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relative dielectric permittivity and electrical conductivity 
reconstruction. Application to near subsurface imaging
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Abstract—This work proposes a comparative study between
different frequency strategies for the simultaneous reconstruc-
tion of the relative dielectric permittivity and electrical con-
ductivity of the near subsurface. Data on the electric field are
generated in the framework of a ground penetrating radar
(GPR) configuration. Assessing these two parameters from the
data requires solving a nonlinear and ill-posed inverse problem,
which is solved iteratively by a regularized Gauss-Newton (RGN)
algorithm. Numerical results allow to determine an optimal
strategy, for which convergence rate and computation time
are reasonable, spatial resolution is improved and the two
parameters are very well reconstructed.

Index Terms—ground penetrating radar, full waveform in-
version, frequency domain, regularized Gauss-Newton, finite-
element method, bi-parameter reconstruction.

I. INTRODUCTION

GPR aims to reconstruct the relative dielectric permittivity

and electrical conductivity of an heterogeneous subsurface.

The physical configuration consists of an incident wave

radiated by a transmitter positioned above the air/ground

interface [1]. This wave interacts with the interface

and the heterogeneities of the subsurface. The resulting

electromagnetic field is measured at a receiver also

positioned above the air/ground interface but laterally offset

from the transmitter.

From the knowledge of the excitation and the

measurements at several receivers, the aim is to establish as

well as possible a mapping of the electromagnetic properties

of the investigated medium. This requires an efficient

forward model and an associated inversion strategy. This

paper focuses on the second one. There are different methods

to exploit the data in order to find the electromagnetic

parameters of the medium: we can mention in particular the

global [2] or local [3] optimization methods and the methods

resulting from the recent development of deep-learning [4].

However, the approaches related to deep-learning and global

optimization are not really adapted to our goal. Indeed, the

deep-learning ones require a simple representation of the

medium to be reconstructed, and a training phase that is

costly in terms of computing time and resources. In the same

way, the global optimization is suitable when there are only

few unknowns. Among the local optimization methods, full

waveform inversion (FWI) is of major interest for the case

under consideration. Although initially developed in the 80’s

[5], FWI has known a huge development relatively recently,

namely since the 2010’s with the multi-parameter inversion

[6], mainly due to the fast increase in processing and storage

capacities of computers. Compared to other approaches, FWI

is not costly in terms of computing time and in memory

resources which is a great advantage. By exploiting all the

information embedded in the data, FWI allows to get a

fine reconstruction of the ground without knowing a priori

neither the shape nor the parameters of the burried objects.

Obviously, it is still needed to have an initial guess of the

reconstructed medium.

FWI can be formulated equivalently in temporal and

frequency regimes. We choose the second one which allows

to better handle the data according to their frequencies.

Moreover, it can be applied to both frequency and temporal

data after being Fourier transformed. Inverting GPR data

is a non linear and ill-posed inverse problem. In this case

the data show an identical sensitivity with respect to the

relative dielectric permittivity and the electrical conductivity,

so it is difficult to separate these two parameters in the

inversion process. However, these difficulties can be solved

by local optimization approaches such as the Quasi-Newton

(L-BFGS) [6]–[8] and the regularized Gauss-Newton (RGN)

methods. In this work we select the RGN algorithm, because

it is accurate, simple to implement and yields a reasonable

RAM management [9]. There are different ways to use the

data according to their frequencies in the inversion process,

which we refer to as ”strategies”. The contribution of this

work is twofold: firstly, to show the ability of RGN algorithm

for multi-parameter reconstruction; secondly, to compare

four strategies using frequency data in different ways, and

then to discuss the strengths and weaknesses of each one in

order to define an optimal one.

This paper is organized as follows: after this introduction,

the study configuration and the forward model are presented

in Section II. Section III is devoted to the description of

the inversion process. The numerical results are shown and

discussed in Section IV. Finally, the conclusion is given in
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Section V.

II. STUDY CONFIGURATION AND FORWARD MODEL

A. Forward model

In a fixed Cartesian coordinate system (O,x,y,z), a two-

dimensional medium with an invariance axis along Oz is

considered, as shown in Fig. 1. The medium is heterogeneous

in the S domain and homogeneous around it. It is described

by its relative dielectric permittivity εr(r) and its electrical

conductivity σ(r), which depend on the spatial position r =
x x+y y (x and y spanning the entire S domain). As justified

in [7] and [8], we assume them to be frequency independent

in the frequency range of GPR. We consider an harmonic

time dependence for the electric field. The transmitter that

radiates the incident wave at the ωk frequency is modeled

by a source term Jkm δ(r − rm) = Jm e−jωk t δ(r − rm) z of

amplitude Jm = 1 oriented along Oz axis and positioned

at point rm = xm x + ym y, with j the imaginary number

such that j2 = −1. Here δ corresponds to the Dirac delta

function. These assumptions situate our study in the context

of a TE polarization configuration, which corresponds to an

electric field oriented along the invariance axis. In this case

we write E(r) = E(r)z, reducing the electric field to its

scalar component E(r), which satisfies the following scalar

Helmholtz equation [10]:

