keywords Weighted CSP · Super-reparametrization · Linear programming ·
Constraint propagation

1 Introduction

In the weighted constraint satisfaction problem (WCSP) we maximize the sum of (weight)
functions over many discrete variables, where each function depends only on a (usually

B Tomáš Dlask
dlaskto2@fel.cvut.cz

Tomáš Werner
werner@fel.cvut.cz

Simon de Givry
simon.de-givry@inrae.fr

1 Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University
in Prague, Karlovo náměstí 13, 12000 Prague, Czech Republic

2 Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31320 Castanet-Tolosan, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-023-09343-6&domain=pdf
http://orcid.org/0000-0002-1944-6569
http://orcid.org/0000-0002-6161-7157

278 Constraints (2023) 28:277–319

small) subset of the variables. A popular approach to tackle this NP-hard combinatorial
optimization problem is via its linear programming (LP) relaxation [1–5]. The dual of this
LP relaxation [2, 5, 6] can be interpreted as follows. Feasible dual solutions correspond to
reparametrizations (also known as equivalence-preserving transformations [6]) of theWCSP
objective function, which are obtained by moving weights between weight functions so that
the WCSP objective function is preserved. The dual LP relaxation then seeks to find such a
reparametrization of the initialWCSP that minimizes an upper bound on theWCSP objective
value by reparametrizations. For some instances, the minimal upper bound is equal to the
maximal value of the WCSP objective (i.e., the LP relaxation is tight) but, in general, there is
a gap between them. The precise form of the dual LP differs slightly from author to author.

For larger instances, solving the LP relaxation to global optimality is too costly. Therefore,
the upper bound is usually minimized suboptimally by performing reparametrizations only
locally. Stopping points of these suboptimal methods are usually characterized by various
levels of local consistency of the CSP formed by the active tuples (i.e., the tuples with the
maximum weight in each weight function individually) of the reparametrized WCSP. This is
consistent with the fact that a necessary (but not sufficient) condition for global optimality of
the dual LP relaxation is that the active-tuple CSP has a non-empty local consistency closure.
The level of local consistency at optimumdepends on the space of allowed reparametrizations:
if weights can move only between pairs of weight functions of which one is unary or nullary,
it is arc consistency (AC); if weights can move between two weight functions of any arity,
it is pairwise consistency (PWC). These suboptimal methods can be divided into two main
classes.

The first class, popular in computer vision and machine learning, is known as convex
message passing [2, 7–12]. These methods repeat a simple local operation and can be seen as
block-coordinate descentwith exact updates satisfying the so-called relative interior rule [13].
At fixed points, the active-tuple CSP has non-empty AC (or PWC) consistency closure. These
methods yield good upper bounds but are too slow to be applied in each node of a branch-
and-bound search.

The second class has been called soft local consistency methods in constraint program-
ming [6], due to its similarity to local consistencies in the ordinary CSP. One type of these
methods moves only integer weights between weight functions (assuming all initial weights
are integer) and is efficient enough to be maintained during search. Its most advanced rep-
resentant is existential directional arc consistency (EDAC) algorithm [14]. The other type
allows moving fractional weights, which can lead to better bounds but is more costly, hence
usually not suitable to be applied during search. Its representants are the virtual arc consis-
tency (VAC) algorithm [6, 15] and the very similar Augmenting DAG algorithm [2, 16, 17].
These methods are based on the following fact: whenever the active-tuple CSP has an empty
AC closure, there exists a reparametrization of the WCSP that decreases the upper bound.
Thus, each iteration of these algorithms first applies the AC algorithm to the active-tuple CSP
and if domain wipe-out occurs, it constructs a dual-improving direction by back-tracking
the history of the AC algorithm, and finally reparametrizes the current WCSP by moving
along this direction by a suitable step size. The VAC and Augmenting DAG algorithms
converge to a non-unique state when the active-tuple CSP has a non-empty AC closure
(which is called virtual arc consistency) but are typically faster than convex message passing
methods.

In the soft-consistency terminology, global optima of the dual LP relaxation have been
called optimally soft arc consistent (OSAC)WCSPs [6, 18]. In this sense, EDAC andVAC are

123

Constraints (2023) 28:277–319 279

relaxations of OSAC. But note that OSAC can no longer be considered a local consistency,
since no algorithm using only local operations is known to enforce it1.

Reparametrizations in general cannot enforce stronger local consistencies of the active-
tuple CSP than PWC. This can be seen as follows: if the active-tuple CSP has a non-empty
PWC closure but violates some stronger local consistency (hence it is unsatisfiable), there
exists no reparametrization that would decrease the upper bound and possibly make the
active-tuple CSP satisfy the stronger local consistency. The onlyway to achieve stronger local
consistencies (such as k-consistencies) of the active-tuple CSP by reparametrizations is to
introduce new weight functions (of possibly higher arities) and then move weights between
these new weight functions and the existing weight functions. This allows constructing a
hierarchy of progressively tighter LP relaxations of the WCSP [11, 21–23], including the
Sherali-Adams hierarchy [24].

In this paper, we study a different LP-based approach, namely an LP formulation of the
WCSP, which was proposed in [25] but never pursued later. It differs from the above well-
known LP relaxation and does not belong to the hierarchy of LP relaxations obtained by
introducing new weight functions of higher arities. This LP formulation minimizes the same
upper bound on the WCSP objective value but this time over super-reparametrizations of
the initial WCSP objective function, which are changes of the weights that either preserve
or increase the WCSP objective value for every assignment. This LP formulation has an
exponential number of inequality constraints (representing super-reparametrizations) and is
exact, i.e., its minimal value is always equal to the maximal value of the WCSP objective.

We propose to solve this LP suboptimally by a local search method, which is based on
the following key observation: whenever the active-tuple CSP is unsatisfiable, there exists a
super-reparametrization (but possibly no reparametrization) that decreases the upper bound.
The direction of this super-reparametrization is a certificate of unsatisfiability of the active-
tupleCSP,which canbe constructed from thehistory of theCSP solver.Note that this approach
strictly generalizes the VAC algorithm: if the active-tuple CSP has a non-empty AC closure
but is unsatisfiable, the VAC algorithm is stuck (because no reparametrization can decrease
the upper bound) but our algorithm can decrease the bound by a super-reparametrization.
The cost for this greater generality is that super-reparametrizations may preserve neither the
WCSP objective value for some assignments nor the set of optimal assignments, but they can
nevertheless provide valid, and possibly tighter, upper bounds on the WCSP optimal value.

After formulating this general framework, we focus on the case when the unsatisfiability
of the active-tuple CSP is proved by local consistencies stronger than AC/PWC. In particular
we use singleton arc consistency (SAC), which is interesting because it does not have bounded
support [26] and therefore it would be difficult to achieve by introducing newweight functions
of higher arity. We show how to construct a certificate of unsatisfiability of a CSP from the
history of the SAC algorithm. Our algorithm then interleaves AC and SAC: we always keep
decreasing the upper bound by reparametrizations until the active-tuple CSP has non-empty
AC closure, and only then decrease the bound by a super-reparametrization if the SAC closure
of active-tuple CSP is found empty. In experiments we show that on many WCSP instances,
this algorithm yields better bounds than state-of-the-art soft local consistency methods in
reasonable runtime. Note, we report only the achieved upper bounds but do not use them in
branch-and-bound search, which would be beyond the scope of our paper.

To the best of our knowledge, super-reparametrizations have not been utilized or stud-
ied except for [25] and [27]. In [25], super-reparametrizations were used to obtain tighter

1 And it is unlikely that such an algorithm exists, since it has been proved [19, 20] that finding global optimum
of the LP relaxation of the WCSP is not easier than solving the general linear programming problem.

123

280 Constraints (2023) 28:277–319

bounds using a specialized cycle-repairing algorithm and were identified in [27] as a
property satisfied by all formulations of the linear programming relaxations based on
reparametrizations. However, [27] focuses almost solely on the relation between differ-
ent formulations of reparametrizations, instead of super-reparametrizations. To fill in this
gap, we theoretically analyze the associated optimization problem and also the properties of
super-reparametrizations.

Compared to the previous version of this paper [28], we improved the current paper in the
following ways:

• Most importantly,we includeastudyon the theoreticalpropertiesof super-reparametrizations
and compare them to those of reparametrizations (Section 5).

• Although our implementation remains limited to WCSPs of arity 2, we present all of our
theoretical results for WCSPs of any arity.

• We include a geometric interpretation that provides intuitive insights and thus simplifies
understanding of our method (Section 4.1.1).

• In addition to making our code publicly available, we add more information on imple-
mentation details to improve reproducibility (Section 4.4).

• We also analyze the cone of non-negative weighted CSPs and prove that it is dual to the
marginal polytope (Section 3.2).

• Unsurprisingly, we show that some decision problems connected to our approach and
super-reparametrizations are NP-hard (in Section 6).

Structure We begin in Section 2 by formally defining the Weighted CSP, classical (crisp)
CSP, and introducing the notation that will be used throughout the paper. Then, in Section 3, we
formally define the optimization problem of minimizing an upper bound over reparametriza-
tions and/or super-reparametrizations where we also state the sufficient and necessary
optimality conditions. Next, Section 4 proposes a practical approach for approximate min-
imization of the upper bound over super-reparametrizations using constraint propagation.
We also give experimental results comparing our approach with existing soft local con-
sistencies. Additional properties of the underlying active-tuple CSPs (see definition later)
and the sets of optimal (or also non-optimal) super-reparametrizations are given in Section 5.
Section 6 presents the hardness results. We provide a detailed example demonstrating EDAC,
VAC, and our proposed approach with SAC in Appendix.

2 Notation

Let V be a finite set of variables and D a finite domain of each variable. An assignment
x ∈ DV assigns2 a value xi ∈ D to each variable i ∈ V . Let C ⊆ 2V be a set of non-empty
scopes, i.e., (V ,C) can be seen as an undirected hypergraph. The triplet (D, V ,C) defines
the structure of a (weighted) CSP and will be fixed throughout the paper. By

T = {(S, k) | S ∈ C, k ∈ DS} =
⋃

S∈C
TS where TS = {(S, k) | k ∈ DS} (1)

we denote the set of tuples, partitioned into sets TS , S ∈ C . We say that an assignment
x ∈ DV uses a tuple t = (S, k) ∈ T if x[S] = k where x[S] denotes the restriction of x onto
the set S ⊆ V , i.e., for S = {i1, ..., i|S|} we have x[S] = (xi1 , ..., xi|S|) (where the order of

2 As usual, DV denotes the set of all mappings from V to D, so x ∈ DV is the same as x : V → D.

123

Constraints (2023) 28:277–319 281

the components is defined by the total order on S inherited from some arbitrary fixed total
order on V). Each assignment x ∈ DV uses exactly one tuple from each TS .

An instance of the constraint satisfaction problem (CSP) is defined by the quadruple
(D, V ,C, A)where A ⊆ T is the set of allowed tuples (while the tuples T−A are forbidden).
As the CSP structure (D, V ,C) will be always the same, we will refer to the CSP instance
only as A (in other words, in the sequel we identify CSP instances with subsets of T).
An assignment x ∈ DV is a solution to a CSP A ⊆ T if it uses only allowed tuples,
i.e., (S, x[S]) ∈ A for all S ∈ C . The set of all solutions to the CSP will be denoted by
SOL(A) ⊆ DV . The CSP is satisfiable if SOL(A) �= ∅, otherwise it is unsatisfiable.

The weighted constraint satisfaction problem (WCSP)3 seeks to find an assignment x ∈
DV that maximizes the function

∑

S∈C
fS(x[S]) (2)

where fS : DS → R, S ∈ C , are givenweight functions. All theweights (i.e., the values of the
weight functions) together can be seen as a vector f ∈ R

T , such that for t = (S, k) ∈ T we
have ft = fS(k). The WCSP instance is defined by the quadruple (D, V ,C, f). However,
as the structure (D, V ,C) will be always the same, we will refer to WCSP instances only
as f (in other words, we identify WCSP instances with vectors from R

T).

Example 1 For example, if V = {1, 2, 3, 4}, C = {{1}, {2}, {2, 3}, {1, 4}, {2, 3, 4}}, and
D = {a,b}, then we want to maximize the expression

f{1}(x1) + f{2}(x2) + f{2,3}(x2, x3) + f{1,4}(x1, x4) + f{2,3,4}(x2, x3, x4)

over x1, x2, x3, x4 ∈ {a,b}. We have, e.g.,

T{2,3} = {({2, 3}, (a, a)), ({2, 3}, (a,b)), ({2, 3}, (b, a)), ({2, 3}, (b,b))}.
Remark 1 In some formalisms [6, 22], the objective (2) is to be minimized. For our purposes,
these settings are equivalent and the results for minimization problems are analogous as one
can invert the sign of all weights and maximize instead. Next, some papers consider only
non-negative weights and the empty (nullary) scope ∅ ∈ C whose weight f∅ constitutes a
bound on the WCSP optimal value [6, 22]. However, we will later need both positive and
negative weights in a WCSP, so we require ∅ /∈ C to simplify notations (also, with both
positive and negative weights, f∅ would not yield a bound on the optimal value).

We will use another notation for the WCSP objective, which is common in machine
learning, see, e.g., [3, Section 3]. We define an indicator map φ : DV → {0, 1}T by

φt (x) = �x[S] = k� for each t = (S, k) ∈ T (3)

where �·� denotes the Iverson bracket, which equals 1 if the logical expression in the bracket
is true and 0 if it is false. The WCSP objective (2) can now be written as the dot product

∑

S∈C
fS(x[S]) =

∑

t∈T
ftφt (x) = 〈 f , φ(x)〉. (4)

3 The WCSP is also known under different names, e.g., as the finite-valued CSP [29, 30], discrete energy
minimization [31], or maximum a posteriori (MAP) inference in graphical models [5]. It is also the main task
in cost function networks [32].

123

282 Constraints (2023) 28:277–319

This makes explicit that the WCSP objective is linear in the weight vector f . The WCSP
optimal value is

max
x∈DV

〈 f , φ(x)〉 = max
μ∈M〈 f , μ〉 (5)

where

M = φ(DV) = {φ(x) | x ∈ DV } ⊆ {0, 1}T . (6)

Note that M is defined only by the structure (D, V ,C).

3 Bounding theWCSP optimal value

We define the function B : R
T → R by

B(f) =
∑

S∈C
max
k∈DS

fS(k) =
∑

S∈C
max
t∈TS

ft . (7)

This is a convex piecewise-affine function. For f ∈ R
T , we call a tuple t = (S, k) ∈ T

active4 if

ft = max
t ′∈TS

ft ′ . (8)

The set of all tuples that are active for f is denoted5 by A∗(f) ⊆ T . Note, A∗(f) ⊆ T can
be interpreted as a CSP.

Theorem 1 [2] For every WCSP f ∈ R
T and every assignment x ∈ DV we have:

(a) B(f) ≥ 〈 f , φ(x)〉,
(b) B(f) = 〈 f , φ(x)〉 if and only if x ∈ SOL(A∗(f)).

Proof Statement (a) can be checked by comparing expressions (2) and (7) term by term.
Statement (b) says that B(f) = 〈 f , φ(x)〉 if and only if (S, x[S]) ∈ A∗(f) for all S ∈ C .

This is again straightforward from (2) and (7). �
Theorem 1 says that B(f) is an upper bound on the WCSP optimal value. Moreover, it

shows that B(f) = 〈 f , φ(x)〉 implies that x is a maximizer of the WCSP objective (2).

Example 2 Let V = {1, 2}, D = {a,b}, and C = {{1}, {2}, {1, 2}}. For this structure, the set
of tuples is

T = {({1}, a), ({1},b), ({2}, a), ({2},b),

({1, 2}, (a, a)), ({1, 2}, (a,b)), ({1, 2}, (b, a)), ({1, 2}, (b,b))}. (9)

For assignment x=(a,b) ∈ DV (i.e., x1 =a, x2=b), we have φ(x)=(1, 0, 0, 1, 0, 1, 0, 0) ∈
{0, 1}T where the order of the tuples is given by (9).

4 Our term ‘active tuple’ comes from the term ‘active inequality’. Indeed, (7) can be calculated as the
minimum of

∑
S∈C zS subject to zS ≥ ft ∀t ∈ TS , where zS ∈ R are auxiliary variables. At optimum, we

have zS = maxt∈TS ft and an inequality zS ≥ ft is active if and only if tuple t is active.
5 The set A∗(f) corresponds to the notion of Bool(f) in [6]. The characteristic vector of the set A∗(f) was
denoted f̄ in [2, 9], � f � in [11], and mi[f] in [5].

123

Constraints (2023) 28:277–319 283

Fig. 1 Visualisations of two WCSPs f and d with structure as in Example 2. Variables (elements of V) are
depicted as rounded rectangles, tuples (elements of T) as circles and line segments, and weights ft (and dt)
are written next to the circles and line segments. Black circles and full lines indicate active tuples, whereas
white nodes and dashed lines indicate non-active tuples

An example of a WCSP f with this structure is shown in Fig. 1a. The set of tuples active
for f is

A∗(f) = {({1},b), ({2}, a), ({1, 2}, (b, a)), ({1, 2}, (b,b))} (10)

and the weight vector reads f = (3, 4, 6, 2,−2,−4, 1, 1) ∈ R
T (where the ordering is again

given by (9)). Thus, the objective value ofWCSP f for x = (a,b) is 〈 f , φ(x)〉 = 3+2−4 =
1. The upper bound equals B(f) = 4 + 6 + 1 = 11 and is tight because the CSP A∗(f) is
satisfiable (recall Theorem 1). In particular, 〈 f , φ(b, a)〉 = 11.

