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Abstract. Pesticide transfers in agricultural catchments are
responsible for diffuse but major risks to water quality. Spa-
tialized pesticide transfer models are useful tools to assess
the impact of the structure of the landscape on water qual-
ity. Before considering using these tools in operational con-
texts, quantifying their uncertainties is a preliminary neces-
sary step. In this study, we explored how global sensitivity
analysis could be applied to the recent PESHMELBA pesti-
cide transfer model to quantify uncertainties on transfer sim-
ulations. We set up a virtual catchment based on a real one,
and we compared different approaches for sensitivity anal-
ysis that could handle the specificities of the model: a high
number of input parameters and a limited size of sample due
to computational cost and spatialized output. After a prelim-
inary screening step, we calculated Sobol’ indices obtained
from polynomial chaos expansion, Hilbert–Schmidt indepen-
dence criterion (HSIC) dependence measures and feature im-
portance measures obtained from random forest surrogate
model. Results from the different methods were compared
regarding both the information they provide and their com-
putational cost. Sensitivity indices were first computed for
each landscape element (site sensitivity indices). Second, we
proposed to aggregate them at the hillslope and the catch-
ment scale in order to get a summary of the model sensi-
tivity and a valuable insight into the model hydrodynamic
behaviour. Conclusions about the advantages and disadvan-
tages of each method may help modellers to conduct global
sensitivity analysis on other such modular and distributed hy-
drological models as there has been a growing interest in
these approaches in recent years.

1 Introduction

Pesticide transfers from fields to water bodies are a major
but also complex environmental concern. Significant efforts
are required to assess risks for aquatic ecosystems and hu-
man lives. To do so, numerical models that simulate pesticide
transfers and fate are necessary tools to support risk manage-
ment. Among others things, such models make it possible to
explore and compare scenarios of exposure and to assess mit-
igation measures. For this purpose and to support decision-
making, physically based models such as in Reichenberger
et al. (2007) or Dosskey et al. (2011) are particularly valu-
able. When they are distributed at the scale of the catchment,
these models also make it possible to take into account the
landscape configuration. This is of particular interest as the
landscape configuration is of big influence on transfers and
regulation, and corrective actions can thus be relevantly set
up at this scale. PESHMELBA (Rouzies et al., 2019) is such
a modular, process-based and distributed model that simu-
lates pesticide transfers and fate at the scale of small agricul-
tural catchments and that takes into account the impact of the
landscape composition. However, PESHMELBA is charac-
terized by a complex structure, numerous couplings and in-
teractions that raise additional challenges about diagnosing
model behaviour and uncertainty quantification (Gupta et al.,
2008; van Griensven et al., 2006). To address the issue of
uncertainty quantification, sensitivity analysis is a powerful
tool that is being increasingly used in environmental models
(Hamby, 1994; Tang et al., 2007; Nossent et al., 2011; Garcia
et al., 2019; Alipour et al., 2022). Among its objectives, sen-
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sitivity analysis contributes to obtaining greater insight about
the model behaviour. It also contributes to identifying which
input factors should be best characterized so as to signifi-
cantly reduce the total uncertainty.

In the field of pesticide transfer modelling, Dubus et al.
(2003) and Holvoet et al. (2005) first performed one-at-a-
time (OAT) sensitivity analysis, meaning that each parameter
influence was scrutinized individually, while other parame-
ters were set to their nominal values. Although simple and
computationally cheap to set, results from OAT analysis may
be inaccurate in the case of a non-linear input–output rela-
tionship (Saltelli et al., 2004; Nossent and Bauwens, 2012).
As a result, global sensitivity analysis (GSA) that varies all
input factors simultaneously, on their entire ranges of defi-
nition, is favoured to address the sensitivity of environmen-
tal models. A large range of GSA methods exist which are
not theoretically nor practically equivalent to set, and the
method should be carefully chosen depending on the appli-
cation characteristics (Song et al., 2015; Pianosi et al., 2016;
Sarrazin et al., 2016). In the field of pesticide transfer mod-
elling, studies mainly use variance decomposition methods.
This approach is particularly appreciated as it allows us to
characterize not only the contribution of each input factor
individually but also the contributions of interactive effects
between input factors. In addition, sensitivity indices calcu-
lated from variance-based methods are easy to interpret be-
cause they represent the portion of output variance that can
be apportioned to an input factor (Saltelli, 2002). The Sobol’
method (Sobol, 1993) is the most popular variance-based
method, and it has been widely used in pesticide studies
(e.g. Hong and Purucker, 2018; Gatel et al., 2019; D’Andrea
et al., 2020; Faúndez Urbina et al., 2020). In some other stud-
ies (Fox et al., 2010; Lauvernet and Muñoz-Carpena, 2018),
variance decomposition is also performed based on Fourier
transform methods (FAST and eFAST methods). However,
such variance decomposition methods are characterized by a
high computational cost (meaning that they require a lot of
model evaluations to compute sensitivity indices) that can-
not always be afforded. As the computational cost quickly
increases with the number of input factors, a classical ap-
proach consists in first applying a screening step to identify
(if there are) parameters that have a negligible influence on
the output variability. Non-influential parameters are then re-
moved or set to constant values. Once the input space dimen-
sion has been reduced, variance decomposition can be ap-
plied on the reduced set of input factors to classify remaining
input factors according to their relative contribution to output
variability (ranking step).

Table 1 summarizes the characteristics of the GSA appli-
cation for the previously cited pesticide studies (such a ta-
ble is meant to provide some typical examples rather than be
an exhaustive list of studies on the field of pesticide mod-
elling). It shows that in these studies, the input space scru-
tinized for ranking contains at most 24 parameters (in some
cases after a screening step) and that the ranking step always

uses more than 10000 simulations. However, in the case of
the PESHMELBA model (and probably of other distributed,
physically based, hydrological and pesticide models) a clas-
sical application involves around 150 parameters. In addi-
tion, 10000 simulations may be very hard to reach in real-
istic applications due to computation time. Such characteris-
tics make classical approaches for variance-based GSA quite
hard to apply to PESHMELBA. Then, there is a need for ex-
ploring other, low-computational-cost GSA methods to per-
form a ranking task in the PESHMELBA model. Recently,
new GSA approaches that require much less model evalu-
ations have emerged. For instance, computing a metamodel
based on polynomial chaos expansion on the model (Ghanem
and Spanos, 1991) allows us to compute Sobol’ sensitivity
indices directly, for a very limited computational cost (Su-
dret, 2008; Fajraoui et al., 2011; Wang et al., 2015). From a
totally different point of view, the Hilbert–Schmidt indepen-
dence criterion (HSIC) proposed by Gretton et al. (2005b)
is used as a sensitivity measure in Da Veiga (2015). It de-
scribes the global dependence between the output and each
input factor from a probabilistic point of view, also from a
very limited computational budget. Finally, the growing in-
terest for machine learning techniques is paving the way for
new approaches of GSA, such as the random forest method
(RF). Its structure provides valuable information on feature
importance that can be processed as sensitivity indices like
in Harper et al. (2011) and Aulia et al. (2019) (see Anto-
niadis et al., 2021, for a review on the use of random forests
for sensitivity analysis). However, such innovative methods
have never been applied to a complex, distributed pesticide
transfer model before.

Therefore, the objective of this paper is to evaluate and
to compare three new, low-computational-cost GSA meth-
ods for application to the PESHMELBA model. The meth-
ods will be especially compared in terms of interpretability
of the sensitivity indices they provide and reliability (based
on the study of their convergence rate). We also investigate
whether such approaches suit the spatialized aspect of PESH-
MELBA. To do so, we investigate the relevancy of comput-
ing both local and aggregated indices following the recom-
mendations from Saint-Geours (2012). The analysis is per-
formed on a virtual scenario based on a real catchment in the
Beaujolais region (France). The paper is organized as fol-
lows: we describe the PESHMELBA model in Sect. 2.1 and
the model setup in Sect. 2.2. The input sampling is described
in Sect. 2.3, and then we introduce the different GSA ap-
proaches and the methodology used for landscape analysis
from Sect. 2.4 to Sect. 2.6. Results are presented in Sect. 3.
They focus successively on screening (Sect. 3.1), comparison
of GSA methods (Sect. 3.2) and spatial analysis (Sect. 3.3).
Finally, Sect. 4 gathers some points of discussion.
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Table 1. Examples of global sensitivity analysis performed on pesticide transfer models.

Reference Model name No. of input Method No. of model
factors for evaluations

ranking

Fox et al. (2010) VFSMOD 18 eFAST 14 977
Lauvernet and Muñoz-Carpena (2018) VFSMOD 24 eFAST 75 544
Hong and Purucker (2018) PRZM 11 Sobol’ 195 000
Gatel et al. (2019) CATHY 15 Sobol’/Sobol’ 1922/17 000

with ROA-LHS sampling
(Tissot and Prieur, 2015)

D’Andrea et al. (2020) PWC 24 Sobol’ 11 776
Faúndez Urbina et al. (2020) SWAP-PEARL < 14 Sobol’ > 18000

2 Material and methods

2.1 The PESHMELBA model

The PESHMELBA model represents a catchment as a set of
interconnected components that stand for landscape elements
such as plots, vegetative filter strips (VFSs), ditches, hedges
or rivers (Rouzies et al., 2019). In order to respect the spa-
tial organization and the heterogeneity of the landscape, it
deals with mesh elements that can be surfaces or lines. Sur-
face mesh elements are called homogeneous units (HUs). A
HU is a portion of landscape that is homogeneous in terms
of hydrodynamic processes and agricultural practices. Lin-
ear mesh elements are called reaches. A reach is character-
ized by its nature (so far ditch, river or hedge) and by its
neighbouring components: it is at most in contact with one
elementary mesh element on each bank. In addition to its
geometric or hydrodynamic properties, each mesh element
is characterized by its one-way connections with the neigh-
bouring components that stand at a lower altitude. One or
several processes are represented on each element depending
on its nature. Lateral transfers at surface and in the subsur-
face between elements are also integrated. Independent codes
called units are used to simulate the different processes, de-
pending on the knowledge the user has on the targeted catch-
ment functioning. Then, the OpenPALM coupler (Fouilloux
and Piacentini, 1999; Buis et al., 2006) is used to couple the
units and to build the complete application. OpenPALM has
adapted features to easily deal with spatial and temporal as-
pects of the model. For example, synchronization tools make
it possible to couple processes with different time steps. The
final structure is highly modular, and process representations
can easily be added, upgraded or removed depending on the
landscape description. These features make PESHMELBA
particularly suitable for scenario exploration. PESHMELBA
focuses on surface and subsurface transfers of water and pes-
ticides. An extensive description of elements and processes
already included can be found in Rouzies et al. (2019). The
PESHMELBA version used in this study integrates a rep-
resentation of water and pesticide transfers on plots, VFSs

and rivers. Each plot or VFS is represented by a unique col-
umn of soil divided into vertical cells. In such a column,
vertical infiltration is simulated using a solution of the 1D
Richards equation proposed by Ross (2003). An adapted set
of parameters makes it possible to represent high infiltra-
tion rate, surface runoff reduction, and enhanced adsorption
and degradation on VFSs. Root-water uptake is integrated
based on Varado et al. (2006). Surface runoff routing is repre-
sented based on the kinematic wave (Lighthill and Whitham,
1955), and the Darcy law (Darcy, 1857) is used for lateral
subsurface transfers. In addition to shallow groundwater ta-
bles, PESHMELBA also represents shallowly perched water
tables and associated lateral transfers. Finally, the reactive
transfer of solutes is represented: advection and degradation,
based on a first-order law, and adsorption, based on linear
or Freundlich isotherms, are integrated. Each river or ditch
reach is represented by a unique tank. The River1D mod-
ule (Branger et al., 2010) solves the kinematic wave equa-
tion for water routing and pesticide advection in the network.
Groundwater–river exchanges are represented by the Miles
formulation adapted by Dehotin et al. (2008).

