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Abstract: This manuscript makes two contributions to the field of change-
point detection. In a general change-point setting, we provide a generic
algorithm for aggregating local homogeneity tests into an estimator of
change-points in a time series. Interestingly, we establish that the error
rates of the collection of tests directly translate into detection properties
of the change-point estimator. This generic scheme is then applied to var-
ious problems including covariance change-point detection, nonparametric
change-point detection and sparse multivariate mean change-point detec-
tion. For the latter, we derive minimax optimal rates that are adaptive to
the unknown sparsity and to the distance between change-points when the
noise is Gaussian. For sub-Gaussian noise, we introduce a variant that is
optimal in almost all sparsity regimes.

Keywords and phrases: Multivariate time series, minimax rate, Gaus-
sian noise.
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1. Introduction

Change-point detection has a long history since the seminal work of Wald [39]
that lead to flourishing lines (see [31, 36] for recent surveys). Earlier contri-
butions focused on the problems of detecting and localizing change-points in
a univariate time series. Spurred by applications in genomics [32] and finance,
there has been a recent trend in the literature towards the analysis of more

∗The work of A. Carpentier is partially supported by the Deutsche Forschungsgemeinschaft
(DFG) Emmy Noether grant MuSyAD (CA 1488/1-1), by the DFG – 314838170, GRK 2297
MathCoRe, by the FG DFG, by the DFG CRC 1294 ‘Data Assimilation’, Project A03, by the
Forschungsgruppe FOR 5381 “Mathematical Statistics in the Information Age – Statistical
Efficiency and Computational Tractability”, Project TP 02, by the Agence Nationale de la
Recherche (ANR) and the DFG on the French-German PRCI ANR ASCAI CA 1488/4-1
“Aktive und Batch-Segmentierung, Clustering und Seriation: Grundlagen der KI” and by
the UFA-DFH through the French-German Doktorandenkolleg CDFA 01-18 and by the SFI
Sachsen-Anhalt for the project RE-BCI. The work of E. Pilliat and N. Verzelen has been
partially supported by ANR-21-CE23-0035 (ASCAI).

1240

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/23-EJS2126
mailto:emmanuel.pilliat@umontpellier.fr
mailto:carpentier@uni-potsdam.de
mailto:nicolas.verzelen@inrae.fr


Multivariate change-point detection 1241

complex time series for instance in a high-dimensional linear space [21] or even
belonging to a non-Euclidean space [8].

In this work, we study high-dimensional time series whose mean may change
possibly on a few number of coordinates. See the introduction of [46] for an ac-
count of possible applications and practical motivations. In particular, we build
a procedure which is able to detect and localize change-points under minimal
assumptions on the height of these change-points. Along the way towards this
optimal procedure, we define and analyze a scheme for general change-point
problems that aggregates a collection of local tests into an estimator change-
points. This generic scheme is of independent interest and easily allows to derive
optimal change-point procedure in other complex settings such as covariance
change-points problems or nonparametric change-point problems. In this in-
troduction, we first describe this generic scheme before turning to our results
in high-dimensional sparse change-point detection and finally discussing other
applications.

1.1. General change-point setting

In the most general form of a change-point problem, we consider a random
sequence Y = (y1, y2, . . . , yn) in some measured space Yn and, for t = 1, . . . , n,
we write Pt for the marginal distribution of yt. We are also given a functional
Γ mapping the probability distribution Pt to some space V.

Then, the purpose of change-point detection is to detect changes in the se-
quence (Γ(P1),Γ(P2), . . . ,Γ(Pn)) in Vn and to estimate the positions of these
changes. This setting is really general and does not require that the random
variables (yt) are independent.

Let us shortly explain how this general framework encompasses most offline
change-point detection problems. In the Gaussian mean univariate change-point
setting, we have Y = R, the distribution Pt corresponds to the normal distribu-
tion with mean θt ∈ R and variance σ2 and Γ(Pt) = θt. In the (heteroscedastic)
mean univariate change-point problem, the distribution Pt is not necessarily
Gaussian and, in particular, the variance of yt is allowed to vary with t. Still, one
is only interested in detecting variations of Γ(Pt) =

∫
xdPt = E[yt]. By contrast,

in the variance univariate change-point problems, one focuses on changes in the
variance of yt. This can be done by taking Γ(Pt) =

∫
x2dPt−[

∫
xdPt]2 = Var(yt).

If one is interested in possibly nonparametric changes in the distributions, then
the functional Γ is simply taken to be the identity map. In semi-parametric
quantile change-point detection [22], the univariate distributions Pt can be ar-
bitrary whereas Γ(Pt) is a quantile of Pt.

To further formalize the change-point detection problem in the sequence
(Γ(P1),Γ(P2), . . . ,Γ(Pn)), we define an integer 0 ≤ K ≤ n − 1 and a vector of
integers τ = (τ1, . . . , τK) satisfying 1 = τ0 < τ1 < · · · < τK < τK+1 = n+1 such
that Γ(Pt) is constant over each interval [τk, τk+1 − 1] and Γ(Pτk−1) �= Γ(Pτk).
Hence, τk corresponds to the position of the kth change-point. We shall often
refer to τk as a change-point. Equipped with this notation, we are interested
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in building an estimator τ̂ = (τ̂1, . . . , τ̂K̂) of τ from the time series Y . Here,
τ̂1, . . . , τ̂K̂ correspond to the estimated change-points of τ and K̂ to the number
of the estimated change-points.