3.1 Minimal upper bound over reparametrizations

We say that a WCSP f ∈ R
T is reparametrization of a WCSP g ∈ R

T (also known as an
equivalence-preserving transformation of g) [1–3, 5–7, 10, 11, 18] if

〈 f , φ(x)〉 = 〈g, φ(x)〉 ∀x ∈ DV . (11)

That is, f − g ∈ M⊥ where

M⊥ = {d ∈ R
T | 〈d, μ〉 = 0 ∀μ ∈ M} = {d ∈ R

T | 〈d, φ(x)〉 = 0 ∀x ∈ DV } (12)

is the orthogonal space [33, Chapter 1] of the set (6). Here, ‘d’ stands for ‘direction’ but
note that any d ∈ M⊥, as a vector from R

T , can be also seen as a standalone WCSP. The
set M⊥ is a subspace of R

T , consisting of all WCSPs that have zero objective value for all
assignments. Although M⊥ is defined by an exponential number of equalities in (12), it has a
simple, polynomial-sized description (for binary WCSP see [2, §B], for WCSPs of any arity
see [11, §3.2]). An example of WCSP d ∈ M⊥ is in Fig. 1b. The set of all reparametrizations
of f is the affine subspace6 f + M⊥ = { f + d | d ∈ M⊥}. Clearly, the binary relation ‘is a
reparametrization of’ (on the set of WCSPs with a fixed structure) is reflexive, transitive and
symmetric, hence an equivalence.

Given a WCSP g ∈ R
T , it is a natural idea to minimize the upper bound on its optimal

value by reparametrizations:

min {B(f) | f is a reparametrization of g} = min
f ∈g+M⊥

B(f). (13)

6 Note, the symbol ‘+’ in the expression f + M⊥ denotes the sum of a vector and a set of vectors.

123

284 Constraints (2023) 28:277–319

By introducing auxiliary variables (as in Footnote 4), this problem can be transformed to a
linear program, which is the dual LP relaxation of theWCSP g [1, 2, 5, 11]. Every f feasible
for (13) satisfies

B(f) ≥ 〈 f , φ(x)〉 = 〈g, φ(x)〉 ∀x ∈ DV , (14)

i.e., B(f) is an upper boundon the optimal valuemaxx 〈g, φ(x)〉ofWCSP g. If inequality (14)
holds with equality for some x , then f is optimal for (13) and the LP relaxation is tight.
Necessary and sufficient conditions for optimality can be obtained from complementary
slackness, see [2, 5, 11].

Problem (13) has been widely studied [1, 2, 4–6, 18, 23] and many approaches for
its (approximate) large-scale optimization have been proposed, typically based on block-
coordinate descent [2, 7–10, 21, 25, 27] or constraint propagation [2, 6, 16, 22, 34]. If
f is optimal for (13), then the CSP A∗(f) has a non-empty pairwise-consistency (PWC)
closure (for binary WCSPs, PWC reduces to arc consistency) [11]. We conjecture that
PWC is in general the strongest level of local consistency of A∗(f) that can be achieved
by reparametrizations without enlarging the WCSP structure (i.e., without introducing new
weight functions).

We remark that some approaches [6, 18] achieve only (generalized) arc consistency rather
than PWC because they optimize over a subset of all possible reparametrizations correspond-
ing to a subspace of M⊥. In this case, WCSPs f optimal for (13) have been called optimally
soft arc consistent (OSAC).

3.2 Minimal upper bound over super-reparametrizations

We say that a WCSP f ∈ R
T is a super-reparametrization7 of a WCSP g ∈ R

T if

〈 f , φ(x)〉 ≥ 〈g, φ(x)〉 ∀x ∈ DV . (15)

That is, f − g ∈ M∗ where

M∗ = {d ∈ R
T | 〈d, μ〉 ≥ 0 ∀μ ∈ M} = {d ∈ R

T | 〈d, φ(x)〉 ≥ 0 ∀x ∈ DV } (16)

is the dual cone [33, Chapter 1] to the set (6). It is a polyhedral convex cone, consisting of
the WCSPs that have nonnegative objective value for all assignments. This cone contains a
line because M⊥ ⊆ M∗ and the subspace M⊥ is non-trivial (assuming |V | > 1). Precisely,
we have M∗ ∩ (−M∗) = M⊥ where −M∗ = {−d | d ∈ M∗}. The set of all super-
reparametrizations of f is the translated cone f + M∗ = { f + d | d ∈ M∗}. For a given
d ∈ R

T , deciding whether d /∈ M∗ is NP-complete, as shown later in Corollary 2.
The binary relation ‘is a super-reparametrization of’ (on the set of WCSPs with a fixed

structure) induced by the convex cone M∗ is reflexive and transitive, hence a preorder. It
is not antisymmetric: f − g ∈ M∗ and g − f ∈ M∗ does not imply f = g but merely
f − g ∈ M⊥, i.e., that f is a reparametrization of g. This is because the cone M∗ may
contain a line, see [35, §2] and [36, §2.4].

Remark 2 The optimal value (5) of a WCSP f can be also written as

max
μ∈M〈 f , μ〉 = max

μ∈convM〈 f , μ〉 (17)

7 Super-reparametrizations were called virtual potentials in [25] and sup-reparametrizations in [27].

123

Constraints (2023) 28:277–319 285

where conv denotes the convex hull operator [36]. The equality in (17) follows from the well-
known fact that a linear function on a polytope attains its maximum in at least one vertex of
the polytope [5, Corollary 3.44]. The set convM ⊆ [0, 1]T is known as themarginal polytope
and has the central role in approaches to WCSP based on linear programming (see [3, 5] and
references therein). It is easy to show that

M∗ = (convM)∗ = (coneM)∗ (18)

where cone denotes the conic hull operator [36] and ∗ the dual cone operator. Thus, (16) can
also be seen as the dual cone to the marginal polytope which, to the best of our knowledge,
has not been mentioned before.

Following [25], we consider the problem

min {B(f) | f is a super-reparametrization of g} = min
f ∈g+M∗ B(f). (19)

Again, this can be reformulated as a linear program. Every f feasible for (19) (i.e., every
super-reparametrization of g) satisfies

B(f) ≥ 〈 f , φ(x)〉 ≥ 〈g, φ(x)〉 ∀x ∈ DV . (20)

The next theorem characterizes optimal solutions:

Theorem 2 Let f be feasible for (19). The following are equivalent:

(a) f is optimal for (19).
(b) B(f) = max

x∈DV
〈 f , φ(x)〉 = max

x∈DV
〈g, φ(x)〉

(c) CSP A∗(f) has a solution x satisfying 〈 f , φ(x)〉 = 〈g, φ(x)〉.

Proof (a)⇔(b): Denote m = maxx 〈g, φ(x)〉, which by (20) implies B(f) ≥ m. To see that
this bound is attained, define f by ft = m/|C | for all t ∈ T . It can be checked from (2)
and (7) that B(f) = 〈 f , φ(x)〉 = m for all x , so f is feasible and optimal.

(b)⇒(c): Since every feasible f satisfies (20), (b) implies B(f) = 〈 f , φ(x)〉 = 〈g, φ(x)〉
for some x . By Theorem 1(b), this implies (c).

(c)⇒(b): By Theorem 1(b) together with (20), (c) implies B(f) = 〈 f , φ(x)〉 = 〈g, φ(x)〉
for some x . Statement (b) now follows from Theorem 1(a). �

Theorem 2 in particular says that the optimal value of (19) is equal to the optimal value
of WCSP g (this has been observed already in [25, Theorem 1]). As stated in [25], this
is not surprising because the complexity of the WCSP is hidden in the exponential set of
constraints of (19). Let us remark that for f ∈ g + M∗, deciding whether f is optimal
for (19) is NP-complete, as shown later in Corollary 3.

Theorem 2 has a simple corollary:

Theorem 3 Let g ∈ R
T . CSP A∗(g) is satisfiable if and only if B(g) ≤ B(f) for every

f ∈ g + M∗.

Proof By Theorem 2, A∗(g) is satisfiable if and only if (19) attains its optimum at the point
f = g, i.e., B(g) ≤ B(f) for every f ∈ g + M∗. �

123

286 Constraints (2023) 28:277–319

4 Iterativemethod to improve the bound by super-reparametrizations

In this section we present an iterative method to suboptimally solve (19). Starting from a
feasible solution to (19), every iteration finds a new feasible solution with a lower objective,
which by (20) corresponds to decreasing the upper bound on the optimal value of the initial
WCSP.

4.1 Outline of themethod

Consider a WCSP f feasible for (19), i.e., f ∈ g + M∗. By Theorem 2, a necessary (but
not sufficient) condition for f to be optimal for (19) is that CSP A∗(f) is satisfiable. By
Theorem 3, A∗(f) is satisfiable if and only if B(f) ≤ B(f ′) for all f ′ ∈ f + M∗. In
summary, we have the following implications and equivalences:

f is optimal for (19) �⇒ CSP A∗(f) is satisfiable���
���

B(f) ≤ B(f ′) ∀ f ′ ∈ g + M∗ �⇒ B(f) ≤ B(f ′) ∀ f ′ ∈ f + M∗
(21)

The left-hand equivalence is just the definition of the optimum of (19), the right-hand
equivalence is Theorem 3, and the top implication follows from Theorem 2. The bottom
implication independently follows from transitivity of super-reparametrizations, which says
that f ′ ∈ f + M∗ implies f ′ ∈ g + M∗ (assuming f ∈ g + M∗).

Suppose for the moment that we have an oracle that, for a given f ∈ R
T , decides if A∗(f)

is satisfiable and if it is not, finds some f ′ ∈ f + M∗ such that B(f ′) < B(f) (which exists
by Theorem 3). By transitivity of super-reparametrizations, such f ′ is feasible for (19). This
suggests an iterative scheme to improve feasible solutions to (19). We initialize f 0 := g and
then for k = 0, 1, 2, . . . repeat the following iteration:

Note that transitivity of super-reparametrizations implies f k ∈ f 0 + M∗ for every k, so
every f k is feasible for (19) as expected. An example of a single iteration is shown in Fig. 2a
and b.

This iterative method belongs to the class of local search methods to solve (19): having
a current feasible estimate f k , we search for the next estimate f k+1 with a strictly better
objective within a neighborhood f k + M∗ of f k . We can define local optima of (19) with
respect to this method to be super-reparametrizations f of g such that A∗(f) is satisfiable.

4.1.1 Properties of the method

By transitivity of super-reparametrizations, for every k we have

f k+1 + M∗ ⊆ f k + M∗ (22)

which holds with equality if and only if f k+1 ∈ f k + M⊥ (i.e., f k+1 is a reparametrization
of f k). This shows that the search space of the method may shrink with increasing k, in other
words, a larger and larger part of the feasible set f 0 + M∗ of (19) is cut off and becomes

123

Constraints (2023) 28:277–319 287

Fig. 2 Example of one iteration on a binary WCSP whose (hyper)graph is a cycle of length 4

forever inaccessible. If, for some k, all (global) optima of (19) happen to lie in the cut-off
part, the method has lost any chance to find a global optimum. This is illustrated in Fig. 3.

This has the following consequence. Every f k satisfies

B(f k) ≥ min
f ∈ f k+M∗

B(f) = max
x∈DV

〈 f k, φ(x)〉. (23)

In every iteration, the left-hand side of inequality (23) decreases and the right-hand side
increases or stays the same due to (22). If both sides meet for some k, the CSP A∗(f k)
becomes satisfiable by Theorem 1(b) and the method stops. Monotonic increase of the right-
hand side can be seen as ‘greediness’ of the method: if we could choose f k+1 from the initial
feasible set f 0 + M∗ rather than from its subset f k + M∗, the right-hand side could also
decrease. Any increase of the right-hand side is undesirable because the bounds B(f k) in
future iterations will never be able to get below it. This is illustrated in Figs. 4 and 5. Unlike
in (13), note that not every optimal assignment for WCSP f is optimal for WCSP g. We will
return to this in Section 5.

123

288 Constraints (2023) 28:277–319

Fig. 3 The shrinking of the search space of the iterativemethod. The figure illustrates the translated cones f i +
M∗ and several contours of the objective B(f). After the second iteration, all global minima of the original
problem (marked in grey) become inaccessible as the right hand side of (23) increases

If A∗(f k) is unsatisfiable, there are usually many vectors f k+1 ∈ f k + M∗ satisfying
B(f k+1) < B(f k). We should choose among them the one that does not cause ‘too much’
shrinking of the search space and/or increase of the right-hand side of (23). Inclusion (22)
holds with equality if and only if f k+1 ∈ f k + M⊥, so whenever possible we should
choose f k+1 to be a reparametrization (rather than just a super-reparametrization) of f k .
Unfortunately, we know of no other useful theoretical results to help us choose f k+1, so we
are left with heuristics. One natural heuristic is to choose f k+1 such that the vector f k+1− f k

is sparse (i.e., has only a small number of non-zero components) and its positive components
are small. Unfortunately, this can sometimes be too restrictive because, e.g., vectors fromM⊥
can be dense and their components have unbounded magnitudes.

4.1.2 Employing constraint propagation

So far we have assumed we can always decide if CSP A∗(f) is satisfiable. This is unre-
alistic because the CSP is NP-complete. Yet the approach remains applicable even if we

Fig. 4 Illustration to the iterative scheme: B(g) and B(f k) are shown by the full lines,
maxx 〈g, φ(x)〉 and maxx 〈 f k , φ(x)〉 are represented by the dashed lines

123

Constraints (2023) 28:277–319 289

Fig. 5 WCSP f is a super-reparametrization of WCSP g and this pair of WCSPs satisfies B(f) = 11 <

B(g) = 12 and maxx∈DV 〈 f , φ(x)〉 = 11 > maxx∈DV 〈g, φ(x)〉 = 8. Assignment x = (b,b) is not
optimal for g despite that B(f) = 〈 f , φ(x)〉. The fact that f is a super-reparametrization of g can be
verified by computing the objective value for each assignment, e.g., for assignment x = (a, a) we have
〈g, φ(x)〉 = 3 + 4 + 1 = 8 ≤ 〈 f , φ(x)〉 = 3 + 2 + 4 = 9

detect unsatisfiability of A∗(f) only sometimes, e.g., using constraint propagation. Then our
iteration changes to:

In this case, stopping points of the method will be even weaker local minima of (19), but
they nevertheless might be still non-trivial and useful.

In the sequel we develop this approach in detail. In particular we show, if A∗(f k) is
unsatisfiable, how to find a vector f k+1 ∈ f k + M∗ satisfying B(f k+1) < B(f k). We
will do it in two steps. First (in Section 4.2), given the CSP A∗(f k) we find a direction
d ∈ M∗ using constraint propagation. This direction is a certificate of unsatisfiability of the
CSP A∗(f k) and, at the same time, an improving direction for (19). Second (in Section 4.3),
given d and f k , we find a step size α > 0 such that f k+1 = f k +αd and B(f k) > B(f k+1).
An example of such a certificate of unsatisfiability is shown in Fig. 2c.

4.1.3 Relation to existing approaches

The Augmenting DAG algorithm [2, 16] and the VAC algorithm [6] are (up to the precise
way of computing certificates d and step sizes α) an example of the described approach,
which uses arc consistency to attempt to prove unsatisfiability of A∗(f k). In this favorable
case, there exist certificates d ∈ M⊥, so we are, in fact, applying local search to (13) rather
than (19). For stronger local consistencies, such certificates, in general, do not exist (i.e.,
inevitably 〈d, φ(x)〉 > 0 for some x).

The algorithm proposed in [25] can be also seen as an example of our approach. It inter-
leaves iterations using arc consistency (in fact, theAugmentingDAGalgorithm) and iterations
using cycle consistency.

As an alternative to our approach, stronger local consistencies can be achieved by intro-
ducing new weight functions (of possibly higher arity) into the WCSP objective (2) and
minimizing an upper bound by reparametrizations, as in [11, 21–23, 37]. In our particular

123

290 Constraints (2023) 28:277–319

case, after each update f k+1 = f k + αd we could introduce a new weight function with
scope

S′ =
⋃

{S | (S, k) ∈ T , dS(k) �= 0} (24)

and weights

fS′(k) = −α
∑

S∈C
S⊆S′

dS(k[S]) (25)

where k ∈ DS′
. Notice that such an added weight function would not increase the bound (7)

since its weights are non-positive due to the fact that it needs to decrease the objective value
for some assignments. In this view, our approach can be seen as enforcing stronger local
consistencies but omitting these compensatory higher-order weight functions, thus saving
memory.

Finally, the described approach can be seen as an example of the primal-dual approach [38]
to optimize linear programs using constraint propagation. In detail, [38] proposed to con-
struct the complementary slackness system for a given feasible solution and apply constraint
propagation to detect if the system is satisfiable. If it is not satisfiable, this implies the exis-
tence of a certificate of unsatisfiability that can be used to improve the current solution. In our
particular case, if (19) is formulated as a linear program, then the complementary slackness
conditions (expressed in terms of the dual variables) are equivalent to the optimality condi-
tions stated in Theorem 2 expressed as a set of linear equalities with an exponential number of
non-negative variables. Applying constraint propagation on this system is in correspondence
with constraint propagation on a CSP.