2.2 Model setup

A virtual scenario of limited size is set from a portion of La
Morcille catchment (France) in order to explore the differ-
ent GSA methods and to ease interpretation of spatialized
results. The chosen portion is selected so as to remain repre-
sentative of the global composition of La Morcille catchment
in terms of soil, slope, type and size of elements, as well as
interface length between them. The chosen scenario is com-
posed of 10 vineyard plots, four vegetative filter strips and
five river reaches that delimit a left and a right slope (see
Fig. 1).

Soils types on the catchment are mainly sandy (Peyrard
et al., 2016). We use the classification from Frésard (2010)
that groups soil types into three main soil units (SUs). Each
SU is defined by the vertical succession of three or four soil
layers, also called soil horizons: one surface horizon, one or
two intermediary horizons, and one deep horizon, as depicted
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Figure 1. (a) Portion of La Morcille catchment selected to perform sensitivity analysis. Yellow units stand for vineyard plots, while green
units stand for vegetative filter strips. Brown stars denote locations of pesticide application. (b) Slopes and connections between elements.

Figure 2. Soil type locations for the case study. Green contours
show the vegetative filter strips.

in Fig. 2. Note that interface depths can vary from one SU to
another. The reader may refer to Rouzies et al. (2019) for
further details on how soil types and soil horizons are repre-
sented in PESHMELBA. At the catchment scale, the classi-
fication results in the following SU (see Fig. 2): sandy soil
(SU1), sandy soil on clay on the right bank plateau (SU2),
and heterogeneous sandy soils on lower slopes and thalwegs
(SU3). Spatial arrangement is set in order to be as realistic as
possible in terms of possible interfaces between SUs. Each
SU is set at least on one vineyard plot and one VFS on the
virtual scenario.

Considering the different soil horizons whose hydrody-
namic behaviour and texture must be parameterized, the two
types of vegetation (grassland and vineyard), and the differ-
ent landscape element types (plots, VFSs and river reaches)
that are simulated, the scenario results in 145 input param-
eters to be considered for sensitivity analysis. They are de-
scribed in Table 2 as well as the spatial level on which they
are set and their values for the nominal simulation.

For the nominal scenario, values for bulk density bd and
organic carbon content moc are available from Van den Bo-
gaert (2011) and Randriambololohasinirina (2012). They are,
as well as hydrodynamic parameters for each soil type, de-
scribed in Table 3. Retention values measured by Van den
Bogaert (2011) are used to fit retention curve using the SWR-
Cfit tool (Seki, 2007). A Schaap–van Genuchten conductivity
curve is used (Schaap and van Genuchten, 2006; Ross, 2006),
whose matching points at saturation Ko and empirical pore
connectivity L are derived from conductivity data and reten-
tion parameters from retention curve fitting. Surface organic
carbon content is set equal to that of the first soil horizon
on plots and VFSs. For each SU, only the first soil horizon
on VFSs differs from vineyard plots so as to highlight en-
hanced infiltration capacities. The surface horizon on VFSs
is characterized by a 2.8 % organic carbon content (Randri-
ambololohasinirina, 2012) and a saturated hydraulic conduc-
tivity of 150 mm h−1 (or 4.31× 10−5 m s−1) following Cat-
alogne et al. (2018). In the absence of data to characterize
potential anisotropy of vertical and horizontal saturated con-
ductivities Ksv and Ksh, isotropy is considered; thus the ratio
Ksh/Ksv is set to 1 in the catchment.

The pesticide chosen in this study is tebuconazole as it
is a fungicide widely used in the La Morcille catchment.

Geosci. Model Dev., 16, 3137–3163, 2023 https://doi.org/10.5194/gmd-16-3137-2023
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Table 2. Input factor description, corresponding spatial level definition and value for the nominal scenario. Nominal values are explicitly
distinguished between vineyard plots and VFSs with the character “–” when needed.

Input factor [units] Description Spatial level definition Nominal value

Soil parameters

thetas [m3 m−3] Saturated water content Soil horizon see Table 3

thetar [m3 m−3] Residual water content Soil horizon see Table 3

Ks [m s−1] Saturated hydraulic conductivity Soil horizon

hg [m] Air-entry pressure in van Genuchten retention Soil horizon see Table 3
characteristic curve

mn Deduced parameter from van Genuchten retention Soil horizon see Table 3
characteristic curve n: mn = n− 1

Ko [m s−1] Matching point at saturation in modified Mualem– Soil horizon see Table 3
van Genuchten conductivity curve
(Schaap and van Genuchten, 2006)

L Empirical pore-connectivity parameter Soil horizon see Table 3

bd [g cm−3] Bulk density Soil horizon see Table 3

Pesticide parameters

Koc [m Lg−1] Freundlich sorption coefficient Pesticide type 769
DT50 [d] Half-life Pesticide type 47.1

Vegetation parameters

manning [sm−1/3] Manning’s roughness Vineyard plot–VFS 0.033–0.2

Zr [m] Rooting depth Vineyard plot–VFS 2.62–0.9

F10 Fraction of the root length density in the Vineyard plot–VFS 0.370–0.335
top 10 % of the root zone

LAImin Min LAI value Vineyard (plot) 0.01

LAImax Max LAI value Vineyard (plot) 2.5

LAIharv LAI value at harvest time Vineyard (plot) 0.01

LAI Constant LAI value Grassland (VFS) 5

River parameters

hpond [m] Ponding height in the river bed River reach 0.01

di [m] Distance between the river bed and the limit of River reach 1.5
impervious saturated zone

Ks [m s−1] Saturated conductivity of the river bed River reach 2.38× 10−5

manning [sm−1/3] River bed Manning’s roughness River reach 0.079

Plot and VFS parameters

hpond [m] Ponding height Plot–VFS 0.01–0.05

adsorpthick [m] Mixing layer thickness All landscape elements (except river) 0.01

https://doi.org/10.5194/gmd-16-3137-2023 Geosci. Model Dev., 16, 3137–3163, 2023
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Table 3. Soil parameters for SU1, 2 and 3. Hydrodynamic parameters are based on the van Genuchten retention curve and on Schaap–van
Genuchten conductivity curve fitting. Parameters are described in Table 2. Values for the surface horizon are explicitly distinguished between
plot and VFS when they are different. Horizons 11, 12 and 13 are surface horizons for plots, whereas horizons 14, 15 and 16 are surface
horizons for VFSs.

Horizon Depth Thetas Thetar hg n Ks Ko L bd moc
[m] [m3 m−3] [m3 m−3] [m] [–] [m s−1] [m s−1] [-] [g cm−3] [ %]

SU
1

11–14 0.05 0.34 0.04 −9.69× 10−2 1.27 3.93× 10−5
− 4.31× 10−5 2.86× 10−7

−8.43 1.34 0.91–2.80
2 0.5 0.34 0.05 −3.29× 10−2 1.20 8.64× 10−5 2.28× 10−7

−6.52 1.47 0.39
3 0.65 0.32 0.08 −2.09× 10−2 1.20 5.39× 10−5 7.47× 10−7

−4.24 1.57 0.10
4 4 0.28 0.07 −5.99× 10−2 1.23 3.11× 10−5 1.47× 10−6

−0.14 1.53 0.07

SU
2

12–15 0.035 0.34 0.04 −9.69× 10−2 1.27 3.93× 10−5
− 4.31× 10−5 2.86× 10−7

−8.43 1.34 1.15–2.80
6 0.4 0.35 0 −6.60× 10−2 1.13 2.16× 10−5 3.19× 10−7 9.66 1.59 0.68
7 0.55 0.32 0 −7.18× 10−2 1.08 9.60× 10−6 1.67× 10−7

−10 1.66 0.35
8 4 0.42 0 −3.02× 10−1 1.08 3.98× 10−6 9.72× 10−8 10 1.54 0.28

SU
3 13–16 0.06 0.34 0.04 −9.69× 10−2 1.27 3.93× 10−5

− 4.31× 10−5 2.86× 10−7
−8.43 1.34 0.75–2.80

9 0.45 0.33 0.08 −6.72× 10−2 1.26 3.05× 10−5 3.36× 10−7 0.42 1.46 0.37
10 4 0.32 0.06 −3.56× 10−2 1.18 2.38× 10−5 3× 10−7 1.05 1.62 0.40

It is a slightly mobile molecule, and we use a Freundlich
isotherm to describe its adsorption equilibrium. Adsorption
parameters are obtained from Lewis et al. (2016) (Koc =
769 mL g−1, Freundlich isotherm exponent = 0.84). The sur-
face degradation coefficient is also taken from Lewis et al.
(2016) (DT50 = 47.1 d), and a decreasing degradation rate
as a function of depth is set as in FOCUS (2001). A 500 g
application is considered at the beginning of the simulation
on plots 2 and 7 (see Fig. 1). Most of the transformation and
adsorption of tebuconazole are supposed to happen on plots
and VFSs at this modelling scale. Therefore, no adsorption
or degradation is simulated in the river.

A no-flux boundary condition is applied on all sides except
on the surface where rain and potential evapotranspiration are
considered. Rain data are extracted from the BDOH database
(Gouy et al., 2015). A 3-month simulation is performed for
a time period characterized by long and intense rain events
(670 mm cumulated), allowing for significant water and pes-
ticide transfers both by surface runoff and subsurface satu-
rated transfers. Potential evapotranspiration (PET) data are
obtained from MeteoFrance for the neighbouring site of Lier-
gues (MeteoFrance, 2008). Data are averaged over 10 d pe-
riods and corrected by a factor of −11% to match the La
Morcille site as recommended in Durand (2014) and Caisson
(2019). Rain and PET data for the simulation are summarized
in Fig. 3.

