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Abstract

We present our continuous efforts from a modeling and numerical viewpoint

to develop a powerful and flexible mathematical and computational frame-

work called Ocular Mathematical Virtual Simulator (OMVS). The OMVS aims

to solve problems arising in biomechanics and hemodynamics within the

human eye. We discuss our contribution towards improving the reliability and

reproducibility of computational studies by performing a thorough validation

of the numerical predictions against experimental data. The OMVS proved

capable of simulating complex multiphysics and multiscale scenarios moti-

vated by the study of glaucoma. Furthermore, its modular design allows the

continuous integration of new models and methods as the research moves for-

ward, and supports the utilization of the OMVS as a promising non-invasive

clinical investigation tool for personalized research in ophthalmology.

KEYWORD S

hybridizable discontinuous Galerkin method, mathematical and computational
ophthalmology, multiphysics and multiscale modeling, ocular hemodynamics and
biomechanics, validation

1 | INTRODUCTION

The interest in patient-specific mathematical models applied to biomedical problems has greatly increased in the last
years. To provide meaningful and complementary insights to traditional research, these models should build upon clin-
ical measures inputs combined with physiological knowledge. In order to fully exploit their quantitative predictive
capabilities, a complete pipeline should next be developed and should incorporate: data integration, model derivation,
numerical solving, validation, and uncertainty quantification. Significant research progress was accomplished towards
these challenging goals in specific biomedical applications, for example, cardiovascular simulations1,2 or cerebral
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hemodynamics,3,4 which are now quite mature and well-established research fields. Moreover, efficient computational
frameworks5,6 oriented towards medical applications successfully tackled such complex multiphysics and multiscale
problems and provided useful insights to interesting clinical questions.

In the field of ophthalmology, a similar paradigm is needed: the availability of rich, heterogeneous data published
in the literature, possibly making contradictory statements and the lack of understanding of the underlying mecha-
nisms of several ocular diseases, calls for innovative approaches to help diagnosis and monitoring of these clinical con-
ditions. For a recent review of the state-of-the-art and the open questions, see for instance7,8 and the references therein.
However, computational and mathematical ophthalmology is still an emergent field and to the best of our knowledge,
only few studies focused on this particular topic, as reviewed for example in References 9,10 or, in the context of uncer-
tainty quantification, in References 11,12.

The present work aims to contribute to this growing area of research by proposing a novel modeling and simulation
environment, called the Ocular Mathematical Virtual Simulator (OMVS). From a clinical viewpoint, the focus of the
present work is on glaucoma. The reasons are manifold: it is a leading cause of irreversible blindness worldwide, its
prevalence increases with age, it poses a significant public health burden, it currently lacks a cure, existing treatments
focus on managing the condition and slowing its progression. Our collaborative research with the specialist center at
the Icahn School of Medicine, Mount Sinai (NY) provides a unique opportunity to develop a multidisciplinary approach
to tackle these issues. Specifically, the OMVS has the purpose to provide a window on both ocular biomechanics and
hemodynamics from a macroscale viewpoint. Moreover, this innovative framework means to account for the complex-
ity stemming from the availability of data and their heterogeneity due different measurement techniques.13,14 The mul-
tiscale and multiphysics characteristics dictated by data acquisition and the application itself have been considered
from the beginning in the design and accounted thanks to a modular structure. On one hand, the combined effects of
ocular blood flow and different ocular tissues are described by a coupled hemodynamics and biomechanics model. On
the other hand, the multiscale aspect, essential to properly account for systemic effects of blood circulation coupled
with local effects on tissues of interest, is represented by a coupled partial and ordinary differential equations for fluid
flow. More details about these multiphysics and multiscale features and the associated developments are provided in
Section 2, while Section 4 discusses information about geometrical and functional parameters utilized as OMVS
input data.

The next challenge within the OMVS development is to have a robust and efficient numerical strategy able to pre-
serve the physical properties at the discrete level. To address this ambitious goal, suitable innovative methods are
adopted: a Hybridazable Discontinuous Galerkin (HDG) method with an original integral boundary condition15

detailed in Section 3.2 and a novel effective multiscale coupling solving method described in Section 3.1.
A preliminary version of the OMVS has been presented in Reference 16 and subsequently used in Reference 17 to

target specific clinical applications related to glaucoma. A detailed uncertainty quantification and global sensitivity
analysis study was conducted for a reduced version of the OMVS framework in Reference 18. However, until now, the
full OMVS framework and the specific question of its validation have not been tackled directly yet. We therefore
describe in Section 5 the results of a thorough validation analysis. Finally, a comprehensive scheme of the different con-
nections between data and models within the OMVS framework can be found in Figure 1, illustrating our paradigm
and validation strategy.
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FIGURE 1 General design and strategy of the ocular mathematical virtual simulator (OMVS) framework.
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2 | HEMODYNAMICS AND BIOMECHANICS IN THE HUMAN EYE:
A MULTISCALE MODEL

The OMVS framework is based on a multiscale mathematical description of blood circulation (or hemodynamics) and
tissue deformation (or biomechanics) in various parts of the eye. Specifically, the anatomical regions considered in this
work are sclera, cornea, lamina cribrosa, retina and choroid, see Figure 2. The multiscale approach is adopted to couple
models of different complexity for the hemodynamic and/or biomechanic behaviors in different anatomical regions
depending on their relevance for the study at hand, as detailed below.

The current development of the OMVS is motivated by the study of glaucoma, for which the lamina cribrosa is con-
sidered to be a site of particular interest due to its crucial role in the balance of pressures between the eye and the
brain.20 However, direct measurements within this tissue are difficult or even impossible to obtain in clinical practice,
thus alternative approaches are investigated.

The modeling of the lamina cribrosa is not a novelty in the scientific panorama, indeed this tissue has raised a lot of
interest from a biomechanical viewpoint.21–26 On the other hand, few studies have been completed on the hemodynam-
ics of the lamina.27 For this reason, the lamina cribrosa is modeled here as a three-dimensional (3D) poroelastic
medium, with the goal of capturing the interaction between the blood flow through the tissue and the deformation of
the tissue itself (see Section 2.2). However, blood flow and tissue deformation occurring within the lamina are also
influenced by non-local factors, such as systemic blood pressure, that need to be taken into account in order to obtain
physiologically-reasonable solutions (see Section 2.1).

Tissue deformations in the lamina cribrosa are mainly due to the load induced by intraocular pressure (IOP) and cere-
brospinal fluid pressure (CSFp) acting on its inner and outer surfaces, respectively. However, these surfaces also experience
a transversal tension due to the overall IOP-related inflation of the eye ball. This transversal tension can be incorporated in
the model in several ways: either as given boundary conditions similarly to the approach proposed in Reference 28, or as
interface conditions between the lamina cribrosa and the sclera. In the present work, we employ the latter strategy, which
requires the lamina cribrosa to be coupled with models for other ocular tissues via interface conditions expressing the conti-
nuity of displacements and stresses (see Section 2.4). The other ocular tissues we account for in the present contribution
are sclera, cornea, retinal nerve fiber layer and choroid, described as elastic media (see Section 2.3) This approach has the
advantage of providing a global description of the biomechanics of main tissues composing the eye ball.

The blood supply to the lamina cribrosa is provided by the posterior ciliary arteries, which branch out from the oph-
thalmic artery before the central retina artery (CRA), whereas the blood drainage occurs via the central retinal vein
(CRV), which also drains the retina (see Figure 3). Thus, the hemodynamic conditions within the lamina cribrosa are
inherently coupled with the hemodynamics in the central retinal vessels and in the retinal vasculature. To capture this
interaction, the circulation in the CRA, CRV and retina are modeled via a zero-dimensional (0D) model based on a
nonlinear system of ordinary differential equations (ODEs) describing blood flow as the analogous of an electric current
flowing through an electric circuit (see Section 2.1). Next, we employ a multiscale connection between the 0D network

FIGURE 2 Anatomy of the eye. Image created with BioRender.19
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and the 3D description of the hemodynamics in the lamina cribrosa. In particular, the idea is to have a first approxima-
tion of the contribution of the lamina cribrosa perfusion incorporated in the retinal vasculature via the 0D model
described in Section 2.1. Then a more detailed 3D lamina cribrosa representation is introduced by means of the cou-
pling between the hemodynamics and the biomechanics via the poroelastic model presented in Section 2.2. A suitable
exchange of information between the 0D model for the circulation in CRA/CRV/retina and the 3D poroelastic medium
for the circulation in the lamina cribrosa must be prescribed in order to ensure the continuity of mass and pressure (see
Section 2.4). Finally, the description of the geometry, computational mesh, and parameter values utilized in the models
is postponed to Section 4.

2.1 | A 0D network model for the circulation in the retina and the central retinal
vessels

A nonlinear system of ODEs is utilized as a simplified representation of the blood circulation in the retina, CRA and
CRV. The blood circulation is modeled via a lumped-parameter model, which exploits the electric analogy to fluid
flow29 Chapter 15. Within this analogy, the flow of a fluid through a hydraulic network corresponds to the flow of an
electric current through an electric circuit. Thus, volume, flow rate, fluid velocity, pressure correspond to electric
charge, current, current density, potential, respectively.