4.2 Certificates of unsatisfiability of CSP

Constraint propagation8 is an iterative algorithm, which in each iteration (executed by a
propagator) infers that some allowed tuples R ⊆ A of a current CSP A ⊆ T can be forbidden
without changing its solution set, i.e., SOL(A) = SOL(A− R), and forbids these tuples, i.e.,
sets A := A− R. The algorithm terminates when it is no longer able to forbid any tuples (in
which case the propagator returns R = ∅) or when it becomes explicit that the current CSP
is unsatisfiable. The former usually happens when the CSP achieves some local consistency
level �. The latter happens if A ∩ TS = ∅ for some S ∈ C , which implies unsatisfiability
of A because9 every assignment has to use one tuple from each TS .

In this section, we show how to augment constraint propagation so that if it proves a
CSP unsatisfiable, it also provides its certificate of unsatisfiability d ∈ M∗. This certificate
is needed as an improving direction for (19), as was mentioned in Section 4.1.2. First, in
Section 4.2.1, we introduce a more general concept, deactivating directions. One iteration of
constraint propagation constructs an R-deactivating direction for the current CSP A, which
certifies that SOL(A) = SOL(A − R). Then, in Section 4.2.2, we show how to compose
the deactivating directions obtained from individual iterations of constraint propagation to

8 We speak only about constraint propagation but the approach outlined in this section is applicable to any
method that proves unsatisfiability of a CSP by iteratively forbidding subsets of tuples. In theory, as a stronger
alternative one could also use any CSP solver that is augmented to provide a certificate of unsatisfiability
(which is always possible, as we will discuss later in this section).
9 If |S| = 1, this event is often called a ‘domain wipe-out’.

123

Constraints (2023) 28:277–319 291

a single deactivating direction for the initial CSP. If the initial CSP has been proved unsat-
isfiable by the propagation, this composed deactivating direction is then its certificate of
unsatisfiability.

4.2.1 Deactivating directions

Definition 1 Let A ⊆ T and R ⊆ A, R �= ∅. An R-deactivating direction for CSP A is a
vector d ∈ M∗ satisfying

(a) dt < 0 for all t ∈ R,
(b) dt = 0 for all t ∈ A − R.

For fixed A and R, all R-deactivating directions for A form a convex cone. Here, we show
one way of constructing a deactivating direction:

Theorem 4 Let R ⊆ A ⊆ T be such that SOL(A) = SOL(A − R) and R �= ∅. Denote 10
δ = |{S ∈ C | TS ∩ R �= ∅}|. (26)

Then vector d ∈ R
T with components

dt =
⎧
⎨

⎩

−1 if t ∈ R
δ if t ∈ T − A
0 otherwise (i.e., t ∈ A − R)

(27)

is an R-deactivating direction for A.

Proof Conditions (a) and (b) of Definition 1 are clearly satisfied, so it only remains to show
that d ∈ M∗. We have

〈d, φ(x)〉 =
∑

t∈T
dtφt (x) =

∑

t∈R

−φt (x) +
∑

t∈T−A

δφt (x) = −n1(x) + δn2(x) (28)

where n1(x) = |{S ∈ C | (S, x[S]) ∈ R}| and n2(x) = |{S ∈ C | (S, x[S]) ∈ T − A}|.
For contradiction, let x ∈ DV satisfy 〈d, φ(x)〉 < 0. This implies n1(x) > 0 and n2(x) =

0,where the latter is becausen1(x) ≤ δ by the definition of δ. That is,wehave (S∗, x[S∗]) ∈ R
for some S∗ ∈ C and (S, x[S]) ∈ A for all S ∈ C . But the latter means x ∈ SOL(A) and the
former implies x /∈ SOL(A − R), a contradiction. �
Theorem 5 Let A ⊆ T and R ⊆ A. If there exists an R-deactivating direction for A, then
SOL(A) = SOL(A − R).

Proof Observe that SOL(A) = SOL(A−R) is equivalent to SOL(A) ⊆ SOL(A−R) because
forbidding tuples may only remove solutions, i.e., SOL is an isotone map (see Section 5.1).

Let d be an R-deactivating direction for A and let x ∈ SOL(A) − SOL(A − R), so
(S, x[S]) ∈ R for some S ∈ C . By (4), we have 〈d, φ(x)〉 < 0 because dS(x[S]) = 0 for all
(S, x[S]) ∈ A − R by condition (b) in Definition 1 and dS(x[S]) < 0 for all (S, x[S]) ∈ R
by condition (a). This contradicts d ∈ M∗. �
10 The quantity δ > 0 is the number of scopes S such that TS contains at least one tuple from R. In other
words, for every assignment x ∈ DV , (S, x[S]) ∈ R holds for at most δ scopes. We remark that the value
of δ could be in some cases decreased, thus decreasing also the objective values 〈d, φ(x)〉. However, deciding
whether (27) is not an R-deactivating direction for A for a given value δ and A is an NP-complete problem,
see Theorem 16 .

123

292 Constraints (2023) 28:277–319

Combining Theorems 4 and 5 yields that for any R ⊆ A with R �= ∅, an R-deactivating
direction for A exists if and only if SOL(A) = SOL(A − R). Thus, any R-deactivating
direction for A is a certificate of the fact that SOL(A) = SOL(A − R).

Unfortunately, vectors d calculated naively by (27) can have many non-zero components,
which is undesirable as explained in Section 4.1.1. However, it is clear from Definition 1
that if A ⊆ A′ ⊆ T and d is an R-deactivating direction for A′, then d is an R-deactivating
direction also for A. Moreover, (27) shows that larger sets A give rise to sparser vectors d .
This offers us a possibility to obtain a sparser R-deactivating direction for A if we can provide
a superset A′ ⊇ A of the allowed tuples satisfying SOL(A′) = SOL(A′ − R).

Given A ⊆ T and R ⊆ A, finding a maximal (w.r.t. the partial ordering by inclusion)
superset A′ ⊇ A such that SOL(A′) = SOL(A′ − R) is closely related to finding a minimal
unsatisfiable core11 of an unsatisfiable CSP. While finding a maximal such subset is very
likely intractable,12 for obtaining a ‘sparse enough’ vector d it suffices to find a ‘large enough’
such superset A′. Such a superset is often cheaply available as a side result of executing the
propagator. Namely, we take A′ = T − P where P is the set of forbidden tuples that were
visited during the run of the propagator. Clearly, tuples not visited by the propagator could
not be needed to infer SOL(A) = SOL(A − R). Note that P need not be the same for each
CSP instance, even for a fixed level of local consistency: for example, if the arc consistency
closure of A is empty, then A is unsatisfiable but a domain wipe-out may occur sooner or
later depending on A, which affects which tuples needed to be visited.

Let us emphasize that an R-deactivating direction for A need not be always obtained
using formula (27), any other method can be used as long as d satisfies Definition 1. We
will now give examples of deactivating directions corresponding to some popular constraint
propagation rules. In these examples, we assume that our CSP contains all unary constraints
(i.e., {i} ∈ C for each i ∈ V), so that rather than deleting domain values we can forbid tuples
of the unary constraints.

Example 3 Let us consider (generalized) arc consistency (AC). A CSP A is (G)AC if for all
S ∈ C , i ∈ S and k ∈ D we have the equivalence13

({i}, k) ∈ A ⇐⇒ (∃l ∈ DS : (S, l) ∈ A, li = k). (29)

If, for some S ∈ C , i ∈ S and k ∈ D, the left-hand statement in (29) is true and the
right-hand statement is false, the AC propagator infers SOL(A) = SOL(A − R) where
R = {({i}, k)}. To infer this, it suffices to know that the tuples P = {(S, l) | l ∈ DS, li = k}
are all forbidden. An R-deactivating direction d for A can be chosen as in (27) where δ =
|{S′ ∈ C | TS′ ∩ R �= ∅}| = 1 and A is replaced by T − P . Note that then we have d ∈ M⊥.

If the left-hand statement in (29) is false and the right-hand statement is true, the AC
propagator infers SOL(A) = SOL(A − R) where R = {(S, l) | l ∈ DS, li = k} ∩ A. To

11 Given an unsatisfiable CSP A ⊆ T , finding a maximal set A′ ⊇ A such that A′ is still unsatisfiable
corresponds to finding a minimally unsatisfiable set of tuples [39]. This is a finer-grained (tuple-based rather
than constraint-based) version of finding a minimal unsatisfiable core of a CSP [40]. Note that we are looking
here for a maximal superset A′ in contrast to a minimal unsatisfiable core because we define CSP instances
by allowed tuples while cores are CSP instances defined by forbidden tuples.
12 The problem of finding a minimal unsatisfiable core has been designated in [40] to be ‘highly intractable’
based on results from [41].
13 Note, for convenience we use a slightly unusual definition of arc consistency, allowing to restrict not only
domains but also constraint relations. This definition was also considered in [5, §6] or [11].

123

Constraints (2023) 28:277–319 293

infer this, it suffices to know that the tuple P = {({i}, k)} is forbidden. In this particular case,
rather than using (27) (with A replaced by T − P), it is better to choose d as

dt =
⎧
⎨

⎩

−1 if t ∈ {(S, l) | l ∈ DS, li = k}
1 if t ∈ P
0 otherwise

. (30)

Vector (30) satisfies d ∈ M⊥, in contrast to vector (27) which satisfies only d ∈ M∗. Thus,
the update f k+1 = f k + αd is a mere reparametrization, which is desirable as explained
in Section 4.1.1.

We note that reparametrizations considered in the previous paragraphs correspond to soft
arc consistency operations extend and project in [6].

Example 4 We now consider cycle consistency as defined in [25].14 As this local consistency
was defined only for binary CSPs, we assume that |S| ≤ 2 for each S ∈ C and denote
E = {S ∈ C | |S| = 2}, so that (V , E) is an undirected graph. Let L be a (polynomially
sized) set of cycles in the graph (V , E). A CSP A is cycle consistent w.r.t. L if for each tuple
({i}, k) ∈ A (where i ∈ V and k ∈ D) and each cycle L ∈ L that passes through node i ∈ V ,
there exists an assignment x with xi = k that uses only allowed tuples in cycle L . It can be
shown that the cycle repair procedure in [25] constructs a deactivating direction whenever
an inconsistent cycle is found. Moreover, the constructed direction in this case coincides
with (27) where A is replaced by T − P for a suitable set P that contains a subset of the
forbidden tuples within the cycle.

Example 5 Recall that a CSP A is singleton arc consistent (SAC) if for every tuple t =
({i}, k) ∈ A (where i ∈ V and k ∈ D), the CSP15 A|xi=k = A − (T{i} − {({i}, k)}) has a
non-empty arc-consistency closure. Good (i.e., sparse) deactivating directions for SAC can
be obtained as follows. For some ({i}, k) ∈ A, we enforce arc consistency of CSP A|xi=k ,
during which we store the causes for forbidding each tuple. If A|xi=k is found to have
empty AC closure, we backtrack and identify only those tuples which were necessary to
prove the empty AC closure. These tuples form the set P . The deactivating direction is then
constructed as in (27) where R = {({i}, k)} and A is replaced by T − P . Note that SAC
does not have bounded support as many other local consistencies [26] do, so the size of P
can be significantly different for different CSP instances. We show a detailed example of
constructing a deactivating direction using SAC in Appendix.

4.2.2 Composing deactivating directions

Consider now a propagator which, for a current CSP A ⊆ T , returns a set R ⊆ A such that
SOL(A) = SOL(A − R) and an R-deactivating direction for A. This propagator is applied
iteratively, each time forbidding a different set of tuples, until the current CSP achieves the
desired local consistency level � or it becomes explicit that the CSP is unsatisfiable. This
is outlined in Algorithm 1, which stores the generated sets Ri of tuples being forbidden
and the corresponding Ri -deactivating directions di . By line 5 of the algorithm, we have

14 This is different from cyclic consistency as defined in [34]. E.g., reparametrizations are sufficient to enforce
cyclic consistency, whereas super-reparametrizations are needed for cycle consistency. Cycle consistency is
not common in the constraint programming community. It can be shown that if the graph (V , E) is complete,
then path inverse consistency [42, 43] corresponds to cycle consistency w.r.t. all cycles of length 3.
15 This can be also stated as A|xi=k = A − {({i}, k′) | k′ ∈ D − {k}}. In other words, the solutions of the
CSP A|xi=k are the solutions x to CSP A satisfying xi = k. This notation is used, e.g., in [44].

123

294 Constraints (2023) 28:277–319

Ai = A − ⋃i−1
j=0 R j for every i ∈ {0, . . . , n + 1}. Therefore, by Theorem 5, we have

SOL(A) = SOL(A1) = SOL(A2) = · · · = SOL(An+1), which implies that if An+1 is
unsatisfiable then so is A.

Algorithm 1 The procedure propagate applies constraint propagation to CSP A ⊆ T
and returns the sequence (Ri)

n
i=0 of tuple sets that were forbidden and the corresponding

deactivating directions (di)ni=0. If all tuples in some scope S ∈ C become forbidden during
propagation, propagate returns also S, otherwise it returns S = ∅.
1: procedure (S, (Ri)

n
i=0, (d

i)ni=0) = propagate(A)

2: Initialize n := 0, A0 := A.
3: while An is not �-consistent do
4: Find a set Rn ⊆ An and an Rn -deactivating direction dn for An .
5: An+1 := An − Rn
6: if ∃S ∈ C : An+1 ∩ TS = ∅ then
7: return (S, (Ri)

n
i=0, (d

i)ni=0)

8: n := n + 1
9: return (∅, (Ri)

n−1
i=0 , (d

i)n−1
i=0))

In this section, we show how to compose the generated sequence of Ri -deactivating
directions di for Ai into a single

(⋃n
i=0 Ri

)
-deactivating direction for A. This can be done

using the following composition rule:

Theorem 6 Let A ⊆ T and R, R′ ⊆ A where R ∩ R′ = ∅. Let d be an R-deactivating
direction for A. Let d ′ be an R′-deactivating direction for A − R. Let

δ =
{
0 if d ′

t ≤ −1 for all t ∈ R,

max{(−1 − d ′
t)/dt | t ∈ R, d ′

t > −1} otherwise. (31)

Then d ′′ = d ′ + δd is an (R ∪ R′)-deactivating direction for A.

Proof First, if d ′
t ≤ −1 for all t ∈ R, then d ′′ = d ′ satisfies the required condition imme-

diately. Otherwise, δ > 0 since dt < 0 for all t ∈ R by definition and −1 − d ′
t < 0 due to

d ′
t > −1 in the definition of δ. We will show that d ′′ satisfies the conditions in Definition 1.
For t ∈ R with d ′

t ≤ −1, d ′′
t = d ′

t + δdt < d ′
t ≤ −1 because δdt < 0. If t ∈ R and

d ′
t > −1, then δ ≥ (−1 − d ′

t)/dt , so d ′′
t = d ′

t + δdt ≤ −1. Summarizing, we have d ′′
t < 0

for all t ∈ R.
For t ∈ R′, d ′

t < 0 and dt = 0 holds by definition due to R′ ⊆ A − R, thus d ′′
t =

d ′
t + δdt = d ′

t < 0 which together with the previous paragraph yields condition (a).
Due to A− R ⊇ (A− R)− R′ = A− (R∪ R′), for any t ∈ A− (R∪ R′) we have dt = 0

and d ′
t = 0, which implies d ′′

t = d ′ + δd = 0, thus verifying condition (b).
Finally, we have d ′′ ∈ M∗ because d, d ′ ∈ M∗ and δ ≥ 0. �
Theorem 6 allows us to combine Ri -deactivating direction di for Ai = Ai−1 − Ri−1 with

Ri−1-deactivating direction di−1 for Ai−1 into a single (Ri−1 ∪ Ri)-deactivating direction
for Ai−1. Iteratively, we can thus gradually build a

(⋃n
i=0 Ri

)
-deactivating direction for A,

which certifies unsatisfiability of A whenever Algorithm 1 detects on line 6 that An+1 (and
thus also A) is unsatisfiable.

However, it is not always necessary to construct a full
(⋃n

i=0 Ri
)
-deactivating direction

because not every iteration of constraint propagation may have been necessary to prove
unsatisfiability of A. Instead, we can use the scope S ∈ C satisfying An+1 ∩ TS = ∅

123

Constraints (2023) 28:277–319 295

(where An+1 = A − ⋃n
i=0 Ri , as mentioned above) returned by Algorithm 1 on line 7 and

construct an R∗-deactivating direction d∗ for a (usually smaller) set R∗ ⊆ ⋃n
i=0 Ri such that

(A− R∗)∩ TS = ∅. Such a direction d∗ still certifies unsatisfiability of A and can be sparser
and/or may have lower objective values 〈d∗, φ(x)〉 than a (⋃n

i=0 Ri
)
-deactivating direction,

which is desirable as explained in Section 4.1.1.
This is outlined in Algorithm 2, which composes only a subsequence of directions di

based on a given set of indices I ⊆ {0, . . . , n} and constructs an R∗-deactivating direction
with R∗ ⊇ ⋃

i∈I Ri . Although Algorithm 2 is applicable for any set I , in our case I is
obtained by taking a scope S ∈ C such that An+1 ∩ TS = ∅ and then setting

I = {i ∈ {0, . . . , n} | Ri ∩ TS �= ∅} (32)

so that (A − R∗) ∩ TS = ∅ due to the following fact:

Proposition 1 Let S ∈ C be such that (A−⋃n
i=0 Ri)∩ TS = ∅. Let I be given by (32). Then

(A − ⋃
i∈I Ri) ∩ TS = ∅.