Although virtual, we aim at setting initial conditions as
plausible as possible for this scenario. As running the model
on a warm-up period is not possible due to data availability
and computational cost limitation, initial water table levels
are deduced from piezometric data on a neighbouring hills-
lope, and all soil columns are supposed to be in hydrostatic
equilibrium at the beginning of the simulation. Data from
several piezometers are available on a transect, perpendicular
to the river. Data are extrapolated over the virtual hillslope

Figure 3. Climatic forcing (rain and potential evapotranspiration)
for the simulation. The dotted red line stands for the one-shot pesti-
cide application.

width on both sides of the river. An upstream 0.177 m3 s−1

flow is considered in the river based on local measurements
(Gouy et al., 2015).

Two types of vegetation are represented in this scenario.
Vineyard cover is considered on plots, while permanent
grassland is simulated on VFSs. Considering the period of
simulation (3 months), a fixed root depth (Zr = 2.62 m) and
a fixed root density in the first 10 % of the root depth (F10
= 37%) are considered for vineyards following values re-
ported in Smart et al. (2006) and confirmed by expert knowl-
edge in the area. The root depth (Zr) is set to 0.9 m, and the
root density in the first 10 % of the root depth (F10) is set to
33.5 % for grassland (Brown et al., 2007). For vineyards, the
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leaf area index (LAI) is assumed to increase from a minimum
value LAImin from leaves formation until a maximum value
LAImax before declining until harvest LAIharv. Dates and
associated values for this development cycle are taken from
Brown et al. (2007), and they are detailed in Appendix A1.
On grassland, the LAI is assumed to remain constant, and a
nominal value of 5 is chosen based on Brown et al. (2007).
In Table 2, the reader should note that the LAI parameter re-
lates to the constant LAI value for grassland, while LAImin,
LAImax and LAIharv relate to vineyard plots. The remain-
ing parameters for the root extraction model are also fixed
to nominal values proposed by Varado et al. (2006) and Li
et al. (2001). Manning coefficients are set from data reported
in Arcement and Schneider (1989). A mature row crop value
(0.033 s m−1/3) is chosen for vineyards, while a high grass
pasture value (0.2 s m−1/3) is set for VFS cover.

Finally, ponding height is set to 0.01 m for vineyard plots,
while an increased value is set for VFSs (0.05 m). According
to Gao et al. (2004) and Walter et al. (2007), the surface mix-
ing layer thickness is set to 0.01 m in both plot and VFS do-
mains. In the river, the distance between the river bed and the
limit of impervious saturated zone (di) is set to 1.5 m (elec-
trical resistivity tomography field measure, Rémi Dubois,
personal communication, 2020), and the saturated hydraulic
conductivity (Ks) is set to 2.38× 10−5 m s−1 accordingly to
local saturated conductivities in the neighbouring soil. The
ponding height is set to 0.01 m, while the Manning coeffi-
cient is chosen equal to 0.079 s m−1/3, as suggested in Arce-
ment and Schneider (1989) for channels with limited obstruc-
tion.

2.3 Input sampling

The input factor distributions are set to be as representative as
possible of the available data on the catchment and the asso-
ciated uncertainties. Mean values are taken from the nominal
scenario described in Sect. 2.2. Distributions and standard
deviations are assigned based on experimental measurements
from the catchment of application, available scientific litera-
ture or expert knowledge. All assigned distributions and cor-
responding statistics are summarized in Appendix B.

As commonly found in the literature (Coutadeur et al.,
2002; Fox et al., 2010; Schwen et al., 2011; Dairon, 2015;
Dubus et al., 2003; Dubus and Brown, 2002), a lognormal
distribution is assigned to the saturated hydraulic conductiv-
ity Ks. A 20 % coefficient of variation (CV) is used so as
to remain representative of each soil horizon hydrodynamic
behaviour. Distributions for Schaap–van Genuchten param-
eters could not be found in the literature; thus the empiri-
cal pore-connectivity parameter L is assigned a uniform dis-
tribution ±20% around the mean value (Zajac, 2010). As
the matching point at saturation in the modified Mualem–
van Genuchten conductivity curve Ko has the same physical
meaning as Ks, a lognormal distribution is also assigned to
this parameter and a 20 % CV is set. Saturated water content

thetas, residual water content thetar, van Genuchten parame-
ter mn and air-entry pressure hg are assigned normal distribu-
tions (Schwen et al., 2011; Alletto et al., 2015; Dairon, 2015;
Gatel et al., 2019). A 10 % CV is set for thetas (Gatel et al.,
2019; Lauvernet and Muñoz-Carpena, 2018), and thetar is
assigned a 25 % CV (Gatel et al., 2019). A 10 % CV is set
for mn and hg (Schwen et al., 2011; Alletto et al., 2015; Ga-
tel et al., 2019). A uniform distribution is assigned to organic
carbon content moc (Lauvernet and Muñoz-Carpena, 2018).
A triangular distribution is assigned to the Freundlich sorp-
tion coefficient Koc (Lauvernet and Muñoz-Carpena, 2018),
and a normal distribution is assigned to the half-life DT50.
A 60 % CV is assigned to Koc and DT50 distributions as
such parameters are considered relatively uncertain (Dubus
et al., 2003). Triangular distributions are assigned to Man-
ning’s roughness (manning) on plots and for the river bed
(Lauvernet and Muñoz-Carpena, 2018; Gatel et al., 2019). A
uniform distribution with a ±20% range around the mean
value is assigned to remaining input factors as little informa-
tion could be found in the literature (Zajac, 2010).

Using a fully distributed model such as PESHMELBA
raises the issue of sampling strategy. Indeed, in this case
study, even if the site is only composed of 14 surface units,
the large number of soil horizons on the catchment, consid-
ering the hydrodynamic distinction between plots and VFSs,
also dramatically increases the number of parameters. Sam-
pling all parameters on each spatial unit leads to a huge
number of simulations that could not be computationally af-
forded. Moreover, such independent sampling on a very large
number of parameters may lead to misinterpretation of the
sensitivity analysis results as the influence of physical pro-
cesses could not be distinguished from spatial arrangement.
For each sample, one set of soil parameters is therefore sam-
pled for each soil horizon, and those parameters are applied
to all spatial units that contain this horizon which sets the
number of parameters to be considered in the GSA at 145.

2.4 Methodology for global sensitivity analysis in the
PESHMELBA model

Although the PESHMELBA model is dynamic, model out-
puts considered in this paper are scalar quantities rather than
temporal series to keep the problem simple. In order to in-
vestigate PESHMELBA abilities to properly represent trans-
fers in a heterogeneous landscape, sensitivity analysis is per-
formed on four hydrological and quality variables: (1) cumu-
lated water volume transferred in the subsurface (saturated
lateral transfers), (2) pesticide mass transferred in the sub-
surface (saturated lateral transfers) (3) cumulated water vol-
ume transferred on surface (surface runoff) and (4) cumu-
lated pesticide mass transferred on surface (surface runoff).
However, these quantities are spatialized, leading to multidi-
mensional outputs. To deal with the spatialized aspect, GSA
is first performed on scalar quantities, on each landscape el-
ement (see Sect. 2.4.1 to 2.4.3), then sensitivity indices are
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aggregated in a second time to provide catchment-scale sen-
sitivity indices (see Sect. 2.6).

The full workflow used to perform GSA in the PESH-
MELBA model is summarized in Fig. 4. Considering the
high number of input parameters, a screening step is first per-
formed to decrease the dimension of the problem. Screening
is performed with a statistical independence test based on
the HSIC measure (see Sect. 2.4.2) on an initial 4000-point
Latin hypercube sample (LHS; McKay et al., 1979). Second,
a new 2000-point LHS obtained from the reduced set of in-
put parameters is computed to perform ranking. Sensitivity
indices are computed from the 2000-point sample based on
(1) variance decomposition (Sect. 2.4.1), (2) the HSIC de-
pendence measure (Sect. 2.4.2) and (3) the feature impor-
tance measure obtained from random forests (Sect. 2.4.3).
These methods are all global and model-free, and all suit
non-linear, non-monotonic models. In addition, they all be-
long to the category of “given-data” methods which means
that the input sample they consider does not require a spe-
cific structure. This is of particular interest for models that
are computationally costly as it allows us to take advantage
of pre-existing simulations. That is why such methods have
known a growing interest in recent years (Saltelli et al., 2021;
Sheikholeslami et al., 2021). However, such methods may
not be equally costly to set, and they define the notion of
sensitivity in contrasted ways. We compare them regarding
the information they provide, their accuracy and their robust-
ness.

In what follows, we denote Y ∈ R, a given scalar output
from PESHMELBA. Y is function of a multivariate input
random vector Y =M(X), where X = (X1, . . .,XM) ∈ RM
contains the 145 input parameters considered in this case
study and where M is the PESHMELBA model.

2.4.1 Variance decomposition

Variance-based methods aim at determining how input fac-
tors contribute to the output variance (Faivre et al., 2013).
One of the most popular variance-based method is the Sobol’
method (Sobol, 1993). The Sobol’ indices capture the direct
impact of any input and also describe the impact of input
parameters in interaction with others. It is based on the de-
composition of the total variance of the output:

Var[Y ] =
M∑
s=1

M∑
i1<...<is

Vi1, ..., is , (1)

where Vi1, ..., is indicates the portion of variance that can be
attributed to interactions between input parameters Xi, i ∈
i1, . . ., is . From the above, one can define Sobol’ indices as

Si1, ..., is =
Vi1, ..., is

Var[Y ]
. (2)

By definition, 0≤ Si1, ..., is ≤ 1. In particular, first-order sen-
sitivity indices Si = Vi

Var[Y ] only account for the main effects

of parameter Xi . They can be interpreted as the decrease in
the total output variance that could be obtained when remov-
ing the uncertainty about Xi when setting Xi to a fixed value
(Tarantola et al., 2002). These indices are usually calculated
as a first step as they often account for a large portion of the
variance (Faivre et al., 2013). Total sensitivity indices STi
evaluate the total effect of an input factor Xi on the output
by taking into account its main effect Si and all interaction
terms that involve it:

STi =
∑
Ii
Si1, ..., is , Ii = {(i1, . . ., is) | ∃k,

1≤ k ≤ s, ik = i}. (3)

The total sensitivity index STi stands for the portion of total
output variance that remains as long as Xi stays unknown
(Tarantola et al., 2002).