1.1.1. Desirable guarantees of an estimator

Before describing the generic scheme for estimating τ , let us first formalize the
desired properties of a good change-point procedure. Informally, the primary
objectives are to detect most if not all change-points while estimating no (or at
least very few) spurious change-points.

Regarding the latter objective, it is usually required that the number of
change-points K is not overestimated by τ̂ . Here, we require a slightly stronger
local property introduced in [38]. An estimator τ̂ of size K̂ is said to detect no
spurious change-points (NoSp) if{ ∣∣∣{τ̂k′ , 1 ≤ k′ ≤ K̂} ∩

[
τk − τk−τk−1

2 , τk + τk+1−τk
2

]∣∣∣ ≤ 1 for all 1 ≤ k ≤ K;
{τ̂k′ , 1 ≤ k′ ≤ K̂} ⊂

[
τ1 − τ1−1

2 , τK + n+1−τK
2

]
.

(1)
The second condition simply ensures that no change-point is estimated near
the boundaries of the time series. The first condition entails that, for each
change-point τk there is at most one estimated change-point τ̂k in the interval
[τk − (τk − τk−1)/2, τk + (τk+1 − τk)/2]. In other words, (NoSp) requires that,
on each sub-interval, the number of change-points is not overestimated.

Let us now formalize the objective of detecting the change-points. In this
work, we consider as in [38] realistic settings where some change-points are so
close or their heights are so small that they are impossible to detect. As a con-
sequence, we can only hope to detect the subset of significant change-points.
In what follows, we define a subset K∗ ⊂ [K] of change-point indices that cor-
respond to significant change-points. Obviously, the significance of a particular
change-point is relative to the problem under consideration – data distribu-
tion, nature of change-points – and the definition is problem dependent. As an
example, we define in the next subsection the suitable notion of energy and
significance of a change-point in the mean multivariate change-point setting.
In Section 6, we formalize this notion for covariance and univariate nonpara-
metric change-point problems. In light of this discussion, the second guarantee
we aim for is to detect all significant change-points. A change-point τk is said
to be detected if there is at least one estimated change-point τ̂l in the interval
[τk − (τk − τk−1)/2, τk + (τk+1 − τk)/2]. Equivalently, this means that at least
one of the estimated change-points is closer to τk than to any other true change-
point.

Aside from (NoSp) and (detect) properties, one may additionally aim at
localizing the change-points as well as possible – see the discussions in [41].
Given a specific change-point τk detected by an estimator τ̂ , its localization
error dH,1(τ̂ , τk) is defined by

dH,1(τ̂ , τk) = min
l=1,...,|τ̂ |

|τ̂l − τk| ,
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which is the smallest distance between τk and one of the estimated change-
points. While this work mainly focused on the detection problem, we shall also
provide localization bounds along the way.

1.1.2. A generic roadmap for change-point detection

In this manuscript, our first contribution is a generic procedure for aggregating
a collection of tests into an estimator τ̂ of τ . For two positive integers (l, r),
we consider the time interval [l − r, l + r). Suppose we are given a collection
G of such (l, r). For each (l, r) ∈ G, we are also given a homogeneity test Tl,r

of the null hypothesis H0: {(Γ(Pt)) is constant over the segment [l − r, l + r)}.
This hypothesis is equivalent to the absence of any change-point on the interval
(l − r, l + r). Given such a collections of homogeneity tests (Tl,r), (l, r) ∈ G, we
build in this manuscript an estimator τ̂ that satisfies the following properties.
If the multiple testing procedure does not reject any true null hypothesis (no
false positives), then τ̂ does not estimate any spurious change-point, that is, it
satisfies (No Sp). Furthermore, any change-point τk that is detected by some
test Tτ̄k,rk , where τ̄k is close enough to τk and rk is small enough is detected
by the estimator τ̂ . In other words, we establish a completely generic result that
translates properties of the multiple testing procedure into detection proper-
ties. Thus, the construction of a change-point procedure boils down to building
a suitable multiple testing procedure (Tl,r), (l, r) ∈ G whose family-wise error
rate (FWER) is controlled, while being able to detect all the significant change-
points. In turn, this allows us to reduce the problem of change-point detection
under minimal distance between the change-points to the well-established field
of minimax testing.

1.1.3. Related Work and possible applications

In the last years, there has been a growing interest into the extension of univari-
ate mean change-point procedures such as wild binary segmentation (WBS) [14]
to other problems such as covariance change-point [40], network change-point

[41], or nonparametric change-point [33]. For each of these problems (and for
others), it turns out that the general ideas of WBS can be instantiated. However,
for each setting, the proofs need to be fully adapted in a case by case manner.
Besides, the resulting procedures are only optimal up to logarithmic terms.