Proof For any sets A, R, T ′ ⊆ T we have (A − R) ∩ T ′ = (T ′ − R) ∩ A. In particular,
(A − ⋃n

i=0 Ri) ∩ TS = (TS − ⋃n
i=0 Ri) ∩ A. But TS − ⋃n

i=0 Ri = TS − ⋃
i∈I Ri because

for each i /∈ I we have Ri ∩ TS = ∅ which is equivalent to TS − Ri = TS . �

Algorithm 2 The procedure compose takes the sequences (Ri)
n
i=0 and (di)ni=0 (generated

by the procedure propagate) and a non-empty index set I ⊆ {0, . . . , n} and composes
them to an R∗-deactivating direction d∗ for A.

1: procedure (R∗, d∗) = compose((Ri)
n
i=0, (d

i)ni=0, I)

2: Initialize i := max I , d∗ := di , R∗ := Ri .
3: while i > 0 do
4: i := i − 1
5: if i ∈ I or ∃t ∈ Ri : d∗

t �= 0 then
6: d∗ := d∗ + δdi (where δ is (31) with d ′, d, R replaced by d∗, di , Ri)
7: R∗ := R∗ ∪ Ri
8: return (R∗, d∗)

Correctness of Algorithm 2 is given by the following theorem:

Proposition 2 Algorithm 2 returns an R∗-deactivating direction d∗ for A where
⋃

i∈I Ri ⊆
R∗ ⊆ ⋃n

i=0 Ri .

Proof The fact that R∗ ⊇ ⋃
i∈I Ri is obvious due to Rmax I ⊆ R∗ by initialization on line 2

and Ri ⊆ R∗ for any i ∈ I such that i < max I because in such case the update on line 7 is
performed. Similarly, R∗ ⊆ ⋃n

i=0 Ri holds by initialization of R∗ on line 2 and updates on
line 7.

It remains to show that d∗ is R∗-deactivating, whichwewill do by induction.We claim that
vector d∗ is always R∗-deactivating direction for Ai on line 3 and R∗-deactivating direction
for Ai+1 on line 5.

Initially, we have d∗ = di , so d∗ is Ri -deactivating (i.e., R∗-deactivating since R∗ = Ri

before the loop is entered) for Ai . Also, when vector d∗ is first queried on line 5, i decreased
by 1 due to the update on line 4, so d∗ is R∗-deactivating for Ai+1. The required property
thus holds when the condition on line 5 is first queried with i = max I − 1.

123

296 Constraints (2023) 28:277–319

Weproceedwith the inductive step. If the condition on line 5 is not satisfied, then necessar-
ily d∗

t = 0 for all t ∈ Ri . So, if d∗ is R∗-deactivating for Ai+1, then it is also R∗-deactivating
for Ai = Ai+1 ∪ Ri , as seen from Definition 1.

If the condition on line 5 is satisfied, d∗ is R∗-deactivating for Ai+1 before the update on
lines 6-7. Since Ai+1 = Ai − Ri and di is Ri -deactivating for Ai , Theorem 6 can be applied
to di and d∗ to obtain an (R∗ ∪ Ri)-deactivating direction for Ai . After updating R∗ on line 7,
it becomes R∗-deactivating for Ai .

When eventually i = 0, d∗ is R∗-deactivating for A0 = A by line 2 in Algorithm 1. �
Remark 3 This is similar to what the VAC [6] or Augmenting DAG algorithm [2, 16] do
for arc consistency. To attempt to disprove satisfiability of CSP A∗(f), these algorithms
enforce AC of A∗(f), during which the causes for forbidding tuples are stored. If the empty
AC closure of A∗(f) is detected (which corresponds to TS ∩ An+1 = ∅ for some S ∈ C),
these algorithms do not iterate through all previously forbidden tuples but only trace back
the causes for forbidding the elements of the wiped-out domain (here, the elements of TS).

4.3 Line search

In Section 4.2 we showed how to construct an R-deactivating direction d for a CSP A, which
certifies unsatisfiability of A whenever (A − R) ∩ TS = ∅ for some S ∈ C . Given a WCSP
f ∈ R

T with A∗(f) = A, to obtain f ′ ∈ f + M∗ with B(f ′) < B(f) (as in Theorem 3),
we need to find a step size α > 0 so that f ′ = f + αd , as discussed in Section 4.1.2. That
means, we need to find α > 0 such that B(f +αd) < B(f). This task is known in numerical
optimization as line search.

Finding the best step size (i.e., exact line search) would require finding a global minimum
of the univariate convex piecewise-affine function α �→ B(f + αd). As this would be too
expensive for large WCSP instances, we find only a suboptimal step size (approximate line
search) in the following theorem.16

Theorem 7 Let f ∈ R
T . Let d be an R-deactivating direction for A∗(f). Denote 17

β =min

{
maxt∈TS′ ft − ft ′

dt ′

∣∣∣∣ S
′ ∈ C, t ′ ∈ TS′ , dt ′ > 0

}
,

γ =min

{
ft− ft ′

dt ′ − dt

∣∣∣∣ S ∈ C, (A∗(f) − R) ∩ TS = ∅, t ∈ TS ∩ R, t ′ ∈ TS − R, dt ′ > dt

}
.

Then β, γ > 0 and for every S ∈ C and α ∈ R, WCSP f ′ = f + αd satisfies:

(a) If (A∗(f) − R) ∩ TS �= ∅ and 0 ≤ α ≤ β, then maxt∈TS f ′
t = maxt∈TS ft .

(b) If (A∗(f) − R) ∩ TS �= ∅ and 0 < α < β, then A∗(f ′) ∩ TS = (A∗(f) − R) ∩ TS.
(c) If (A∗(f) − R) ∩ TS = ∅ and 0 < α ≤ min{β, γ }, then maxt∈TS f ′

t < maxt∈TS ft .

Proof We have β > 0 because dt ′ > 0 implies t ′ is an inactive tuple, so maxt∈TS ft > ft ′ .
We have γ > 0 because in ft − ft ′ tuple t is always active and t ′ is inactive, hence ft > ft ′ .

16 In detail, the step size min{β, γ } computed in Theorem 7 corresponds to the first break (i.e., non-
differentiable) point of the univariate function with a lower objective. This is analogous to the first-hit strategy
in [45, §3.1.4].
17 β is always defined: by Definition 1 we have 〈d, φ(x)〉 ≥ 0 for all x , hence ∃t : dt < 0 ⇒ ∃t ′ : dt ′ > 0.
γ is defined and needed only in (c), where we assume that (A∗(f) − R) ∩ TS = ∅ for some S ∈ C . If the set
in the definition of γ is empty, then we define γ = +∞ and thus min{β, γ } = β.

123

Constraints (2023) 28:277–319 297

To prove (a), let t∗ ∈ (A∗(f) − R) ∩ TS . Hence, by Definition 1, dt∗ = 0 and the
value maxt∈TS f ′

t does not decrease for any α since f ′
t∗ = ft∗ + αdt∗ = ft∗ . To show the

maximum does not increase, consider a tuple t ′ ∈ TS such that dt ′ > 0 (due to α ≥ 0,

tuples with dt ′ ≤ 0 cannot increase the maximum). It follows that α ≤ β ≤ maxt∈TS ft− ft ′
dt ′

,

so f ′
t ′ = ft ′ + dt ′α ≤ maxt∈TS ft .
To prove (b), let (A∗(f) − R) ∩ TS �= ∅. As in (a), we have maxt∈TS ft = maxt∈TS f ′

t .
If t ∈ (A∗(f) − R) ∩ TS , then dt = 0 and such tuples remain active by f ′

t = ft . Tuples
t ∈ R ∩ TS become inactive since f ′

t = ft + dtα < ft = maxt ′∈TS ft ′ by dt < 0 and α > 0.
Tuples t /∈ A∗(f) either satisfy dt ≤ 0 and cannot become active or satisfy dt > 0 and by

α < β ≤ maxt ′∈TS ft ′− ft
dt

, f ′
t = ft + dtα < maxt ′∈TS ft ′ , so t /∈ A∗(f ′).

To prove (c), let (A∗(f) − R) ∩ TS = ∅. For all t ∈ TS ∩ R, we have f ′
t = ft + αdt <

ft by dt < 0 and α > 0, i.e., maxt∈TS∩R f ′
t < maxt∈TS∩R ft . We proceed to show that

f ′
t ≤ maxt ′∈TS∩R f ′

t ′ for every t ′ ∈ TS − R. Let t∗ ∈ TS ∩ R satisfy f ′
t∗ = maxt∈TS∩R f ′

t .

If dt ′ > dt∗ , α ≤ γ ≤ ft∗− ft ′
dt ′−dt∗ implies f ′

t∗ = ft∗ + αdt∗ ≥ ft ′ + αdt ′ = f ′
t ′ . If dt ′ ≤ dt∗ ,

then also αdt ′ ≤ αdt∗ and f ′
t ′ = ft ′ + αdt ′ ≤ ft∗ + αdt∗ = f ′

t∗ holds for any α ≥ 0 since
ft ′ < ft∗ . As a result, maxt ′∈TS−R f ′

t ′ ≤ maxt∈TS∩R f ′
t < maxt∈TS∩R ft = maxt∈TS ft . �

If d is an R-deactivating direction for CSP A∗(f) and for all S ∈ C we have (A∗(f) −
R) ∩ TS �= ∅ then, by Theorem 7(a,b), there is α > 0 such that f ′ = f + αd satisfies
B(f ′) = B(f) and A∗(f ′) = A∗(f) − R. This justifies why such direction d is called
R-deactivating: a suitable update of f along this direction makes tuples R inactive for f .

Remark 4 This might suggest that to improve the current bound B(f), we need not use
Algorithm 2 to construct an R∗-deactivating direction d∗ with (A∗(f) − R∗) ∩ TS = ∅ for
some S ∈ C , but instead, perform steps using the intermediate Ri -deactivating directions di

to create a sequence f i+1 = f i + αi di satisfying B(f 0) = B(f 1) = · · · = B(f n) >

B(f n+1). Unfortunately, it is hard to make this work reliably as there are many choices for
the intermediate step sizes 0 < αi < βi . We empirically found Algorithm 3 to be preferable.

If d is an R-deactivating direction for A∗(f) and for some S ∈ C we have (A∗(f) −
R) ∩ TS = ∅, then, by Theorem 7(a,c), there is α > 0 such that f ′ = f + αd satisfies
B(f ′) < B(f). The following corollary of Theorem 7 finally justifies why the certificate d
of unsatisfiability of CSP A∗(f) is an improving direction for (19):

Corollary 1 CSP A ⊆ T is unsatisfiable if and only if there is d ∈ M∗ such that for every
f ∈ R

T with A = A∗(f) there exists α > 0 such that B(f + αd) < B(f)

Proof First, if for some S ∈ C we have that A ∩ TS = ∅, A is unsatisfiable and no f ∈ R
T

satisfies A = A∗(f), so the second condition is trivially satisfied by choosing any d ∈ M∗.
Otherwise, let d be any A-deactivating direction (which exists by Theorem 4). It follows

from Theorem 7 that for any f ∈ R
T with A∗(f) = A, we can compute a suitable step

size α > 0 such that B(f + αd) < B(f). The remaining part follows from Theorem 3. �

4.4 Final algorithm

Having certificates of unsatisfiability from Section 4.2 and step sizes from Section 4.3, we
can now formulate in detail the iterative method outlined in Section 4.1.2, see Algorithm 3.
First, constraint propagation is applied to CSP A∗(f) by Algorithm 1 until either A∗(f)
is proved unsatisfiable or no more propagation is possible. In the latter case, the algorithm

123

298 Constraints (2023) 28:277–319

halts and returns B(f) as the best achieved upper bound on the optimal value of WCSP g.
Otherwise, if A∗(f) is proved unsatisfiable due to An+1 ∩ TS = ∅ for some S ∈ C , define I
as in (32) so that (A∗(f)−⋃

i∈I Ri)∩TS = ∅, and compute an R∗-deactivating direction d∗
where R∗ ⊇ ⋃

i∈I Ri using Proposition 2. Since (A∗(f) − R∗) ∩ TS = ∅, we can update
WCSP f using Theorem 7. Consequently, the bound B(f) strictly improves after each update
on line 7.

Algorithm 3 The final algorithm to iteratively improve feasible solutions to (19).

input: WCSP g ∈ R
T

1: Initialize f := g.
2: repeat
3: (S, (Ri)

n
i=0, (d

i)ni=0) := propagate(A∗(f))
4: if S �= ∅ then
5: Define I as in (32).
6: (R∗, d∗) := compose((Ri)

n
i=0, (d

i)ni=0, I)
7: Update f := f + min{β, γ }d∗ following Theorem 7.
8: until S = ∅
9: return B(f)

Remark 5 In the maximization version of WCSP, hard constraints can be modelled by allow-
ing minus-infinite weights, i.e., we then have g ∈ (R ∪ {−∞})T . We argue that Algorithm 3
can be easily extended to such a setting. Without loss of generality, one can assume that

∀S ∈ C ∃t ∈ TS : gt ∈ R, (33)

i.e., there is at least one finite weight in each scope for the input WCSP g (as otherwise the
WCSP is infeasible).

With this assumption, the definition of the active-tuple CSP A∗(·) remains unchanged
and the tuples with minus-infinite weights are never active. Next, see that propagation in
the active-tuple CSP and construction of the improving direction depend only on A∗(f), so
these subroutines need not be modified and, consequently, the improving direction d∗ still
contains only finite weights, i.e., d∗ ∈ R

T .
The only difference can arise when computing the step size α = min{β, γ } by Theorem 7.

If f ∈ R
T , then α is always finite. In contrast, if f ∈ (R ∪ {−∞})T , then it may happen that

β = γ = ∞, so α = min{β, γ } = ∞ where we assume the usual arithmetic with infinities,
so, e.g., a − (−∞) = ∞ for a ∈ R. As discussed earlier, the weights of the active tuples
are always finite, which avoids indeterminate expressions when computing β and γ . Note,
arithmetic with infinities is different from the addition with ceiling operator [6, 46] (unless
the ceiling is infinite).

Next, we comment on the finite and infinite case:

• If the computed step size is finite, then αd∗ ∈ R
T and the update on line 7 can be

performed following the aforementioned arithmetic with infinities. In this case, condi-
tion (33) holds for the updated f since the set of tuples with minus-infinite weight (i.e.,
the set {t ∈ T | ft = −∞}) is kept unchanged by the update and we can continue with
the next iteration.

• On the other hand, if the step size is infinite, then the bound B(f + αd∗) can be made
arbitrarily low by setting α large enough. Stated formally, this means ∀b ∈ R ∃α >

0 : B(f + αd∗) ≤ b, which proves infeasibility of the WCSP instance, so the algorithm
should return −∞ and terminate.

123

Constraints (2023) 28:277–319 299

All in all, if hard constraints are allowed, the only required change in Algorithm 3 is that,
if β = γ = ∞ on line 7, then the algorithm should terminate and return −∞ (which is an
upper bound on the infeasible initial WCSP).

In Algorithm 3 we additionally used a heuristic analogous to capacity scaling in network
flow algorithms [47, §7.3]. On line 3 of Algorithm 3, we replace the active tuples A∗(f)with
‘almost’ active tuples

A∗
θ (f) =

{
t = (S, k) ∈ T

∣∣∣∣ ft ≥ max
t ′∈TS

ft ′ − θ

}
(34)

for some threshold θ > 0.18 This forces the algorithm to disprove satisfiability using tuples
that are far from being active, thus hopefully leading to larger step sizes and faster decrease
of the bound. Initially, θ is set to a high value and whenever we are unable to disprove
satisfiability of A∗

θ (f), the current θ is decreased as θ := θ/10. The process continues until
θ becomes very small.

Although our theoretical results are more general, our implementation is limited only to
binaryWCSPs, i.e., instances where themaximum arity of the weighted constraints is at most
2. We implemented two versions of Algorithm 3 (including capacity scaling19), differing in
the local consistency used to attempt to disprove satisfiability of CSP A∗(f):

• Virtual singleton arc consistency via super-reparametrizations (VSAC-SR) uses singleton
arc consistency. Precisely, we alternate between AC and SAC propagators: whenever a
single tuple (i, k) ∈ V × D is removed by SAC, we step back to enforcing AC until no
more AC propagations are possible, and repeat.

• Virtual cycle consistency via super-reparametrizations (VCC-SR) is the same as VSAC-
SR except that SAC is replaced by CC. Though our implementation is different than [25]
(we compose deactivating directions rather than alternate between the cycle-repair pro-
cedure and the Augmenting DAG algorithm), it has the same fixed points.

