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Abstract

There is increasing evidence to suggest that soil nutrient availability can limit

the carbon sink capacity of forests, a particularly relevant issue considering

today’s changing climate. This question is especially important in the tropics,

where most part of the Earth’s plant biomass is stored. To assess whether

tropical forest growth is limited by soil nutrients and to explore N and P

limitations, we analyzed stem growth and foliar elemental composition of the

five stem widest trees per plot at two sites in French Guiana after 3 years of

nitrogen (N), phosphorus (P), and N + P addition. We also compared the

results between potential N-fixer and non-N-fixer species. We found a positive

effect of N fertilization on stem growth and foliar N, as well as a positive effect

of P fertilization on stem growth, foliar N, and foliar P. Potential N-fixing

species had greater stem growth, greater foliar N, and greater foliar P

concentrations than non-N-fixers. In terms of growth, there was a negative

interaction between N-fixer status, N + P, and P fertilization, but no

interaction with N fertilization. Because N-fixing plants do not show to be

completely N saturated, we do not anticipate N providing from N-fixing

plants would supply non-N-fixers. Although the soil-age hypothesis only antic-

ipates P limitation in highly weathered systems, our results for stem growth

and foliar elemental composition indicate the existence of considerable N and

P co-limitation, which is alleviated in N-fixing plants. The evidence suggests

that certain mechanisms invest in N to obtain the scarce P through soil

phosphatases, which potentially contributes to the N limitation detected by

this study.
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INTRODUCTION

Nitrogen (N) and phosphorus (P) are two essential
macronutrients that are fundamental in molecules and in
the process underlying CO2 fixation. Thus, they are key
in the most basic plant functions such as growth and
reproduction (Ellsworth et al., 2022; Schlesinger, 1997;
Sterner & Elser, 2002). Accordingly, N and P are essential
for plant growth and as such exercise a vital control of
the carbon (C) sink capacity of vegetation. Therefore,
limitations on their availability could constrain the
capacity of plants to sequester C (Fern�andez-Martínez
et al., 2014; Hungate et al., 2003; Terrer et al., 2019; Vicca
et al., 2012; Wang et al., 2017; Wright, 2019). The foliar
elemental composition provides important information
about the nutrient status of plants (Sterner & Elser, 2002)
and, along with plant growth capacity, is widely used to
determine nutrient limitation before and after fertiliza-
tion treatments (Elser et al., 2010; Ostertag & DiManno,
2016). Some estimates based on foliar nutrient resorption
suggest that, globally, nearly 18% of land plants are
already limited by N, 43% are limited by P, and 39% could
be co-limited by both these elements (Du et al., 2020). As
well, the decrease in foliar N and P concentrations in
European forests during the past 30 years has been
highlighted as a warning about the potential nutrient
limitations in European forests (Penuelas et al., 2020).

Of all biomes, tropical, and subtropical forests have
the greatest amounts of biomass C, estimated at around
550 Gt of C (Trumper et al., 2009). Yet, the greatest
uncertainties in the ecosystem models forecasting
increases in CO2 occur with these forest types (Fleischer
et al., 2019; Koch et al., 2021; Pan et al., 2011), most prob-
ably due to their great diversity and the scarcity of empir-
ical data. Most tropical forests grow on highly weathered
acid soils that have developed on old parent material,
under warm temperatures, and with high rainfall, which
make them very prone to nutrient depletion (Morley,
2000; Quesada et al., 2011; Vitousek et al., 2010). This
can jeopardize their potential as C sinks in light of the
increase in atmospheric CO2 (Fleischer et al., 2019;
Wieder et al., 2015).