The ODEs model illustrated in Figure 4 stems from the circuit described and validated in References 30 and 31. The
vasculature is divided into six main compartments: lamina cribrosa (lc), CRA (cra), arterioles (r,a), capillaries (r,c),

OPHTHALMIC ARTERY

CRA

POSTERIOR

CILIARY ARTERIES

RETINA

LAMINA

CRIBROSA

CRV
FROM CAROTID
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TO CAVERNOUS

SINUS

TO CHOROID

FIGURE 3 Scheme of the blood supply and drainage for the lamina cribrosa and retina employed in our model.

FIGURE 4 Circuit representing the circulation in the lamina cribrosa, the retina and the central retinal vessels.
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venules (r,v), and CRV (crv). Each compartment includes resistances Rð Þ and capacitances Cð Þ. The intraocular seg-
ments Rcra,3,Rcra,4,Rr,v1,Rr,v2,Rcrv,1,Rcrv,2ð Þ are exposed to the IOP and the retrobulbar segments Rcra,1,Rcra,2,Rcrv,3,Rcrv,4ð Þ
are exposed to the pressure within the optic nerve tissue, also referred to as retrolaminar tissue pressure (RLTp). IOP is
mainly due to the pressure of aqueous humor in the anterior chamber, whereas RLTp is mainly due to the pressure of
the cerebrospinal fluid in the subarachnoid space.32 The lamina cribrosa compartment, with inner pressure Plc, corre-
sponds to a 0D simplified description of the hemodynamics in this tissue.

In the original circuit the external pressure on the resistances Rcra,3 and Rcrv,2 is the effective stress exerted by the
lamina on these vessels, which has been computed via the simplified FSI (fluid–structure interaction) model studied in
Reference 33 on the CRA/CRV interaction with the lamina cribrosa. In the present lumped-parameter model
(Figure 4), this contribution has been simplified and the external pressure felt by the CRA/CRV is only due to the IOP
in the intraocular and translaminar segments, and to the RLTp in the retrobulbar segments.

Similarly to the work presented in References 29,31,34, we employ the following modeling choices for the nonlinear
resistors in the circuit:

CRA R¼ 1
k0

bp�pe
KpkL

þ1

� ��4

, ð1Þ

CRV,venules R¼

1
k0

bp�pe
KpkL

þ1

� ��4 bp≥ pe

1
k0

1�bp�pe
Kp

� �4=3 bp< pe

8>>>><>>>>:

9>>>>=>>>>;, ð2Þ

where L is the length of the vessel, bp is the average pressure inside the vessel, pe is the external pressure to the vessel,
and k0, kL and Kp are univocally characterizing the nonlinear resistive behavior.

Equation (1) assumes that the cross-section remains circular in presence of external pressures; this situation applies
to Rcra,i, i¼ 1,…,4. Equation (2) models a Starling resistor behavior, which is based on experiments suggested by Refer-
ences 35,36. In particular, this formula expresses the fact that, in case of compressible tubes, the circular cross-section is
preserved for dilation, whereas when the transmural pressure becomes negative the cross-section shape reflects the
physiological high collapsibility of the venous segments. Rr,v1,Rr,v2,Rcrv,i, i¼ 1,…,4 follow this equation.

2.2 | A 3D poroelastic model for the lamina cribrosa

In this section we introduce the 3D model for the lamina cribrosa. We describe it as a poroelastic medium, where hemo-
dynamics and biomechanics are combined with the goal of studying their interactions, as they are essential for the
physiological functions of this tissue. To this end, let us consider the poroelastic system introduced by Biot37 and subse-
quently studied by References 38–41:

ρ
∂2u
∂t2

�r�σ¼Fel inΩ� 0,T½ �, ð3aÞ

∂ζ

∂t
þr� j¼Ffl in Ω� 0,T½ �, ð3bÞ

where Ω�ℝd, d¼ 2,3 is the computational domain, u is the solid displacement, σ is the stress tensor of the mixture,
also known as total stress, Fel is the volumetric force term, p is the fluid pressure, α is the Biot coefficient, j is the dis-
charge velocity, Ffl is the volumetric fluid source term, and ζ is the fluid content. The constitutive laws for ζ, σ, and
j are:

ζ¼ 1
M

pþαr�u, ð4aÞ
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σ¼ σ
el
�αpI, ð4bÞ

σ
el
¼ μ ruþrTu
� �

þ λ r�uð ÞI, ð4cÞ

j¼�Krp, ð4dÞ

where M is the Biot modulus, μ and λ are the Lamé parameters of the elastic matrix, and K is the permeability tensor.
In the context of this study, Equations (3a) and (3b) represent the lamina biomechanics and hemodynamics, respec-
tively. Guided by the particular application at hand, we make the following assumptions and considerations:

• The volumetric source term in Equation (3b) is assumed to be zero, that is, Fel ¼ 0. This implies that stresses and
strains inside the lamina are merely due to its boundary conditions, that is, IOP and CSFp, and interface conditions,
that is, coupling with other ocular tissues (see Section 2.4).

• The volumetric source term in Equation (3a) is assumed to be zero, that is, Ffl¼ 0. This assumption implies that blood
circulating in the lamina is solely provided by a multiscale effective connection between the lamina and the posterior
ciliary arteries on the arterial side, and between the lamina and the CRV on the venous side (see Section 2.4).

• Changes in fluid content are assumed to be mostly due to changes in pressure, so that the term α ∂
∂t r�uð Þ can be

neglected in Equation (4a).

Thus, we obtain the following simplified system of PDEs:

ρ
∂2u
∂t2

�r�σ¼ 0 in Ω� 0,T½ �, ð5aÞ

1
M

∂p
∂t

þr� j¼ 0 in Ω� 0,T½ �, ð5bÞ

Referring to the same constitutive laws described in (4), system (5a) and (5b) is accompanied by appropriate bound-
ary (BCs) and initial conditions (ICs), which are discussed in Section 2.4.

Remark 1. The well posedness of the poroelastic system (3) is proved in References 42,43.

Remark 2. In the context of lamina cribrosa modeling, various extensions of the Biot system have been con-
sidered, such as the use of a nonlinear model to describe its biomechanics44 and the use of a poroviscoelastic
model to characterize the interaction between the blood flow and the elastic tissue within the optic nerve
head.43,45,46 In this work, we opted to consider the simplified system (5) since the focus of our study is the
coupling between the lamina biomechanics and hemodynamics and the circulation upstream and down-
stream of the lamina (Section 2.1). Thus, the simplified system (5) should be seen as a first step to create the
“big picture” of an ocular system in which each mathematical component could be replaced with more
sophisticated models adapted as the research evolves.

To simplify the presentation, we detail hereafter the hemodynamics and the biomechanics of the model proposed in
Equation (5) separately as sketched in Figure 5.

2.2.1 | Hemodynamics of the lamina cribrosa

We consider here just the contribution of Equation (5b) and its mixed formulation: find j,p such that

1
M

∂p
∂t

þr� j¼ 0 inΩlc� 0,T½ �

jþKrp¼ 0 inΩlc� 0,T½ �

0@ , ð6Þ
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endowed with appropriate initial conditions, where Ωlc corresponds to the lamina cribrosa domain. The choice of the
boundary conditions for the fluid flow through the lamina is of particular importance, given that blood enters the lam-
ina from the branches of the posterior ciliary arteries located at its outer boundary and it is drained by the central reti-
nal vein running through the lamina transversally in its course from the retina to the cavernous sinus. These concepts
are schematized in Figure 6A. We adopt the isotropic hypothesis (Figure 6B) for the permeability tensor K which
accounts for capillaries within the tissue of the lamina. Thus, we assume that K¼ κ I with a given permeability κ>0.
This approximation hypothesis has been also supported by experimental studies.47

2.2.2 | Biomechanics of the lamina cribrosa

For what concerns the biomechanics, we consider the contribution of Equation (5a) and its mixed formulation: find
σ
el,lc

,ulc such that

ρ
∂2ulc
∂t2

�r� σ
el,lc

�αp I
� �

¼ 0 inΩlc� 0,T½ �

σ
el,lc

�μ rulcþrTulcð Þ� λ r�ulcð ÞI¼ 0 inΩlc� 0,T½ �

0B@ , ð7Þ

HEMODYNAMICS BIOMECHANICS

FIGURE 5 Poroelastic model framework for the lamina cribrosa.

(A) Perfusion (B) Micro-structure

FIGURE 6 Hemodynamic model framework for the lamina cribrosa.
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together with appropriate initial conditions. Specifically, in the biomechanics part, we consider the contribution of the
extracellular matrix, the collagen beams and nerve bundles as described in Figure 6B, but we neglect the biomechanical
behavior of the blood vessels.