Sobol’ indices’ direct computation requires a large sample
size that can not be afforded in this case study. As a result,
we compute Sobol’ indices from a limited sample size, based
on polynomial chaos expansion (PCE; Sudret, 2008) in or-
der to circumvent such difficulty. This approach consists in
building a surrogate model of which analytical polynomial
expression is directly related to Sobol’ indices. Building a
PCE and deducing the associated Sobol’ indices thus only re-
quires a training sample of limited size and knowledge about
each input parameter marginal distribution. More precisely,
PCE provides a functional approximation of the computa-
tional model based on the projection of the model output on
a suitable basis of stochastic polynomial functions in the ran-
dom inputs (Ghanem and Spanos, 1991). For any square inte-
grable scalar output random variable Y , its polynomial chaos
expansion is expressed as follows:

Y =
∑
α∈NM

γα9α(X), (4)

where the 9α’s are multivariate orthonormal polynomials
built according to the marginal probability density functions
of each input factor, and γα values are the associated coordi-
nates. Expansion from Eq. (4) is usually truncated to a finite
sum for practical computation, using for example a trunca-
tion scheme based on least-angle regression (Blatman and
Sudret, 2011). The Sobol’ indices can then be obtained an-
alytically from the coefficients γα (see Sudret, 2008, for a
demonstration of the relation between PCE and Sobol’ in-
dices). In our study, the UQLab MATLAB software (Marelli
and Sudret, 2014) is used to compute Sobol’ indices from
the 2000-point LHS (step 2a, Fig. 4). We use a q-norm-
and degree-adaptive sparse PCE based on the least-angle re-
gression scheme (LARS; Blatman and Sudret, 2011), with q
norm ∈ [0.1,0.2, . . .,1.0] and a maximum degree of 3.

2.4.2 The HSIC dependence measure

Sensitivity measures based on the Hilbert–Schmidt indepen-
dence criterion (HSIC; Da Veiga, 2015) belong to the cat-
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Figure 4. Full workflow used to perform GSA on the PESHMELBA model in three steps: (1) screening, (2a) ranking at a local scale and
(2b) ranking at the catchment scale.

egory of dependence measures that quantify, from a prob-
abilistic point of view, the dependence between each input
and the output. The greater the dependency between the in-
put factor and the output, the greater the associated sensi-
tivity measure. The Hilbert–Schmidt independence criterion
used for GSA is based on the cross-correlation between any
non-linear transformations of some input factor Xi and the
output Y (De Lozzo and Marrel, 2016). Such a dependence
measure simultaneously captures a very broad spectrum of
forms of dependency between the variables (Meynaoui et al.,
2018). These indices can be estimated from small samples (a
few hundreds of points) and do not depend on the number of
inputs, which is a huge advantage.

The HSIC theory relies on reproducing kernel Hilbert
space (RKHS) and kernel functions. Let Fi denote the RKHS
composed of all continuous bounded functions of input Xi ,
with values in R and G the RKHS composed of real-valued
continuous bounded functions of output Y with values in R.
〈·, ·〉Fi (i.e. 〈·, ·〉G) is the inner product on Fi (i.e. G), and
kXi (i.e. kY ) is the corresponding kernel function that defines
such a scalar product. The HSIC measure corresponds to the
square of the Hilbert–Schmidt norm of the cross-covariance

operator C[GFi] : G→ Fi , which is

HSIC(Xi,Y )Fi ,G = ||C[GFi]||
2
HS

=

∑
j,k

〈uij ,C[GFi](vk)〉Fi

=

∑
j,k

cov(uij (Xi),vk(Y )), (5)

where (uij )j≥0 and (vk)k≥0 are orthogonal bases of Fi and G
respectively.

The resulting sensitivity indexes proposed by Da Veiga
(2015) are defined for each input factor Xi, i ∈ {1, . . .,M} as

S2
Xi
=

HSIC(Xi,Y )Fi ,G√
HSIC(Xi,Xi)Fi ,FiHSIC(Y,Y )G,G

. (6)

Based on Gretton et al. (2005a), an estimator of the HSIC
can be computed from an N sample (xji ,y

j ),j ∈ {1, ..,N}
of (Xi , Y ):

ĤSIC(Xi,Y )Fi ,G =
1

(N − 1)2
Tr(KHLH), (7)

where H ∈ RN×N is the centring matrix Hij = δij − 1
N

, and
K ∈ RN×N and L ∈ RN×N are the Gram matrices defined
asKij = kXi (xi,xj ) and Lij = kY (yi,yj ), where kXi and kY
are the kernel functions associated with each RKHS. In this
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study, and following De Lozzo and Marrel (2014, 2016) and
Da Veiga (2015), we choose a Gaussian kernel as it is a uni-
versal kernel that can fully characterize the independence of
variables and that can be used for scalar or vectorial vari-
ables. For a vectorial variable x ∈ Rq , it is expressed as fol-
lows:

k(x,x′)= exp(−λ||x− x′
||

2
2), (8)

with ||.||2 the Euclidian norm in Rq and where the hyperpa-
rameter λ is called the bandwidth parameter of the kernel. In
this study, the bandwidth λ is estimated from the inverse of
the empirical standard deviation of the sample.

When using a universal kernel, the HSIC indices can also
be statistically used for screening purposes (De Lozzo and
Marrel, 2014). A statistical test can be set with the null hy-
pothesis “Xi and Y are independent”. Considering an exper-
imental design of N points (x1

i , . . .x
N
i ) and the associated

output points (y1, . . .,yN ), an estimator ̂HSIC(Xi,Y ) of the
dependence measure HSIC(Xi,Y ) is firstly computed. Then
B bootstrap versions Y [1], ..., Y [B] are resampled from the
original output sample (y1, . . .,yN ) with replacement so as
to contain the same number of points N . For each Y [B] the
input points associated with Xi are not resampled. Indeed,
under the independence hypothesis, any values of Y can be
associated with Xi . For each bootstrap version b, an estima-

tor ĤSIC
[b]
(Xi,Y ) is computed. Then, the associated boot-

strapped p value is given by

p-valB =
1
B

B∑
b=1

1
ĤSIC

[b]
(Xi ,Y )>ĤSIC(Xi ,Y )

. (9)

Finally, denoting α the significance level, if p valB < α, the
independence hypothesis is rejected, otherwise it is accepted.
In this study, such a statistical test is used to perform screen-
ing based on 100 bootstrap replicates and a 1 % significance
level. The R code provided in De Lozzo and Marrel (2016)
(see their Supplement) to compute the HSIC measure has
been adapted in Python to perform both screening and rank-
ing.

2.4.3 Random forest

Random forests (Breiman, 2001) belong to ensemble ma-
chine learning techniques. The method consists in creating a
surrogate by averaging results from an ensemble of K deci-
sion trees created independently. A decision tree is composed
of an ensemble of discriminatory binary conditions contained
in nodes. Such conditions are hierarchically applied from a
root node to a terminal node (tree leaf) (Rodriguez-Galiano
et al., 2014). The input space is therefore successively parti-
tioned into smaller groups that correspond to the nodes ac-
cording to a response variable. Such splitting goes on until
reaching a minimum threshold of members per node. In this
study, we consider regression trees that focus on continuous
response variables.

As each individual decision tree is very sensitive to the
input dataset, bagging is used to avoid correlations between
them and to ensure model stability. It consists in training each
decision tree from a different training dataset smaller than
the original one. Such subsets are built from the original one
by resampling with replacement, making some members be
used more than once, while others may not be used. Such a
technique makes the random forests more robust when facing
slight variations in the input space and increases accuracy
of the prediction (Breiman, 1996, 2001). The samples that
are not used to grow a tree are called “out-of-bag” (OOB)
data and will be used for the test step. The RF workflow is
summarized in Fig. 5.

RF structure can be used to provide knowledge about how
influential each input factor is. This measure is referred to
as feature importance in the RF formalism. The random for-
est is first trained on the targeted output variable Y using a
N -point sample (Xj ,Y j ) for j ∈ {1, . . .,N}. Once the forest
has been trained, each input factor Xi is permuted individu-
ally so as to break the link between Xi and Y . The effect of
such permutation on the model accuracy is then investigated.
A large decrease in accuracy indicates that the input factor
is highly influential, whereas a small decrease in accuracy
indicates that it has little influence. Different algorithms ex-
ist to compute such mean decrease in accuracy (MDA) (see
Bénard et al., 2022, for an extensive review of the different
formulations in the existing R and Python packages), and we
focus here on the original formulation from Breiman paper
(Breiman, 2001). The decrease in accuracy is originally com-
puted from the mean square error between predictions from
OOB data with and without permutation for each tree. Re-
sults are then averaged over all trees to get the MDA. The
algorithm for feature importance calculation is extensively
described in various papers (e.g. Soleimani, 2021; Bénard
et al., 2022), and it is recalled in what follows.

1. For each tree k,

– estimate ε̂OOBk , the error from the OOB sample Lk:

ε̂OOBk =
1
|Lk|

∑
j \(xj ,yj )∈Lk

(yj −M̂RF(x
j ))2, (10)

where M̂RF is the estimated RF metamodel.

– For each input factor Xi ,

– randomly permute xi in {xj ∈ Lk} to generate a
new input set {xj∗ ∈ Lk}.

– Estimate ε̂∗OOBk (i) using the permuted input set

ε̂∗OOBk (i)=
1
|Lk|

∑
j \(xj ,yj )∈Lk

(yj −M̂RF(x
j∗))2. (11)

2. For each input factor Xi ,
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Figure 5. RF workflow (adapted from Rodriguez-Galiano et al., 2014). K bootstrapped sets are extracted from the original training set. Part
of each set “InBag” is used to grow an independent decision tree, and the final regression value is the average of all trees. The remaining
portion of each tree’s “out-of-bag” (OOB) data is used as a test set.

– compute the mean decrease in accuracy MDAi as

MDAi =
1
K

K∑
k=1

ε̂OOBk − ε̂
∗

OOBk (i), (12)

where K is the total number of trees.

Despite the “black-box” aspect of RF building, recent works
theoretically establish a link between mean decrease in ac-
curacy and Sobol’ total indices when input parameters are
assumed independent. Indeed, Gregorutti et al. (2017) estab-
lish that for all input parameters Xi ,

STi =
MDAi

2Var[Y ]
. (13)

In this study, the randomForestSRC R package (Ishwaran
and Kogalur, 2020) is used to obtain feature importance mea-
sures, and the number of trees used to train the RF is set to
500.

2.5 Robustness and reliability assessment of the
sensitivity indices

In order to assess the robustness of the calculated sensitiv-
ity indices, an additional 200-point test set is first used to as-
sess PCE and RF metamodel performances. In a second time,
95 % confidence intervals on sensitivity indices are computed
for all methods but by different means: the bootstrap resam-
pling procedure provided in UQLab is used to calculate con-
fidence intervals on PCE-based Sobol’ indices (see Marelli

and Sudret, 2018, for justification). In the case of random
forests, building extra bootstraps could affect the consistency
of the OOB sample as the RF structure already includes a
bootstrap step to build each tree. Then, we use a subsam-
pling approach without replacement with a subsample size
set to 80 % of the initial sample size to get error bounds on
feature importance measures. The same procedure is applied
to estimate error bounds on HSIC indices. As typically found
in similar studies (Archer et al., 1997; Yang, 2011), 1000
bootstrap resamples are used for all methods. In addition, the
reliability of each ranking method is assessed by monitor-
ing its convergence properties. To do so, sensitivity indices
and associated confidence intervals are calculated on sam-
ples of growing sizes. A new sample is generated for each
size in [50,100,250,750,1000,2000], where the maximum
size (2000) points corresponds to the maximum computa-
tional budget available for ranking we guess for a catchment-
scale application. It is noted that we create a new sample for
each sample size to keep all samples as independent as pos-
sible, but such an approach may be too costly in a catchment
scale application. In such a case, another strategy could be
to generate the sample for ranking from the initial LHS used
for screening, dropping the dimensions corresponding to the
non-influential inputs.