Recently, Chan and Chen [5] and Kovács et al. [24] have introduced bottom-
up aggregation procedures for mean change-point segmentation (see also [25]
for localization improvements). Moreover, Kovács et al. [24, 25] illustrate the
numerical performances to other change-point models, such as graphical models
or multivariate mean-change point models. In fact, one may extend their proce-
dures to generic problems, but the theoretical guarantees are only provided for
univariate models and it remains unclear whether one can extend them beyond
very specific cases.
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In contrast, it is quite straightforward to adapt our generic procedure to any
new setting once suitable homogeneity multiple tests have been crafted. As the
most prominent example, we consider the sparse high-dimensional mean change-
point detection and establish the optimality of our procedure – see the next
subsection for details. In Section 6, we also handle the covariance change-point
detection and the univariate nonparametric change-point detection problems.
In each case, we pinpoint the first tight minimal conditions for detection.

Besides, we could apply our strategy to other problems such changes in auto-
regressive models [43], changes in the inverse covariance matrix of yi [17, 24]
or changes in a high-dimensional regression model [34]. All such change-point
problems can be addressed through the construction and careful analysis of
two-sample tests for auto-regressive models, inverse covariance matrices, and
linear regression models respectively. Similarly, we can build Kernel change-
point procedures [1, 16] from kernel two-sample tests [18].

1.2. Sparse multivariate change-point setting

As explained above, our primary application of our generic scheme is the mul-
tivariate mean change-point detection problem with sparse variations where
one observes a time series Y = (y1, . . . , yn) ∈ R

p×n with unknown means
Θ = (θ1, . . . , θn) ∈ R

p×n so that we have the decomposition

yt = θt + εt t = 1, . . . , n , (2)

where the noise matrix ε = (ε1, . . . , εn) is made of independent and mean zero
random vectors of size p. In this manuscript, we make two distributional as-
sumptions on the noise. Either we suppose that all random vectors εi follow
independent normal distribution with variance σ2Ip (see Section 3) or that the
components of εi follow independent sub-Gaussian distributions with variance
σ2 (see Section 4). In either case, we assume that σ2 is known.

Here, we are interested in the variations of the mean vector θt so that, relying
on the formalism of the previous subsection, we have Γ(Pt) = θt. Considering the
vector of change-points τ = (τ1, . . . , τK), we can define K+1 vectors μ0, . . . , μK

in R
p satisfying μk �= μk+1 for all k = 0, . . . ,K − 1 such that

θt =
K∑

k=0

μk1τk≤t<τk+1 .

Equivalently, μk is the constant mean of y over the interval [τk, τk+1 − 1].
The difference μk −μk−1 in R

p measures the variation of Θ at the change-point
τk and can possibly have many null coordinates. In this possibly sparse multi-
dimensional setting, the significance of a change-point is measured through three
quantities Δk, rk, and sk. First, the height Δk of the change-point τk is defined
as the Euclidean norm of the signal difference. The length rk of the change-point
τk is the minimal distance from τk to another change-point, τk−1 or τk+1. More
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Fig 1. An example of a piece-wise constant sequence Θ with 3 change-points and p = 1.

precisely,

Δk = ‖μk − μk−1‖ ; rk = min(τk+1 − τk, τk − τk−1) . (3)

As a simple example, Figure 1 depicts a one dimensional piece-wise constant
sequence Θ with 3 change-points illustrating the setting presented above. In the
univariate change-point literature (e.g. [7, 14, 15]) the height and the length of a
change-point characterize the significance of a change-point. In the multivariate
setting, where the change-points can be sparse, meaning the number of non null
coordinates of the vector μk − μk−1 is possibly small, one also considers the
sparsity sk of change-point τk, defined by

sk = ‖μk − μk−1‖0 , (4)

where, for any v ∈ R
p, ‖v‖0 =

∑
1≤i≤p 1{vi �= 0}.

1.2.1. Two-sample tests and CUSUM statistics

Our objective is to detect and recover positions (τk)k≤K under minimal condi-
tions on the change-point height Δk, change-point length rk and sparsity sk. In
view of the generic change-point procedure discussed in the previous subsection,
this mainly boils down to building suitable tests of the assumptions {Θ is con-
stant over [l − r, l + r)} versus {Θ is not constant on this segment}. Following
the literature on binary and wild binary segmentation, we consider the CUSUM
statistic

Cl,r(Y ) =
√

r

2σ2

(
1
r

l+r−1∑
i=l

yi −
1
r

l−1∑
i=l−r

yi

)
.
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This statistic computes the normalized difference of empirical mean of yi on
[l−r, l) and [l, l+r). If the noise is Gaussian and if Θ is constant on [l−r, l+r),
then Cl,r(Y ) simply follows a standard p-dimensional normal distribution. To
simplify, consider a specific instance of our testing problem where we want to test
whether {Θ is constant over [l−r, l+r)} versus {Θ contains exactly one change-
point at l on the segment [l− r, l+ r)}. This corresponds to a two-sample mean
testing problem, for which the CUSUM statistic Cl,r(Y ) is a sufficient statistic
if the noise is Gaussian. Then, given Cl,r(Y ), one wants to test whether its
expectation is 0 (no change-point on [l− r, l+ r)) versus its expectation is non-
zero but is s-sparse for some unknown s. This classical detection problem is well
understood [11] and it is well known that a combination of a χ2-type test with
a higher-criticism-type test is optimal. Here, the challenge stems from the fact
that we do not want to perform a single such test, but a large collection of tests
over a collection of (l, r) ∈ G.