2.3 | A 3D biomechanical model for the sclera, choroid, retina, and cornea

In this section we discuss the model that represents the biomechanics within the sclera (Figure 7A), choroid
(Figure 7B), retina (Figure 7C) and cornea (Figure 7D). In this case we adopt a mixed formulation of the classic linear
elastic problem: find σ

el,i
,ui defined on Ωi� 0,T½ � with i ¼ sclera, choroid, retina, cornea such that

ρ
∂2ui
∂t2

�r�σ
el,i

¼ 0 inΩi� 0,T½ �

σ
el,i

�μ ruiþrTuið Þ� λ r�uið ÞI¼ 0 inΩi� 0,T½ �

0B@ , ð8Þ

endowed with appropriate initial conditions.

(A) Ω (B) Ω

(C) Ω (D) Ω

FIGURE 7 Ocular tissue domains introduced in the biomechanical description of the ocular mathematical virtual simulator.
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2.4 | Boundary and interface conditions in the OMVS framework

This section illustrates the boundary conditions that are adopted for the PDE systems and the interface conditions that
describe the coupling among all the model blocks within the multiscale system.

2.4.1 | Hemodynamics within the lamina cribrosa

The conditions to be imposed at the surfaces delimiting the lamina cribrosa are depicted in Figure 8. Specifically,
we have:

p x, tð Þ¼ pint,hemo on Γint, ð9aÞ

j x, tð Þ �n¼ 0 onΓbottom[Γtop, ð9bÞ

Z
Γext

j x, tð Þ �n¼QI tð Þ onΓext, ð9cÞ

where ∂Ωlc ¼Γbottom[Γext[Γint[Γtop is the boundary delimiting the lamina cribrosa and n is the outward unit normal
vector.

The notations QI tð Þ and PI tð Þ refer to the variables obtained from the 0D model (Section 2.1). These conditions repli-
cate the physiology of the lamina cribrosa. This tissue is nourished through the lateral boundaries, and finally the blood
is gathered by the CRV at the central opening (Figure 6A). Equation (9a) describes the physiological drainage through
the CRV in a simplified manner, via a Dirichlet boundary condition, where the value of pint,hemo is given (see Section 4).
Equation (9b) corresponds to the physiological situation where there are no outward fluxes from the top or the bottom
surfaces of the lamina. Equations (9c) represents the nourishment of the lamina cribrosa. This condition describes the
feedback from the ODEs circuit to the hemodynamics part of the poroelastic model. The main advantages are:

•this framework provides a zoom in a region of interest for the lamina cribrosa, while accounting for systemic feed-
back via the 0D circuit;
•the value PI is constant on Γext thanks to the integral condition we have adopted (Equation (9c)):

p x, tð ÞjΓext
¼ PI tð Þ; ð10Þ

•the mixed formulation in Equation (6) provides the natural spatial multiscale connection between the 3D fluxR
Γext

j �n
� �

and its 0D representation in the circuit QIð Þ.

FIGURE 8 Hemodynamics boundary conditions for the lamina cribrosa in the ocular mathematical virtual simulator.

SALA ET AL. 9 of 34



2.4.2 | Biomechanics of the lamina cribrosa

The interface and boundary conditions pertaining to the lamina biomechanics are summarized in Figure 9.
Interface conditions are imposed on the external lateral boundary Γext. Here the lamina connects with the sclera

and we require the continuity of displacement and stress as follows:

ulc ¼ usclera ð11aÞ

σ
lc
�n¼ σ

sclera
�n, ð11bÞ

on Γext.
The BCs are depicted in Figure 9, that is, we have:

• on the internal boundary of the lamina Γint

σ
el
�n¼�pint,mech n; ð11cÞ

in this case due to lack of biological information we assumed that all the internal boundaries feel the same pressure
(more details on the value of this pressure in Section 4) that is compressing (negative sign) 8t� 0,T½ �;

• on the top boundary Γtop

σ
el
�αp I

� �
�n¼�IOP n; ð11dÞ

the negative sign is to indicate the fact that IOP is compressing the tissue;

• on the bottom boundary Γbottom

FIGURE 9 Biomechanical boundary and interface conditions for the lamina cribrosa in the ocular mathematical virtual simulator.
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σ
el
�αp I

� �
�n¼�RLTp n; ð11eÞ

also in this case the negative sign is to indicate the compressing effect of the CSF behind the eye on the tissue.

2.4.3 | Biomechanics of sclera, choroid, retina and cornea

First we list the boundary conditions associated with the description given in system (8) for the biomechanical behavior
of sclera, choroid, retina and cornea, where.

∂Ωsclera ¼ΓOpticNerve_Sclera [ ΓSclera_externalBC [ ΓSclera_internalBC [ ΓIris_Sclera [ ΓPia_Sclera [ Γext [ ΓSclera_Choroid

[ ΓSclera_Cornea, (top left panels of Figures 10 and 11),
∂Ωchoroid ¼ΓBC_Choroid [ ΓChoroid_Iris [ ΓSclera_Choroid [ ΓChoroid_Retina, (top right panels of Figures 10 and 11),
∂Ωretina ¼ΓBC_spherical_Retina [ ΓOpticNerve_Retina [ ΓChoroid_Retina, (bottom left panels of Figures 10 and 11), and
∂Ωcornea ¼ΓCornea_internalBC [ ΓCornea_externalBC [ ΓSclera_Cornea, (bottom right panels of Figures 10 and 11).

Thus, we have for the sclera:

• σ
el
�n¼�IOPn on ΓIris_Sclera and ΓSclera_internalBC;

• u¼ 0 on ΓPia_Sclera, ΓOpticNerve_Sclera and ΓSclera_externalBC:

For the choroid, BCs read:

• σ
el
�n¼�IOPn on ΓBC_Choroid;

• u¼ 0 on ΓChoroid_Iris:

FIGURE 10 Boundary condition labels of the OMVS geometry. The original geometry has been clipped along the z-plane in order to

view within the eye. For each subfigure, the domain of interest is highlighted in red.
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For the retina we have:

• σ
el
�n¼�IOPn on ΓBC_spherical_Retina;

• u¼ 0 on ΓOpticNerve_Retina:

Finally, we impose the following BCs for the cornea:

• σ
el
�n¼�IOPn on ΓCornea_internalBC;

• u¼ 0 on ΓCornea_externalBC:

Second, we impose the continuity of stresses and displacements on the interfaces between these ocular tissues,
namely sclera, choroid, retina and cornea:

• σ
sclera

�n¼ σ
choroid

�n on ΓSclera_Choroid;
• usclera ¼ uchoroid on ΓSclera_Choroid;
• σ

sclera
�n¼ σ

cornea
�n on ΓSclera_Cornea;

• usclera ¼ ucornea on ΓSclera_Cornea;
• σ

choroid
�n¼ σ

retina
�n on ΓChoroid_Retina;

• uchoroid¼ uretina on ΓChoroid_Retina:

3 | NUMERICAL METHODS AND COMPUTATIONAL FRAMEWORK

In this section we present the discretization methods adopted in order to numerically solve the multiscale model intro-
duced in Section 2. First, we describe the time discretization approach, in particular an innovative effective treatment

FIGURE 11 Interface condition labels of the OMVS geometry. The original geometry has been clipped along the z-plane in order to

view within the eye. For each subfigure, the domain of interest is highlighted in red.
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of the multiscale description of the hemodynamics in the OMVS framework (see Section 3.1). Next, we introduce the
spatial discretization approach, in particular the Hybridizable Discontinuous Galerkin (HDG) method with an original
non-standard Integral Boundary Condition (IBC—see Section 3.2). Finally, we briefly present the open-source computa-
tional framework in which the numerical methods are implemented.

3.1 | Time discretization

First, for what concerns the time approximation of the biomechanics problem, namely systems (7) and (8), we adopt a
standard BDF2 approach, see for instance48 Chapter 5.

Next, we focus on the hemodynamics problem and provide details about an innovative method we adopted to
address the time discretization of this multiscale system. The main challenge is to numerically solve in an efficient man-
ner the system describing the 3D lamina cribrosa hemodynamics in the domain Ωlc and the ocular posterior vasculature
hemodynamics described by the network model represented in Figure 4 and denoted hereafter Υ. Note that the prob-
lem involves several nonlinearities, for instance the interaction between IOP/RLTp and the blood pressure within the
CRA and CRV (Equations (1) and (2)).

On the one hand, recall that the system of PDEs (6) in Ωlc is endowed with the boundary conditions specified in
Equations (9a), (9b) and (9c), and accounts for the condition expressed in Equation (10). On the other hand, the circuit
Υ can be uniquely described in a generic manner by the following nonlinear system of ODEs:

dy

dt
þA y, t

� �
y¼ r y, t

� �
, ð12Þ

with the initial conditions y t¼ 0ð Þ¼ y
0
. If d is the number of unknowns of the circuit, that is, the number of ODEs to

be solved, y is a d-dimensional vector representing the state variables of the circuit Υ, A is a d�d tensor including the
topology and physics of the connections among the circuit nodes, and r y, t

� �
is composed by sources and sinks within

the circuit, and by the contribution due to the coupling with the PDE region Ωlc. In addition, the conservation of flux
between the 3D and the 0D is given by Z

Γext

j �n¼C5
dPI

dt
þPin�PI

lcRin
, ð13Þ

where
R
Γext

j �n is the outward flux from the domain Ωlc, PI is the pressure at the interface Γext and Pin is the unknown
pressure at the entrance of the lamina cribrosa in the network Υ (see Figure 4). As such, Pin is part of the unknown vec-
tor y.