2.6 Aggregated sensitivity indices

After computing local sensitivity indices for each landscape
unit on a scalar quantity, aggregated indices are computed at
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the catchment scale (step 2b, Fig. 4). Catchment-scale sensi-
tivity indices are computed considering a multidimensional
output Y ∈ Rd that gathers scalar outputs for each landscape
unit. Sobol’ indices are aggregated at the catchment scale fol-
lowing the formulation by Gamboa et al. (2013) for general-
ized Sobol’ indices:

Su =

∑d
j=1Var[Yj ]Su,j∑d
j=1Var[Yj ]

, (14)

where u is a subset of {1, . . .,M}, Var[Yj ] is the variance
of the scalar j th component of Y and Su,j is the Sobol’
indices of subset u on Yj . Equation (14) then formulates
catchment-scale indices as an average of Sobol’ indices on
each landscape unit weighted by local output variances. First-
and total-order Sobol’ indices can be notably computed this
way. Their computation can be made in a second step af-
ter performing local Sobol’ analysis on each landscape unit,
but a direct estimator is also proposed in Gamboa et al.
(2013) avoiding numerous local analysis in the case of high-
dimensional model output. For HSIC and RF sensitivity in-
dices, the definitions for scalar output remain valid for vec-
torial output. Catchment-scale indices can thus be directly
computed on Y when moving to a multidimensional case.

3 Results

3.1 Screening

Screening is performed on the 4000-point LHS. Simulations
are run on the HIICS cluster (26 nodes, 692 cores, 64 to
256 GO of RAM per server) available at INRAE, France,
for a simulation time of 12000 CPU hours. Screening is per-
formed at a site scale, on each HU individually, to remain as
conservative as possible. Influential parameters at the catch-
ment scale are then deduced from the union of influential
parameters for each site. After screening and union, 42 influ-
ential parameters are selected for water subsurface flow, 54
parameters are selected for pesticide subsurface flow, 43 pa-
rameters are selected for water surface runoff, and 45 param-
eters are retained for pesticide surface runoff. The remaining
parameters are given in Appendix C1.

3.2 Ranking on a single HU

For the ranking task, the three methods (Sobol’ indices from
PCE, HSIC and RF) are applied on each HU based on a
2000-point LHS generated for each scrutinized variable from
the set of screened input parameters. Again, simulations are
performed on the HIICS cluster, for a simulation time of
6000 CPU hours per variable. Columns 1 and 2 in Fig. 6
show Sobol’ total- and first-order indices, while columns 3
and 4 show HSIC and RF sensitivity indices for the most in-
fluential parameters according to Sobol’ total-order indices
for the four variables on HU14.

3.2.1 Physical interpretation

Considering Sobol’ indices, influential parameters that are
identified highly differ from one output variable to the other.
They are linked to distinct physical processes that may inter-
act with the other ones. This way, sensitivity analysis brings
knowledge about the way PESHMELBA represents the hy-
drological functioning of the virtual catchment. Water sub-
surface flow (top line) is driven by deep soil hydrodynamic
parameters both related to vertical infiltration and subsur-
face saturated transfers. Water surface runoff (line 2) is also
mainly influenced by deep soil parameters. Overland flow is
therefore identified as being mostly due to saturation rather
than to rainfall excess. Subsurface exchanges with the river
are also identified as an influential process as the river bed
saturated conductivity (Ks_river) is part of the most influen-
tial parameters. Such a finding is consistent with the position
of HU14, which is directly connected to the river but also to
many plots (see Fig. 1). Pesticide variables (line 3 and 4) are
influenced by a higher diversity of parameters that charac-
terize contrasted and interactive physical processes. Indeed,
both pesticide subsurface flow and surface runoff are mostly
influenced by deep soil parameters such as the saturated wa-
ter content (thetas). Parameters linked to pesticide adsorp-
tion such as the pesticide adsorption coefficient and the or-
ganic carbon content (moc) of surface and intermediary soil
horizons also rank among the top influential parameters. Ad-
ditionally, the roughness coefficient (manning_plot) and the
ponding height (hpond_plot) that are related to surface runoff
calculation are also ranked as highly influential on pesticide
surface runoff.

3.2.2 Comparison of methods

The rankings that are provided by the three methods are
broadly consistent giving confidence in their robustness.
Looking in more detail, HSIC and RF indices are more sim-
ilar to Sobol’ total-order indices than to Sobol’ first-order
indices, contrary to the conclusions of De Lozzo and Mar-
rel (2016) on comparison of Sobol’ and HSIC indices. The
most influential parameters that are identified by Sobol’ total-
order indices are also captured by the other methods. In-
deed, the different rankings show that the top-10 rankings
based on Sobol’ total-order indices contain at least the five
most influential parameters based on HSIC and RF rank-
ings. Then, Fig. 6 does not miss any preponderant parameters
for the HSIC and RFs. In addition, while rankings from the
three methods only exhibit slight differences for water vari-
ables, differences between rankings are more pronounced for
pesticide variables. In that case, most parameters have zero
or very low first-order Sobol’ indices, characterizing nearly
purely interacting effects. However, not all differences be-
tween rankings come from interactive effects. As an exam-
ple, manning_plot and hpond_plot that appear in the pesti-
cide surface runoff top-10 ranking according to Sobol’ in-
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Figure 6. Sobol’ total- and first-order indices computed using PCE, HSIC and RF site sensitivity indices for all output variables on HU14
with associated 95 % confidence intervals. RF feature importance measures are normalized by 2Var[Y ] following Eq. (13). HU14 is displayed
with a red contour in the top left figure. For all methods, displayed parameters are the most influential parameters regarding Sobol’ total-
order indices. The bar colours are related to physical processes: brown is related to soil parameters, and the darker the brown, the deeper the
parameter; blue is related to river parameters, whereas green is related to vegetation parameters. The filling in of brown bars refers to the soil
type of the parameter: soil 1 is not filled, and soil 2 is cross-hatched, whereas soil 3 is filled with circles. For each method, numbers next to
bars stand for the ranking position of parameters.
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Table 4. Q2 score for all variables on HU14 calculated from
the 200-point test set. The Q2 score is calculated as Q2

= 1−∑N
i=1(M(Xi )−Y i )2∑N

i=1(Y
i−Y )2

, where Y = 1
N

∑
i=1Y

i is the empirical mean

of the sample.

PCE RF

WaterLateralFlow 0.98 0.85
WaterSurfaceRunoff 0.80 0.44
PesticideLateralFlow 0.75 0.55
PesticideSurfaceRunoff 0.75 0.51

dices are both characterized by nearly fully interactive ef-
fects. However, hpond_plot is also ranked as influential ac-
cording to the HSIC and RFs, while manning_plot is missed
by both of them.

Regarding error bounds, they are very small for the HSIC
and RFs, contrary to Sobol’ indices estimates. The HSIC is
expected to be very accurate from very small sample sizes
(Da Veiga et al., 2021), which may explain such differences
of magnitude for error of Sobol’ and HSIC indices. Regard-
ing RF error bounds, we incriminate the resampling strate-
gies that differ from the Sobol’ method. Indeed, while the
bootstrap technique has been proven to assess the quality of
the PCE (Marelli and Sudret, 2018), the subsampling tech-
nique set on RF only targets the precision of feature impor-
tance measures. A more adapted subsampling approach, for
example, based on Ishwaran and Lu (2019) should probably
be further investigated on bigger samples to better compute
RF sensitivity indices and to accurately assess their quality.
In addition to Fig. 6, Table 4 gathers the quality scoresQ2 for
PCE and RF metamodels on the test set. Results show that
the RF metamodel performs much more poorly than the PCE
for all variables. Such poor performances may explain the
discrepancies between RF feature importance measures and
Sobol’ total-order indices. Indeed, RF feature importance in-
dices have been proven to relate to Sobol’ total-order indices
(Gregorutti et al., 2017), but this relation (see Eq. 13) is not
respected in this study. These results thus underline how cru-
cial it is to analyse both the quality of the metamodel and the
quality of the indices it calculates and not just one of the two.

3.2.3 Convergence rate

In order to assess each method convergence rate, sensitivity
indices are calculated for growing sample sizes, from 50 to
2000 points. Results for water surface runoff and pesticide
surface runoff are presented respectively in Figs. 7 and 8.
Results for water (i.e. pesticide) subsurface flow are not pre-
sented as they come to the same conclusions as for water (i.e.
pesticide) surface runoff.

Figure 7 shows that Sobol’ indices are close from stabil-
ity for sample sizes from 1000 points as ranking and Sobol’
total- and first-order indices are rather stable. The 95 % con-

fidence intervals associated with Sobol’ indices (first- and
total-order) also seem to be rather stable for sample sizes
from 1000 points. Considering HSIC and RF indices, ranking
differences for the five most sensitive input factors are less
than one position for sample sizes from 1000 points, which
roughly suits the convergence criteria for parameter ranking
defined in Sarrazin et al. (2016). Identically, for both meth-
ods, sensitivity indices’ values and 95 % confidence intervals
show little variability. As already noticed in Fig. 6, the 95 %
confidence intervals for the HSIC and RFs are much smaller
than for PCE. Again, such results should be interpreted with
caution as confidence intervals are not calculated in the same
way as for the different methods. On the whole, the HSIC
method reaches convergence first as ranking and sensitiv-
ity indices’ values stabilize for sample sizes from 750, while
1000 points are necessary for Sobol’ and RF methods.

Results about pesticide surface runoff (Fig. 8) are more
contrasted. Ranking and sensitivity indices’ values from PCE
show more variability than for water variables. This is es-
pecially the case for first-order Sobol’ indices, which shows
that 2000 may not be a sufficient sample size to get robust re-
sults. Ranking and total-order indices are more stable, except
for the parameter Koc_pest. This parameter is characterized
by fully interactive effects, which may explain why calculat-
ing robust Sobol’ indices is a more complex task. Ranking
and sensitivity measures from the HSIC stabilize from 750
points, while the error bounds remain very limited for all
sample sizes. Finally, RF ranking and indices are almost sta-
ble from 1000 points, except for Koc_pest, whose RF value
still shows variability for the biggest sample sizes.

