

Dairy starters as "2-in-1" probiotic microorganisms fermenting foods and modulating gut mucosal immunity

Nassima Illikoud, Marine Mantel, Malvyne Rolli-Derkinderen, Valérie Gagnaire, Gwénaël Jan

► To cite this version:

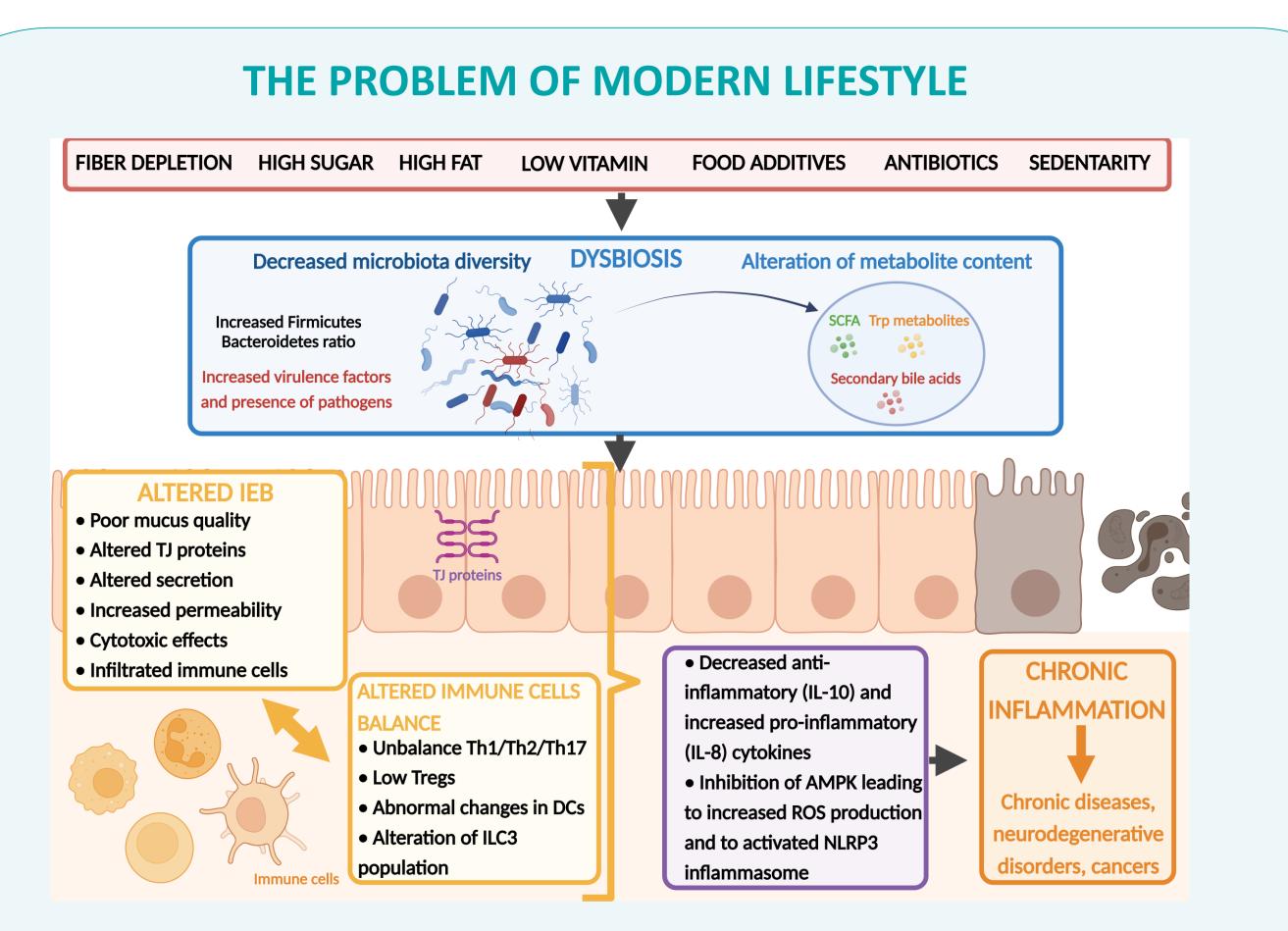
Nassima Illikoud, Marine Mantel, Malvyne Rolli-Derkinderen, Valérie Gagnaire, Gwénaël Jan. Dairy starters as "2-in-1" probiotic microorganisms fermenting foods and modulating gut mucosal immunity. https://www.beneficialmicrobes2023.org/. The 10th Beneficial Microbes Conference, Nov 2023, Amsterdam, Netherlands. , 2023. hal-04302652