Let tn ¼ nΔt with Δt>0 the time-discretization step. We introduce the notation for the pressure in the 3D domain
Ωlc and the vector of unknowns in the circuit Υ:

pn ¼ p tnð Þyn ¼ y tnð Þ:

In particular, we rewrite y as

y tð Þ¼ y tð Þ,PI tð Þ
h iT

, ð14Þ

to highlight the crucial role played by the unknown PI tð Þ in the subsequent algorithm:
Note that Steps 1 and 2 are defined on the discrete time interval tn, tnþ1ð Þ, but the differential operators have yet to

be fully discretized in time and space.
In this work, we adopted a partitioned approach for the numerical solving of the multiscale problem, in order to

preserve the modular structure of the OMVS framework and in the perspective of potential extensions that would imply
changes limited to each building block. Thus, the communication between the two steps is only realized through the
initial conditions and the proposed effective strategy allows notable flexibility in the choice of solution methods for each
sub-problem resulting from this specific algorithm. However, the design of the two steps and in particular solving the
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PDE system jointly with the condition of the conservation of the fluxes (Equation (13)) in Step 2, is meant to preserve
an implicit treatment of the multiscale connection.

Remark 3. Other partitioned strategies could be alternatively employed to numerically solve the multiscale sys-
tem under consideration in this contribution. One possibility, referred to as functional iterations, or fixed-point
(Picard) iteration is to design a strategy based on sub-iterations between PDE and ODE solvers at each time step.
Another approach addressing the need to solve in separate sub-steps the PDE and the ODE problem in based on
operator splitting. An extensive discussion about the attractive features of these strategies and their limitations
in the context of the coupling between a poroelastic medium and a lumped hydraulic circuit can be found in
Reference 49. The implementation of such approaches and a thorough analysis of their potential advantages in
the present context raises interesting questions and might be considered as future research directions.

The computational framework relies on the open-source finite element library Feel++,50 in which the global
discretization procedure was implemented. Feel++ is a Finite Element Embedded Library in C++ that allows
using a very wide range of Galerkin methods, as well as other advanced numerical methods such as domain
decomposition methods or certified reduced basis. The ingredients of the software include a very expressive
embedded language, seamless interpolation, mesh adaption and seamless parallelization. The first step was
implemented within OpenModelica,51 an open-source Modelica-based modeling and simulation environment
intended for industrial and academic studies of complex dynamic systems. The multiscale connection between
the different components of the solver is handled thanks to the capabilities of the Feel++ library. As for the spa-
tial discretization, the splitting approach provided by Algorithm I is very flexible, allowing for different methods.
Our specific choice in the present work is the Hybridizable Discontinuous Galerkin method, as described in the
next section.

ALGORITHM I
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3.2 | Spatial discretization

In this section we briefly present the Hybridizable Discontinuous Galerkin (HDG) method applied for the spatial dis-
cretization of the model, which was originally introduced in this context in Reference 15. The rationale for adopting this
discretization approach is the high accuracy that all the model solvers require to reproduce physiological behaviors.
Specifically, the advantages of HDG are that:

i. the equation are enforced element-by-element leading to local conservation properties;
ii. the optimal convergence properties for both primal (potential and displacements) and dual (stresses and fluxes)

variables are ensured; in particular fluxes are crucial in the communication between the micro- and macroscale.

However, these features induce a significant computational cost, which can be largely mitigated using static conden-
sation as described in Reference 15 Section 4.2.

Remark 4. The use of HDG formulation combined with IBC
R
Γlc,I

j �n¼QI

� �
supports the direct solution of

the pressure by means of a natural coupling between the 3D and the 0D parts of the model, without any
sub-iteration.

The main technical details of this approach are provided in Appendix A, where we report the formulation for the
elasticity and the porous media model, which were not detailed in the original paper.15 The final forms of the hemody-
namics and biomechanics systems, obtained from the static condensation algorithm, are expressed in terms of the
potential or the displacement, respectively. Potential and flux—or displacement and stresses for elasticity—are then
computed element wise at higher order in a post-processing step. For the present application, this property is funda-
mental, since it provides the same level of accuracy for the primal variables (potential and displacements) and for the
dual unknowns, fluxes and stresses of notable interest here.

The overall discretization procedure is again implemented in the Feel++ library.50 Numerically the problem is
solved by means of domain decomposition methods, in parallel, using an algebraic multigrid solver for both Darcy and
elasticity systems; more details are available in Reference 15.

4 | OMVS INPUT DATA

The purpose of this section is twofold: (i) first, we describe the pipeline we developed to generate a realistic computa-
tional mesh of the entire human eye; (ii) second, we provide a thorough description of the input parameters of the
OMVS and the main rationale behind our choices. We emphasize the important role of the information described in
this section in view of the reproducibility of our work.

4.1 | Geometry and mesh

In this subsection we present the process we developed to generate a realistic geometry and the associated computa-
tional mesh used for the 3D biomechanics and hemodynamics simulations of the tissues represented in the OMVS. This
geometry is parameterized on patient-specific inputs, such as the distance between the cornea and the lamina cribrosa
and some lamina cribrosa features as described in Table 1. Patient-specific geometrical inputs could be relevant in sev-
eral clinical contexts, such as: (i) higher risk factors for glaucoma among people of African descent (AD) when com-
pared to European descent (ED), due to differences in their ocular structures (thinner corneas52 and thinner sclera and
lamina cribrosa53 for the former compared to the latter); (ii) dynamic changes taking place in the anterior segment with
aging, suggesting prevalence of angle closure glaucoma increased in females after middle age54 or (iii) structural
changes in patients affected by myopia.55

The generation of the geometry and the mesh is realized via the software Salome,56 which is an integration platform
for numerical simulations with pre- and post-processing tools. We specifically utilized the CAD (Computer Aided
Design) module, which is based on OpenCascade57 and its constructive solid geometry features. In the following we
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briefly describe the main steps of the pipeline we designed to obtain a computational mesh of the eye starting from a
CAD image (as schematically illustrated in Figure 12).

4.1.1 | Geometry

The starting CAD image of the eye is illustrated in Figure 12A (courtesy of CEMOSIS
1). This preliminary image is impo-

rted in Salome, where the following 3D ocular structures are identified: cornea, vitreous humor, iris and ciliary body,
ligament, lens, sclera, choroid, retina, central retinal vein and artery. Furthermore, we added the lamina cribrosa representa-
tion, motivated by the special role that this tissue plays in the onset and progression of glaucoma.20 On the basis of the ocu-
lar anatomy description extracted from,58 we created a lamina cribrosa geometry within the imported ocular framework. In
the generation of the geometry, we made some specific parameters accessible and changeable by the user, as described in
Table 1. A cut of the newly created geometry of the eye is displayed in Figure 12B.

4.1.2 | Mesh

The mesh module in Salome is used to generate 1D/2D/3D meshes. In particular we employed the NETGEN meshing
plug-in59 to specify the parameters of the mesh and eventually build the mesh. We set markers on every volume or sur-
face of the structured mesh allowing simulations that can be run only on single parts of the eye or on the whole

(A) Importing CAD

(B) Manipulating geometry

(C) Meshing

FIGURE 12 Process to generate a computational mesh from a CAD drawing using the Salome platform.

TABLE 1 Geometrical parameters that can be modified by the user during the generation of the computational mesh.

Parameter Default value Description

hsize_lamina 0.05 max size of the mesh grid h for the lamina cribrosa sub-domain

hsize_eye 1.0 max size of the mesh grid h for all the eye except the lamina cribrosa sub-domain

distance 0.25 mm lamina cribrosa distance from retina/sclera

width 0.2 mm lamina cribrosa width

hole 0.2 mm radius of the lamina cribrosa hole

shift 0.3 mm hole shift from lamina cribrosa center

eye_length 26.1 mm ocular axial length

corneal_thickness 1.0 corneal thickness proportion with respect to the original CAD thickness
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geometry. Figure 13A displays the cut along the z-plane of the overall computational mesh, while Figure 13B shows the
generated computational mesh for the lamina cribrosa.

In summary, from a CAD of the whole eye we developed a parameterized ocular geometry in order to generate a
complex computational mesh, with the following characteristics:

• 5 sub-domains: Ω¼Ωlc[Ωsclera[Ωchoroid[Ωretina[Ωcornea;
• 20 boundaries and interfaces, with conforming elements at edges and at interfaces;
• specific discretization for the lamina cribrosa due to its different geometrical dimensions with respect to the other

components.

This generating process has addressed the goal of having a full realistic description of the ocular architecture, which
is used by the OMVS for patient-specific numerical simulations. For the entire process and in the case of default values,
the code takes a total time of 272:6s, of which 186:1 for the geometry and 84:7 for the mesh.