1.2.2. Our contribution

As usual in the mean change-point literature, we consider the energy rkΔ2
k of

the change-point τk. Up to a possible factor in [1/2, 1], rkΔ2
k is the square dis-

tance between Θ and its projection on the space of vectors Θ′ with change-point
at (τ1, . . . , τk−1, τk+1, . . . , τK) – see e.g. [38] for a discussion in the univariate
setting. In other words, the energy rkΔ2

k characterizes the significance of the
change-point τk. In Section 3, we introduce a multi-scale change-point detection
procedure detecting any change-point τk whose energy is higher, up to a nu-
merical constant, than σ2sk log(1 +

√
p

sk

√
log(n/rk)) + σ2 log(n/rk). This result

is valid for arbitrary length rk and sparsity sk, and does not require the knowl-
edge of these two quantities. In summary, our procedure does not estimate any
spurious change-point (NoSp) and detects all the change-points whose energy
are higher than the latter threshold. In Section 5, we establish that, as soon
as the unknown number K of the change-points is larger than 1, the condition
σ2sk log(1 +

√
p

sk

√
log(n/rk)) + σ2 log(n/rk) on the energy is tight with respect

to n, p, rk and sk, in the sense that no procedure achieving (NoSp) is able to
detect with high probability a change-point whose energy is smaller (up to some
constant) than the latter threshold. In Section 4, we consider the more general
setting where the noise is L-sub-gaussian with known variance, and we establish
a similar result to the Gaussian case up to a logarithmic loss in some regimes.
Finally, we illustrate in Section 8 the behavior of our procedure on numerical
experiments.

1.2.3. Related work

For dense change-points (sk = p) but with unknown covariance for the noise,
Wang et al. [45] (see also [44]) study the behavior of a procedure based on
U -statistics of the CUSUM. Jirak [21] and Yu and Chen [48] introduce binary
segmentation procedures based on the l∞ norm of the CUSUMs. Although those
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work explicitly characterize the asymptotic distribution of the test statistics and,
for some of them, allow temporal dependencies in the data, the corresponding
energy requirements for change-point detection are either not studied or turn
out to be suboptimal.

Closest to our work, Chan and Chen [5] study a bottom-up approach to detect
change-points of a Gaussian multivariate time series in an asymptotic setting.
More specifically, the authors consider an asymptotic regime where the size of
the time series is exponential in the dimension: n = ep

ζ with ζ ∈ (0, 1). The
authors also assume that the number K of change-points remains finite when
n, p → ∞ and that the minimal sparsity s of these change-points is polynomial
is p. In this specific regime, their procedures provably recover change-points
under a near-minimal (up to logarithmic factors with respect to n) condition
on the energy. In contrast, our results provide non-asymptotic and tight results
for all scaling with respect to n and p, allow for arbitrarily large number K of
change-points and allow for the presence of non-significant change-points. In the
same specific asymptotic setting, [20] introduce a so called score test statistic
used in a change-point detection procedure which is shown to achieve the same
performance as [5] in the gaussian model but also handle Poisson observations.

Recently, Liu et al. [28] have characterized the optimal detection rate of a pos-
sibly sparse change-point in the specific case where there is at most one change-
point, but the optimal rates are significantly slower in the multiple change-point
setting. See also [12] and [9] for earlier results. Wang and Samworth [46] have
proposed the INSPECT method based on sparse projection to handle sparse
change-points, but INSPECT provably detects the change-points under strong
assumption on the energy; see Section 3 for a precise comparison.

In the univariate setting (p = 1), minimal energy requirements for change-
point detection are well understood [13, 15, 38, 42] and are nearly achieved by a
wide range of procedures including penalized least-square and multi-scale tests
methods.

2. A Generic algorithm for multiscale change-point detection on a
grid

In this section, we study the problem of change-point detection in the general
setting defined in Section 1.1. We introduce a bottom-up algorithm that aggre-
gates a collection of homogeneity tests, performed at many positions, and for
many scales, of our data. Then, we establish that, under some conditions on
these tests, the procedure detects significant change-points.

2.1. Grid and multiscale statistics

Since our purpose is to translate a collection of local tests T = (Tl,r)(l,r)∈G in-
dexed by a grid G into a change-point detection procedure, we first need to for-
malize what we mean by a grid. Henceforth, we call a grid G of [n] a collection of
locations and scales where a scale r is a positive integer smaller or equal to �n/2�
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Fig 2. The dyadic grid is represented as follows : for each r = 2i and l ∈ Dr, we draw the
interval [l− r + 1, l + r − 1] at position (l, log2(r)).

and a location l is an integer between r+1 and n−r. This couple (l, r) refers to
the segment [l−r, l+r) centered at l and with radius r. Formally, G is therefore
a subset of Jn =

{
(l, r) : r = 1, . . . ,

⌊
n
2
⌋

and l = r + 1, . . . , n− r + 1
}
. Given a

grid G, we call R its collection of scales, that is R = {r : ∃l s.t. (l, r) ∈ G}.
Finally, for a scale r ∈ R, Dr stands for the corresponding collection of loca-
tions, that is Dr = {l : (l, r) ∈ G}. Although we do not make any assumption
on the grid G for the time being, we will mainly consider two specific grids in
this section: the complete grid GF = Jn and the dyadic grid GD defined by
R = {1, 2, 4, . . . , 2�log2(n)	−1}, D1 = [2, n], and for r ∈ R \ {1},

Dr =
{
r + 1, 3�r/2� + 1, 4�r/2� + 1, . . . ,

( n

�r/2� − 2
)
�r2� + 1, n− r + 1

}
.