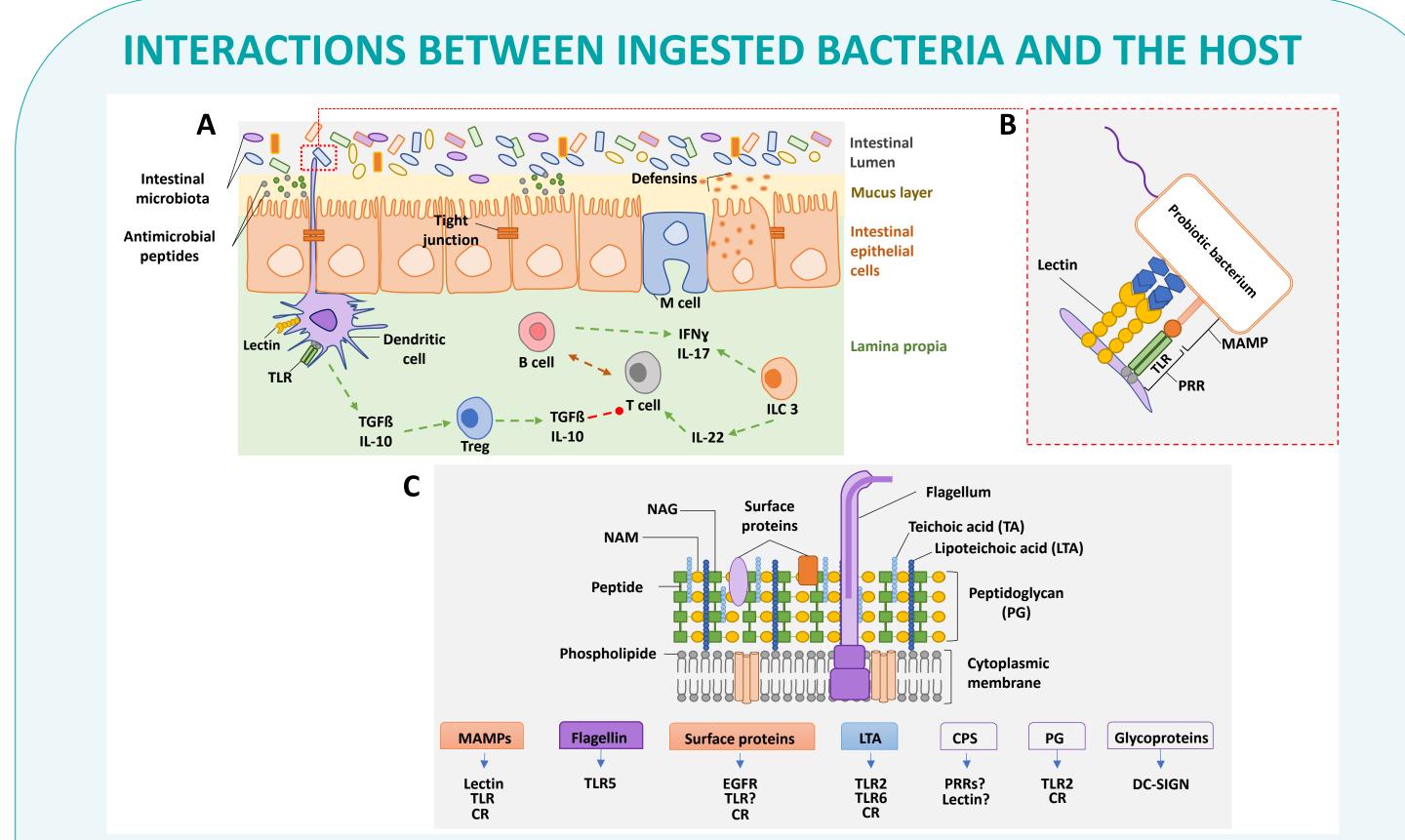
HAL Id: hal-04302652 https://hal.inrae.fr/hal-04302652

Submitted on 23 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License


Dairy starters as "2-in-1" probiotic microorganisms fermenting foods and modulating gut mucosal immunity


Nassima Illikoud¹, Marine Mantel^{1, 2}, Malvyne Rolli-Derkinderen², Valérie Gagnaire¹, Gwénaël Jan¹ ¹ INRAE, STLO, Institut Agro, Science & Technology of Milk & Eggs, Rennes, France. ² Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.