Generally, most P initial supply originates from the
weathering of parent material, which is only replenished at
a geological scale, yet in Guiana Shield there is also P depo-
sition originating from Saharan dust (Prospero et al., 2020).
Conversely, N is continuously supplied via atmospheric
deposition and biological fixation in soils by N-fixing bacte-
ria and is known to accumulate in the biomass (Houlton
et al., 2018; Vitousek, 1984; Walker & Syers, 1976). For
example, in French Guiana, N-fixation processes can
result in the addition of around 18 kgN−1 ha−1 year−1

on unmanaged land (Reis et al., 2020), of which

13 kgN−1 ha−1 year−1 are calculated to originate from N
deposition (Van Langenhove, Verryckt, et al., 2020). Given
the fact that many tropical forests grow on very old soils, N
is expected to accumulate as P is depleted during soil devel-
opment (Walker & Syers, 1976). Thus, tropical forests are
assumed to be P-, rather than N limited (Du et al., 2020;
Vallicrosa et al., 2022). Although some nutrient manipula-
tion experiments in tropical forests support the P limitation
theory (Lugli et al., 2021; Mao et al., 2021), others are
inconclusive about N and P limitation levels
(Alvarez-Clare & Mack, 2015; Mayor et al., 2014; Tanner
et al., 1990), or even demonstrate that both N and P limita-
tions exist in tropical forests (Wright, 2019; Wright et al.,
2018), most probably due to the variability across tropical
forests. In general, P limitation is commonly observed as a
factor in the tropics, while the role of N limitation and its
interaction with P limitation still needs to be clarified.

Due to the influence of high temperatures and precipi-
tation, tropical evergreen forests are estimated to have the
highest levels of N-fixing on the Earth’s surface (Cleveland
et al., 1999). Aside from the free-living soil N-fixers, species
from the Fabaceae, Rosaceae, Cucurbitaceae, and Fagaceae
families are known to be associated with root N-fixing
microorganisms (Tedersoo et al., 2018) that also contribute
to the N-fixing process. The species associated with
N-fixing microorganisms are capable of directly fixing N
in the plant roots, which is thought to facilitate N acquisi-
tion and plant development in N-limiting environments
(Baribault et al., 2012; Poorter, 1993; Tedersoo et al., 2018).
Evidence from lowland tropical nutrient-poor forests sug-
gest that N-fixer-associated species had higher growth rates
as seedlings than non-N-fixing species (Nasto et al., 2019).
Nonetheless, there is still a poor understanding about how
far this N supply extends; whether this N fixation is provid-
ing only to the symbiont organisms or if they can reach
other species in the ecosystem such as the non-N-fixers
(Lai et al., 2018).

Acid P-depleted soils are consequently orthophos-
phate depleted, which is the most common P form to be
absorbed by plants (Raven, 2015; Treseder & Vitousek,
2001). Consequently, the mineralization of organic P may
be the most important source of P in these tropical envi-
ronments (Vitousek & Sanford, 1986), together with the
resorption of P by leaves and litter before it is leached
from soils (Grau et al., 2017; Urbina et al., 2021).
Phosphatases are enzymes that are responsible for P min-
eralization and phosphatase activity plays a crucial role
in P nutrient dynamics and availability in P-depleted
soils. Conversely, the creation of these enzymes is
extremely N costly, and is directly linked to N availability
(Margalef et al., 2017), which thus encourages nutrient
trading of N to P in soil phosphatases (Chen et al., 2020;
Reichert et al., 2022). Nevertheless, the N cost in tropical
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ecosystems for alleviating P limitation remains
undetermined.

The benchmarks for this study were as follows:

Hypothesis 1. We assumed our sites to be P
limited, as anticipated by the soil-age hypoth-
esis, due to the progressive P depletion of the
acid parental material. As well, we expected
that the high levels of N fixation in tropical
forests would provide enough N in the ecosys-
tem, reaching N-fixers and non-N-fixer spe-
cies, precluding any N limitations.

Hypothesis 2. We assumed that N-fixers
would not have any differential responses to
fertilization because trees are not expected to
be N limited or P limited.

We assessed the effects of 3 years of fertilization (N, P,
and N + P) on tropical tree stem growth and foliar nutri-
ent composition using data from biennial censuses of
tree growth collected in 2015–2020 and in green leaves
collected in 2015 to 2019, comparing between N-fixer and
non-N-fixers species.