(5)
See Figure 2 for a visual representation of the dyadic grid. At some points,
we shall also mention a-adic grids Ga. For any a ∈ (0, 1), Ga is defined by
R = {1, �a−1�, �a−2�, . . . , �a1−�log(n)/ log(a)	�} and Dr as in (5). Interestingly,
the cardinality of the dyadic grid or more generally of the a-adic grid is order
O(n), whereas the complete grid GD is quadratic.

Grids are reminiscent of the c-normal systems of intervals introduced by
Nemirovsky [30] (see also [27] for a definition) although our definition allows for
non-necessarily normal intervals.

Given a fixed grid G, a multiscale test is simply a collection of test T =
(Tl,r)(l,r)∈G indexed by the elements of G, which amounts to testing at all scales
r ∈ R and all locations l ∈ Dr whether the functional Γ(Pt) is constant over the
segment [l−r, l+r). Equivalently, Tl,r tests whether there exists a change-point
in [l − r + 1, l + r − 1].
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2.2. From a multiscale test to a change-point detection procedure

Our purpose is to introduce a generic procedure to translate a multiscale proce-
dure into a vector of change-points. Intuitively, if, for some (l, r) ∈ G, we have
Tl,r = 1, then the functional Γ(Pt) is certainly not constant over [l − r, l + r)
which entails that there is possibly at least one change-point in [l−r+1, l+r−1].
As a consequence, the multiscale test gives a collection I(T ) = {[l−r+1, l+r−
1] s.t. Tl,r = 1} of intervals that tentatively contain at least one change-point.

If all these intervals were disjoint, then one simply would take τ̂ as the se-
quence of centers of these intervals. Unfortunately, when two intervals [l1 − r1 +
1, l1 + r1 −1] and [l2 − r2 +1, l2 + r2 −1] in I(T ) have a non-empty intersection,
one cannot necessarily decipher whether there is only one change-point in the
intersection of both intervals or if each interval contains a specific change-point.
Hence, our general objective is to transform the collection I(T ) into a collection
of non-intersecting intervals by either discarding or merging some of them.

We propose the following bottom-up iterative procedure for building a collec-
tion of non-intersecting intervals. Start with T0 = S0 = ∅. For any scale r ∈ R,
we compute the collections Sr of intervals of scale r and the collection Tr of
locations based on the following

Tr =

⎧⎨⎩l ∈ Dr, Tl,r = 1 and [l − r + 1, l + r − 1]
⋂( ⋃

r′<r, r′∈R
Sr′
)

= ∅

⎫⎬⎭
Sr =

⋃
l∈Tr

[l − r + 1, l + r − 1] .

The sets T1 and S1 are made of all positions l such that Tl,1 = 1. More generally,
Tr contains all locations l such that Tl,r = 1 and the corresponding interval
[l − r + 1, l + r − 1] does not intersect with any of the detected intervals at a
smaller scale r′ < r. The set Sr contains all intervals associated to Tr.

One can easily check that S =
⋃

r Sr is a union of closed non-intersecting
intervals. Denote C = {C1, . . . ,CK̂} the partition of S into connected compo-
nents such that, for all 1 ≤ i < j ≤ K̂, max Ci < min Cj . Finally, we estimate
the vector of change-points τ̂ by taking the center of each segment Ck. In other
words, we take τ̂k := 1

2 (min Ck + max Ck) for any 1 ≤ k ≤ K̂. This bottom-up
aggregation procedure is summarized in Algorithm 1 and illustrated in Figure 3
below.
Remark. If, for some r ∈ R and some l1 < l2 ∈ Dr, we have Tl1,r = 1, Tl2,r = 1,
and l1 +r−1 ≥ l2−r+1, then Sr contains the segment [l1−r+1, l2 +r−1]. In
other words, our aggregation procedure merges two intervals if and only if they
correspond to the same scales. In Section A, we also introduce a variant of the
algorithm where, instead of merging these two intersecting with identical scale,
we discard one of them.

Computational Cost. A naive implementation of Algorithm 1 – and also of Al-
gorithm 2 defined in Appendix – requires to compute all tests Tl,r on the grid,
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Data: yt, t = 1 . . . n and local test statistics (Tl,r)(l,r)∈G
Result: (τ̂k)k≤K̂

Tr,Sr = ∅ for all r ∈ R and S = ∅;
for increasing r ∈ R do

for l ∈ Dr s.t. Tl,r = 1 do
if [l− r + 1, l + r − 1]

⋂
S = ∅ then

Tr ← Tr ∪ {l};
Sr ← Sr ∪ [l− r + 1, l + r − 1];

end
end
S = S

⋃
Sr;

end
Let (Ck)k=1,...,K̂ be the connected components of S sorted in increasing order;
return

(
τ̂k = 1

2 (min Ck + max Ck)
)
k=1,...,K̂

Algorithm 1: Bottom-up aggregation procedure of multiscale tests

Fig 3. Example of our change-point detection procedure with three change-points. The first
two change-points have large heights and are detected at a small scale r (in magenta) while
the third one is detected at a larger scale r.