CONTEXT

Y The gut microbiota plays a crucial role in the regulation of mucosal immunity and of the intestinal barrier. Dysbiosis is accordingly associated with rupture of mucosal immune homeostasis, leading to inflammatory intestinal diseases. In this context, probiotic bacteria, including a new generation of intestinal probiotics, can maintain intestinal homeostasis and promote health. Surprisingly, little is known about the impact of fermented dairy products in this context, while they represent our main source of live and active bacteria. Indeed, they provide, through our daily diet, a high number of bacteria whose effect on mucosal immunity deserves attention. Among bacteria ingested in fermented dairy products, Streptococcus thermophilus, Lactobacillus delbrueckii, Lactobacillus helveticus, Lactococcus lactis and Propionibacterium freudenreichii are on top, as they are ingested in high concentrations (close to 10⁹) ufc per gram of product) in fermented milks or cheeses.

SCFA: short chain fatty acids; TJ: tight junction; IEC: intestinal epithelial cells; DCs: dendritic cells; ILC3: type 3 innate lymphoid cells; AMPK: Adenosine monophosphate-activated protein kinase; ROS: reactive oxygen species; NLRP3: Nucleotide-binding Oligomerization Domain-like Receptor Protein 3.

Consequences of changes in modern lifestyle on the gut dysbiosis, intestinal epithelial barrier (IEB) and immune system.

Changes occurring during transition to a modern lifestyle include modification of the eating habits, with reduced intake of fibers, of vitamin, yet enhanced intake of sugar, of food additives, and of fat. These changes also include sedentarity and medication, including the use of antibiotics.

They favour dysbiosis, a dysregulation of the gut microbiota, with decreased microbial diversity and alteration of the content in microbial metabolites. This in turn leads to an altered intestinal epithelial barrier, which is involved in an altered balance of immune cells. All these changes finally favour chronic inflammation.

lmmunomodulatory bacteria may help

Schematic view of possible interactions between ingested bacteria and the host.

A: Drawing of the key layers of the intestinal epithelial barrier. The intestinal barrier includes: (i) the intestinal lumen with the intestinal microbiota; (ii) the mucus layer that serves as a microbial and biochemical barrier; (iii) the intestinal epithelial cells (IECs) monolayer, maintained by tight junctions, forming a physical barrier; (iv) and the lamina propria which contains different immunological cells that interact together (DCs, T cell, or ILC3). Green arrows represent cytokine secretion or stimulation, brown represents interaction and red represents inhibition.

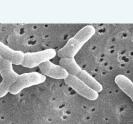
B: Focus on the interaction between a probiotic bacterium and dendritic cell (DC). Probiotic bacteria interact with DC via microbe-associated molecular patterns (MAMPs) and pattern recognition receptors (PRR).

C: Schematic representation of the main surface components (MAMPs) of Gram-positive probiotic bacteria and the corresponding PRRs in IECs and DCs. Host pattern recognition receptors (PRRs) that recognize probiotic MAMPs include Toll Like Receptors (TLRs), C-type lectin DC specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN). CR, co-receptors; CPS, cell wall-associated polysaccharide; PG, peptidoglycan; TA, teichoic acid; LTA, lipoteichoic acid; EGFr, epidermal growth factor receptor; NAG, N-acetylglucosamine; NAM, N-acetylmuramic acid.