3.3 Landscape analysis

In this section, we focus on Sobol’ indices (first- and total-
order) despite larger error bounds as it is the only method
used in this study that allows us to get separate information
on interactive effects. Site rankings such as those presented in
Fig. 6 are gathered for all HUs in the form of sensitivity maps
in Fig. 9 for water surface runoff and in Fig. 10 for pesticide
surface runoff. Broadly speaking, both maps show strong
spatial heterogeneities regarding influential parameters, and
a contrasted behaviour between right and left banks can be
identified. For both output variables, hydrodynamic parame-
ters (thetas, thetar and mn) of deep horizon from soil 1 (i.e.
2 and 3) are mainly influential only on HUs characterized by
soil 1 (i.e. 2 and 3) (see Fig. 2 for a reminder of soil types).
The local hydrodynamic parameters are found to be domi-
nating, explaining the output variable variance. A particular
case is HU4 (indicated by an array on both Figs. 9 and 10),
which is characterized by soil 3, while parameters from soil
1 explained most of the variance of both water and pesticide
surface runoff variables. The location of HU4, near the out-
let, downstream several soil-1 HUs, may explain such spa-
tial interactions. In addition to specific soil parameters, other
parameters such as Manning’s roughness on vineyard plots
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Figure 7. Convergence plot for solute water runoff variable: the figure shows the ranking for the five most influential parameters identified
with a sample of 2000 points as well as the corresponding sensitivity indices’ values with associated 95 % confidence intervals for growing
sample sizes (even if they are hardly visible for the HSIC and RFs, confidence intervals are displayed on all plots from line 2). In the legend,
the number in brackets is the ranking position of the parameter in the case of a sample of 2000 points.

(manning_plot) or the coefficient of adsorption (Koc_pest)
have a greater influence on HUs from the right bank (bottom
part of the catchment in the figure). In addition, comparison
of first-order and total-order maps shows quite similar results
for water surface runoff on the one hand. It indicates that di-
rect effects are significant for all influential parameters. On
the other hand, direct effects are far from dominant on pesti-
cide surface runoff. Once again, most parameters are influen-
tial nearly only in interaction with other parameters since the
first-order indices are very low compared to the total-order
indices.

Finally, Fig. 11 shows aggregated sensitivity indices for
water and pesticide surface runoff variables following Gam-
boa et al. (2013). Since the two banks have contrasted be-
haviours, aggregated indices are first calculated at the inter-
mediary scale of the bank, then at the catchment scale. For
both output variables, rankings strongly differ on each slope.
As proposed at a local scale in Sect. 3.2, aggregated indices at
this scale may constitute summarized information about the
physical processes dominating in PESHMELBA to explain
the output variable. For water surface runoff, hydrodynamic
soil parameters related to vertical infiltration (thetas, thetar
and mn) dominate. The influence of Ks_river is only signif-

icant in the right bank. The difference of altitude between
the right and left bank may explain this contrast in the acti-
vation of saturated exchanges between water tables and the
river. For pesticide surface runoff, deep horizon parameters
from soil 1 and the pesticide adsorption coefficient (Koc) ex-
plain a major portion of the output variance on the left bank,
while pesticide half-life time (DT50) and surface runoff pa-
rameter (hpond_plot) have lower or no impact. Conversely,
surface parameters (manning_plot and hpond_plot) have a
higher impact on the right slope. In that bank, soil horizons
are characterized by lower permeabilities that may result in
stronger surface runoff generation than on left bank. In ad-
dition, pesticide parameters (Koc and DT50) are also more
influential. More broadly, these results show that pesticide
surface runoff may result from the activation and interactions
of more physical processes on the right bank than on the left
bank.
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Figure 8. Convergence plot for solute surface runoff variable: the figure shows the ranking for the five most influential parameters identified
with a sample of 2000 points as well as the corresponding sensitivity indices’ values with associated 95 % confidence intervals for growing
sample sizes (even if they are hardly visible for the HSIC and RFs, confidence intervals are displayed on all plots from line 2). In the legend,
the number in brackets is the ranking position of the parameter in the case of a sample of 2000 points.

Figure 9. Maps of Sobol’ site sensitivity indices for water surface runoff for the most significantly influential parameters.

4 Discussion

4.1 On screening

For all variables considered, the number of input parameters
retained after screening remained quite high, proving that
performing screening on PESHMELBA variables is a chal-
lenging task. We can first incriminate the many physical pro-
cesses interacting in PESHMELBA in a spatially distributed
way, each of them with its own set of characteristic parame-

ters. However, it can also be explained by the methodology
that may not be discriminating enough. Many previous stud-
ies developed efficient screening techniques for complex en-
vironmental models (e.g. Tang et al., 2007; Nossent et al.,
2011; Touzani and Busby, 2014; Becker et al., 2018; Gar-
cia et al., 2019; Sheikholeslami et al., 2019). Exploring other
screening approaches is beyond the scope of this study, but
future work may focus on applying and critically compar-
ing these techniques, especially with very limited sample size
(inferior to 2000 points for example).

Geosci. Model Dev., 16, 3137–3163, 2023 https://doi.org/10.5194/gmd-16-3137-2023



E. Rouzies et al.: Application to the PESHMELBA model 3153

Figure 10. Maps of Sobol’ site sensitivity indices for pesticide surface runoff for the most significantly influential parameters.

4.2 On the choice of a ranking method

By exploring several methods for ranking, the aim was to
analyse their specificities and the interest of each one for the
sensitivity analysis of a complex environmental model, char-
acterized by many parameters and a high computational cost
such as PESHMELBA. Considering the results of this study,
we believe that the choice of the method depends on the prop-
erties of the model, the objective of the sensitivity analysis
and the sample size available:

1. The Sobol’ method remains attractive when sensitiv-
ity analysis is used to gain knowledge about the model
by finely analysing its behaviour. Indeed, Sobol’ in-
dices provide a clear interpretation of the calculated in-
dices (percentages of variance explained) and explicit
information about the interactions between parame-
ters. These elements are particularly valuable when one
wishes to use sensitivity analysis to understand the func-
tioning of the model, and this is why this approach is
still widely used in the hydrological community. In the
case of variables that are reasonably complex and that
are not characterized by too much interactions of physi-
cal processes (such as water variables in our case), using
chaos polynomials to estimate Sobol’ indices is partic-
ularly interesting and efficient since it allows the use of
a pre-existing sample, of very limited size. Conclusions
are much contrasted for complex variables such as pes-
ticide variables as convergence results showed that 2000
points may not be enough to get fully robust Sobol’ in-
dices. This is particularly the case for parameters that
are mainly characterized by interactive effects.

2. If the sensitivity analysis aims at simplifying the model
or focusing the calibration efforts, if the physical inter-
pretation of the results is not a priority and if one has a
pre-existing sample of very limited size (inferior to 750
points in our case), the use of HSIC indices is a good op-
tion as it provides robust sensitivity indices. However,
it is important to note that using the HSIC dependence
measure for sensitivity analysis is a recent idea and that
there is still little knowledge available about identify-

ing and differentiating the types of dependency that are
captured. In addition, the choice of the kernel may af-
fect the ranking results because each specific kernel is
likely to give more or less importance to the infinite
number of dependency forms that are captured by the
HSIC. The question of the choice of the kernel is deli-
cate, and it is still not addressed very much in the litera-
ture. While a few papers propose to choose the type and
parameterization of the kernels in a way that maximizes
the possible dependence between Xi and Y (Fukumizu
et al., 2008; Balasubramanian et al., 2013), the interpre-
tation of the results seems to be less clear. On the other
hand, there are still relatively few works that apply this
method for GSA, and the limitations are not necessar-
ily all identified yet. Using the HSIC for a classification
exercise will therefore remain delicate as long as there
is no consensus on the choice of the kernel and the in-
terpretation of the results. However, these problems do
not arise when using the HSIC for screening, and such a
method is therefore perhaps to be preferred for this type
of exercise.

3. The RF indices are also of interest in sensitivity anal-
ysis task as they are supposed to provide an estimator
of total-order Sobol’ indices. Those indices can thus be
easily interpreted, and as for the other methods, they can
be estimated from a pre-existing sample. However, PCE
is still to be preferred since it provides more complete
information including not only the total-order Sobol’ in-
dices but also the indices at all orders. In addition, our
results showed that the metamodel constructed by RF
is of lower quality than the one constructed by PCE at
equivalent sample size, giving less confidence in the re-
sulting sensitivity indices.

Beyond the comparison of the different methods, we also
tried to evaluate if it was possible and useful to combine
several of these methods. However, considering the results
obtained, we believe that combining the tested methods is
still of little interest for hydrologists to better understand the
model functioning. Indeed, the differences we found in rank-
ings remain difficult to interpret. This is particularly the case
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Figure 11. Sobol’ first-order and total-order aggregated sensitivity indices for water surface runoff (left) and pesticide surface runoff (right)
calculated at the scale of the catchment (top), left bank (middle) and right bank (bottom). Displayed parameters are the 11 most influential
parameters regarding Sobol’ indices at the catchment scale for each output variable. The bar colours are related to physical processes: brown
is related to soil parameters, and the darker the brown, the deeper the parameter is; blue is related to river parameters, and green is related
to vegetation parameters. The filling in of brown bars refers to the soil type of the parameter: soil 1 is not filled, and soil 2 is cross-hatched,
while soil 3 is filled with circles.

when combining Sobol’ and HSIC indices, due to the fact
that the results from the HSIC dependence measure remain
fuzzy to interpret.

4.3 On choosing local or aggregated sensitivity analysis

Results about landscape analysis showed that, on the one
hand, sensitivity maps provide local, detailed information
about influential parameters on each location of the catch-
ment. However they are computationally costly as one GSA
per HU must be performed. This approach may be hard
or even impossible to transpose to a real catchment scale
composed of several hundred elements. On the other hand,
catchment-scale aggregated indices provide synthetic infor-
mation at a lower computational cost, but the spatialized as-
pect of the GSA is lost. As pointed out in Marrel et al. (2015),

both approaches are complementary and provide precious
knowledge about the model functioning, but they cannot al-
ways be performed together. As a compromise, we propose
to use the scale of the bank, or more generally of the hill-
slope, as it may constitute an adapted intermediary scale to
meet both requirements of detailed results for physical inter-
pretation and computational efficiency. Indeed, in this study
Sobol’ aggregated indices were directly computed from site
sensitivity indices as they were available, but a pick–freeze
estimator (Gamboa et al., 2013; De Lozzo and Marrel, 2016)
can be used for a direct computation of Sobol’ generalized
indices. In our case, such overview of sensitivity analysis
allows us to focus calibration efforts on deep soil hydrody-
namic parameters and pesticide adsorption coefficient to im-
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prove the quality of the simulation of both water and pesti-
cide surface flows.