whereas the aggregation procedure only needs to compute a number of tests Tl,r

proportional to the size of the grid. More precisely, if the computational cost of
Tl,r is Λl,r for each (l, r) in the grid G, then the aggregation procedure requires
O(
∑

(l,r)∈G Λl,r) computations. If for all (l, r), the cost Λl,r is proportional to
r, that is Λl,r = O(rΛ), then the overall computational cost is O(Λ

∑
(l,r)∈G r)

which is O(Λn3) for the complete grid and O(Λn log(n)) for the dyadic grid.
One can speed up the full procedure by computing the statistics Tl,r and aggre-
gating on the fly by checking whether [l − r + 1, l + r − 1] intersects S before
evaluating Tl,r = 1. Indeed, the connected components Ck can be computed at
each increasing scale r. Hence, at scale r, one only needs to compute the tests



Multivariate change-point detection 1251

Tl,r at locations l such that [l− r+1, l+ r− 1] does not intersect the connected
components detected at scales r′ < r.

2.3. General analysis

In this subsection, we provide an abstract theorem translating error controls
of the multiple test procedure T in terms of properties of τ̂ . As explained in
the introduction, the time series (yt) may contain change-points that are too
small to be detected. Having this in mind, we define a subset K∗ ⊂ [K] of
indices corresponding to so-called significant change-points. As our purpose is
to provide deterministic condition so that the change-points in K∗, we need to
introduce, for each k ∈ K∗, an element of the grid (τ̄k, r̄k) ∈ G at which the
statistic T is expected to detect τk. One could think of τ̄k as some position close
to τk and to r̄k as some radius which is large enough to convey information on
the change-point. Recall that the length rk of the change-point τk is defined by
rk = min(τk+1 − τk, τk − τk−1). We assume that the scales r̄k and the location
τ̄k of detection satisfy the two following conditions:

4(r̄k − 1) < rk and |τ̄k − τk| ≤ r̄k − 1. (6)

The first condition ensures that the scale r̄k < rk/4+1 is small enough compared
to the length rk. The second condition is always satisfied if τ̄k is the best ap-
proximation of τk in Dr̄k and if the grid G satisfies the following approximation
property

(App): For all r ∈ R and all l ∈ [r+1, n− r+1], there exists l′ ∈ Dr such that
|l′ − l| ≤ r − 1.

This property entails that any point l can be approximated at distance r− 1
by some location in Dr. This also implies that each point l ∈ [r+1, n−r] belongs
to at least one segment (l′ − r, l′ + r) where l1 lies in Dr. In practice, the a-adic
grids Ga and the complete grid satisfy (App).

Next, we introduce an event on the tests (Tl,r) under which the change-point
estimator τ̂ of Algorithm 1 performs well. In the following, we write H0, the
collection of all possible (l, r) ∈ Jn such that there is no change in [l− r+ 1, l+
r − 1], i.e. Γ(Pt) is constant on [l − r, l + r). Equivalently, we have

(l, r) ∈ H0 iff (l − r, l + r) ∩ {τk, k = 1, . . . ,K} = ∅ . (7)

For a collection K∗ and some elements of the grid (τ̄k, r̄k) satisfying (6), the
Event A (T,K∗, (τ̄k, r̄k)k∈K∗) is defined as the conjunction of the two following
properties: (i) (No false positive) Tl,r = 0 for all (l, r) ∈ H0 ∩ G (ii) (Detec-
tion of significant change-points) for every k ∈ K∗, we have Tτ̄k,r̄k = 1.

The first property states that T performs no type I errors on the event
A (T,K∗, (τ̄k, r̄k)k∈K∗), whereas the second property enforces that all the sig-
nificant change-points are detected by the specific tests Tτ̄k,r̄k .



1252 E. Pilliat et al.

Theorem 1. The following holds for any grid G, any local test statistic T , any
non-negative integer K, any distribution with K change-points, any K∗ ⊂ [K]
and scales and locations (τ̄k, r̄k)k∈K∗ in G satisfying Assumption (6). Under the
event A(T,K∗, (τ̄k, r̄k)k∈K∗), the estimated change-point vector τ̂ returned by
Algorithm 1 satisfies the two following properties

• Significant change-points are detected: for all k ∈ K∗, there exists
k′ ≤ K̂ such that |τ̂k′ − τk| ≤ r̄k − 1 < rk

4 .
• (NoSp): No Spurious change-point is detected (1).

The first property states that so-called significant change-points (τk)k∈K∗

are detected by the generic algorithm at the right scale. The no-spurious prop-
erty (1) guarantees that, around any true change-point τk, the procedure esti-
mates at most one single change-point τ̂l. Importantly, the theorem does not
make any assumption on the non-significant change-points.

In fact, change-points τk with k ∈ [K] \ K∗ may or may not be detected. In
general, we can only conclude from Theorem 1 that |K∗| ≤ K̂ ≤ K on the event
A (T,K∗, (τ̄k, r̄k)k∈K∗).

Theorem 1 is abstract but its main virtue is to translate multiple testing
properties into change-point detection properties. For a specific problem such
as multivariate mean change-point detection considered in the next section, the
construction of a near optimal procedure boils down to introducing a collec-
tion of local test statistics, such that (a) change-points τk belong to K∗ under
minimal conditions, (b) the scale r̄k is the smallest possible, and (c) the event
A(T,K∗, (τ̄k, r̄k)k∈K∗) holds with high probability.