Examples of immunomodulatory starter bacteria are given below as ID cards

Type of fermented milk products at the end of production	Species studied	Count range (log10 CFU.g ⁻¹ of product)	Reference
Flavored yogurt ($n =$	thermophilus	8.34-8.60	(-)
5)	(S. thermophilus)	8.41-8.56	
Liquid yogurt ($n = 5$)		8.34-8.59	
Fermented milk (n =		8.45 8.53	
5) Biogarde®3 (π = 5)			(2)
Commercial yogurt	S. thermophilus	7.54 ± 0.05-	(2)
	Lactobacillus delbrueckii	8.88 ± 0.06	
		6.90 ± 0.09 - 8.56 ± 0.01	
Commercial Emmental	Thermophilic	Not detected	(3)
cheeses (West part of	streptococci including	6.4; 5.7	(3)
France at 51 and 61	S. thermophilus	8.0;8.6	
d of ripening)	Thermophilic	,	
	lactobacilli including		
	Lactobacillus helveticus		
	Propionibacteria		
	including		
	Propionibacterium		
	freudenreichii		
Swiss Gruyère-type	Thermophilic	2.56 ± 0.07	(4)
cheese manufactured	streptococci including	-6.42 ± 0.01	
with natural whey	S. thermophilus	3.0-7.86 ±	
cultures (6-month ripening)	Thermophilic	0.02	
	lactobacilli including L. helveticus	7.59 (±0.86)	
	Lactobacillus helveticus ²		
Cantal cheeses (120 d of	Lactococci including	6.5 ± 0.5	(E)
ripening)	Lactococcus lactis	6.3 ± 0.6	(5)
	S. thermophilus	6.7 ± 0.3	
	Mesophilic lactobacilli	7.4 ± 0.2	
	Facultative	5.6 ± 0.3	
	heterofermentative		
	lactobacilli		
	Propionibacteria		
	including		
	P. freudenreichii		(c)
Manchego cheese (150	L. lactis subsp. lactis	-7	(6)
d of ripening)	Commercial lactococci	-6	
	starter		

cifically targets the *pheS* gene encoding the α-subunit of the phenylalanine


RNA synthetase and expressed as log10 copies g - 1.

Description: rods, Gram+, pleiomorphic, nonpathogenic, food grade, mesophilic, propionic acid bacterium, heterofermentative **Residence:** plants, digestive tract, mammary gland and raw milk

Workplace: cheeses

Profession: opening, flavour, texture Mucosal immunity modulation (in a strain**dependent manner**): prevention of colitis and mucositis in mice, may involve production of folate, surface layer proteins, induction of Treg, yet suppression of Th17 responses, modulation of several cytokines, mucus upregulation

Genus: *Streptococcus* **Species:** *thermophilus*

Description: cocci, Gram+, in chains, non-pathogenic, food grade, thermophilic, lactic acid bacterium, homofermentative

Residence: mammary gland and raw milk Workplace: yogurt and cheeses

Profession: acidification, clotting, proteolysis, flavour Mucosal immunity modulation (in a strain**dependent manner**): prevention of colitis and mucositis in mice, may involve production of folate, riboflavin, exopolysaccharides, teichoic acid, suppression of Th17 response, induction of IFN γ , TLR3 stimulation, mucus upregulation

Genus: *Lactobacillus* **Species:** *delbrueckii*

Description: rods, Gram+, non-pathogenic, food grade, thermophilic, lactic acid bacterium, homofermentative **Residence:** mammary gland and raw milk Workplace: yogurt and cheeses **Profession:** acidification, clotting, proteolysis, flavour Mucosal immunity modulation (in a straindependent manner): prevention of colitis and colitisassociated cancer in mice, may involve surface proteins and exopolysaccharides, expansion of regulatory T cells, modulation of several cytokines

WHAT CLINICAL STUDIES SAY

- ✓ deprivation of fermented foods from the human diet has strong impacts on the human immune system, including a fall in innate immune response (7).
- ✓ In obese women, yogurt consumption decreased serum LPS, lipids, and biomarkers of inflammation and oxidative stress (8).

CONCLUSION & PERSPECTIVES

- > Modern lifestyle endangers gut barrier and favours gut inflammation
- > Fermented food products are our main source of live and active bacteria
- > Selected strains of fermenting bacteria exert an immunomodulatory effect
- ✓ In overweight and obese people, yogurt reduced PBMCs expression of ROR-yt and serum levels of highsensitivity C-reactive protein (hs-CRP)(9).
- \checkmark In the same category of subjects, yogurt decreased plasma concentration of TNF- α , while increasing soluble TNF-α receptor-1 (s-TNFR-1), indicating an impact on low-grade systemic inflammation (10).
- \checkmark consumption of yogurt reduced postprandial inflammation and markers of endotoxin exposure in healthy premenopausal women (11, 12).
- ✓ Yogurt consumption was further associated with lower levels of chronic inflammation, including serum levels of IL-6 and fibrin, in both normal weight and overweight volunteers, in the Framingham Offspring study (13).
- ✓ A randomized control trial evidence that fermented products cheese and sour cream reduced, while nonfermented products increased expression of genes related to lymphocyte activation, cytokine signalling, chemokine signalling, and cell adhesion (14).