The procedures for generating deactivating directions forAC, SACandCCwere implemented
as described in Examples 3, 5, and 4. We used AC3 algorithm to enforce AC. In SAC and
CC it is useful to step back to AC whenever possible because deactivating directions of AC
correspond to reparametrizations rather than super-reparametrizations, which is desirable as
explained in Section 4.1.1.

Remark 6 In analogy to [6, 22], let us call a WCSP instance f virtual �-consistent (e.g.,
virtual AC or virtual RPC) if A∗(f) has a non-empty �-consistency closure. Then, a
virtual �-consistency algorithm naturally refers to an algorithm to transform a given
WCSP instance to a virtual �-consistent WCSP instance. In the VAC algorithm, this
transformation is equivalence-preserving, i.e., a reparametrization. But in our case, it is a
super-reparametrization, which is why we call our algorithms VSAC-SR and VCC-SR.

18 This is similar to the notion of Boolθ (f) in [6, §11.1], tolerance δ in [38, §4.2], and miε [f] in [5, §6.2.4].
19 In detail, we initialized θ = maxki ,k j g{i, j}(ki , k j)−minki ,k j g{i, j}(ki , k j)+maxk gi ′ (k)−mink gi ′ (k)
where {i, j} ∈ C and i ′ ∈ V is the edge and variable with the lowest index (based on indexing in the
input instance), respectively. The terminating condition was θ ≤ 10−6. Let us note that if capacity scaling
is used with θ > 0 and the construction of the improving direction is deterministic (which is the case in our
implementation), then the method is guaranteed to terminate after a finite number of iterations. This follows
from our more general results that we state in [48, §2.2.1]. In order to improve the efficiency of our method,
we also decreased θ whenever the bound did not improve by more than 10−15 in 20 consecutive iterations.

123

300 Constraints (2023) 28:277–319

Since we restricted ourselves to binary WCSPs, let E = {S ∈ C | |S| = 2} so that (V , E)

is an undirected graph. The cycles in VCC-SR were chosen as follows: if 2|E |/|V | ≤ 5 (i.e.,
the average degree of the nodes in (V , E) is at most 5), then all cycles of length 3 and 4
present in the graph (V , E) are used. If 2|E |/|V | ≤ 10, then all cycles of length 3 present
in the graph are used. If 2|E |/|V | > 10 or the above method did not result in any cycles, we
use all fundamental cycles w.r.t. a spanning tree of the graph (V , E).20 No additional edges
are added to the graph. Note, [25] experimented with grid graphs (where cycles of length 4
and 6 of the grid were used) and complete graphs (where cycles of length 3 were used).

Since bothVSAC-SR andVCC-SR start by enforcingVAC (i.e., making A∗(f) arc consis-
tent by reparametrizations), before running these methods we used toulbar2 to reparametrize
the input WCSP instance to a VAC state (because a specialized algorithm is faster than
the more general Algorithm 3). We employed specialized data structures for storing the
sequences (Ri)

n
i=0 and (di)ni=0 from Algorithm 1, which utilize the property that the

sets (Ri)
n
i=0 are disjoint and make easier sequential querying of (sparse) vectors (di)ni=0

in Algorithm 2. Note that the sequence (Ai)
n+1
i=0 need not be stored and is only needed for

theoretical analysis. Moreover, sparse representations were used when composing deactivat-
ing directions in Algorithm 2. To avoid working with ‘structured’ tuples (1), we employed a
bijection between T and {1, . . . , |T |} to work with numerical indices instead.

Besides the above improvements, we did not fine-tune our implementation for efficiency.
Thus, the set A∗(f) was always calculated by iterating through all tuples (which could
be made faster if sparsity of the improving direction was taken into account). The hyper-
parameters of our algorithm (e.g., the decrease schedule of θ or constants mentioned in
Footnote 19) were not learned nor systematically optimized. SAC was checked on all active
tuples without warm-starting or using any faster SAC algorithm than SAC1 [44, 50]. Perhaps
most importantly, we did not implement inter-iteration warm-starting as in [17, 45], i.e., after
updating the weights on line 6 of Algorithm 3, some deactivating directions in the sequence
that were not used to compose the improving directionmay be preserved for the next iteration
instead of being computed from scratch. Except for computing deactivating directions, the
code was the same for VSAC-SR and VCC-SR. We implemented everything in Java.

4.5 Experiments

We compared the bounds calculated by VSAC-SR and VCC-SR with the bounds provided
by EDAC [14], VAC [6], pseudo-triangles (option -t=8000 in toulbar2, adds up to 8 GB of
ternary weight functions), PIC, EDPIC, maxRPC, and EDmaxRPC [22], which are imple-
mented in toulbar2 [51]. Our motivation for choosing these local consistencies is as follows:
EDAC is the typically chosen local consistency that is maintained during branch-and-bound
search. VAC is highly related to our approach and can be used in pre-processing (as it is
faster than OSACwhich is usually too memory- and time-consuming for practical purposes).
Finally,we consider a class of recently proposed triangle-based consistencies [22] that enforce
stronger forms of local consistency.

We did the comparison on the Cost Function Library benchmark [52]. Due to limited
computation resources, we used only the smallest 16500 instances (out of 18132). Of these,
we omitted instances containingweight functions of arity 3 or higher.Moreover, to avoid easy
instances, we omitted instances that were solved by VAC without search (i.e., toulbar2 with

20 Let (V , E ′) be a spanning tree of (V , E). A fundamental cycle w.r.t. the spanning tree is the unique cycle
in the graph (V , E ′ ∪ {e}) where e ∈ E − E ′. By choosing different edges e ∈ E − E ′, we obtain the set of
all |E − E ′| fundamental cycles w.r.t. the spanning tree [49, Chapter 9].

123

Constraints (2023) 28:277–319 301

options -A -bt=0 found an optimal solution).We also omitted the validation instances that
are used for testing and debugging. Overall, 5371 instances were left for our comparison.

For each instance and each method, we only calculated the upper bound and did not do
any search. For each instance andmethod, we computed the normalized bound Bw−Bm

Bw−Bb
where

Bm is the bound computed by the method for the instance and Bw and Bb is the worst and
best bound for the instance among all the methods, respectively. Thus, the best bound21

transforms to 1 and the worst bound to 0, i.e., greater is better.
For 26 instances, at least onemethodwas not able to finish in the prespecified 1-hour CPU-

time limit. These timed-out methods were omitted from the calculation of the normalized
bounds for these instances. From the point of view of the method, the instance was not
incorporated into the average of the normalized bounds of this particular method. We note
that implementations of VSAC-SR and VCC-SR provide a bound when terminated at any
time, whereas the implementations of the other methods provide a bound only when they are
left to finish. Time-out happened 5, 2, 3, 6, and 24 times for pseudo-triangles, PIC, EDPIC,
maxRPC, and EDmaxRPC, respectively. This did not affect the results much as there were
5371 instances in total.

The results in Table 1 show that no method is best for all instance groups, instead, each
method is suitable for a different group. However, VSAC-SR performed best for most groups
and otherwise was often competitive to the other strong consistency methods. VSAC-SR
seems particularly good at spinglass_maxcut [53], planning [54] and qplib [55] instances.
Taking the overall unweighted average of group averages (giving the same importance to each
group), VSAC-SR achieved the greatest average value. We also evaluated the ratio to worst
bound, Bm/Bw , for instances with Bw �= 0; the results were qualitatively the same: VSAC-
SR again achieved the best overall average of 3.93 (or 4.15 if only groups with ≥ 5 instances
are considered) compared to second-best pseudo-triangles with 2.71 (or 2.84).

The runtimes (on a laptop with i7-4710MQ processor at 2.5 GHz and 16GB RAM) are
reported in Table 2. Again, the results are group-dependent and one can observe that the
methods explore different trade-offs between bound quality and runtime. However, the strong
consistencies are comparable in terms of runtime on average, except for pseudo-triangles,
which is a faster method that however needs significantly more memory.

The code that was used to obtain these results is available at https://cmp.felk.cvut.cz/
~dlaskto2/code/VSAC-SR.zip.

5 Additional properties of super-reparametrizations

In this section, we present a more detailed study of properties of WCSPs that are preserved
by (possibly optimal) super-reparametrizations. To that end, we first revisit in Section 5.1 the
notion of a minimal CSP for a set of assignments. The key result of Section 5 is presented
in Section 5.2, where we study the relation of the set of optimal assignments of some WCSP
to the set of optimal assignments of its super-reparametrization optimal for (19), showing
that they need not coincide in general. In Section 5.3, we give some properties of general
(i.e., not necessarily optimal for (19)) super-reparametrizations.

21 To avoid numerical precision issues, bounds Bm within Bb ± 10−4Bb or Bb ± 0.01 are also normalized
to 1. If Bw = Bb , then the normalized bounds for all methods are equal to 1 on this instance.

123

https://cmp.felk.cvut.cz/~dlaskto2/code/VSAC-SR.zip
https://cmp.felk.cvut.cz/~dlaskto2/code/VSAC-SR.zip

302 Constraints (2023) 28:277–319

Ta
bl
e
1

R
es
ul
ts
on

in
st
an
ce
s
fr
om

C
os
tF

un
ct
io
n
L
ib
ra
ry
:A

ve
ra
ge

no
rm

al
iz
ed

bo
un

ds
(f
or

ea
ch

in
st
an
ce

gr
ou

p,
th
e
be
st
av
er
ag
e
no

rm
al
iz
ed

bo
un

d
is
in

bo
ld
)

In
st
an
ce

G
ro
up

In
st
an
ce
s

E
D
A
C

V
A
C

V
SA

C
-S
R

V
C
C
-S
R

Ps
eu
do
-t
r.

PI
C

E
D
PI
C

m
ax
R
PC

E
D
m
ax
R
PC

/b
iq
m
ac
lib

/
15

7
0.
02

0.
11

0.
90

0.
22

0.
92

0.
83

0.
81

0.
79

0.
81

/c
ra
ft
ed
/a
ca
de
m
ic
s/

8
0.
88

0.
88

0.
97

0.
95

0.
88

0.
88

0.
88

0.
88

1.
00

/c
ra
ft
ed
/a
uc
tio

n/
pa
th
s/

42
0

0.
00

0.
09

0.
91

0.
35

0.
99

0.
45

0.
68

0.
64

0.
57

/c
ra
ft
ed
/a
uc
tio

n/
re
gi
on

s/
41

1
0.
00

0.
05

0.
99

0.
10

0.
98

0.
08

0.
18

0.
23

0.
13

/c
ra
ft
ed
/a
uc
tio

n/
sc
he
du

lin
g/

41
9

0.
00

0.
02

1.
00

0.
09

0.
80

0.
41

0.
38

0.
41

0.
24

/c
ra
ft
ed
/c
ol
or
in
g/

33
0.
94

0.
94

0.
99

0.
97

0.
98

1.
00

1.
00

1.
00

0.
99

/c
ra
ft
ed
/f
ee
db

ac
k/

6
0.
00

0.
00

0.
54

0.
58

0.
71

0.
49

0.
53

0.
51

0.
72

/c
ra
ft
ed
/k
bt
re
e/

18
00

0.
25

0.
29

0.
60

0.
67

0.
80

0.
73

0.
81

0.
76

0.
89

/c
ra
ft
ed
/m

ax
cl
iq
ue
/d
im

ac
s_
m
ax
cl
iq
ue
/

49
0.
06

0.
24

0.
98

0.
39

0.
87

0.
39

0.
50

0.
51

0.
55

/c
ra
ft
ed
/m

ax
cu
t/s
pi
ng
la
ss
_m

ax
cu
t/u

nw
ei
gh
te
d/

5
0.
00

0.
00

1.
00

0.
42

0.
15

0.
15

0.
15

0.
15

0.
15

/c
ra
ft
ed
/m

ax
cu
t/s
pi
ng
la
ss
_m

ax
cu
t/w

ei
gh
te
d/

5
0.
00

0.
00

1.
00

0.
38

0.
17

0.
17

0.
17

0.
17

0.
17

/c
ra
ft
ed
/m

od
ul
ar
ity

/
6

0.
17

0.
19

0.
38

0.
25

0.
99

0.
96

0.
94

0.
96

0.
97

/c
ra
ft
ed
/p
la
nn

in
g/

65
0.
00

0.
54

0.
94

0.
72

0.
32

0.
07

0.
09

0.
07

0.
17

/c
ra
ft
ed
/s
um

co
lo
ri
ng

/
43

0.
04

0.
15

0.
47

0.
50

0.
81

0.
53

0.
63

0.
64

0.
61

/c
ra
ft
ed
/w
ar
eh
ou
se
s/

49
0.
35

0.
99

1.
00

0.
99

0.
35

0.
42

0.
42

0.
42

0.
42

/q
ap
lib

/
5

0.
40

0.
40

0.
40

0.
41

0.
99

0.
97

0.
97

0.
98

0.
97

/q
pl
ib
/

23
0.
00

0.
10

0.
96

0.
38

0.
27

0.
25

0.
25

0.
24

0.
25

/r
an
do
m
/m

ax
cs
p/
co
m
pl
et
el
oo
se
/

50
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

/r
an
do
m
/m

ax
cs
p/
co
m
pl
et
et
ig
ht
/

50
0.
00

0.
12

0.
57

0.
72

0.
88

0.
94

0.
99

0.
69

0.
76

/r
an
do
m
/m

ax
cs
p/
de
ns
el
oo
se
/

50
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

/r
an
do
m
/m

ax
cs
p/
de
ns
et
ig
ht
/

50
0.
02

0.
14

0.
52

1.
00

0.
68

0.
48

0.
49

0.
52

0.
60

/r
an
do

m
/m

ax
cs
p/
sp
ar
se
lo
os
e/

90
0.
96

0.
96

1.
00

0.
96

0.
96

0.
96

0.
96

0.
96

0.
96

123

Constraints (2023) 28:277–319 303

Ta
bl
e
1

co
nt
in
ue
d

In
st
an
ce

G
ro
up

In
st
an
ce
s

E
D
A
C

V
A
C

V
SA

C
-S
R

V
C
C
-S
R

Ps
eu
do
-t
r.

PI
C

E
D
PI
C

m
ax
R
PC

E
D
m
ax
R
PC

/r
an
do
m
/m

ax
cs
p/
sp
ar
se
tig

ht
/

50
0.
01

0.
12

0.
54

1.
00

0.
64

0.
40

0.
40

0.
43

0.
51

/r
an
do

m
/m

ax
cu
t/r
an
do

m
_m

ax
cu
t/

40
0

0.
00

0.
00

0.
77

0.
13

0.
95

0.
98

0.
98

0.
97

0.
99

/r
an
do

m
/m

in
cu
t/

50
0

0.
09

1.
00

1.
00

1.
00

0.
10

0.
10

0.
10

0.
10

0.
10

/r
an
do

m
/r
an
do

m
ks
at
/

49
3

0.
01

0.
02

0.
75

0.
22

0.
95

0.
91

0.
89

0.
86

0.
87

/r
an
do
m
/w
qu
ee
ns
/

6
0.
00

0.
52

0.
96

0.
94

0.
48

0.
12

0.
29

0.
13

0.
72

/r
ea
l/c
el
ar
/

23
0.
00

0.
05

0.
08

0.
16

0.
97

0.
66

0.
66

0.
78

0.
95

/r
ea
l/m

ax
cl
iq
ue
/p
ro
te
in
_m

ax
cl
iq
ue
/

1
0.
00

0.
00

1.
00

0.
03

0.
93

0.
04

0.
04

0.
08

0.
04

/r
ea
l/s
po
t5
/

1
0.
00

0.
08

1.
00

0.
49

1.
00

0.
74

0.
66

0.
41

0.
74

/r
ea
l/t
ag
sn
p/
ta
gs
np

_r
0.
5/

23
0.
04

0.
86

0.
95

0.
86

0.
31

0.
31

0.
33

0.
29

0.
46

/r
ea
l/t
ag
sn
p/
ta
gs
np

_r
0.
8/

80
0.
13

0.
66

0.
91

0.
68

0.
29

0.
39

0.
38

0.
33

0.
47

A
ve
ra
ge

ov
er

al
lg

ro
up

s
53

71
0.
20

0.
36

0.
82

0.
58

0.
72

0.
56

0.
58

0.
56

0.
62

A
ve
ra
ge

ov
er

gr
ou

ps
w
it
h

≥
5
in
st
an

ce
s

53
69

0.
21

0.
38

0.
80

0.
60

0.
71

0.
57

0.
59

0.
58

0.
63

123

304 Constraints (2023) 28:277–319

Ta
bl
e
2

R
es
ul
ts
on

in
st
an
ce
s
fr
om

C
os
tF

un
ct
io
n
L
ib
ra
ry
:A

ve
ra
ge

C
PU

tim
e
in

se
co
nd

s
(f
or

ea
ch

in
st
an
ce

gr
ou

p,
th
e
sh
or
te
st
av
er
ag
e
C
PU

tim
e
is
in

bo
ld
)

In
st
an
ce

G
ro
up

In
st
an
ce
s

E
D
A
C

V
A
C

V
SA

C
-S
R

V
C
C
-S
R

Ps
eu
do
-t
r.