MATERIALS AND METHODS

Study site

The study was conducted in two forest sites in French
Guiana, Paracou, and Nouragues, both dominated by pri-
mary lowland rainforest. Paracou is located 15 km from
the coast (5�160 N, 52�550 W), while Nouragues is located
further inland (4�050 N, 52�410 W). The French Guianese
climate is characterized by a wet and a dry season. This
region receives heavy rains from December to July but
also has a dry season, typically characterized by less than
100 mm rainfall per month, from August to November
(Aguilos et al., 2018). The soils at both sites are classified
as Oxisols according to the USDA soil classification
(Anjos et al., 2015), with pH values between 3.7 and 4.5.
Its Precambrian geological substrate is particularly low in
total P content (Van Langenhove et al., 2021) compared
with the generally younger, nutrient-richer soils of west-
ern Amazonia (Grau et al., 2017). Both study sites receive
similar annual rainfall: mean annual rainfall is 3100 mm
in Paracou (Aguilos et al., 2019; 2004–2015 period) and
2990 mm in Nouragues (Bongers et al., 2001). The mean
annual air temperature is near 26�C for both sites
(Bongers et al., 2001; Gourlet-Fleury et al., 2004). Soils at
Paracou range from loamy sand to sandy loam, while
soils at Nouragues contain more clay and span the range

of sandy loam to silty clay (Van Langenhove et al., 2021).
At both sites, tree diversity is ~200 species ha−1, the most
common families were the Lecythidaceae, Fabaceae,
Sapotaceae, and Chrysobalanaceae. Trees in Paracou are
slightly smaller than in Nouragues, with an average can-
opy height of 30–35 m and emergent trees up to 45 m
high (Gourlet-Fleury et al., 2004), while in Nouragues the
average canopy height is 40–45 m and emergent trees are
up to 60 m high (Ho Tong Minh et al., 2016).

Field experiment

Twelve 50 × 50 m plots were established in 2015, grouped
in three blocks of four plots along a toposequence at both
sites, Paracou and Nouragues, giving a total of 24 plots. The
toposequence included plots at the top of the hill (Top
plots) on the slope of the hill (Slope plots), and at the bot-
tom of the hill (Bottom plots) (Figure 1). The valley bottoms
and hilltops differ by 20–50 m in elevation over horizontal
distances of 200–400 m (Van Langenhove et al., 2019), with
maximum altitudes of 70 and 120 m for Paracou and
Nouragues, respectively (Courtois et al., 2018). The nutrient
addition experiment started in October 2016. In each group
of four plots, one remained unfertilized as a control, and
the three other plots were N, P, or N + P enriched. The fer-
tilizer was applied twice per year by hand using a commer-
cial urea ((NH2)2CO) and/or triple superphosphate (Ca
(H2PO4)2) at a rate of 125 kg N ha−1 year−1 (N treatment),
50 kg P ha−1 year−1 (P treatment), or both amounts
together (N + P treatment). These amounts were fixed in
light of the ongoing experiments in Barro Colorado Nature
Monument in Panama, begun in 1998 (Wright et al., 2011),
and the Amazon Fertilization Experiment (AFEX) near
Manaus in Brazil, initiated in 2017 (Lugli et al., 2021), to
enable future comparison of our results.

Leaf sampling

Leaves were collected twice after fertilization in 2019,
during the rainy season from May to the end of June, and
during the dry season from the beginning of October
until late November. To avoid border effects of the nutri-
ent addition, sampling was done within the central
20 × 20 m area, within the larger 50 × 50 m plots. In
each plot, the five biggest trees in diameter were selected,
for canopy leaf collection. Green leaves were collected
(between ~3–15, depending on the leaf size) both from
the top sunlit canopy and the low shaded canopy. In
total, we sampled 60 trees per site, which gave a total of
~480 samples (i.e., two sites, two seasons, and two canopy
levels). Five trees could not be sampled due to their death
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during the experiment or leaf senescence during the
sampling campaign. The leaves were stored in paper
envelopes and immediately frozen in liquid N in the field,
and subsequently lyophilized in the laboratory (Christ
Freeze Dryer ALPHA 1-2 LDplus, Osterode am Harz,
Germany). In total, 65 different tree species were identi-
fied during the sampling.

Growth measurement

Manual band dendrometers EMS DB20 and manual
dendrometers D1 were installed at Nouragues and
Paracou, respectively, on all trunks over 5 cm in diameter
at breast height (dbh) in each plot in October 2015.
Periodic readings were performed every 2–3 months in
Paracou and every 6 months in Nouragues. The final
reading at Paracou was taken in June 2020 and at
Nouragues in September 2019.