4.2 | Model parameters

In this subsection we report all the baseline values for the parameters employed in the OMVS. The selection was
made in such way that, at baseline, the model predictions agree with values reported in the literature. Some of the
parameters were directly measured or extracted from literature, whereas others were not readily available and thus
are indirectly inferred from accessible data, under clinical hypothesis, which will be indicated when relevant.
In addition, whenever pertinent, a brief discussion on the measurement instruments to obtain or estimate these
parameters is presented.

We remark that parameters choices and calibration is well-recognized as a very delicate problem in the con-
text of mathematical modeling in medicine. On the one hand, as explained above, suitable data to feed the models
might be difficult or even impossible to be measured directly. On the other hand, they usually suffer from high
variability due to (i) operator-dependent and instrument-dependent measurements, which can be different across
clinical centers and (ii) inherent differences among individuals. To take into account these sources of uncertainty
and variability, we refer to the preliminary sensitivity analysis we carried out in Reference 18 for the 0D compo-
nents of the OMVS.

We divide the set of parameters of the proposed ocular mathematical model in three groups: (i) parameters common
to both the ODE-based and the PDE-based systems, called hereafter global OMVS parameters, (ii) specific parameters
employed only in the 3D hemodynamical and biomechanical description of the model, and (iii) specific parameters
related to the 0D hemodynamical part.

(A) Cut along the z-plane. (B) Zoom on the lamina cribrosa.

FIGURE 13 Mesh of the eye realized with Salome using NETGEN algorithms.

SALA ET AL. 17 of 34



4.2.1 | Global OMVS parameters

First, we focus on the systemic parameters, namely the heart rate (HR), the systolic blood pressure (SP), and the diastolic blood
pressures (DP), that can be easily measured with standard non-invasive devices. Specifically, blood pressure is measured with a
sphygmomanometer, a clinical instrument which typically consists of an inflatable rubber cuff that is applied to the arm and
connected to a column of mercury next to a graduated scale, enabling the determination of SP and DP by increasing and gradu-
ally releasing the pressure in the cuff. With the help of a stethoscope, the reading of the HR is easy and noninvasive.

Second, the parameters pertaining to the ocular region described in the model are the IOP, and the RLTp. Recall that
IOP is the pressure of the fluids inside the eye and it is determined by the balance between the production and the drainage
of aqueous humor. Its value can be obtained non-invasively in a standard clinical setting with the Goldmann Application
Tonometer, which measures the force necessary to flatten an area of the cornea and computes the pressure exploiting the
Imbert–Fick law.60 The RLTp is the pressure within the optic nerve tissue, behind the lamina cribrosa. This pressure is
largely determined by the pressure within the subarachnoid space, that is, the intracranial pressure (ICP).32 ICP is usually
measured with a lumbar puncture, an invasive technique in which a needle is inserted into the spinal canal to collect cere-
brospinal fluid (CSF). However, some recent clinical works61,62 and mathematical models,63 propose innovative methods in
order to estimate ICP noninvasively. The baseline values for the global parameters are reported in Table 2.

4.2.2 | 3D hemodynamics and biomechanics parameters for the OMVS

Here we describe the baseline parameters values related to the 3D modeling of the OMVS.
The baseline permeability coefficient of the lamina cribrosa and the baseline Lamé coefficients for the different ocu-

lar tissues are reported in Table 3. In particular we recall that for the lamina cribrosa we have adopted the isotropic
hypothesis (Figure 6B) for the permeability tensor K¼ κI which takes into account for capillaries within the tissue of
the lamina. This hypothesis provides a satisfactory approximation of physiological conditions as confirmed by experi-
mental studies.47 The majority of the Lamé coefficients values have to be considered valid in case of small stresses
0:0�8:0kPa ≈ 0�60mmHgð Þ, see Reference 68, which includes the physiological range of pressures involved in the
realistic framework developed in the present work.

To complete the set of parameters involved in the 3D model, we consider pint,hemo ¼ 19 mmHg as baseline value
in Equation (9a) and pint,mech ¼ 40:88 mmHg as baseline value in Equation (11c). These values have been retrieved from
Reference 30 in the case of baseline systemic blood pressure of SP¼ 120 mmHg and DP¼ 80 mmHg, as in Table 2. For
the different validation cases for which we report simulations in the next section we have calibrated the values of
pint,hemo and pint,mech with a similar approach, namely directly proportional to the values of SP and DP. Thus, every time
the values of SP and DP are modified from their baseline values, also pint,hemo and pint,mech are changed accordingly.

Regarding available measurements in this context, the utilization of Optical Coherence Tomography Angiography
offers valuable insights about crucial dimensions, thickness, and vessel structure of the lamina and retina.74,75 Addition-
ally, the pachymeter serves as a precise tool for obtaining Central Corneal Thickness measurements. In terms of mate-
rial properties, our focus turns to ultrasound elastography, a technique that holds promise in this domain. Moreover,
we point to a rich reservoir of ocular biomechanics literature, particularly highlighting ex-vivo measurements and trac-
tion tests supported by advanced mathematical analysis.76–78

TABLE 2 Ocular mathematical virtual simulator global parameters.

Parameter Value Unit References

HR 69 beats/min 64

SP 120 mmHg 30

DP 80 mmHg 30

IOP 15 mmHg 30

RLTp 7 mmHg 30

Abbreviations: DP, diastolic blood pressure; HR, heart rate; IOP, intraocular pressure; RLTp, retrolaminar tissue pressure; SP, systolic blood pressure.

18 of 34 SALA ET AL.



4.2.3 | 0D hemodynamics parameters for the OMVS

In this paragraph we define the baseline parameter values for the 0D component of the OMVS. The resistances and the
capacitances baseline values are reported in Tables 4 and 5, respectively, together with the corresponding references
from which they were extracted. In the particular case of nonlinear resistors, the values are computed using Equa-
tions (1) and (2), respectively.

Finally, we characterize the blood pressure source and sink within the circuit in a consistent manner with
experiments. For Peye,in, we employed the same approach as in Reference 30: we reconstruct the pressure profile at the
entry of the circuit (see Figure 4) from typical Color Doppler Imaging (CDI) measurement of the blood velocity in the
CRA and we impose it as a time-dependent pressure source (see Figure 14). The CDI employs the Doppler effect to gen-
erate imaging of the movement of tissues and body fluids—usually blood—and their relative velocity to the probe by
calculating the frequency shift of a particular sample volume. We parametrize the reconstructed signal using HR, SP
and DP as inputs; thus, we have divided this blood pressure time profile into six parts for each cardiac cycle, as follows:

PEye,in tð Þ¼

0:65SP�0:475DP sin
2π

40:082
60
HR

btþ 2π

0:328
60
HR

0:082
60
HR

0B@
1CA forbt≤ 0:082

60
HR

0:65SPþ0:9sin
2π

0:03
60
HR

bt� 2π

0:03
60
HR

0:082
60
HR

0B@
1CA for 0:082
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<bt≤ 0:112
60
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0:332
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2:072
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btþ 2π

2:072
60
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0:554
60
HR

0B@
1CA forbt>0:482
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TABLE 3 3D parameters for the ocular mathematical virtual simulator.

Parameter Value Unit References

κ 0.015192 cm3sKg�1 65,66

μlc 0.12 MPa 67,68

λlc 5.88 MPa 67,68

μsclera 0.676 MPa 68–70

λsclera 16.216 MPa 68–70

μchoroid 0.203 MPa 69

λchoroid 4.86 MPa 69

μretina 0.067 MPa 71,72

λretina 1.62 MPa 71,72

μcornea 0.845 MPa 68,73

λcornea 20.27 MPa 68,73
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TABLE 4 Summary of the data for the resistors in the 0D hemodynamics model.

Name Parameters Values Units References

Rin R 22,500 mmHg s cm�3 30

Rcra,1 k0 2.124 � 10�4 cm3 mmHg�1 s�1 31

kL 55.714 [�]

Kp 24.665 mmHg

pe RLTp mmHg

Rcra,2 k0 2.107 � 10�4 cm3 mmHg�1 s�1 31

kL 55.487 [�]

Kp 24.816 mmHg

pe RLTp mmHg

Rcra,3 k0 0.0047 cm3 mmHg�1 s�1 31

kL 56.1468 [�]

Kp 24.3797 mmHg

pe IOP mmHg

Rcra,4 k0 0.0010 cm3 mmHg�1 s�1 31

kL 56.1785 [�]

Kp 24.3591 mmHg

pe IOP mmHg

Rr,a1 R 6000 mmHg s cm�3 31

Rr,a2 R 6000 mmHg s cm�3 31

Rr,c1 R 5680 mmHg s cm�3 31

Rr,c1 R 5680 mmHg s cm�3 31

Rr,v1 k0 2.199 � 10�4 cm3 mmHg�1 s�1 31

kL 992.4853 [�]

Kp 0.0722 mmHg

pe IOP mmHg

Rr,v2 k0 2.199 � 10�4 cm3 mmHg�1 s�1 31

kL 992.4853 [�]

Kp 0.0722 mmHg

pe IOP mmHg

Rcrv,1 k0 0.0031 cm3 mmHg�1 s�1 31

kL 1457.5 [�]

Kp 0.3687 mmHg

pe IOP mmHg

Rcrv,2 k0 0.0156 cm3 mmHg�1 s�1 31

kL 1458.2 [�]

Kp 0.3684 mmHg

pe IOP mmHg

Rcrv,3 k0 0.0007 cm3 mmHg�1 s�1 31

kL 1419.4 [�]

Kp 0.3836 mmHg

pe RLTp mmHg

Rcrv,4 k0 0.0007 cm3 mmHg�1 s�1 31

kL 1424.1 [�]
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wherebt¼mod t, 60
HR

� �
. Regarding PEye,out, we set its baseline value to 14mmHg, as reported in Reference 30.