PI
C

E
D
PI
C

m
ax
R
PC

E
D
m
ax
R
PC

/b
iq
m
ac
lib

/
15

7
0.
11

0.
12

18
0.
07

34
.6
0

83
.2
5

12
40

.0
0

12
41

.2
9

12
42

.1
6

12
71

.8
6

/c
ra
ft
ed
/a
ca
de
m
ic
s/

8
0.
11

0.
11

28
.6
1

1.
04

29
.0
8

12
1.
44

12
0.
86

10
8.
08

10
4.
47

/c
ra
ft
ed
/a
uc
tio

n/
pa
th
s/

42
0

0.
04

0.
04

1.
96

0.
83

1.
92

0.
19

0.
23

0.
48

0.
64

/c
ra
ft
ed
/a
uc
tio

n/
re
gi
on

s/
41

1
0.
20

0.
32

32
.1
4

9.
45

67
3.
42

49
.8
5

51
.3
7

10
2.
61

11
0.
48

/c
ra
ft
ed
/a
uc
tio

n/
sc
he
du

lin
g/

41
9

0.
10

0.
12

16
.2
2

2.
03

49
.8
5

26
.9
0

26
.8
9

32
.0
6

32
.3
0

/c
ra
ft
ed
/c
ol
or
in
g/

33
0.
09

0.
10

4.
99

1.
40

0.
20

54
5.
50

54
5.
50

54
5.
51

54
5.
50

/c
ra
ft
ed
/f
ee
db
ac
k/

6
0.
70

0.
70

35
88

.3
9

36
00

.1
1

11
.6
4

18
60

.8
9

18
74

.0
8

18
75

.9
3

18
73

.0
7

/c
ra
ft
ed
/k
bt
re
e/

18
00

0.
02

0.
02

3.
13

11
.2
5

0.
10

0.
04

0.
05

0.
06

0.
07

/c
ra
ft
ed
/m

ax
cl
iq
ue
/d
im

ac
s_
m
ax
cl
iq
ue
/

49
0.
71

1.
32

27
9.
08

12
6.
90

95
5.
60

13
45

.6
7

13
42

.1
4

14
29

.7
3

14
28

.1
2

/c
ra
ft
ed
/m

ax
cu
t/s
pi
ng

la
ss
_m

ax
cu
t/u

nw
ei
gh

te
d/

5
0.
02

0.
02

0.
82

0.
44

0.
02

0.
01

0.
01

0.
01

0.
01

/c
ra
ft
ed
/m

ax
cu
t/s
pi
ng

la
ss
_m

ax
cu
t/w

ei
gh

te
d/

5
0.
02

0.
02

1.
09

0.
53

0.
02

0.
01

0.
01

0.
01

0.
01

/c
ra
ft
ed
/m

od
ul
ar
ity

/
6

0.
19

0.
29

10
23

.4
8

12
7.
39

66
.2
5

70
6.
30

78
3.
02

74
1.
91

14
42

.5
7

/c
ra
ft
ed
/p
la
nn

in
g/

65
0.
16

0.
29

63
8.
85

60
.6
2

7.
41

0.
93

0.
96

2.
33

4.
73

/c
ra
ft
ed
/s
um

co
lo
ri
ng

/
43

1.
29

1.
94

72
7.
49

96
3.
61

25
5.
72

15
08

.3
7

15
08

.3
6

15
09

.3
4

15
12

.6
8

/c
ra
ft
ed
/w
ar
eh
ou

se
s/

49
4.
10

9.
48

73
5.
80

73
5.
83

4.
09

29
.4
8

29
.5
4

28
.8
0

29
.8
2

/q
ap
lib

/
5

0.
08

0.
09

11
9.
05

27
8.
53

7.
38

14
48

.6
3

14
44

.9
5

14
50

.0
9

14
49

.2
2

/q
pl
ib
/

23
0.
13

0.
14

25
5.
85

43
.1
1

19
5.
32

62
6.
25

62
6.
24

62
6.
27

62
6.
36

/r
an
do
m
/m

ax
cs
p/
co
m
pl
et
el
oo
se
/

50
0.
06

0.
06

1.
31

0.
16

0.
48

0.
09

0.
10

0.
19

0.
18

/r
an
do
m
/m

ax
cs
p/
co
m
pl
et
et
ig
ht
/

50
0.
02

0.
03

6.
35

12
.6
8

0.
47

0.
21

0.
25

0.
31

0.
33

/r
an
do
m
/m

ax
cs
p/
de
ns
el
oo
se
/

50
0.
02

0.
02

16
6.
78

0.
06

0.
11

0.
03

0.
03

0.
03

0.
03

/r
an
do
m
/m

ax
cs
p/
de
ns
et
ig
ht
/

50
0.
02

0.
02

4.
20

17
.3
8

0.
10

0.
06

0.
07

0.
07

0.
08

/r
an
do
m
/m

ax
cs
p/
sp
ar
se
lo
os
e/

90
0.
03

0.
03

61
1.
38

0.
05

0.
06

0.
04

0.
04

0.
04

0.
04

/r
an
do
m
/m

ax
cs
p/
sp
ar
se
tig

ht
/

50
0.
02

0.
02

11
.0
0

9.
74

0.
06

0.
04

0.
05

0.
05

0.
05

123

Constraints (2023) 28:277–319 305

Ta
bl
e
2

co
nt
in
ue
d

In
st
an
ce

G
ro
up

In
st
an
ce
s

E
D
A
C

V
A
C

V
SA

C
-S
R

V
C
C
-S
R

Ps
eu
do
-t
r.

PI
C

E
D
PI
C

m
ax
R
PC

E
D
m
ax
R
PC

/r
an
do

m
/m

ax
cu
t/r
an
do

m
_m

ax
cu
t/

40
0

0.
01

0.
01

0.
73

0.
15

0.
04

0.
03

0.
03

0.
05

0.
07

/r
an
do

m
/m

in
cu
t/

50
0

1.
09

2.
43

14
.4
0

86
.2
2

1.
12

0.
88

0.
87

0.
87

0.
87

/r
an
do

m
/r
an
do

m
ks
at
/

49
3

0.
02

0.
02

3.
42

0.
17

0.
13

0.
07

0.
10

0.
16

0.
31

/r
an
do
m
/w
qu
ee
ns
/

6
1.
33

1.
49

99
2.
85

50
2.
42

64
4.
87

18
00

.1
5

18
00

.2
0

18
00

.1
8

18
00

.6
0

/r
ea
l/c
el
ar
/

23
0.
27

0.
28

17
98

.5
1

29
72

.6
9

66
.5
6

30
0.
76

21
9.
91

49
5.
26

10
66

.8
7

/r
ea
l/m

ax
cl
iq
ue
/p
ro
te
in
_m

ax
cl
iq
ue
/

1
0.
26

0.
44

25
.2
4

6.
77

11
96

.6
2

11
4.
62

11
4.
99

21
5.
30

22
0.
81

/r
ea
l/s
po
t5
/

1
0.
01

0.
01

0.
62

0.
08

0.
11

0.
03

0.
03

0.
04

0.
04

/r
ea
l/t
ag
sn
p/
ta
gs
np

_r
0.
5/

23
4.
83

37
8.
77

33
38

.5
3

28
97

.8
3

23
9.
38

31
55

.9
6

31
48

.6
6

31
72

.5
8

32
95

.1
9

/r
ea
l/t
ag
sn
p/
ta
gs
np

_r
0.
8/

80
1.
52

22
.8
2

12
39

.7
3

85
8.
83

90
.0
5

19
5.
12

20
6.
76

35
9.
55

40
9.
88

A
ve
ra
ge

ov
er

al
lg

ro
up

s
53

71
0.
55

13
.1
7

49
5.
38

41
7.
59

14
3.
17

47
1.
21

47
1.
49

49
1.
88

53
8.
35

A
ve
ra
ge

ov
er

gr
ou

ps
w
it
h

≥
5

in
st
an

ce
s

53
69

0.
58

14
.0
4

52
7.
54

44
5.
20

11
2.
82

49
8.
80

49
9.
08

51
7.
49

56
6.
88

123

306 Constraints (2023) 28:277–319

5.1 Minimal CSP

Let us ask when for a given set X ⊆ DV of assignments (i.e., a |V |-ary relation over D) does
there exist A ⊆ T such that X = SOL(A), i.e., when is X representable as the solution set
of a CSP with a given structure (D, V ,C). For that, denote

Amin(X) = ⋂A↑(X) where A↑(X) = {A ⊆ T | X ⊆ SOL(A)} . (35)

Thus, A↑(X) is the set of all CSPs whose solution set includes X and Amin(X) is the inter-
section of these CSPs. We call Amin(X) the minimal CSP for X . For CSPs with only binary
relations, this concept was studied in [56] and [57, §2.3.2].

Proposition 3 The map SOL preserves intersections 22, i.e., for any A1, A2 ⊆ T we have
SOL(A1 ∩ A2) = SOL(A1) ∩ SOL(A2).

Proof For any x ∈ DV we have

x ∈ SOL(A1) ∩ SOL(A2) ⇐⇒ x ∈ SOL(A1), x ∈ SOL(A2)

⇐⇒ ∀S ∈ C : (S, x[S]) ∈ A1, (S, x[S]) ∈ A2

⇐⇒ ∀S ∈ C : (S, x[S]) ∈ A1 ∩ A2

⇐⇒ x ∈ SOL(A1 ∩ A2).

�
Proposition 4 For any X ⊆ DV , the set A↑(X) is closed under intersections, i.e., for any
A1, A2 ⊆ T we have A1, A2 ∈ A↑(X) �⇒ A1 ∩ A2 ∈ A↑(X).

Proof If X ⊆ SOL(A1) and X ⊆ SOL(A2), then X ⊆ SOL(A1) ∩ SOL(A2) = SOL(A1 ∩
A2), where the equality holds by Proposition 3. �

Proposition 4 implies Amin(X) ∈ A↑(X), i.e., X ⊆ SOL(Amin(X)). This shows
that Amin(X) is the smallest CSP whose solution set includes X . It follows that X =
SOL(Amin(X)) if and only if X = SOL(A) for some A ⊆ T .

The minimal CSP for X can be equivalently defined in terms of tuples:

Proposition 5 [56, 57] We have Amin(X) = {(S, k) ∈ T | ∃x ∈ X : x[S] = k}.
Proof Denote A′ = {(S, k) ∈ T | ∃x ∈ X : x[S] = k}. By definition of A′ we have
SOL(A′) ⊇ X , so A′ ∈ A↑(X) and Amin(X) = ⋂A↑(X) ⊆ A′.

It remains to show that Amin(X) ⊇ A′. For contradiction, suppose there is a tuple
(S∗, k∗) ∈ A′ − Amin(X). By definition of A′, there exists x ∈ X such that x[S∗] = k∗.
However, since (S∗, x[S∗]) = (S∗, k∗) /∈ Amin(X), we have x /∈ SOL(Amin(X)). By x ∈ X ,
this contradicts X ⊆ SOL(Amin(X)). �

Recall that a CSP A is positively consistent [58, 59] (called ‘minimal’ in [56, 57]) if and
only if for each (S, k) ∈ A there exists x ∈ SOL(A) such that x[S] = k, i.e., each allowed
tuple is used by at least one solution, i.e., no tuple can be forbidden without losing some
solutions. Proposition 5 shows that Amin(X) is positively consistent for every X ⊆ DV .

22 This implies that the map SOL is isotone, i.e., A1 ⊆ A2 ⊆ T implies SOL(A1) ⊆ SOL(A2). Although
isotony is obvious (clearly, enlarging the set of allowed tuples of a CSP preserves or enlarges its solution
set), note that isotony does not imply preserved intersections. A weaker result than our Proposition 3 is [56,
Theorem 3.2]: in our notation, it says that SOL(A1) = SOL(A2) implies SOL(A1 ∩ A2) = SOL(A1).

123

Constraints (2023) 28:277–319 307

Theorem 8 For any X ⊆ DV and A ⊆ T , we have

Amin(X) ⊆ A ⇐⇒ X ⊆ SOL(A). (36)

Proof If Amin(X) ⊆ A, then by isotony of SOL we have SOL(Amin(X)) ⊆ SOL(A). Since
X ⊆ SOL(Amin(X)), we have X ⊆ SOL(A).

If X ⊆ SOL(A), i.e., A ∈ A↑(X), then Amin(X) = ⋂A↑(X) ⊆ A. �

Comparing (36) with (35) shows that the set A↑(X) is just an interval (w.r.t. the partial
ordering by inclusion):

A↑(X) = {A | Amin(X) ⊆ A ⊆ T } = [Amin(X), T]. (37)

Theorem 8 further reveals that the maps Amin and SOL form a Galois connection [60]
between sets 2(DV) and 2T , partially ordered by inclusion (to our knowledge, we are the first
to notice this). Associated with the Galois connection are the closure operator SOL ◦ Amin

and the dual closure operator23 Amin ◦ SOL. We have already seen their meaning:

• For any CSP A ⊆ T , the CSP Amin(SOL(A)) is the positive consistency closure24 of A,
i.e., the smallest CSP with the same solution set as A. A CSP A is positively consistent
if and only if Amin(SOL(A)) = A.

• For any set of assignments X ⊆ DV , SOL(Amin(X)) is the smallest (possibly non-strict)
superset of X which is the solution set of someCSP A ⊆ T .We have X = SOL(Amin(X))

if and only if X = SOL(A) for some A ⊆ T .

Remark 7 Following [60, §7.27], it is easy to see in this case that the maps Amin and SOL
are mutually inverse bijections (even order-isomorphisms) if we restrict ourselves only to
positively consistent CSPs, i.e., {A ⊆ T | SOL(Amin(A)) = A} and sets of assignments rep-
resentable as solution sets of some CSP A ⊆ T , i.e., {SOL(A) | A ⊆ T }.

5.2 Optimal assignments from optimal super-reparametrizations

Theorem2 says that the optimal value of (19) coincideswith the optimal valuemaxx 〈g, φ(x)〉
ofWCSP g.We now focus on the optimal assignments (rather than optimal value) ofWCSP g.
For brevity, we will denote the set of all optimal assignments of WCSP g as

OPT(g) = argmax
x∈DV

〈g, φ(x)〉 ⊆ DV . (38)

Theorem 9 If f is optimal for (19), then25 OPT(g) ⊆ OPT(f) = SOL(A∗(f)).

23 Recall that an operator is a closure (dual closure) if it is isotone, idempotent and increasing (decreasing),
see e.g. [61, §1.4].
24 The term consistency closure, as used in constraint programming [43], is a dual closure in our notation
because taking a consistency closure of a CSP deletes some of its allowed tuples (it would be a closure if the
CSP was defined by a set of forbidden tuples).
25 Statement (c) in Theorem 2 is equivalent to SOL(A∗(f)) ∩ W (f − g) �= ∅ where W (d) = {x ∈ DV |
〈d, φ(x)〉 = 0}, i.e., satisfiability of CSP A∗(f) with an additional global constraint x ∈ W (f − g). As a
corollary of Theorem9,we have that SOL(A∗(f))∩W (f −g) �= ∅ �⇒ SOL(A∗(f))∩W (f −g) = OPT(g)
for any super-reparametrization f of g.

123

308 Constraints (2023) 28:277–319

Proof To show OPT(g) ⊆ OPT(f), let x∗ ∈ OPT(g). By Theorem 2, 〈g, φ(x∗)〉 = B(f).
Analogously to the proof of Theorem 2: since B(f) ≥ 〈 f , φ(x∗)〉 ≥ 〈g, φ(x∗)〉, we have
that B(f) = 〈 f , φ(x∗)〉 = 〈g, φ(x∗)〉, thus x∗ is optimal for WCSP f .

The equality OPT(f) = SOL(A∗(f)) follows from B(f) = maxx∈DV 〈 f , φ(x)〉 =
maxx∈DV 〈g, φ(x)〉 and Theorem 1. �

Our main goal in Section 5 is to characterize when the inclusion in Theorem 9 holds with
equality, which is given by Theorem 11 below.

Proposition 6 For every g ∈ R
T and A ⊆ T such that OPT(g) ⊆ SOL(A), there exists

f ∈ R
T optimal for (19) such that A = A∗(f).

Proof Define the vector f as

ft =
{
F1/|C | if t ∈ A
F2/|C | if t /∈ A

∀t ∈ T (39)

where

F1 = max
x∈DV

〈g, φ(x)〉, F2 = max{〈g, φ(x)〉 | x ∈ DV , 〈g, φ(x)〉 < F1} (40)

are the best and the second-best objective value of WCSP g. Note, if OPT(g) = DV , then
F2 is undefined but it does not matter because it is never used in (39).

Since ∅ �= OPT(g) ⊆ SOL(A), CSP A is satisfiable. Therefore for each S ∈ C we have
A ∩ TS �= ∅, hence

max
t∈TS

ft = F1/|C |. (41)

Equality A = A∗(f) now follows from (39).
To show that f is feasible for (19), we distinguish two cases:

• If x ∈ OPT(g), i.e., 〈g, φ(x)〉 = F1, then x ∈ SOL(A) = SOL(A∗(f)). Therefore for
all S ∈ C we have (S, x[S]) ∈ A∗(f), hence fS(x[S]) = F1/|C | by (41). Substituting
into (4) yields 〈 f , φ(x)〉 = F1. Hence 〈 f , φ(x)〉 = F1 = 〈g, φ(x)〉.