Chemical analysis

The leaf samples were ground with a ball mill (Retsch,
model MM400, Restch GmbH) and weighed with an
AB204 Mettler Toledo (Mettler Toledo) balance. Total
leaf C and N concentrations (%) were determined by gas
chromatography using an elemental analyzer interfaced
with an isotope ratio mass spectrometer (PDZ Europa

ANCA-GSL and PDZ Europa 20–20; Sercon Ltd.) at the
Stable Isotope Facility of UC Davis. We used 4.5 mg of
pulverized dry sample for total C and N (%) analyses, cal-
ibrated with reference materials. Total leaf P concentra-
tions were determined by inductively coupled plasma
(ICP) mass spectrometry (ICP-MS Agilent 7500 CE) using
250 mg of leaf material digested in 5 mL of concentrated
HNO3 (Milestone Ultrawave digestor; Sorisole, BG, Italy)
following the NIST 1573 (tomato leaves) protocol.

Calculations

To determine whether N, P, or N + P fertilization
affected stem growth over time, we calculated the mean
annual dbh as:

Growthstem ¼ DBHt2 −DBHt1ð Þ=t2− t1,

where DBHt2 and DBHt1 were the values measured
values during the final (2020 for Paracou and 2019 for
Nouragues) and first (2015) dendrometer readings,
respectively. 8.75% of the data were slightly negative
values, which were reclassified and considered to be
0. Three outliers were excluded due to high values.

Tree species were classified as either N-fixers or
non-N-fixers following the classification provided by
Tedersoo et al. (2018). In the Nouragues and Paracou tree
growth database, 181 individuals of 26 tree species were

F I GURE 1 Adapted from Verryckt et al. (2022). Situational map: (A) northeastern part of South America; (B) northern French Guiana

with its main cities (circles), and the experimental sites of Paracou and Nouragues (squares); (C) the twelve 50 × 50 m plots of this study at

Nouragues–Inselberg, and (D) the twelve 50 × 50 m plots of this study at Paracou. Plots are marked by a letter describing the topography

(B = bottom, S = slope, T = top) and a number describing the nutrient addition treatment (1 = +N; 2 = +NP; 3 = +P; 4 = control). Yellow

boxes represent the long-term undisturbed permanent plots in place before our experiment began and used in our control plots.

4 of 12 VALLICROSA ET AL.
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categorized as potentially N-fixers, and 333 individuals of
128 species were categorized as non-N-fixers. In the foliar
elemental composition analysis, 36 individuals from eight
tree species were considered to belong to N-fixing species
and 79 individuals from 57 tree species to non-N-fixing
species.

Statistics analyses

Data analyses were conducted using glmmTMB R
(Brooks et al., 2017), lme4 (Bates et al., 2015) and
lmerTest (Kuznetsova et al., 2017) packages in R, with
ggplot (Wickham, 2016) and ggpubr used for visualization
(Kassambara, 2020).

We evaluated the effects of fertilization on tree
growth using generalized linear mixed models
(“glmmTMB” function) to model Growthstem as a func-
tion of treatment (N, P, N + P, or control), N-fixer status,
and their interaction as fixed effects, with topography
(Top, Slope or Bottom), and site (Paracou, Nouragues) as
crossed random effects (i.e., “(1jSite)”). The Tweedie fam-
ily linked to log distribution was used for null-inflated
exponential-shaped datasets.

We assessed whether fertilization affected the foliar
elemental composition in comparison with control plots
(2019 data) using mixed effect models (“lmer” function).

We modeled each foliar elemental composition
(in percentage of leaf dry weight) as a function of treat-
ment (N, P, or N + P, or control), N-fixer status, and their
interaction as fixed effects, with season (Wet, Dry), site,
and topography as random effects. We reported signifi-
cant results at p < 0.05 and log-transformed each element
concentration prior to model implementation to fulfill
normality requirements.

Given the high tree species diversity of the area most
species are not consistent in all plots, which could alter
the results of the analysis. To control the effect of species
diversity we are including an additional analysis consid-
ering the specie as a random factor in addition to site and
topography, which does not significantly vary the results
of previous analysis or its conclusions (Vallicrosa, 2023;
TS1.xlsx).