∆E(r) +
ω2
k

c20

[

εr(r)− j
σ(r)

ε0 ωk

]

E(r) = −jωk Jm δ(r − rm)

(1)

with c0 =
1√
ε0µ0

the speed of light in vacuum and ∆

the Laplacian operator. The solution E(r) = E(r, rm, ωk)
calculated at point r depends implicitly on the position rm
and the frequency ωk of the source term. Here, (1) is solved

by the finite element method with the module Wave Optics

of the commercial software Comsol Multiphysics®.

B. Study configuration

Fig. 1 illustrates the specific configuration under study: the

light grey area corresponds to the heterogeneous zone which

extends over a 5 m wide and 4 m deep rectangle. The outer

homogeneous part uses PMLs to avoid reflections at the

boundaries of the domain. The data employed for the near

surface reconstruction are generated from the same software

as the forward model used for the inversion. However, to

avoid as much as possible the inverse crime [11], a different

meshes are involved: one for the inversion process and one

for reference data. A white Gaussian noise is added to the

latter with a signal to noise ratio of 30. The sources are

placed above the surface at 25 cm from the ground and the

common mid-point and common offset acquisition modes

are retained for the measurements. Twelve transceivers are

used, since a transceiver cannot radiate and detect at the

same time (l ̸= m) and due to reciprocity theorem, they lead

to 66 separate measurements per frequency.

Fig. 1. Configuration of the numerical study

The actual medium to be reconstructed is composed of

two inclusions, one being a circle of permittivity 7 and zero

conductivity and the other being a square of conductivity

5 · 10−3 S.m−1 and permittivity 5, see Fig. 1. The medium

surrounding these two inclusions has a permittivity of 5 and

a nul conductivity. This study configuration is interesting to

demonstrate the ability of the inversion algorithm to avoid

the so-called “trade-off” between the parameters, and then to

reconstruct the conductivity and permittivity distinctly with a

good spatial resolution.

III. INVERSION SCHEME AND FREQUENCY STARTEGIES

A. Inversion scheme

At each step n of the regularized Gauss-Newton iterative

scheme, corrections on the parameters are calculated in order

to minimize a cost function defined as follows:

Fn =

∑

ωk

∈Ω

NS
∑

l=1
l ̸=m

NS
∑

m=1

|Eobs(rl, rm, ωk)− En(rl, rm, ωk)|2

||Eobs||22
(2)

with Fn the cost function of the n-th iteration,

Eobs(rl, rm, ωk) the electric field generated by the actual

medium, En(rl, rm, ωk) the electric field simulated at the

same iteration, NS the number of transceivers and Ω the

set of frequencies involved. These corrections update the

parameters as follows εn+1
r = εnr + δεnr , σn+1 = σn + δσn,

and ensure the decay of the cost function between two

successive iterations F(εn+1
r , σn+1) < F(εnr , σ

n). They are

obtained by solving in the least squares sense the following

linear system [12]:

Eobs(rl, rm, ωk)− En(rl, rm, ωk) = jωk ε0 ×
∫

S

En(r, rm, ωk)E
n(r, rl, ωk)

(

δεnr − j δσn

ωk ε0

)

dS
(3)
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Fig. 2. FWI results of permittivity and conductivity reconstructions by using (a) and (e) Bunks, (b) and (f) Group, (c) and (g) Sequential and (d) and (h)
Simultaneous strategies

The above integral is computed using the adjoint method

and corresponds to the application of the Fréchet derivatives

on the parameters corrections. It implies the electric field

En(r, rm, ωk) solution of (1), but also the electric field

En(r, rl, ωk) solution of the adjoint problem, defined

by considering the same medium but by positioning the

transmitter at rl.

However, a scaling problem between the variations on

conductivity and permittivity can lead to wrong corrections

and prevent the algorithm from converging. To overcome

this problem, a rescaling parameter called σ0 is introduced

as proposed by [8]. The integral is then split into two

contributions. Thus (3) is rewritten in compact form:

δE(rl, rm, ωk) =
(

Dεr σ0Dσ

)







δεnr

δσn

σ0






(4)

where σ0 = ε0ωk if only one frequency is involved,

σ0 =
ε0

Nω

Nω
∑

i=1

ωi for Nω frequencies and δE(rl, rm, ωk) =

Eobs(rl, rm, ωk) − En(rl, rm, ωk). Here Dεr and Dσ corre-

spond to the Fréchet derivatives of the cost function with

respect to εr and σ. Consequently the whole linear system

to be solved is formed by concatenating the different Fréchet

derivatives taken for each measurement point and for each

frequency as well as the differences between the simulated

and measured fields. The LSQR algorithm [13] is applied

to solve the above linear system. Its number of iterations is

fixed at 10 for regularization purpose. The inversion process

is driven by a Matlab code which repetitively calls upon the

software Comsol Multiphysics® to manage the forward model

part.