For the retinal blood flow another quantity that the ophthalmologist can measure is the oxygenation of the blood
by means of the retinal oxymetry,79 however for the current implementation of the OMVS, this measurement is not
exploited.

5 | OMVS VALIDATION

In this section we discuss several significant outcomes of the OMVS and compare our simulations with clinical or
experimental data whenever available. The aim is to provide a thorough validation for the OMVS framework and to
complement predictive results previously published in References 17,80, The verification of the numerical methods
presented in Section 3 has been already extensively performed in Reference 15.

Figure 15 displays all the output available within the OMVS and lists the main sources where we retrieved the
experimental data. The section is organized as follows:

• validation of the hemodynamics simulated by the OMVS;
• validation of the biomechanics of the lamina cribrosa simulated by the OMVS;
• validation of the biomechanics of other ocular tissues represented in the OMVS.

Note that the intrinsic physiological variability makes validation a very challenging task; thus we strive to report
both qualitative and quantitative comparisons with experimental data whenever the latter ones are possible. Further-
more, we highlight the fact that for the hemodynamics within the lamina cribrosa, to the best of our knowledge, there
are no experimental or clinical data, thus we cannot directly validate the simulation results; however, since all the sys-
tem components are strongly coupled we consider that if all the other parts reproduce a physiological behavior, also the
lamina cribrosa perfusion computed by the OMVS should attain realistic values.

5.1 | Hemodynamics of the ocular posterior segment

In this part we discuss the outcome concerning the central retinal vessels hemodynamics, which are part of the circuit
presented in Section 2.1 and in the lamina cribrosa, as described in Section 2.2.

TABLE 4 (Continued)

Name Parameters Values Units References

Kp 0.3817 mmHg

pe RLTp mmHg

Rout R 14111.39 mmHg s cm�3 30

lcRin R 78181.9 mmHg s cm�3 66

lcR R 21988.25 mmHg s cm�3 66

TABLE 5 Summary of the data for the capacitors in the 0D hemodynamics model.

Name Parameters Values Units References

C1 C 7.22 � 10�7 cm3 mmHg�1 30

C2 C 7.53 � 10�7 cm3 mmHg�1 30

C3 C 1.67 � 10�5 cm3 mmHg�1 30

C4 C 1.07 � 10�5 cm3 mmHg�1 30

C5 C 7.53 � 10�7 cm3 mmHg�1 66
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First, we obtained similar numerical results as reported in Reference 30. Despite the numerous simplifying
assumption in the simple 0D scheme, indeed, the proposed mathematical model is able to capture the mechanical
action of IOP on clinically measurable hemodynamics quantities, in particular the CRA blood velocity. In particular
Guidoboni et al. report a peak systolic CRA flow of 119.4 μ=L and an end distolic CRA flow of 33.7 μ=L for a patient
with normal IOP and high blood pressure, values which are in good agreement with our results for the HBP—Normal
IOP case (110.58 and 28.45 μ=L, respectively). Therefore their conclusions can be extended also to the present model.
The model predicts that the steep decay in retinal blood flow that occurs due to high IOP would shift towards higher
values as the blood pressure of the subject increases. This outcome also agrees with the clinical study of He et al.,81 who
found that a higher IOP was needed to attenuate ocular blood flow in Long-Evans rats with higher systemic blood
pressure.

FIGURE 14 Color Doppler Imaging (CDI) blood velocity profile within the CRA. Courtesy of the Eugene and Marilyn Glick Eye

Institute (Indianapolis, USA).

FIGURE 15 Overview of the ocular mathematicalvirtual simulator validation: comparison with experimental data.
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Second, in another set of simulations, we utilize the values of IOP, HR, SP, and DP reported in Reference 82 as input
data of the OMVS and compare the predictions of the simulation (Figure 16) with the clinical results provided in Refer-
ence 82. We have simulated three test cases of clinical interest:

i. systemic hypertensive subjects (HBP) with high IOP;
ii. system hypertensive subjects (HBP) with normal IOP;
iii. normal systemic blood pressure subjects (NBP) with high IOP.

Input values are listed in Table 6.
Figure 16A shows the blood flow profile during two cardiac cycles computed by the OMVS within the CRA and

CRV. Note that the CRV flow has a negative sign to indicate its opposite direction with respect CRA flow, the same con-
vention used in clinical settings for CDI (see Figure 14). Systemic hypertensive virtual subjects share a similar blood
flow waveform within the CRA (red and blue solid lines), whereas the model predicts a lower CRA blood flow for
NBP—High IOP subjects (black solid line). For what concerns the CRV, the simulation results for virtual subjects with
elevated IOP (blue and black dashed lines) show a drop in the blood flow with respect to HBP—Normal IOP (red
dashed line). This reduction lasts longer in the case of NBP—High IOP (black dashed line).

The top panel of Figure 16B displays the lamina cribrosa pressure drop between its external and internal boundaries
during one cardiac cycle. The bottom panel of Figure 16B reports the lamina cribrosa perfusion value on Γext during
one cardiac cycle. Figure 16B suggests that HBP—Normal IOP subjects (red line) experience a similar hemodynamic
behavior as HBP—High IOP subjects (blue line), whereas NBP—High IOP subjects (black line) exhibit a significant drop
in the lamina cribrosa pressure and perfusion (up to 28% in both cases). These outcomes are easily identifiable also
qualitatively from Figure 16C where we display the 3D spatial distribution of the blood pressure accompanied by the
intensity of the blood perfusion (color-coded arrows within the domain). The clinical results reported by Costa et al.82

suggest that only individuals with high IOP and normal blood pressure may be at higher risk for glaucomatous damage.
The model predictions of the OMVS conjecture that elevated IOP has a significant impact on the lamina cribrosa hemo-
dynamics when combined with normal systemic blood pressure, whereas it is remarkably less noticeable in case of high
systemic blood pressure. Considering that a deficit in the lamina cribrosa perfusion as a risk factor for glaucoma, which
is an increasingly supported idea in ophthalmology,83,84 the simulation results obtained employing our mathematical
model are consistent with the clinical analysis presented above. In addition, we also compared our results with experi-
mental data from a quantitative viewpoint. In particular, we refer to the values of the CRA blood flow at peak systole,
end diastole and mean reported by Harris et al.,85 Riva et al.,86 and Dorner et al.,87 which are in good agreement with
the present simulation outcomes (see Table 7).

Third, these theoretical predictions on the relationship between intraocular pressure, blood pressure, ocular perfu-
sion and glaucoma have been confirmed by the Singapore Epidemiology of Eye Diseases study, an independent
population-based study including nearly 10000 individuals.88

5.2 | Biomechanics of the lamina cribrosa

We focus in this part on the OMVS outcomes related to the biomechanics of the lamina cribrosa.
First, Guidoboni et al.33 compared the simulation results with experimental measurements89,90 suggesting that the

biomechanics in the lamina has a significant impact also on the hemodynamics in the central retinal vessels. In a previ-
ous study91 (results not reported in detail here) we performed a similar virtual experiment that investigates the effect of
IOP on the biomechanics and hemodynamics within the lamina cribrosa. The results obtained employing the OMVS
were consistent with the findings reported in Reference 33.

Second, Causin et al.65 reported results on two different modeling case studies and comparisons with experiments
conducted by Yan et al.,92 who mounted three enucleated human eyes on a specially designed experimental apparatus,
which allowed to sequentially increase the IOP. We replicated this experiment virtually using the OMVS, completing
five tests with increasing IOP values of 5, 15, 25, 35 and 50 mmHg, respectively. According to data reported in Reference
65 and 92, for all virtual tests we considered the following inputs

SP¼ 126:3mmHg DP¼ 84:2mmHg HR¼ 60beats=min:
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Figure 17A shows the deformed 3D geometry of the lamina cribrosa for the five different input values for the IOP,
using the one corresponding to IOP¼ 5mmHg as the reference value (in gray). On this basis, we next computed the LC
volume below reference, namely ΔV , and we compared our five simulations with the measurements using three enucle-
ated human eyes (eyeA, eyeB, and eyeC)92 and the results provided by Reference 65 in the two modeling test cases

(A) CRA/CRV blood flow.

(B) Lamina cribrosa perfusion and pressure computed onΓ .

(C) 3D hemodynamics in the lamina cribrosa.

FIGURE 16 Ocular mathematicalvirtual simulator validation study: hemodynamics of the CRA/CRV and lamina cribrosa. Input data

retrieved from Reference 82.