RESULTS

Growth

Fertilization with N, P, or N + P significantly stimulated
stem growth, 3.05, 3.88 and 4.01-fold, respectively, in
comparison with control plots (Figure 2A; Vallicrosa,
2023: TS2.xlsx). In all treatments, potential N-fixers had
greater growth than species not regarded as N-fixers

F I GURE 2 (A) Model estimates explaining stem growth between treatments. Red color stands for significant relationships and gray

color stands for a nonsignificant relationship. The vertical dashed line indicates no effect. Estimates below 1 indicate negative effects.

The numbers represent the estimated values and asterisks their significance. (B) Predicted stem growth values predicted for each group in

dbh relative growth. The summary represents the weighted means of each treatment; the dashed horizontal line represents the control

summary value.
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(Figure 2B). However, we noted a significant negative
interaction between N-fixers and P (0.42) and N + P
(0.31) fertilization (Figure 2A, Vallicrosa, 2023: TS2.xlsx)
and a close link between N-fixers and N fertilization
(p = 0.062; Figure 2A, Vallicrosa, 2023: TS2.xlsx).

Control plots had a yearly relative growth of 0.0049 cm,
while N-fertilized plots, N + P fertilized plots, and P
fertilized plots grew 0.0117, 0.0126, and 0.0145 cm, respec-
tively (Figure 2B, https://github.com/helenavallicrosa/FG_
leaves/TS3.xlsx). In control and N-fertilized plots, N-fixers
grew significantly more than non-N-fixers (0.0035 vs.
0.0092 cm and 0.0106 vs. 0.0141 cm, respectively).
Nevertheless, as anticipated by the significant negative
interaction between N-fixers and N + P, and N-fixers and
the P fertilization treatment, N-fixers grew less in N + P
fertilized plots and P fertilized plots (0.0135 vs. 0.0113 cm,
and 0.0139 and 0.0156 cm, respectively: Figure 2,
Vallicrosa, 2023: TS3.xlsx).

Leaf elemental composition

N and N + P addition plots showed significantly higher
leaf N content than control plots, with 1.44% in control
plots and 1.77% and 1.70% in N and N + P fertilized plots,
respectively. N-fixing species had also higher foliar N in
control plots than non-N-fixers, reaching 1.69% compared
to 1.34% in nonfixing species. Neither fertilization with P

nor the interactions between the treatments and the
N-fixers category significantly affected the amount of
foliar N (Figure 3, Vallicrosa, 2023: TS4.xlsx).

Leaf P content increased from 0.052% in controls to
0.056% in N, 0.071% in N + P, and 0.061% in P fertilized
plots. Interestingly, N-fixers had also had higher P con-
tent in their leaves, reaching levels of 0.066% compared
to X% in nonfixing species. The interaction between
N-fixers and fertilization treatments did not show any sig-
nificant relationships in the models describing leaf P con-
tent (Figure 4, Vallicrosa, 2023: TS4.xlsx).

The foliar N:P ratio was positively affected by N fertili-
zation, which increased from 27.73 in controls, to 31.47 in
N-fertilized plots, but was negatively affected by N + P and
P fertilization (23.86 and 23.42, respectively). In this case,
neither N-fixers nor their interactions with the different N,
P, and N + P treatments had any significant effects on the
foliar N:P ratio (Figure 5, Vallicrosa, 2023: TS4.xlsx).

DISCUSSION

Our results for stem growth and foliar elemental compo-
sition suggest a strong N and P co-limitation in the two
studied forests in French Guiana. This strong nutrient
limitation affected both N-fixing and non-N-fixing
trees. Nutrient limitation in terrestrial ecosystems refers
to a constraint on primary production or other ecosystem

F I GURE 3 (A) Model estimates explaining foliar nitrogen between treatments. Red color stands for significant relationships and gray

color stands for nonsignificant relationships. The vertical dashed line indicates no effect. Estimates below 0 indicate negative effects. The

numbers represent the estimated values and the asterisks their significance. (B) Foliar N % values are predicted for each group. The

summary represents for the weighted means of each treatment; the dashed horizontal line represents the control summary value.
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processes due to low rates of nutrient supply
(Chapin et al., 1986; Vitousek & Farrington, 1997) and
can often be quantified by an increase in growth (Eviner

et al., 2000; Sullivan et al., 2014) or by foliar nutrients
(Elser et al., 2010; Ostertag & DiManno, 2016) after
experimental nutrient additions. In our study, we

F I GURE 4 (A) Model estimates explaining foliar phosphorus between treatments. Red color stands for significant relationships and

gray color stands for nonsignificant relationships. The vertical dashed line indicates no effect. Estimates below 0 indicate negative effects.