B. Frequency strategies

To get an optimal reconstruction, a comparison of 4

strategies involving 8 different frequencies is considered. The

choice of the frequencies (25, 30, 40, 50, 75, 100, 125 and

170 MHz) based on [14] avoids the so-called “cycle skipping”

phenomenon. These strategies are described as follows :

1) the Bunks Strategy consists in using simultaneously

frequency packets according to the following sequence

[6] : (f1), (f1,f2), ..., (f1, .. ,f8). The result of the first

packet is used as initialization of the new one.

2) the Group Strategy consists in the use of frequencies

by packets of two according to the sequence (f1,f2),

(f2,f3), ..., (f7,f8). The result of the previous frequency

group is used to initialize the new one.

3) the Sequential Strategy was proposed by Pratt and

Worthington [15] and uses the frequencies one at a time

in increasing order. Again, the result of the previous

frequency is used as initialization of the new frequency.

4) the Simultaneous Strategy uses all available frequencies

at once.

The convergence is reached when the difference of the

cost function between two iterations becomes smaller than a

quantity C : |Fn −Fn−1| < C. Choosing C = 10−4 ensures

that the cost function does not evolve anymore, which means

that all the information has been taken into account.

IV. NUMERICAL RESULTS

The medium under consideration is meshed with a 1

cm characteristic length, which leads to around 200,000

unknowns for each parameter. The comparative study of the

4 strategies focuses on the accuracy of reconstruction, the

convergence rate and the computation time. The accuracy
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of the reconstruction is evaluated by the normalized residual

error (NRE) which is written as follows:

NRE(ζ) =
||ζend − ζtrue||22
||ζstart − ζtrue||22

(5)

with ζ = (εr or σ). It corresponds to the average error at the

end of the reconstruction normalized by the average error

at the starting step. The initialization step of the inversion

algorithm involves a perfectly homogeneous medium of

permittivity 5 and conductivity zero. The initial error is

thus the same for all strategies. With such a medium, the

smallest wavelength is given for 170 MHz and is equal to

78 cm. All the results presented in this article were obtained

on a computer with 128 GB of RAM and AMD Ryzen

Threadripper PRO 3955WX 16-Core CPU.

Fig. 2 shows the different reconstructions for both

relative dielectric permittivity (top figures) and electrical

conductivity (bottom figures). Each column corresponds

to one of the frequency strategies described in Section

III.B. To qualitatively appreciate the likelihood of the

reconstructions compared to the actual inclusions, we

have added the shapes of the latter in dashed black lines.

The permittivity reconstructions are satisfactory for the

4 configurations even if the Bunks Strategy stands out

by the accuracy of the reconstruction, Fig. 2a. The other

strategies seem to have more oscillations and blurred objects.

Concerning the conductivity reconstructions, the observation

is quite different. Indeed, the reconstruction using the

Sequential Strategy produces conductivity artifacts, so it is

not acceptable, see Fig. 2g. The other inversion strategies

provide satisfactory results even if, once again, the Bunks

Strategy stands out for its accuracy.

Bunks Group Sequential Simultaneous

Time

(min)

374 173 102 192

Iteration

number

58 66 75 19

NRE (εr) 0.449 0.495 0.618 0.571

NRE (σ) 0.436 0.52 0.646 0.558

The visual, and thus qualitative, impression provided by

Fig. 2 is confirmed by the above summary table. Indeed, the

Bunks Strategy leads to the lowest NRE for the two physical

parameters. However, it is very expensive in computation

time. In our situation, a good NRE is less than 0,5. The

Group Strategy has NRE slightly larger than those of the

Bunks one but is less expensive in computation time even if

it takes a few more iterations to converge. As expected, the

Simultaneous Strategy yields the lowest number of iterations

to converge but suffers from long computation time and poor

reconstruction.

V. CONCLUSION

In this work a regularized Gauss-Newton algorithm was

used to invert data at several frequencies. Different frequency

strategies have been tested and compared with each other.

Numerical results of reconstruction of the actual parameters

show that the Bunks Strategy gives the best spatial resolution

i.e. with the lowest normalized residual errors. Then the

Group Strategy reconstructs the parameters with a slightly

lower resolution, a smaller convergence speed, but with a

much shorter computation time. Both strategies show that

the full waveform inversion leads to a good reconstruction

of the parameters of the two inclusions, letting guess their

shapes, although they have a characteristic length equal to

the smallest wavelength in the homogeneous medium. As a

perspective for this work, we plan to apply this full waveform

inversion method on GPR experimental data.
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2017, in French. NNT : 2017GREAU041, tel-01830657f
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