TABLE 6 Input data for the comparative study with Reference 82.

Test case SP [mmHg] DP [mmHg] HR [beats/min] IOP [mmHg]

HBP—High IOP 170 100 60 28

HBP—Normal IOP 170 100 60 15

NBP—High IOP 139.2 82.4 60 28
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(Causin-case1 and Causin-case2). The results displayed in Figure 17C show that the values of ΔV predicted by the
OMVS fall within the range of values measured experimentally in Reference 92 and theoretically predicted in Reference
65. In addition, the LC maximum displacement at baseline (109 μm with IOP¼ 15 mmHg) is within the range of values
reported by the experimental studies of Yan et al.93 59-138 μmð Þ. Figure 17B is an the example of the 3D spatial distri-
bution LC displacement at baseline IOP¼ 15mmHgð Þ, showing that the LC biomechanics is only mildly influenced
by the presence of the CRA/CRV opening. Interestingly, this effect has been reported in a previous optic nerve head
biomechanics study.94

5.3 | Biomechanics of cornea, sclera, choroid, and retina

In this subsection we discuss the biomechanical simulations provided by the OMVS for other ocular tissues than the
lamina cribrosa, and their relevance when compared with real data.

As a premise, we emphasize the fact that few works have been done in this direction. Indeed, the possibility to mea-
sure the stresses and the displacements experienced by retina, choroid, sclera and cornea in vivo is very challenging; on
the other hand, many studies tried to replicate the behavior of such tissues with phantoms or ex vivo experiments. For
this reason, we have compared the simulations results of the sclera and the cornea, which are the external and more
accessible tissues, whereas for the biomechanics of the retina and choroid we plan to conclude this exhaustive analysis
when more data will be available in the future. For all test cases we have used the 3D OMVS parameters presented in
Table 3 and the following input data

SP¼ 126:3mmHg DP¼ 84:2mmHg HR¼ 60beats=min:

First, we refer to the work by Myers et al.,95 where the authors are performing an inflation test on a posterior bovine
sclera. This in vitro analysis exhibits a nonlinear response to controlled pressurization. We completed three virtual
experiments with increasing IOP values of 14:78, 23:3 and 30 mmHg, respectively. Myers et al. reported that the sclera
can be modeled as a quasi-linear elastic material in the physiological pressure range of 2�6kPa ≈ 15�45mmHgð Þ,
behavior which is well replicated by our virtual experiments resumed in Figure 18A. The colormap of the 3D overview
of the scleral displacement in Figure 18B shows a larger deformability of the optic nerve head area, coherently with the
work of Myers et al.95

Second, we refer to the correlation between axial length and intraocular pressure discussed in the work
by Detorakis and Pallikaris.96 The axial length is the distance between the cornea and the back of the retina.
It is the combination of the depth of the anterior chamber, the lens and the vitreous humor chamber. In
adults, it measures between 22 and 25 mm.97 In this case, we have performed six virtual experiments with
increasing IOP values of 1:5, 3:83, 10:5, 14:78, 23:3 and 30 mmHg, respectively. The authors infer a linear dependency
between the measurements of intraocular pressure and axial length. The results provided by the OMVS (Figure 18C)
are in good agreement with such a correlation between these two quantities and within the range of measurements in
adults.

Third, we compare the model predictions of the OMVS with the findings of Boyce et al.98 on the
corneal displacement. In their study, the authors have conducted experiments on a bovine cornea to measure

TABLE 7 CRA flow comparison with experimental data using the hypothesis of CRA diameter of 160 μm.87

References Peak systolic [μL/min] End diastolic [μL/min] Mean blood flow [μL/min]

Dorner et al.87 38.1 ± 9.1

Riva et al.86 33 ± 9.6

Harris et al.85 IOP = 24.2 mmHg 109.78 22.92

Present work HBP—High IOP 102.99 16.49 45.32a

Present work HBP—Normal IOP 110.58 28.45 55.82a

Present work NBP—High IOP 64.722 4.21 24.38a

aThe formula used is 1/3 peak systolic flow +2/3 end diastolic flow.
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the displacement under constrained inflation conditions. We conducted six virtual experiments with
increasing IOP values of 1:5, 3:83, 10:5, 14:78, 23:3 and 30 mmHg, respectively. Boyce et al. found that, if the
IOP applied on the cornea is in physiological ranges, the displacement has a linear behavior (Figures 7, 9 and 10 of
Reference 98). Our model predicts a similar behavior for the human cornea, as illustrated in Figure 18D. This
linear behavior is well captured by the OMVS, despite the presence of several nonlinearities in the biomechanical
interaction between the ocular tissues and in the hemodynamics of the ocular posterior segment. Furthermore,
Figure 18D reports a maximum corneal displacement up to 0:03 cm, which is consistent with the values reported
by Elsheikh et al.99

IOP = 5mmHg

IOP = 15mmHg

IOP = 25mmHg

IOP = 35mmHg

IOP = 50mmHg

(B) 3D view of the displacement spatial distribution with IOP= 15mmHg.

(C) Comparison among the IOP-induced increments of LC volume below reference (Δ ) determined experimentally by 88

, numerically by 65, and the numerical predictions of the OMVS.

(A) Deformed 3D geometry of the LC using 5 different values of IOP.

FIGURE 17 Ocular mathematicalvirtual simulator validation study: biomechanics of the lamina cribrosa.
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6 | CONCLUSIONS

The main goal of the current study was to design the Ocular Mathematical Virtual Simulator, a mathematical and compu-
tational framework able to simulate and predict the biomechanics and hemodynamics within the main tissues of the eye.
Advanced and innovative numerical methods were developed to take into account (i) the combined effects of flows and
different structures from a multiphysics perspective, and (ii) the interplay between local and systemic effects on the blood
flow inherent to the multiscale structure of the problem. The proposed results provide an extensive validation of the
model, that paves the way for its utilization in the context of clinical research for glaucoma. By comprehensively modeling
the lamina cribrosa's and the surrounding tissues behavior under varying conditions,16,17,91,100 our framework could aid in
predicting and understanding the hemodynamical and biomechanical changes associated with glaucomatous damage.
This, in turn, may contribute to improved diagnostic and treatment strategies, enhancing patient care.

Some hypotheses, however, had been incorporated in the development of the OMVS, which lead to some limitations
for its use. First, the retina has been considered as an elastic tissue from the biomechanics standpoint and represented
by a 0D model for the hemodynamics. Alternatively, a porous media model could have been used to describe blood flow
dynamics in this tissue, similarly to the lamina cribrosa. However, the internal retinal vasculature is more complex than
the lamina cribrosa and it is not fully understood yet.101 Moreover, the images that can be obtained on the retina are
mostly reduced to a small portion of the total tissue, usually the fundus, which is the part close to the optic nerve head.
Second, the present configuration of the OMVS does not incorporate the effect of the vitreous humor and only accounts
for a steady description of the aqueous humor, in which the IOP value is considered constant. As a further step, and

(A)Scleral displacement

(B) Sclera 3D overview

(C)Axial length displacement (D) Corneal displacement

FIGURE 18 Ocular mathematicalvirtual simulator validation study: biomechanics of the sclera and cornea. Dotted lines represent the

ideal linear behavior.
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thanks to the modularity of the OMVS design, other models developed to describe the vitreous humor,102 the aqueous
humor and the IOP modeling103 could be integrated in the proposed framework. Third, further investigation into uncer-
tainty quantification should be undertaken to comprehensively gauge the level of confidence associated with the
obtained results and understand the robustness of the OMVS framework. Fourth, although our primary emphasis
remains the investigation of glaucoma, it is conceivable that a comparable approach could be extended to provide
insights into other ocular pathologies, including Age-Related Macular Degeneration, Diabetic Retinopathy, or other
neurodegenerative diseases.80 Nevertheless, for the model to offer substantial insights into these diverse conditions, it
would necessitate overcoming certain limitations outlined earlier. Furthermore, its clinical significance in those areas
would necessitate dedicated research efforts and validation specific to those conditions.

In conjunction with this, the incorporation of machine learning techniques also presents considerable promise in
the advancement of sophisticated models for ocular diseases. It has the potential to enrich our comprehension of
diverse ocular pathologies by meticulously analyzing extensive datasets, as recently reviewed for instance in Reference
104, see also References 105,106. Furthermore, the combined use of mathematical modeling and artificial intelligence
may help progressing personalized research in ophthalmology.
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APPENDIX A

In this appendix we describe the main steps of the HDG method utilized in the OMVS framework, based on Reference
15. We first introduce the general framework and its notations, then specify our approach to the hemodynamics in the
lamina cribrosa (Equation (6)), and finally to the biomechanics described by systems (7) and (8).