• If x /∈ OPT(g), we have ft ≥ F2/|C | for all t ∈ T , hence 〈 f , φ(x)〉 ≥ F2 by (4). By (40)
we also have 〈g, φ(x)〉 ≤ F2. Hence 〈 f , φ(x)〉 ≥ F2 ≥ 〈g, φ(x)〉.
To show that f is optimal for (19), we use (41) to obtain B(f) = ∑

S∈C F1/|C | = F1 =
maxx 〈g, φ(x)〉 and apply Theorem 2. �
Theorem 10 For every g ∈ R

T , we have

A↑(OPT(g)) = {
A∗(f) | f is optimal for (19)

}
. (42)

Proof The inclusion⊇ says that for every optimal f we haveOPT(g) ⊆ SOL(A∗(f)), which
was proved in Theorem 9. The inclusion ⊆ was proved in Proposition 6. �

Nowwe combine the results of Sections 5.1 and 5.2 to obtain the main result of Section 5.
First observe that, by (37), the set (42) is just the interval [Amin(OPT(g)), T].
Theorem 11 For every g ∈ R

T , the following statements are equivalent:

(a) OPT(g) = SOL(A) for some A ⊆ T ,
(b) OPT(g) = OPT(f) for some f optimal for (19).

123

Constraints (2023) 28:277–319 309

If both statements are true, then statement (a) holds, e.g., for A = Amin(OPT(g)) and
statement (b) holds, e.g., if A∗(f) = Amin(OPT(g)).

Proof Let g ∈ R
T . By Theorem 10, there exists f optimal for (19) satisfying A∗(f) =

Amin(OPT(g)). By Theorem 9, this f satisfies OPT(f) = SOL(A∗(f)).
By the resultsofSection 5.1, statement (a) is equivalent toOPT(g) = SOL(Amin(OPT(g))).

Therefore, if (a) holds, then (b) holds for the above f . In the other direction, if (b) holds for
the above f , then (a) holds. �

Theorem 11 shows that the inclusion in Theorem 9 holds with equality for some optimal f
if and only if the set OPT(g) of optimal assignments ofWCSP g is representable as a solution
set of some CSP with the same structure. If no such CSP exists, then OPT(g) � OPT(f) for
all optimal f . An example of WCSP g for which no such CSP exists is in Fig. 6.

It is natural to ask which WCSPs possess this property. Though we are currently unable
to provide a full characterization of such WCSPs, we identify two such classes:

Theorem 12 [1, 2] If the LP relaxation (13) of a WCSP g ∈ R
T is tight, then OPT(g) =

SOL(A) for some A ⊆ T .

Proof If the LP relaxation (13) is tight, then there exists a vector f ∈ R
T such that B(f) =

maxx∈DV 〈g, φ(x)〉 and f is a reparametrization of g, i.e., 〈 f , φ(x)〉 = 〈g, φ(x)〉 for all
x ∈ DV , thus, f is also optimal for (19). It follows that the sets of optimal assignments for f
and g coincide. By Theorem 9, A∗(f) is the required CSP. �

Theorem 13 If a WCSP g ∈ R
T has a unique optimal assignment (i.e., |OPT(g)| = 1), then

OPT(g) = SOL(A) for some A ⊆ T .

Proof The case with |D| = 1 is trivial, so let |D| ≥ 2 and OPT(g) = {x}.
We claim that A = {(S, x[S]) | S ∈ C} is the required CSP, i.e., SOL(A) = {x}. For

contradiction, suppose that x ′ ∈ SOL(A) and x ′ �= x . By x ′ ∈ SOL(A), we necessarily have
that x ′[S] = x[S] for all S ∈ C . By definition (4), this implies 〈g, φ(x ′)〉 = 〈g, φ(x)〉. Thus,
{x ′, x} ⊆ OPT(g), which is contradictory with |OPT(g)| = 1. �

Fig. 6 WCSP f is an optimal super-reparametrization of WCSP g. It is easy to verify that A∗(f) =
Amin(OPT(g)) but OPT(f) = SOL(A∗(f)) � OPT(g)

123

310 Constraints (2023) 28:277–319

5.3 Properties of general super-reparametrizations

Finally, we present one property of general super-reparametrizations f of a fixed WCSP
g ∈ R

T , i.e., f is only feasible (but possibly not optimal) for (19).

Theorem 14 For every g ∈ R
T we have

{A∗(f) | f ∈ R
T is a super-reparametrization of g} = {A∗(f) | f ∈ R

T }. (43)

Proof The inclusion ⊆ is trivial. To prove ⊇, let f ′ ∈ R
T be arbitrary. Define f ∈ R

T

as ft = B(g)/|C | + �t ∈ A∗(f ′)�, t ∈ T . Clearly, f is a super-reparametrization of g
due to 〈 f , φ(x)〉 ≥ B(g) ≥ 〈g, φ(x)〉 for any x ∈ DV . In addition, by definition of f ,
maxt∈TS ft = B(g)/|C | + 1 for any S ∈ C , hence A∗(f ′) = A∗(f). �

Theorem14 shows that the left-hand set in (43) does not depend on g at all. Therefore, if we
approximately optimize (19), i.e., we find a (possibly non-optimal) super-reparametrization f
of g, then there is in general no relation between setsOPT(f) andOPT(g). However, as shown
in Section 3.2, an arbitrary super-reparametrization still maintains the valuable property that
it provides an upper bound B(f) on the optimal value maxx 〈g, φ(x)〉 of WCSP g.

6 Hardness remarks

Unsurprisingly, a number of decision and optimization problems related to (19) is compu-
tationally hard since the optimization problem (19) is hard itself. We overview a number of
such problems here.

Theorem 15 The following problem is NP-complete: Given f , g ∈ Q
T , decide whether f is

not a super-reparametrization of g (i.e., whether f is not feasible for (19)).

Proof Membership in NP can be shown easily by the notion of a non-deterministic algo-
rithm [62, §10]. First, one can choose any x ∈ DV and then in polynomial time decide
whether 〈 f , φ(x)〉 < 〈g, φ(x)〉.

To show NP-hardness, we perform a reduction from CSP satisfiability which is known to
be NP-complete. Let A ⊆ T be a CSP. We would like to decide whether SOL(A) �= ∅.

Let us define g ∈ {0, 1}T by

gS(k) = �(S, k) ∈ A� ∀(S, k) ∈ T . (44)

Thus, for any x ∈ DV , 〈g, φ(x)〉 equals to the number of constraints in CSP A that are
satisfied by the assignment x . So, 〈g, φ(x)〉 ∈ {0, 1, . . . , |C |} and 〈g, φ(x)〉 = |C | if and
only if x ∈ SOL(A). Consequently, maxx 〈g, φ(x)〉 ≤ |C | − 1 if and only if SOL(A) = ∅.

We define f ∈ Q
T by ft = (|C | − 1)/|C |, t ∈ T . In analogy to Theorem 2, 〈 f , φ(x)〉 =

|C | − 1 for all assignments x ∈ DV . Hence, SOL(A) = ∅ if and only if f is a super-
reparametrization of g. �
Corollary 2 The following problem is NP-complete: Given d ∈ Q

T , decide whether d /∈ M∗.

Proof Membership in NP is analogous to Theorem 15. The question of whether f is not a
super-reparametrization of g from Theorem 15 reduces to whether d = f − g /∈ M∗. �
Corollary 3 The following problem is NP-complete: Given f , g ∈ {0, 1}T where f is a
super-reparametrization of g, decide whether f is optimal for (19).

123

Constraints (2023) 28:277–319 311

Proof Membership inNP follows fromTheorem2: as in Theorem15, one can choose x ∈ DV

and then in polynomial time decide whether 〈 f , φ(x)〉 = 〈g, φ(x)〉 and x ∈ SOL(A∗(f)).
The hardness part is completely analogous to the proof of Theorem 15 except that we

define f ∈ {0, 1}T by ft = 1, t ∈ T , so B(f) = |C |. Clearly, f is element-wise greater or
equal to g, so it is a super-reparametrization. Moreover, |C | = maxx 〈g, φ(x)〉 if and only if
SOL(A) �= ∅, so f is optimal for (19) if and only if SOL(A) �= ∅. �

Recall that in formula (27), the number δ had the concrete value given by Theorem 4.
However, sometimes the value of δ can be decreased while (27) still remains to be an R-
deactivating direction for A. Finding a small such δ is desirable because then (27) results in
smaller objective values 〈d, φ(x)〉, as explained in Section 4.1.1. Unfortunately, finding the
least value of δ is likely intractable:

Theorem 16 The following problem isNP-complete:Given δ ∈ Q and R ⊆ A ⊆ T satisfying
SOL(A) = SOL(A − R), decide whether vector d given by (27) is not an R-deactivating
direction for A.

Proof Membership in NP is analogous to Theorem 15. Since conditions (a) and (b) from
Definition 1 are satisfied, the question boils down to deciding whether d ∈ M∗. This cannot
be reduced to the case in Corollary 2 because d in (27) has a special form.

To show hardness, we proceed by reduction from the 3-coloring problem [49, 63]: given
a graph G∗ = (V ∗, E∗), decide whether it is 3-colorable. Let G = (V ,C) be the graph sum
(also known as the disjoint union of graphs) of G∗ and K4 [49, §8.1.2]. K4 is the complete
graph with 4 vertices. Informally, G is the graph obtained from G∗ by adding 4 new vertices
and including an edge between each pair of these new vertices.

Let CSP A have the structure (D, V ,C) where |D| = 3 and

A = {({i, j}, (ki , k j)) | {i, j} ∈ C, k ∈ D{i, j}, ki �= k j }. (45)

Hence, any x ∈ DV can be interpreted as an assignment of colors to the nodes of G and
x ∈ SOL(A) if and only if x is a 3-coloring of G. Since G contains K4 as its subgraph, it
is not 3-colorable and A is unsatisfiable. Hence, setting R = A satisfies SOL(A − R) =
SOL(∅) = ∅ = SOL(A).

For the purpose of our reduction, let us define δ = (|C | − 2)/2 > 0. We will show that
for such a setting, d is not an R-deactivating direction for A if and only if G∗ is 3-colorable.

Plugging the above-defined sets A and R into the definition of d in (27) yields

〈d, φ(x)〉 =
∑

{i, j}∈C
xi �=x j

(−1) +
∑

{i, j}∈C
xi=x j

δ = δ(|C | − COL(x)) − COL(x) (46)

where COL(x) = |{{i, j} ∈ C | xi �= x j }| is the number of edges in G whose adjacent
vertices have different colors in assignment x ∈ DV .

If G∗ is 3-colorable, then there is x ∈ DV such that COL(x) = |C | − 1. In other words,
only for a single edge in C − E∗ (i.e., edge of graph K4), the adjacent vertices are assigned
the same color, so 〈d, φ(x)〉 = −|C |/2 < 0 by (46) and definition of δ. Hence, d is not an
R-deactivating direction for A.

For the other case, if G∗ is not 3-colorable, then for any x ∈ DV , COL(x) ≤ |C |−2. The
reason is that for at least one edge in K4 and at least one edge inG∗, the adjacent vertices will
be assigned the same color in any assignment. By substituting the value of δ and a simple
manipulation of (46), one obtains

〈d, φ(x)〉 = δ|C | − (δ + 1)COL(x) = |C | (|C | − 2 − COL(x)) /2 ≥ 0 (47)

123

312 Constraints (2023) 28:277–319

where the term in brackets is non-negative due to COL(x) ≤ |C | − 2 for any x ∈ DV . So,
d is an R-deactivating direction for A. �

In connection to Section 5.1, a number of decision problems concerning the minimal CSP
have been also proved hard. For recent results, see [64, 65].

7 Summary and discussion

We have proposed a method to compute upper bounds on the (maximization version of)
WCSP. The WCSP is formulated as a linear program with an exponential number of con-
straints, whose feasible solutions are super-reparametrizations of the input WCSP instance
(i.e., WCSP instances with the same structure and greater or equal objective values). When-
ever the CSP formed by the active (i.e., maximal in their weight functions) tuples of a feasible
WCSP instance is unsatisfiable, there exists an improving direction (in fact, a certificate of
unsatisfiability of this CSP) for the linear program. As this approach provides only a subset
of all possible improving directions, it can be seen as a local search. We showed how these
improving directions can be generated by constraint propagation (or, more generally, by other
methods to prove unsatisfiability of a CSP). We showed that super-reparametrizations are
closely related to the dual cone to the well-known marginal polytope.

Special cases of our approach are the VAC / Augmenting DAG algorithm [2, 6, 16],
which uses arc consistency, and the algorithm in [25], which uses cycle consistency. We have
implemented the approach for singleton arc consistency, resulting in VSAC-SR algorithm.
When compared to existing soft local consistency methods on a public dataset, VSAC-SR
provides comparable or better bounds for many instances. Although the runtimes are higher
than those of the simpler techniques, such as EDAC or VAC, one can control different trade-
offs between bound quality and runtime by stopping the method prematurely, e.g., when the
step size becomes small or terminating already with a greater value of θ (see Footnote 19).

The approach in general requires storing all theweights of the super-reparametrizedWCSP
instance. This may be a drawback when the domains are large and/or the weight functions
are not given explicitly as a table of values but rather by an algorithm (oracle).

We expect our improved bounds to be useful when solving practical WCSP instances.
Applications may include, e.g., using the method in preprocessing, pruning the search space
during branch-and-bound search, providing tighter optimality gaps for solutions proposed by
heuristic approaches, or generating high-quality proposals for solutions, as in [25]. However,
we have done no experiments with this, so it is open whether the tighter bounds would
outweigh the higher complexity of the algorithm. Due to the many options in which the
method can be used, we leave this for future research. In addition, our approach can be also
useful to solve more WCSP instances even without search (similarly, as the VAC algorithm
solves all supermodularWCSPs without search) or, given a suitable primal heuristic, to solve
WCSP instances approximately.

The approach can be straightforwardly extended to WCSPs with different domain sizes26

and some weights equal to minus infinity (i.e., some constraints being hard). Of course,
further experiments would be needed to evaluate the quality of the bounds if infinite weights
are allowed. The WCSP framework also usually assumes a pre-defined specific finite bound
that is updated during branch-and-bound [32] – although the presented pseudocode does not
support this, it is not difficult to extend it in this way.

26 In fact, our implementation already supports different domain sizes. We did not present our theoretical
results for this generalized setting only to simplify notation.

123

Constraints (2023) 28:277–319 313

Finally, we presented a theoretical analysis of the concept of super-reparametrizations of
WCSPs, describing the properties of optimal super-reparametrizations and characterizing the
set of active-tuple CSPs induced by different optimal super-reparametrizations. For example,
even an optimal super-reparametrizationmay change the set of optimal assignments, as shown
in Section 5.2. Additionally, we have shown that general (i.e., possibly non-optimal) super-
reparametrizations are only weakly related to the original WCSP instance.

Acknowledgements TomášDlask and TomášWerner were supported by the Czech Science Foundation (grant
19-09967S) and the OP VVV project CZ.02.1.01/0.0/0.0/16_019/0000765. Tomáš Dlask was also supported
by the Grant Agency of the Czech Technical University in Prague (grants SGS19/170/OHK3/3T/13 and
SGS22/061/OHK3/1T/13). Simon de Givry was supported by the French Agence nationale de la Recherche
(ANR-19-P3IA-0004 ANITI).

Funding Open access publishing supported by the National Technical Library in Prague.

Declarations

Conflicts of interest The authors have no competing interests to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix: Example: EDAC, VAC, and VSAC

In this section, we present an example that shows how EDAC, VAC, and VSAC can be
gradually enforced in a WCSP. As in [6, 14], we restrict this section to binary WCSPs and
assume that {i} ∈ C for each i ∈ V . Recall that VAC and VSAC were formally defined
already in Remark 6: a WCSP f ∈ R

T is virtual �-consistent if A∗(f) has a non-empty
�-consistency closure. Now, we proceed to define EDAC in our formalism. For this purpose,
let E = {S ∈ C | |S| = 2} be the set of binary constraint scopes (as in Section 4.4 and
Example 4) and Ni = { j ∈ V | {i, j} ∈ E} be the set of neighbors of node i in the
undirected graph (V , E).

Definition 2 [6, 14] Let A ⊆ T , {i, j} ∈ E , and ki ∈ D. The tuple ({i}, ki) is simply
supported by j in A if ∃k j ∈ D such that ({i, j}, (ki , k j)) ∈ A. The tuple ({i}, ki) is fully
supported by j in A if ∃k j ∈ D such that ({i, j}, (ki , k j)) ∈ A and ({ j}, k j) ∈ A.

Definition 3 [6, 14] Let g ∈ R
T be a binary WCSP and � be a total order on its set of vari-

ables V . WCSP g is Existential Directional Arc Consistent (EDAC) w.r.t. � if the following
conditions hold:

• ∀i ∈ V ∀k ∈ D ∀ j ∈ Ni : i � j �⇒ ({i}, k) is fully supported by j in A∗(g),
• ∀i ∈ V ∀k ∈ D ∀ j ∈ Ni : j � i �⇒ ({i}, k) is simply supported by j in A∗(g),
• ∀i ∈ V ∃k ∈ D: ({i}, k) ∈ A∗(g) and ∀ j ∈ Ni : ({i}, k) is fully supported by j in A∗(g).