> This opens avenues for the development of functional fermented foods

Read More :

1) Jordano, R. et al. Comparison of Three M17 Media for the Enumeration of Streptococcus Thermophilus in Fermented Dairy Products. J. Food Prot. 1992, 55, 999–1002. https://doi.org/10.4315/0362-028X-55.12.999 (2) Moreno, Y et al. Viability Assessment of Lactic Acid Bacteria in Commercial Dairy Products Stored at 4 °C Using LIVE/DEAD® BacLightTM Staining and Conventional Plate Counts. Int. J. Food Sci. Technol. 2006, 41, 275–280. 1ttps://doi.org/10.1111/j.1365-2621.2005.01060.x (3) Thierry, A. et al. Swiss Cheese Ripening: Dynamics of Bacterial Populations and Evolution of the Aqueous Phase Composition for Three Industrial Cheeses. Le Lait 1998, 78, 521–542. https://doi.org/10.1051/lait:1998549 Population Dynamics of Lactobacillus helveticus in Swiss Gruyère-Type Cheese Manufactured with Natural Whey Cultures. Front. Microbiol. 2018, 9. https://doi.org/10.3389/fmicb.2018.00637. (5) De Freitas, I. et al. In Depth Dynamic Characterisation of French PDO Cantal Cheese Made from Raw Milk. Le Lait 2007, 87, 97–117 6) Poveda, J. M.et al. Preliminary Observations on Proteolysis in Manchego Cheese Made with a Defined-Strain Starter Culture and Adjunct Starter (Lactobacillus Plantarum) or a Commercial Starter. Int. Dairy J. 2003, 13, 169–178. 7) Olivares, M. et al. Dietary Deprivation of Fermented Foods Causes a Fall in Innate Immune Response. Lactic Acid Bacteria Can Counteract the Immunological Effect of This Deprivation. J. Dairy Res. 2006, 73, 492–498 nttps://doi.org/10.1017/S0022029906002068 8) Chen, Y. et al. Yogurt Improves Insulin Resistance and Liver Fat in Obese Women with Nonalcoholic Fatty Liver Disease and Metabolic Syndrome: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2019, 109, 1611–1619 ittps://doi.org/10.1093/ajcn/ngy358 (9) Zarrati, M. et al. Effects of Probiotic Yogurt on Fat Distribution and Gene Expression of Proinflammatory Factors in Peripheral Blood Mononuclear Cells in Overweight and Obese People with or without Weight-Loss Diet. 417-425. https://doi.org/10.1080/07315724.2013.874937 (10) Van Meijl, L. E. C.; Mensink, R. P. Effects of Low-Fat Dairy Consumption on Markers of Low-Grade Systemic Inflammation and Endothelial Function in Overweight and Obese Subjects: An Intervention Study. Br. J. org/10.1017/S0007114510002515 (11) Pei, R. et al. Premeal Low-Fat Yogurt Consumption Reduces Postprandial Inflammation and Markers of Endotoxin Exposure in Healthy Premenopausal Women in a Randomized Controlled Trial. J. Nutr. 2018. 148. 910–916. nttps://doi.org/10.1093/jn/nxy046

(12) Pei, R. et al. Low-Fat Yogurt Consumption Reduces Biomarkers of Chronic Inflammation and Inhibits Markers of Endotoxin Exposure in Healthy Premenopausal Women: A Randomised Controlled Trial. Br. J. Nutr. 2017, 118, 1043–1051 https://doi.org/10.1017/S0007114517003038.

(13) Yuan, M. et al. Yogurt Consumption Is Associated with Lower Levels of Chronic Inflammation in the Framingham Offspring Study. Nutrients 2021, 13, 506. https://doi.org/10.3390/nu13020506

(14) Rundblad, A et al. Intake of Fermented Dairy Products Induces a Less Pro-Inflammatory Postprandial Peripheral Blood Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-over Trial, Mononuclear Cell Gene Nutr. Food Res. 2020, 64, 2000319. https://doi.org/10.1002/mnfr.202000319

Centre **Bretagne - Normandie**

This reviewing work has been published with the following references :

Illikoud, N., Mantel, M., Rolli-Derkinderen, M., Gagnaire, V., & Jan, G. (2022). Dairy starters and fermented dairy products modulate gut mucosal immunity. Immunology Letters, 251–252, 91–102. <u>https://doi.org/10.1016/j.imlet.2022.11.002</u>

65 rue de Saint Brieuc 35 042 Rennes Cedex gwenael.jan@inrae.fr