In the case where all the change-points are significant, the result of Theorem 1
can be reformulated as follows:

Corollary 1. The following holds for any grid G, any local test statistic T , any
non-negative integer K, any distribution with K change-points, any sequence
(τ̄k, r̄k)k=1,...,K in G satisfying Assumption (6).

Under the event A(T, [K], (τ̄k, r̄k)), the estimated change-point vector τ̂ re-
turned by Algorithm 1 satisfies K̂ = K and,

|τ̂k − τk| < r̄k − 1 ≤ rk
4 for all k = 1, . . . ,K .

Let us respectively define the Hausdorff distance and the Wasserstein distance
of two vectors (u1, . . . , uK) and (v1, . . . , vK) in R

K by
dH(u, v) = maxk=1,...,K |uk − vk| and dW (u, v) =

∑
k=1,...,K |uk − vk|. Then,

Corollary 1 straightforwardly implies that, if K∗ = [K], then these two losses
are bounded as follows

dH(τ̂ , τ) ≤ max
k=1,...,K

(r̄k − 1) and dW (τ̂ , τ) ≤
∑

k=1,...,K
(r̄k − 1) .

As an alternative of Algorithm 1, one could use other bottom-up aggregating
procedures. For instance, Algorithm 2 defined in Appendix A also satisfies Theo-
rem 1. Although these two algorithms are closely related, Algorithm 1 is slightly
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more conservative than Algorithm 2 since it merges all detection intervals at a
given resolution while Algorithm 2 only keeps one interval at a given resolution
when multiple intervals intersect – the one with smallest index t. While the
minimax properties of both methods are comparable – at least up to a multiple
constant – the choice of aggregation method will have an influence in practice on
the outcome: Algorithm 1 will be slightly more stable, detect less change-points,
and provide wider confidence interval around them, while Algorithm 2 will be
slightly more sensitive to smaller changes, i.e. detect smaller change-points, will
be more precise, and somewhat less stable.

Theorem 1 ensures that, if Tτk,rk = 1 with (τk, rk) satisfying Assumption (6),
then the change-point τk is detected. Inspecting the proof of Theorem 1, one
easily checks that Assumption (6) is minimal for Algorithm 1 (and also for Al-
gorithm 2). Still, one may wonder whether any generic algorithm has to require
that 4(rk − 1) < rk to detect the change-points or if there exists a generic
algorithm where the constant 4 in the above condition can be improved.

Comparison with narrowest over threshold methods. As mentioned in
the introduction, other aggregation procedures have been proposed in the liter-
ature. In particular, the narrowest over threshold scheme proposed by [2] and
later used in [24] is also closely related to the local segmentation algorithm of
Chan and Chen [5]. A simple extension of these procedures for generic change-
point problems and for a general collection of tests (Tl,r) would amount to
modifying Algorithm 1 by selecting locations l in Dr such that Tl,r = 1 and
[l−r+1, l+r−1] does not intersect previously detected change-points, whereas
we require in Algorithms 1 and 2, that [l−r+1, l+r−1] does not intersect pre-
viously detected confidence intervals. In some way, the narrowest-over threshold
scheme is therefore less conservative. Unfortunately, there is no generic result
in the form of Theorem 1 for such procedures and, from informal arguments,
we doubt that the corresponding procedure provably achieves (NoSp) under
a control of the FWER of the tests. Inspecting the proof of Theorem 1 in [2]
and Theorem 3 in [24] for univariate mean change-point problems, one observes
that the chosen threshold is much larger than what is needed to control the
FWER so that the theoretical threshold is certainly over-conservative – see step
5 of the proof of Theorem 1 in [2]. In contrast, Theorem 1 in [5] for univari-
ate change-point problems is based on the minimal threshold, but the proof
relies on the important assumption that the number K of change-point remains
bounded while n goes to infinity. Besides, it is not clear how one could extend
the arguments to more general settings.

3. Multivariate Gaussian change-point detection

We now turn to the multivariate change-point model introduced in Section 1.2.
Throughout this section, we assume that the random vectors εt are indepen-
dently and identically distributed with εt ∼ N (0, σ2Ip). Since we shall apply
the general aggregation procedures introduced in the previous section, our main
job here is to introduce a near-optimal testing procedure.
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Fix some quantity δ ∈ (0, 1). At the end of the section, 1−δ will correspond to
the probability of the event A (T,K∗, (τ̄k, r̄k)k∈K∗) introduced in the previous
section. Alternatively, one may interpret δ as an upper bound of the desired
probability that the change-point detection procedure detects a spurious change-
points. Recall that, for a change-point τk, sk stands for the sparsity of the
difference μk+1 − μk. The energy of a given change-point τk is c0-high if

rkΔ2
k ≥ c0σ

2

[
sk log

(
1 +

√
p

sk

√
log
(

n

rkδ

))
+ log

(
n

rkδ

)]
, (8)

for some universal constant c0 to be defined later. We show in this section that
when c0 is large enough, all high-energy change-points can be detected. Con-
versely, it is established in Section 5 that Condition (8) is (up to a multiplicative
constant) optimal for detecting change-points and cannot be weakened.