123

http://creativecommons.org/licenses/by/4.0/

314 Constraints (2023) 28:277–319

Remark 8 The notions of Definition 3 correspond to the notions in [6, 14] but they are tailored
to our formalism. The first difference is that we do not consider infinite weights (i.e., hard
constraints), which simplifies some conditions in the definition. The second difference is that
the ‘baseline’ for a weight gt , t ∈ TS is neither⊥ nor 0, but rather maxt ′∈TS gt ′ . Consequently,
we require gt = maxt ′∈TS gt ′ (i.e., t ∈ A∗(g)) in the definitions instead of gt = 0.

Remark 9 Let us also comment on the individual conditions inDefinition 3. Thefirst condition
is known as Directional Arc Consistency w.r.t. � [6, 14]. The first and second condition
together are known as Full Directional Arc Consistency w.r.t. � [6, 14]. Finally, the third
condition is Existential Arc Consistency [6, 14].

We now proceed to show our example where EDAC, VAC, and VSAC will be gradually
enforced. The initialWCSP f 1 is depicted in Fig. 7a. The structure of thisWCSP is (D, V ,C)

where D = {a,b}, V = {1, 2, 3}, and C = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}}. The names
of the variables are indicated in the figures. To simplify the figures throughout this example,
we do not state the names of the values in them – the upper value is a and the lower value is b.
The optimal objective value ofWCSP f 1 is 43, which is attained, e.g., by the assignment x =
(a, a, a).

WCSP f 1 is not EDAC (w.r.t. the natural ordering by ≤) because the tuple ({1},b) is
not fully supported by variable 2. To make WCSP f 1 EDAC, it is sufficient to shift weight
from the unary tuple ({2}, a) to the binary weight function with scope {1, 2}, which results in
WCSP f 2 depicted in Fig. 7b. WCSP f 2 is a reparametrization of f 1 due to f 2 − f 1 ∈ M⊥
(depicted in Fig. 7c).

WCSP f 2 is EDAC w.r.t. ≤ but it is not VAC because the AC closure of A∗(f 2) is empty.
To see that the AC closure is empty, we can follow the propagations that are depicted in
Fig. 7d. The arrows point from the cause of forbidding a tuple to the newly forbidden tuple.
First, we can forbid the tuple ({1, 2}, (a, a)) because the tuple ({1}, a) is forbidden. Second,
we can forbid the tuple ({2}, a) because both tuples ({1, 2}, (a, a)) and ({1, 2}, (b, a)) are
forbidden. Next, we gradually forbid ({2, 3}, (a, a)), ({3}, a), ({1, 3}, (a,b)), and ({3},b).
This leads to domain wipe-out in variable 3. By shifting the weights against the direction of
the arrows (as depicted in Fig. 7d), we make this WCSP VAC. This yields the WCSP f 3 in
Fig. 7e which is a reparametrization of f 2. For clarity, we also show how the weights were
transformed in Fig. 7f.

WCSP f 3 is VAC and even OSAC, so the bound B(f 3) cannot be improved by
reparametrizations (without introducing a ternary weight function with scope {1, 2, 3}).
WCSP f 3 is however not VSAC because it has empty SAC closure. Thus, A∗(f 3) is unsat-
isfiable and we are able to construct a super-reparametrization of WCSP f 3 with a better
bound (recall Theorem 3 and Section 4.1.2). We show next the details of the construction,
following our results from Sections 4.2, 4.3, and 4.4.

Figure 8a shows how arc consistency is enforced in the CSP A∗(f 3)|x1=a and the nota-
tion is analogous to Fig. 7d. In detail, we gradually forbid tuples ({3}, a), ({2, 3}, (a, a)),
({2}, a), and finally ({2},b), which leads to domain wipe-out in variable 2. Conse-
quently, the AC closure of A∗(f 3)|x1=a is empty. To derive this, it suffices that the tuples
P = {({1, 3}, (a, a)), ({2, 3}, (a,b)), ({1, 2}, (a,b))} are forbidden in A∗(f 3). Applying
Theorem 4 with A = T − P ⊇ A∗(f 3) and R = {({1}, a)} results in {({1}, a)}-
deactivating direction d for A∗(f 3) that is shown in Fig. 8b. Analogously, we can compute a
{({1},b)}-deactivating direction d ′ for A∗(f 3) (not shown). By summing these deactivating
directions together (i.e., using Theorem 6 which in this case yields δ = 1), we obtain a
{({1}, a), ({1},b)}-deactivating direction d ′′ = d + d ′ for A∗(f 3) that certifies unsatisfia-

123

Constraints (2023) 28:277–319 315

Fig. 7 Enforcing EDAC and VAC in a WCSP via reparametrizations

123

316 Constraints (2023) 28:277–319

Fig. 8 Enforcing VSAC via super-reparametrizations

123

Constraints (2023) 28:277–319 317

bility of A∗(f 3). By Theorem 7, we compute the step size α = min{β, γ } = 4 and obtain
WCSP f 4 = f 3 + αd ′′ which is shown in Fig. 8d and is VSAC.

References

1. Schlesinger, M. (1976). Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh
(Syntactic analysis of two-dimensional visual signals in noisy conditions). Kibernetika, 4(113–130), 2.

2. Werner, T. (2007). A linear programming approach to max-sum problem: A review. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(7), 1165–1179.

3. Wainwright, M. J., & Jordan, M. I. (2008). Graphical Models, Exponential Families, and Variational
Inference. Foundations and Trends in Machine Learning, 1(1–2), 1–305.

4. Živný, S. (2012). The Complexity of Valued Constraint Satisfaction Problems. Cognitive Technologies:
Springer.

5. Savchynskyy, B. (2019). Discrete graphical models - an optimization perspective.Foundations and Trends
in Computer Graphics and Vision, 11(3–4), 160–429.

6. Cooper, M. C., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., & Werner, T. (2010). Soft arc consis-
tency revisited. Artificial Intelligence, 174(7–8), 449–478.

7. Kolmogorov, V. (2006). Convergent tree-reweighted message passing for energy minimization. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1568–1583.

8. Globerson, A., Jaakkola, T.S. (2008). Fixing max-product: Convergent message passing algorithms for
MAP LP-relaxations. In Advances in neural information processing systems (pp. 553–560)

9. Tourani, S., Shekhovtsov, A., Rother, C., Savchynskyy, B. (2018). MPLP++: Fast, parallel dual block-
coordinate ascent for dense graphical models. In Proceedings of the European conference on computer
vision (pp. 251–267)

10. Tourani, S., Shekhovtsov, A., Rother, C., Savchynskyy, B. (2020) Taxonomy of dual block-coordinate
ascent methods for discrete energy minimization. In International conference on artificial intelligence
and statistics (pp. 2775–2785). PMLR

11. Werner, T. (2010). Revisiting the linear programming relaxation approach to gibbs energy minimization
and weighted constraint satisfaction. IEEE Transactions on Pattern Analysis and Machine Intelligence,
32(8), 1474–1488.

12. Kolmogorov,V. (2014).Anew look at reweightedmessagepassing. IEEETransactions onPatternAnalysis
and Machine Intelligence, 37(5), 919–930.

13. Werner, T., Průša, D., Dlask, T. (2020). Relative interior rule in block-coordinate descent. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7559–7567)

14. de Givry, S., Heras, F., Zytnicki, M., Larrosa, J. (2005). Existential arc consistency: Getting closer to full
arc consistency in weighted CSPs. In IJCAI (vol. 5, pp. 84–89)

15. Cooper, M.C., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M. (2008). Virtual arc consistency for
weighted CSP. In Proceedings of the 22nd AAAI conference on artificial intelligence (pp. 253–258)

16. Koval, V. K., & Schlesinger, M. I. (1976). Dvumernoe programmirovanie v zadachakh analiza izo-
brazheniy (Two-dimensional Programming in ImageAnalysis Problems).Automatics and Telemechanics,
8, 149–168. In Russian.

17. Werner, T. (2005). A Linear ProgrammingApproach toMax-sumProblem: AReview. Center forMachine
Perception, Czech Technical University. CTU-CMP-2005-25

18. Cooper, M.C., de Givry, S., Schiex, T. (2007). Optimal soft arc consistency. In Proceedings of the 20th
international joint conference on artifical intelligence (vol. 7, pp. 68–73)

19. Průša, D., & Werner, T. (2015). Universality of the Local Marginal Polytope. IEEE Trans on Pattern
Analysis and Machine Intelligence, 37(4), 898–904.

20. Průša, D., & Werner, T. (2019). Solving LP relaxations of some NP-hard problems is as hard as solving
any linear program. SIAM J Optimization, 29(3), 1745–1771.

21. Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T., Weiss, Y. Tightening LP Relaxations for MAP using
Message Passing. Citeseer

22. Nguyen, H., Bessiere, C., de Givry, S., & Schiex, T. (2017). Triangle-based consistencies for cost function
networks. Constraints, 22(2), 230–264.

23. Batra, D., Nowozin, S., Kohli, P. (2011). Tighter relaxations forMAP-MRF inference: A local primal-dual
gap based separation algorithm. In Proceedings of the Fourteenth international conference on artificial
intelligence and statistics (pp. 146–154)

24. Thapper, J., Živný, S. (2015). Sherali-Adams relaxations for valued CSPs. In International colloquium
on automata, languages, and programming (pp. 1058–1069). Springer

123

318 Constraints (2023) 28:277–319

25. Komodakis, N., Paragios, N. (2008) Beyond loose LP-relaxations: OptimizingMRFs by repairing cycles.
In European conference on computer vision (pp. 806–820). Springer

26. Bessiere, C., & Debruyne, R. (2008). Theoretical analysis of singleton arc consistency and its extensions.
Artificial Intelligence, 172(1), 29–41.

27. Sontag, D., Jaakkola, T. (2009). Tree block coordinate descent for MAP in graphical models. In Artificial
intelligence and statistics (pp. 544–551)

28. Dlask, T., Werner, T., de Givry, S. (2021). Bounds on weighted CSPs using constraint propagation and
super-reparametrizations. In L.D.Michel, (Eds.) 27th international conference on principles and practice
of constraint programming (CP 2021). vol. 210 of Leibniz International Proceedings in Informatics
(LIPIcs) (pp. 23:1–23:18). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik

29. Thapper, J., & Živný, S. (2016). The complexity of finite-valued CSPs. Journal of the ACM (JACM),
63(4), 1–33.

30. Kolmogorov, V., Thapper, J., & Živný, S. (2015). The power of linear programming for general-valued
CSPs. SIAM Journal on Computing, 44(1), 1–36.

31. Kappes, J. H., Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., et al. (2015). A Com-
parative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems.
Intl. J. of Computer Vision, 115(2), 155–184.

32. Cooper, M.C., de Givry, S., Schiex, T. (2020) Valued Constraint Satisfaction Problems. In A guided tour
of artificial intelligence research (pp. 185–207). Springer

33. Zalinescu, C. (2002). Convex Analysis in General Vector Spaces. World Scientific.
34. Cooper, M. C. (2004). Cyclic consistency: a local reduction operation for binary valued constraints.

Artificial Intelligence, 155(1–2), 69–92.
35. Jahn, J., & Ha, T. X. D. (2011). New order relations in set optimization. Journal of Optimization Theory

and Applications, 148(2), 209–236.
36. Boyd, S., Vandenberghe. L. (2004) Convex optimization. Cambridge university press
37. Werner, T. (2015).Marginal consistency: upper-bounding partition functions over commutative semirings.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(7), 1455–1468.
38. Dlask, T., Werner, T. (2020). Bounding linear programs by constraint propagation: application to Max-

SAT. In International conference on principles and practice of constraint programming (pp. 177–193).
Springer

39. Grégoire, É., Mazure, B., Piette, C. (2007). MUST: Provide a finer-grained explanation of unsatisfiability.
In International conference on principles and practice of constraint programming (pp. 317–331). Springer

40. Grégoire, E., Mazure, B., & Piette, C. (2008). On finding minimally unsatisfiable cores of CSPs. Inter-
national Journal on Artificial Intelligence Tools, 17(04), 745–763.

41. Papadimitriou, C.H., Wolfe, D. (1985) The complexity of facets resolved. Cornell University
42. Freuder, E.C., Elfe, C.D. (1996) Neighborhood inverse consistency preprocessing. In AAAI/IAAI (Vol 1,

pp. 202–208)
43. Bessiere, C. (2006). Constraint propagation. In Handbook of constraint programming: Elsevier.
44. Bessiere, C., Cardon, S., Debruyne, R., & Lecoutre, C. (2011). Efficient algorithms for singleton arc

consistency. Constraints, 16(1), 25–53.
45. Dlask, T. (2018).Minimizing Convex Piecewise-Affine Functions by Local Consistency Techniques [Mas-

ter’s thesis]. Faculty of Electrical Engineering: Czech Technical University in Prague.
46. Larrosa, J., & Schiex, T. (2004). Solving weighted CSP by maintaining arc consistency. Artificial Intelli-

gence, 159(1–2), 1–26.
47. Ahuja, R.K., Magnanti, T.L., Orlin, J.B. (1993) Network flows: Theory, applications and algorithms
48. Dlask, T. (2022). Block-Coordinate Descent and Local Consistencies in Linear Programming [Disserta-

tion, available online: https://dspace.cvut.cz/handle/10467/102874?locale-attribute=en]. Czech Techni-
cal University in Prague, Faculty of Electrical Engineering;

49. Rosen, K. H., & Michaels, J. G. (2000). Handbook of Discrete and Combinatorial Mathematics. Boca
Raton, CRC Press, 1232, 2000.

50. Debruyne, R., Bessiere, C. (1997). Some practicable filtering techniques for the constraint satisfaction
problem. In Proceedings of IJCAI’97 (pp. 412–417)

51. Available online.: toulbar2. https://miat.inrae.fr/toulbar2. Accessed 12 Jan 2021
52. Available online.: Cost Function Library benchmark. https://forgemia.inra.fr/thomas.schiex/cost-

function-library, commit 356bbb85. Accessed 12 Jan 2021
53. Available online.: Spin Glass Server. https://software.cs.uni-koeln.de/spinglass, recently moved to http://

spinglass.uni-bonn.de/. Accessed 12 Jan 2023
54. Cooper, M. C., de Roquemaurel, M., & Régnier, P. (2011). A weighted CSP approach to cost-optimal

planning. AI Communications, 24(1), 1–29.

123

https://dspace.cvut.cz/handle/10467/102874?locale-attribute=en
https://miat.inrae.fr/toulbar2
https://forgemia.inra.fr/thomas.schiex/cost-function-library
https://forgemia.inra.fr/thomas.schiex/cost-function-library
https://software.cs.uni-koeln.de/spinglass
http://spinglass.uni-bonn.de/
http://spinglass.uni-bonn.de/

Constraints (2023) 28:277–319 319

55. Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A., Gould, N., et al. (2019). QPLIB: a library
of quadratic programming instances. Mathematical Programming Computation, 11(2), 237–265.

56. Montanari, U. (1974). Networks of constraints: Fundamental properties and applications to picture pro-
cessing. Information Sciences, 7, 95–132.

57. Dechter, R., Cohen, D., et al. (2003). Constraint processing. Morgan Kaufmann.
58. Astesana, J., Cosserat, L., Fargier, H. (2010) Constraint-based vehicle configuration: A case study. In

2010 22nd IEEE international conference on tools with artificial intelligence (vol 1, pp 68–75)
59. Bessiere, C., Fargier, H., Lecoutre, C. (2013). Global inverse consistency for interactive constraint sat-

isfaction. In Schulte, C. (Es), Principles and practice of constraint programming (pp. 159–174). Berlin,
Springer

60. Davey, B. A., & Priestley, H. A. (2002). Introduction to lattices and order. Cambridge University Press.
61. Blyth, T. S. (2005). Lattices and Ordered Algebraic Structures. Springer, London: Universitext.
62. Alsuwaiyel, M. (1999). Algorithms: Design Techniques and Analysis. World Scientific
63. Karp, RM. (1972). Reducibility among combinatorial problems. InComplexity of computer computations

(pp. 85–103). Springer
64. Gottlob, G. (2012). On minimal constraint networks. Artificial Intelligence, 191, 42–60.
65. Escamocher, G., & O’Sullivan, B. (2018). Pushing the frontier of minimality. Theoretical Computer

Science, 745, 172–201.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Super-reparametrizations of weighted CSPs: properties and optimization perspective
	Abstract
	1 Introduction
	2 Notation
	3 Bounding the WCSP optimal value
	3.1 Minimal upper bound over reparametrizations
	3.2 Minimal upper bound over super-reparametrizations

	4 Iterative method to improve the bound by super-reparametrizations
	4.1 Outline of the method
	4.1.1 Properties of the method
	4.1.2 Employing constraint propagation
	4.1.3 Relation to existing approaches

	4.2 Certificates of unsatisfiability of CSP
	4.2.1 Deactivating directions
	4.2.2 Composing deactivating directions

	4.3 Line search
	4.4 Final algorithm
	4.5 Experiments

	5 Additional properties of super-reparametrizations
	5.1 Minimal CSP
	5.2 Optimal assignments from optimal super-reparametrizations
	5.3 Properties of general super-reparametrizations

	6 Hardness remarks
	7 Summary and discussion
	Acknowledgements
	Appendix: Example: EDAC, VAC, and VSAC
	References