The numbers represent the estimated values and the asterisks their significance. (B) Foliar P % values are predicted for each group. The

summary represents the weighted means of each treatment; the dashed horizontal line represents the control summary value.

F I GURE 5 (A) Model estimates explaining foliar nitrogen-to-phosphorus ratio between treatments. Red color stands for significant

relationships and gray stands for nonsignificant relationships. The vertical dashed line indicates no effect. Estimates below 0 indicate

negative effects. The numbers represent the estimated values and the asterisks their significance. (B) Foliar N:P values are predicted for each

group. The summary represents the weighted means of each treatment; the dashed horizontal line represents the control summary value.
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observed an increase in stem growth and foliar N when
N was added, as well as an increase in stem growth and
foliar P when P was added. Aside from the nutrient addi-
tions, the N-fixing tree species had higher levels of foliar
N and stem growth (Figures 2 and 3), which can be asso-
ciated with an increase in N acquisition due to its
plant-bacteria symbiosis (Nasto et al., 2019). On the other
hand, we found no significant interactions between
N-fixers and N fertilization in the N leaf content
(Figure 3), P (Figure 4), N:P (Figure 5) and stem growth
(Figure 2), which suggests that N fertilization equally
affected N-fixers and non-N-fixers equally. Yet, the inter-
action between N-fixers and stem growth was only
slightly significant (p = 0.06), so N limitation could be
slightly alleviated. We therefore conclude that, although
N-fixing plants do potentially have more access to N, they
may not reach the N saturation remaining N-limited, and
not be able to provide N to other non-N-fixing species in
our experimental sites in French Guiana.

This co-limitation of N and P on tree growth in tropi-
cal rainforests has also been detected by a long-term fer-
tilization experiment carried out in Panama, which
applied the same loads of N and P as our experiments in
French Guiana (Wright et al., 2011, 2018). As well, an
AFEX experiment carried out in the lowland tropical for-
ests of Manaus, Brazil that was fertilized with the same
levels of N and P showed strong limitations on leaf and
root productivity with P-only fertilization after 2 years of
fertilization (Cunha et al., 2022). A meta-analysis of
48 tropical lowland and montane forests located in the
Neotropics, Hawaii, and Southeast Asia highlights the
existence of generalized N and P limitations (Wright,
2019). Conversely, a fertilizing experiment conducted in
Africa showed N to be more relevant than P on stem
growth (Manu et al., 2022). The same pattern of
co-limitation has also often been commonly documented
in terrestrial, freshwater, and marine environments
(Elser et al., 2007).

The evidence of both N and P limitation in most of
the above-mentioned studies challenges the common
assumption of N saturation in the tropics (Houlton et al.,
2018; Vitousek, 1984; Walker & Syers, 1976). The soil-age
hypothesis suggests that the constant fixation of N in the
tropics results in N accumulation in soils and biomass,
making N available to be absorbed or recycled by plants
(Walker & Syers, 1976). Another theory proposing the
presence of intense leaching of N from the system has
often been used to argue for N sufficiency in the tropics.
This latter theory assumes that high N losses due to N
leaching indicate N saturation given that greater N
leaching is thought to occur in the tropics than in homol-
ogous systems at other latitudes (Brookshire et al., 2012;
Perakis & Hedin, 2002). In addition, the N:P ratio theory

also suggests a lack of N limitation in the tropics, where
leaf N:P levels of more than 20 are considered to corre-
spond to P-limited environments (Greenwood et al.,
2008; Güsewell, 2004). Our control plots had an N:P ratio
of 27.76 and so we suggest that there is a mismatch
between the assumptions made in previous studies
regarding N limitation and the results of several fertiliza-
tion experiments (including our study) conducted in cer-
tain tropical locations.