5 Conclusions

In this paper, we have described the first global sensitivity
analysis of the modular and coupled PESHMELBA model.
For this experiment, a simplified catchment was set in or-
der to explore different approaches for GSA and to propose a
methodology for future real applications. First, we performed
screening using an independence test based on the HSIC de-
pendence measure, dividing the dimension of the problem by
3. Second, we compared several innovative methods to com-
pute sensitivity measures on each landscape element individ-
ually. Sobol’ indices were found to be particularly attrac-
tive as they provide easy-to-interpret sensitivity measures.
However, in the case of complex variables with dominant in-
teractive effects, results showed that they may not be com-
puted from very small samples. Third, we gathered such lo-
cal sensitivity indices into sensitivity maps that highlighted
local contributions of parameters. Finally, we computed ag-
gregated indices at larger scales, on the whole catchment and
on each bank hillslope since this scale still reflects spatial
heterogeneities of hydrodynamic processes. This study con-
stitutes the first attempt of global sensitivity analysis of the
PESHMELBA model. Future research should go a step fur-
ther by considering the other sources of uncertainties that can
affect the model and interact with parameter uncertainties.
The impact of forcings, soil types, quantities and dates of ap-
plication of pesticides should be addressed as already done
in Holvoet et al. (2005) for instance. Additionally, parame-
ters were assumed to be independent in this study, but this
assumption may be arguable, especially for hydrodynamic
parameters. For the three methods, sensitivity indices that
are produced are meaningless in the case of dependent in-
puts. Dealing with dependent parameters has already been
explored in the case of Sobol’ indices and the HSIC measure,
for example, based on Shapley effects (Da Veiga et al., 2021),
but again, these formulations should be extensively tested
with complex variables and very small sample sizes. Finally,
it would also be necessary to investigate sensitivity of some
time series to get a more comprehensive vision of the model
functioning. To do so, the temporal series can be analysed as
a multivariate output for example with clustering-based GSA
(Roux et al., 2021) or using the principal components of the
model’s functional outputs. The definition and the use of ad-
equate hydrological signatures such as proposed in Branger
and McMillan (2020) and Horner (2020) may also be of in-
terest to understand space–time variability and to capture a
broader range of physical processes. Global sensitivity anal-
ysis is a necessary but not yet systematic step to model eval-
uation, especially in the case of spatialized, risk assessment
models that can be complex to deal with. This study brings
additional knowledge on GSA strategies for modellers who

deal with such complex models and thus paves the way for
systematic analysis of environmental exposure models.

Appendix A: Parameters for LAI evolution law

Table A1. Top: parameters and associated dates used to describe
LAI evolution for vineyard cover. Bottom: constant LAI value set
on grassland cover.

Parameter Value Date

Vineyard (plot)

LAImin [–] 0.01 1 February
LAImax [–] 2.5 1 May
LAIharv [–] 0.01 10 November

Grassland (VFS)

LAI [–] 5 –
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Appendix B: Input parameter distributions

Table B1. Distribution and statistics of the assigned prob-
ability density functions (pdfs) for the 145 input parame-
ters, uniform: U(min,max), triangular: T(min,mean,max), nor-
mal: N(mean,standard deviation), lognormal: LN(mean,standard
deviation) and truncated normal: TN(mean, standard deviation,
min,max).

Soil parameters

soilhorizon_thetas_2 [m3 m−3] N(0.3362, 0.00336)
soilhorizon_thetar_2 [m3 m−3] TN(0.0510, 0.0128, 0, 1)
soilhorizon_Ks_2 [m s−1] LN(9.5e-06, 1.97e-05)
soilhorizon_hg_2 [m] N(−0.0329, 0.00329)
soilhorizon_mn_2 [–] N(0.1988, 0.0199)
soilhorizon_Ko_2 [m s−1] LN(−7e-06,5.5e-07)
soilhorizon_L_2 [–] U(−7.8216, −5.2144)
soilhorizon_bd_2 [g cm−3] U(1.1768, 1.7652)
soilhorizon_moc_2 [g g−1] U(0.0024, 0.0054)

soilhorizon_thetas_3 [m3 m−3] N(0.3202, 0.0320)
soilhorizon_thetar_3 [m3 m−3] TN(0.0812, 0.0203, 0, 1)
soilhorizon_Ks_3 [m s−1] LN(8.18e-06, 5.5e-07)
soilhorizon_hg_3 [m] N(−0.0209, 0.00209)
soilhorizon_mn_3 [–] N(0.2046, 0.0205)
soilhorizon_Ko_3 [m s−1] LN(−3.7e-06, 5.5e-07)
soilhorizon_L_3 [–] U(−5.0844, −3.3896)
soilhorizon_bd_3 [g cm−3] U(1.2536, 1.8804)
soilhorizon_moc_3 [g g−1] U(0.0006, 0.0014)

soilhorizon_thetas_4 [m3 m−3] N(0.2844, 0.0284)
soilhorizon_thetar_4 [m3 m−3] TN(0.0661, 0.0165, 0, 1)
soilhorizon_Ks_4 [m s−1] LN(6.65e-06, 5.5e-07)
soilhorizon_hg_4 [m] N(−0.0599, 0.00599)
soilhorizon_mn_4 [–] N(0.2274, 0.0227)
soilhorizon_Ko_4 [m s−1] LN(−1.82e-06, 5.5e-07)
soilhorizon_L_4 [–] U(−0.1716, −0.1144)
soilhorizon_bd_4 [g cm−3] U(1.2240, 1.8360)
soilhorizon_moc_4 [g g−1] U(4.3840 10−4, 9.6160 10−3)

soilhorizon_thetas_6 [m3 m−3] N(0.3537, 0.0354)
soilhorizon_thetar_6 [m3 m−3] TN(0, 0.0093, 0, 1)
soilhorizon_Ks_6 [m s−1] LN(5.64e-06, 5.5e-07)
soilhorizon_hg_6 [m] N−0.066, 0.0066
soilhorizon_mn_6 [–] N(0.1289, 0.0129))
soilhorizon_Ko_6 [m s−1] LN(−6.06e-06, 5.5e-07)
soilhorizon_L_6 [–] U(7.7240, 19.3100)
soilhorizon_bd_6 [g cm−3] U(1.2704, 1.9056)
soilhorizon_moc_6 [g g−1] U(0.0042, 0.0094)

soilhorizon_thetas_7 [m3 m−3] N(0.3247, 0.0325)
soilhorizon_thetar_7 [m3 m−3] TN(0, 0.0093, 0, 1)
soilhorizon_Ks_7 [m s−1] LN(3.39e-06, 5.5e-07)
soilhorizon_hg_7 [m] N(−0.0718, 0.00718)
soilhorizon_mn_7 [–] N(0.0751, 0.0075)
soilhorizon_Ko_7 [m s−1] LN(−7.87e-06, 5.5e-07)
soilhorizon_L_7 [–] U(−12, −8)
soilhorizon_bd_7 [g cm−3] U(1.3256, 1.9884)
soilhorizon_moc_7 [g g−1] U(0.0019, 0.0051)

soilhorizon_thetas_8 [m3 m−3] N(0.4162, 0.0416)
soilhorizon_thetar_8 [m3 m−3] TN(0, 0.0093, 0, 1)
soilhorizon_Ks_8 [m s−1] LN(9.42e-07, 5.5e-07)
soilhorizon_hg_8 [m] N(−0.3018, 0.03018)
soilhorizon_mn_8 [–] N(0.10000, 0.0100)
soilhorizon_Ko_8 [m s−1] LN(−9.37e-06, 5.5e-07)
soilhorizon_L_8 [–] U(8, 20)
soilhorizon_bd_8 [g cm−3] U(1.2304, 1.8456)
soilhorizon_moc_8 [g g−1] U(0.0018, 0.0037)

Table B1. Continued.

Soil parameters

soilhorizon_thetas_9 [m3 m−3] N(0.3322, 0.0332)
soilhorizon_thetar_9 [m3 m−3] TN(0.0770, 0.0192, 0, 1)
soilhorizon_Ks_9 [m s−1] LN(6.6e-06, 5.5e-07)
soilhorizon_hg_9 [m] N(−0.0671, 0.00671)
soilhorizon_mn_9 [–] N(0.2582, 0.0258)
soilhorizon_Ko_9 [m s−1] LN(−5.92e-06, 5.5e-07)
soilhorizon_L_9 [–] U(0.3376, 0.8440)
soilhorizon_bd_9 [g cm−3] U(1.1664, 1.7496)
soilhorizon_moc_9 [g g−1] U(0.0023, 0.0051)

soilhorizon_thetas_10 [m3 m−3] N(0.3160, 0.0316)
soilhorizon_thetar_10 [m3 m−3] TN(0.0612, 0.0153, 0, 1)
soilhorizon_Ks_10 [m s−1] LN(5.91e-06, 5.5e-07)
soilhorizon_hg_10 [m] N(−0.0356, 0.00356)
soilhorizon_mn_10 [–] N(0.1791, 0.0179)
soilhorizon_Ko_10 [m s−1] LN(−6.24e-06, 5.5e-07)
soilhorizon_L_10 [–] U(0.8376, 2.0940)
soilhorizon_bd_10 [g cm−3] U(1.2984, 1.9476)
soilhorizon_moc_10 [g g−1] U(0.0025, 0.0055))

soilhorizon_thetas_11 [m3 m−3] N(0.3375, 0.0338)
soilhorizon_thetar_11 [m3 m−3] TN(0.0372, 0.0093, 0, 1)
soilhorizon_Ks_11 [m s−1] LN(7.3e-06, 5.5e-07)
soilhorizon_hg_11 [m] N(−0.0969, 0.00969)
soilhorizon_mn_11 [–] N(0.2685, 0.0268)
soilhorizon_Ko_11 [m s−1] LN(−6.37e-06, 5.5e-07)
soilhorizon_L_11 [–] U(−10.1124, −6.7416)
soilhorizon_bd_11 [g cm−3] U(1.0752, 1.6128)
soilhorizon_moc_11 [g g−1] U(0.0049, 0.0050)

soilhorizon_thetas_14 [m3 m−3] N(0.3375, 0.0338)
soilhorizon_thetar_14 [m3 m−3] TN(0.0372, 0.0093, 0, 1)
soilhorizon_Ks_14 [m s−1] LN(7.47e-06, 5.5e-07)
soilhorizon_hg_14 [m] N(−0.0969, 0.00969)
soilhorizon_mn_14 [–] N(0.2685, 0.0268)
soilhorizon_Ko_14 [m s−1] LN(−6.37e-06, 5.5e-07)
soilhorizon_L_14 [–] U(−10.1124, −6.7416)
soilhorizon_bd_14 [g cm−3] U(1.0752, 1.6128)
soilhorizon_moc_14 [g g−1] U(0.0175, 0.0385)