A.1. | Introductory notation

In view of the finite element approximation, we partition Ωi with i¼ sclera, choroid, retina, cornea, lc into the union
of closed straight tetrahedra K, and we denote by T i,h—called triangulation—the collection of elements K such that
Ωi ¼ [K � T i,hK. For each K � T i,h, we denote by hK the diameter of K . We let h≔ maxK � T i,hhK and we consider a fam-
ily of conforming, regular triangulations of Ωi, T i,hf gh>0 (see Reference 48 Chapter 3). For each element K � T i,h we
indicate by ∂K the boundary of K and by n∂K the associated outward unit normal vector. The 3-dimensional measure
of the element K is indicated with jK j while the 2-dimensional measure of each face of ∂K is denoted by jF j.

We let ℱi,h denote the collection of all the faces of T i,h, whose union forms the skeleton of the decomposition T i,h.
The set ℱi,h naturally splits into the subset ℱ∂Ωi

i,h of faces belonging to ∂Ωi, and into the subset of faces belonging to the
interior of Ωi, denoted by ℱ0

i,h. Finally, assuming that the decomposition T i,h is such that for all faces F in ℱi,h with
F� ∂Ωi either F�Γi,D, F �Γi,N or F�Γi,I , the sets of boundary faces can be split into the subsets ℱΓi,D

i,h , ℱΓi,N

i,h , and ℱΓi,I

h ,
which correspond to the boundaries where we impose Dirichlet, Neumann and Integral condition, respectively. Let us
now introduce the finite element spaces

Vi,h ¼
Y

K � T i,h

V Kð Þ, Wi,h ¼
Y

K � T i,h

W Kð Þ, ðA1aÞ

Mi,h ¼ span ϕ ?h i
M Y

F �ℱ0
i,h [ℱ

Γi,N
i,h

M Fð Þ, ðA1bÞ

with ϕ ? �L2 ℱi,hð Þ defined as

ϕ ?
F ¼ 1 8F �ℱΓi,I

i,h , ϕ ?
��� ���

F
¼ 0 8F �ℱi,h ∖ℱ

Γi,I

h ,

and with

V Kð Þ¼ Pk Kð Þ½ �3, W Kð Þ¼Pk Kð Þ, M Fð Þ¼Pk Fð Þ, ðA2Þ

where Pk Kð Þ resp:Pk Fð Þð Þ denotes the space of polynomials of degrees less or equal that k on K (resp. F).
Definitions (A1a), (A1b) and (A2) imply that functions belonging to Vi,h and Wi,h are, in general, discontinuous across
elements faces of T i,h, while functions in Mi,h are discontinuous across element edges of ℱi,h ∖ℱ

Γi,I

i,h , single-valued on
each face F �ℱi,h of the skeleton of T i,h and constant on Γi,I . The functions of Mi,h play the role of “connectors”
between adjacent elements enabling the possibility to use static condensation to reduce the computational cost. To sim-
plify the presentation, we introduce the compact notations for the integrals:

p,qð ÞΩ ≔
Z
Ω
pqdΩ, Ω�ℝ3

p,qh i∂Ω ≔
Z
∂Ω
pq dσ, ∂Ω�ℝ2:
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A.2. | Porous media model

We now consider the elliptic boundary value problem of second order described in Equation (6). At the discrete level,
in Ωlc,h the numerical normal flux j

h
is defined as

bj
h
�n¼ j

h
�nþ τ ph� bphð Þ, ðA3Þ

where the quantity τ is a non-negative stabilization parameter. The HDG formulation then reads: find j
h
�Vlc,h,

ph �Wlc,h and bph �Mlc,h such that.

8 v,w,μ1,μ2,μ3,μ4ð Þ�Vlc,h�Wlc,h�M0
lc,h�MN

lc,h�MD
lc,h�MI

lc,h :

K�1j
h
,v

� �
Ωlc,h

� ph,r� vð ÞΩlc,h
þ bph,v �nh i∂Ωlc,h

¼ 0

r� j
h
,w

� �
Ωlc,h

þ 1
M

∂ph
∂t

,w

	 

Ωlc,h

þ τph,wh i∂Ωlc,h
� τbph,wh i∂Ωlc,h

¼ 0,

j
h
�n,μ1

D E
Ωlc,h ∖ Γlc

þ τph,μ1h iΩlc,h ∖ Γlc
� τbph,μ1h iΩlc,h ∖ Γlc

¼ 0

j
h
�n,μ2

D E
Γlc,N

þ τph,μ2h iΓlc,N
� τbph,μ2h iΓlc,N

¼ hN ,μ2h iΓlc,Nbph,μ3h iΓlc,D
¼ hD,μ3h iΓlc,D

j
h
�n,μ4

D E
Γlc,I

þ τph,μ4h iΓlc,I
� τbph,μ4h iΓlc,I

¼ QI ,μ4h iΓlc,I

where

Vlc,h ¼ v :Ωlc !ℝ3 : v
��
K
�V Kð Þ 8K �Ωlc,h

n o
Wi,h ¼ w :Ωlc !ℝ :wjK �W Kð Þ 8K �Ωlc,h

� �
Mlc,h ¼ μ :ℱlc,h !ℝ : μjF �M Fð Þ 8F �ℱlc,h

� �
Mo

lc,h ¼ μ�Mlc,h : μj∂Ωlc
¼ 0

n o
MD

lc,h ¼ μ�Mlc,h : μjF ¼ 0 8F �ℱlc,h ∖Γlc,D
� �

MN
lc,h ¼ μ�Mlc,h : μjF ¼ 0 8F �ℱlc,h ∖Γlc,N

� �
MI

lc,h ¼ μ�Mlc,h : μjF ¼ 0 8F �ℱlc,h ∖Γlc,I
� �

and hN and hD are the associated Neumann and Dirichlet boundary conditions described in Section 2.4. The dependent
variables j

h
and ph are the approximations of j and p in the interior of each element K � T lc,h, whereas the dependent

variable bph is the approximation of the trace of p on each face of ℱlc,h. The numerical normal flux (A3) is characteristic
of a particular class of HDG methods, the so-called Local Discontinuous Galerkin Hybridizable (LDG-H) methods pro-
posed and investigated in a series of seminal papers (see Reference 107 and references therein).

A.3. | Linear elasticity model

In this paragraph we apply the HDG method to the linear elasticity equations (Equations (7) and (8)).
In addition to the notation introduced in the previous part, we define on Ωi for i¼ sclera,choroid, retina,cornea, lc

the stabilization parameter τ and the L2-orthogonal projection from L2 Ehð Þ onto Mh, denoted PM such that:

σ
i,h
�n¼ σ

el,i,h
�n� τ PMui,h�ui,h

� �
on ∂Ωi,h: ðA4Þ
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The use of PM is needed in order to obtain the optimal accuracy; without it, the formulation might result slightly
less accurate.108 Thus, we write the HDG formulation for linear elasticity: find σel,i,h �V

i,h
, ui,h �Wi,h and ui,h �Mi,h

such that 8i¼ sclera,choroid,retina,cornea, lc and 8 v
i
,wi,μi,1,μi,2,μi,3

� �
�V

i,h
�Wi,h�M0

i,h�MN
i,h�MD

i,h

Aσ
el,i,h

,v
� �

Ωi,h

þ ui,h,r � v
� �

Ωi,h

� ui,h,v �n
D E

∂Ωi,h

¼ 0

r�σ
el,i,h

,w
� �

Ωi,h

� ρ
∂2ui,h
∂t2

,w

 !
Ωi,h

� τui,h,w
� �

∂Ωi,h
þ τui,h,w

 �

∂Ωi,h
¼ 0

� τPMui,h,μ1

D E
∂Ωi,h ∖ Γi

þ τui,h,μ1

D E
∂Ωi,h ∖ Γi

¼ 0

σ
el,i,h

�n,μ
2

D E
Γi,N

� τPMui,h,μ2

D E
Γi,N

þ τui,h,μ2

D E
Γi,N

¼ g
N
,μ

2

D E
Γi,N

ui,h,μ3

D E
Γi,D

¼ g
D
,μ

3

D E
Γi,D

where

V
i,h
¼ v :Ωi,h !ℝ3�3 : v

���
K
� Pk Kð Þ½ �3�3 � S Kð Þ 8K �Ωi,h

n o
Wi,h ¼ w :Ωi,h !ℝ3 :w

��
K
�V Kð Þ 8K �Ωi,h

n o
Mi,h ¼ μ :ℱi,h !ℝ3 : μ

���
F
� Pk Fð Þ½ �3 8F �ℱi,h

n o
M0

i,h ¼ μ�Mi,h : μ
���
∂Ωi

¼ 0

� �
MD

i,h ¼ μ�Mi,h : μ
���
F
¼ 0 8F �ℱi,h ∖Γi,D

n o
MN

i,h ¼ μ�Mi,h : μ
���
F
¼ 0 8F �ℱi,h ∖Γi,N

n o
with S¼ set of symmetric tensors inℝ3�3

� �
, A defined as

Av¼ 1
2μ

v� λ

2μ 3λþ2μð ÞTr v
� �

I,

and g
N
and g

D
are the associated Neumann and Dirichlet boundary conditions described in Section 2.4. Observe that

(i) the spaces introduced in this paragraph are the natural extension of the spaces needed for the porous media system,
and (ii) the symmetry for elements v

i
�V

i,h
is enforced in an essential manner in their definition.108
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