Interestingly, our study found greater leaf P in
N-fertilized plots (Figure 4) with no addition of
P. Similarly, species associated with N-fixing microorgan-
isms also showed higher foliar P than non-N-fixing spe-
cies (Figure 4). In addition, in N + P plots, foliar N:P
decreased, thereby suggesting that foliar P increased even
more than N. Therefore, our results suggest that the stud-
ied species possess a mechanism for investing part of the
provided N that enables them to increase their P acquisi-
tion. In turn, this investment of N alleviates P limitation
and prevents species from becoming N saturated.

Soil phosphatases N-rich enzymes released by both
plants and soil microorganisms mineralize P pools into
available forms (e.g., orthophosphates) (Margalef et al.,
2017; Vance et al., 2003). Due to its high N requirements,
soil phosphatase production can be N limited and is
therefore enhanced by N fertilization (Chen et al., 2020).
A rise in phosphatase activity could increase plant P
availability and P acquisition, thereby alleviating limita-
tions in nutrient-poor environments (Nasto et al., 2019).
Studies testing whether N alleviates P limitation due to
soil phosphatases offer inconclusive results (Lugli et al.,
2021), whereas studies embracing multiple tree species
were warranted (Batterman et al., 2013, 2018). In our
study, which included 65 different tree species in the
foliar elemental composition analysis, we found evidence
supporting the trading of N for P at the plot and commu-
nity levels. Accordingly, the trading of N for P seems to
be equally effective as well when N fixed by N-fixers is
used, deriving higher foliar P levels (Figure 4).
Furthermore, these results, as well as those showing an
increase in stem growth and foliar N, fit the theory that
N-fixers may have competitive advantages in
nutrient-limited environments (Nasto et al., 2017, 2019).

Tropical forests have some of the highest N-fixing
rates of all terrestrial ecosystem types (Cleveland et al.,
1999) and they have one of the highest abundances of
N-fixer trees in terms of basal area (Steidinger et al.,
2019). After fixation, N becomes available for acquisition
by biomass and when this biomass decomposes it is likely
to be leached out, which ensures that the tropics have
one of the highest rates of N leaching as well (Brookshire
et al., 2012). Van Langenhove, Janssens, et al. (2020)
compared the removal of N and P in the same French
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Guyana experiment following the addition of nutrients in
control soil versus rhizosphere-free soil. They observed a
clear rhizosphere effect for P, but not for N. The fact that
the rhizospheres rapidly took up P, but not N, supports
the assumption that trees growing in these study sites are
primarily P limited. Soil P availability estimates (Bray-P),
determined before the start of the nutrient addition
experiment, suggest very low P availability, typically
ranging between <1 and 3 ppm (Verryckt et al., 2022).
Reactive N (nitrate + ammonium) availability in these
soils exhibited values of 5–25 ppm (Verryckt et al., 2022).

The hypothesized trading of N to P seems to imply an
investment by N in phosphatase production that other-
wise could be used directly by the plants. Given the
strong P limitation widely detected in the tropics (Cunha
et al., 2022; Du et al., 2020; Hou et al., 2020), plants may
in fact invest part of their available N in obtaining P as
opposed to satisfying their N needs. Although the intake
of N is constant due to N fixation and N deposition, P is
constantly depleted from the soil, which makes its acqui-
sition through mineralization so crucial. Following this
reasoning, it thus seems possible that plants in the tropics
could also be N limited due to their efforts to negate P
limitation.

In contradiction with our initial hypothesis, we found
evidence of N and P limitation in a lowland tropical forest
based on observed changes in stem growth and foliar ele-
mental composition after a fertilization experiment. We
documented advantages in growth and in foliar elemental
composition in N-fixer tree species but, despite the poten-
tial advantage of N-fixing, these species are still N and P
limited. We provide evidence supporting a trading mecha-
nism for obtaining P through extra N availability in the
system (e.g., phosphatase exudation). This extra N invest-
ment could help explain the N limitation found in the tro-
pics, paradoxically, one of the Earth’s ecosystems with the
greatest number of N-fixing and N-fixer plants.
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