soilhorizon_thetas_12 [m3 m−3] N(0.3375, 0.0338)
soilhorizon_thetar_12 [m3 m−3] TN(0.0372, 0.0093, 0, 1)
soilhorizon_Ks_12 [m s−1] LN(7.3e-06, 5.5e-07)
soilhorizon_hg_12 [m] N(−0.0969, 0.00969)
soilhorizon_mn_12 [–] N(0.2685, 0.0268)
soilhorizon_Ko_12 [m s−1] LN(−6.37e-06, 5.5e-07)
soilhorizon_L_12 [–] U(−10.1124, −6.7416)
soilhorizon_bd_12 [g cm−3] U(1.0752, 1.6128)
soilhorizon_moc_12 [g g−1] U(0.0072, 0.0158)

soilhorizon_thetas_15 [m3 m−3] N(0.3375, 0.0338)
soilhorizon_thetar_15 [m3 m−3] TN(0.0372, 0.0093)
soilhorizon_Ks_15 [m s−1] LN(7.47e-06, 5.5e-07)
soilhorizon_hg_15 [m] N(−0.0969, 0.00969)
soilhorizon_mn_15 [–] N(0.2685, 0.0268)
soilhorizon_Ko_15 [m s−1] LN(−6.37e-06, 5.5e-07)
soilhorizon_L_15 [–] U(−10.1124, −6.7416)
soilhorizon_bd_15 [g cm−3] U(1.0752, 1.6128)
soilhorizon_moc_15 [g g−1] U(0.0175, 0.0385)

soilhorizon_thetas_13 [m3 m−3] N(0.3375, 0.0338)
soilhorizon_thetar_13 [m3 m−3] TN(0.0372, 0.0093, 0, 1)
soilhorizon_Ks_13 [m s−1] LN(7.3e-06, 5.5e-07)
soilhorizon_hg_13 [m] N(−0.0969, 0.00969)
soilhorizon_mn_13 [–] N(0.2685, 0.0268)
soilhorizon_Ko_13 [m s−1] LN(−6.37e-06, 5.5e-07)
soilhorizon_L_13 [–] U(−10.1124, −6.7416)
soilhorizon_bd_13 [g cm−3] U(1.0752, 1.6128)
soilhorizon_moc_13 [g g−1] U(0.0067, 0.0080)
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Table B1. Continued.

Soil parameters

soilhorizon_thetas_16 [m3 m−3] N(0.3375, 0.0338)
soilhorizon_thetar_16 [m3 m−3] TN(0.0372, 0.0093, 0, 1)
soilhorizon_Ks_16 [m s−1] LN(7.47e-06, 5.5e-07)
soilhorizon_hg_16 [m] N(−0.0969, 0.00969)
soilhorizon_mn_16 [–] N(0.2685, 0.0268)
soilhorizon_Ko_16 [m s−1] LN(−6.37e-06, 5.5e-07)
soilhorizon_L_16 [–] U(−10.1124, −6.7416)
soilhorizon_bd_16 [g cm−3] U(1.0752, 1.6128)
soilhorizon_moc_16 [g g−1] U(0.0175, 0.0385)

Pesticide parameters

pest_Koc [m Lg−1] T(461.4000, 538.3000, 769.0000)
pest_DT50 [d] N(47.1, 28.26)

Vegetation parameters

veget_manning_1 [sm−1/3] T(0.0250, 0.0330, 0.041)
veget_Zr_1 [m] U(2.096, 3.144)
veget_F10_1 [–] U(0.2960, 0.4440)
veget_LAImin_1 [–] U(0.0080, 0.0120)
veget_LAImax_1 [–] U(2, 3)
veget_LAIharv_1 [–] U(0.0080, 0.0120)

veget_manning_2 [sm−1/3] T(0.1000, 0.2000, 0.3000)
veget_Zr_2 [m] U(7.2, 1.08)
veget_F10_2 [–] U(0.2680, 0.4020)
veget_LAI_2 [–] U(4, 6)

River parameters

river_hpond [m] U(0.008, 0.012)
river_di [m] U(1.2, 1.8)
river_Ks [m s−1] U(76.5648, 7.1280)
river_manning [sm−1/3] T(0.0610, 0.0360, 0.0790)

Plot and VFS parameters

plot_hpond [m] U(0.008, 0.012)
vfz_hpond [m] U(0.04, 0.06)
hu_adsorpthick [m] U(0.005, 0.015)
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Appendix C: Screening results

Table C1. Remaining parameters after the screening step for each output variable. In the XXX_XXX_XXX syntax of parameter names, the
first block is the type of element the parameter refers to (soil horizon, river, vegetation, pesticide, HU or VFS), and the second part is the
parameter name, while the last part is the element index the parameter refers to (soil horizon or vegetation type).

Water subsurface flow Pesticide subsurface flow Water surface runoff Pesticide surface runoff

soilhorizon_thetas_2 soilhorizon_thetas_12 soilhorizon_thetas_11 soilhorizon_thetas_11
soilhorizon_thetas_4 soilhorizon_thetas_15 soilhorizon_thetas_15 soilhorizon_thetas_12
soilhorizon_thetas_6 soilhorizon_thetas_2 soilhorizon_thetas_2 soilhorizon_thetas_13
soilhorizon_thetas_7 soilhorizon_thetas_4 soilhorizon_thetas_4 soilhorizon_thetas_15
soilhorizon_thetas_8 soilhorizon_thetas_6 soilhorizon_thetas_6 soilhorizon_thetas_2
soilhorizon_thetas_10 soilhorizon_thetas_7 soilhorizon_thetas_7 soilhorizon_thetas_4
soilhorizon_thetar_3 soilhorizon_thetas_8 soilhorizon_thetas_8 soilhorizon_thetas_6
soilhorizon_thetar_4 soilhorizon_thetas_10 soilhorizon_thetas_10 soilhorizon_thetas_7
soilhorizon_thetar_8 soilhorizon_thetar_2 soilhorizon_thetar_15 soilhorizon_thetas_8
soilhorizon_thetar_10 soilhorizon_thetar_4 soilhorizon_thetar_2 soilhorizon_thetas_10
soilhorizon_moc_13 soilhorizon_thetar_8 soilhorizon_thetar_4 soilhorizon_thetar_15
soilhorizon_mn_3 soilhorizon_thetar_10 soilhorizon_thetar_8 soilhorizon_thetar_2
soilhorizon_mn_4 soilhorizon_pore_6 soilhorizon_thetar_10 soilhorizon_thetar_4
soilhorizon_mn_6 soilhorizon_moc_12 soilhorizon_pore_9 soilhorizon_thetar_8
soilhorizon_mn_8 soilhorizon_moc_15 soilhorizon_mn_11 soilhorizon_thetar_10
soilhorizon_mn_10 soilhorizon_moc_2 soilhorizon_mn_2 soilhorizon_moc_6
soilhorizon_Kx_3 soilhorizon_moc_6 soilhorizon_mn_4 soilhorizon_moc_12
soilhorizon_Kx_4 soilhorizon_moc_9 soilhorizon_mn_6 soilhorizon_mn_11
soilhorizon_Kx_8 soilhorizon_mn_11 soilhorizon_mn_7 soilhorizon_mn_16
soilhorizon_Kx_10 soilhorizon_mn_16 soilhorizon_mn_8 soilhorizon_mn_2
soilhorizon_Ks_11 soilhorizon_mn_4 soilhorizon_mn_10 soilhorizon_mn_4
soilhorizon_Ks_13 soilhorizon_mn_6 soilhorizon_Kx_8 soilhorizon_mn_6
soilhorizon_Ks_14 soilhorizon_mn_8 soilhorizon_Kx_10 soilhorizon_mn_7
soilhorizon_Ks_15 soilhorizon_mn_10 soilhorizon_Ks_12 soilhorizon_mn_8
soilhorizon_Ks_16 soilhorizon_Kx_12 soilhorizon_Ks_13 soilhorizon_mn_10
soilhorizon_Ks_3 soilhorizon_Kx_9 soilhorizon_Ks_15 soilhorizon_Ks_15
soilhorizon_Ks_4 soilhorizon_Kx_10 soilhorizon_Ks_16 soilhorizon_Ks_2
soilhorizon_Ks_6 soilhorizon_Ks_12 soilhorizon_Ks_4 soilhorizon_Ks_4
soilhorizon_Ks_7 soilhorizon_Ks_14 soilhorizon_Ks_6 soilhorizon_Ks_8
soilhorizon_Ks_8 soilhorizon_Ks_15 soilhorizon_Ks_8 soilhorizon_Ks_9
soilhorizon_Ks_9 soilhorizon_Ks_16 soilhorizon_Ks_9 soilhorizon_hg_3
soilhorizon_Ks_10 soilhorizon_Ks_2 soilhorizon_Ks_10 soilhorizon_hg_4
soilhorizon_hg_16 soilhorizon_Ks_4 soilhorizon_hg_4 soilhorizon_hg_8
soilhorizon_hg_2 soilhorizon_Ks_6 soilhorizon_hg_6 soilhorizon_bd_6
soilhorizon_hg_4 soilhorizon_Ks_8 soilhorizon_hg_8 soilhorizon_bd_13
soilhorizon_hg_8 soilhorizon_Ks_9 soilhorizon_hg_10 soilhorizon_bd_12
soilhorizon_hg_9 soilhorizon_Ks_10 soilhorizon_bd_3 river_ks
soilhorizon_bd_2 soilhorizon_hg_4 river_ks river_di
river_ks soilhorizon_hg_6 river_di plot_hpond
river_di soilhorizon_hg_8 plot_hpond pest_Koc_1
plot_hpond soilhorizon_hg_10 vfz_hpond pest_DT50_1
VFS_hpond soilhorizon_bd_11 veget_LAIharv_1 HU_adsorpthick

soilhorizon_bd_12 veget_F10_1 veget_Zr_1
soilhorizon_bd_13 veget_manning_1
soilhorizon_bd_15 veget_F10_1
soilhorizon_bd_2
soilhorizon_bd_6
soilhorizon_bd_9
river_ks
river_di
plot_hpond
veget_Zr_1
pest_Koc_1
pest_DT50_1
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Code and data availability. The PESHMELBA model is an open-
source model coded in Python (Version 2.7.17) and Fortran 90
and embedded in the OpenPALM coupler (Version 4.3.0). The
code for the OpenPALM coupler is available from http://www.
cerfacs.fr/globc/PALM_WEB/user.html#download (Fouilloux and
Piacentini, 1999) after registration. The exact version of PESH-
MELBA used to produce the simulations is archived on Zen-
odo (https://doi.org/10.15454/2HAU8R, Rouzies et al., 2022a) as
are input data and scripts used to produce all the sensitivity in-
dices presented in this paper (https://doi.org/10.15454/2YVY4O,
Rouzies et al., 2022b). These scripts use the open-source MAT-
LAB software for uncertainty quantification UQLab Version 2.0.0
(https://www.uqlab.com, Marelli and Sudret, 2014). The R pack-
age randomForestSRC is freely available for download at https:
//cran.r-project.org (R Core Team, 2017).
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