Let us now discuss the different regimes contained in Equation (8). In what
follows, define

ψ(g)
n,r,s := s log

(
1 +

√
p

s

√
γr

)
+ γr ; γr := log

( n

rδ

)
,

in order to alleviate notations. If γr ≥ p/2, then ψ
(g)
n,r,s � γr where u � v means

that for two positive numerical constants c1 and c2, one has c1v ≤ u ≤ c2v. This
corresponds to the minimal energy condition for detection in the univariate case,
i.e. when p = 1; see [38]. The condition γr ≥ p/2 occurs when p is rather small
and the scale r is much smaller than n. If γr ≤ p/2, then

ψ(g)
n,r,s �

⎧⎨⎩
γr if s ≤ γr

log(p)−log(γr)
s log

(
2 p
s2 γr

)
if γr

log(p)−log(γr) < s <
√
pγr√

pγr if s ≥ √
pγr .

We define K∗ ⊂ [K] as the subset of indices such that τk satisfies (8). For any
k ∈ K∗, we define r∗k as the minimum radius r such that an inequality similar
to (8) is satisfied for rΔ2

k, namely

r∗k = min
{
r ∈ R

+ : rΔ2
k ≥ c0σ

2
[
sk log

(
1 +

√
p

sk

√
log
( n

rδ

))
+ log

( n

rδ

)]}
.

(9)
In the following, we introduce multi-scale tests for respectively dense and

sparse change-points. For simplicity, we restrict our attention to the dyadic grid
GD = (R,D) introduced in the previous section (see Equation (5)), the complete
grid being used in the next section.

To apply Theorem 1, we will consider an event A (T,K∗, (τ̄k, r̄k)k∈K∗) in the
proof of Corollary 2 where the scale r̄k ∈ R is of the same order as r∗k ∈ R

+.
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3.1. Dense change-points

We focus here on dense change-points for which sk is possibly as large as p.
Given κ > 0, τk is a κ-dense high-energy change-point if

rkΔ2
k ≥ κσ2

(√
p log

(
n

rkδ

)
+ log

(
n

rkδ

))
. (10)

The requirement (10) is analogous to (8) when sk ≥ [p log(n/(rkδ))]1/2. For any
κ-dense high-energy change-point, we define r̄

(d)
k ∈ R as the minimum radius

r ∈ R such that an inequality of the same type as (10) is satisfied for rΔ2
k,

r̄
(d)
k = min

{
r ∈ R : 8rΔ2

k ≥ κσ2
(√

p log
( n

rδ

)
+ log

( n

rδ

))}
.

Intuitively, r̄
(d)
k corresponds to the smallest scale such that τk is guaranteed

to be detected. By definition, we have 4(r̄(d)
k − 1) ≤ rk. Let τ̄

(d)
k be the best

approximation of τk in the grid with scale r̄
(d)
k . By definition of the dyadic grid,

we have |τ̄ (d)
k − τk| ≤ r̄

(d)
k /4.

For any positive integers r ∈ [1;n] and l ∈ [r + 1, n + 1 − r], we define the
statistic Ψ(d)

l,r := ‖Cl,r‖2 − p. If θ is constant over [l − r, l + r), then the expec-
tation of Ψ(d)

l,r is zero. Recall that the rescaled CUSUM statistic Cl,r depends
on the noise level σ, and the statistic Ψ(d)

l,r therefore requires the knowledge of
σ. To calibrate the corresponding test T

(d)
l,r rejecting for large values of Ψ(d)

l,r we
introduce

T
(d)
l,r := 1

{
Ψ(d)

l,r > x(d)
r

}
; x(d)

r := 4
(√

p log
(

2n
rδ

)
+ log

(
2n
rδ

))
.

Proposition 1. There exists a universal constant κd > 0 and an event ξ(d) of
probability larger than 1− 2δ such that (i) T

(d)
l,r = 0 for all (l, r) ∈ H0 ∩ GD and

(ii) T
(d)
τ̄
(d)
k ,r̄

(d)
k

= 1 for all κd-dense high-energy change-point τk.

The above proposition ensures that, on the event ξ(d), the collection of tests
T

(d)
l,r detects all dense high-energy change-points at the scale r̄

(d)
k and makes no

false positives on the dyadic grid GD. If we plugged this collection of tests into
the general multiple change-point procedure, then Theorem 1 would entail that
all κd-dense high-energy change-points are discovered and localized and that τ̂
does not detect any spurious change-point. In the next subsection, we introduce
alternative tests that are tailored to sparse change-points and thereby allow
to detect change-points that are not κd-dense high-energy but still satisfy the
energy condition (8).
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3.2. Sparse change-points

3.2.1. Energy condition

For a given 1 ≤ k ≤ K, the change-point τk is a κ-sparse high-energy change-
point if sk ≤ [p log(n/(rkδ))]1/2 and

rkΔ2
k ≥ κσ2

(
sk log

(
p

s2
k

log
(

n

rkδ

))
+ log

(
n

rkδ

))
. (11)

If τk is a κ-sparse high-energy change-point, we define r̄
(s)
k as the minimum

scale such that an inequality similar to (11) is satisfied:

r̄
(s)
k = min

{
r ∈ R : 8rΔ2

k ≥ κσ2
(
sk log

(
p

s2
k

log
( n

rδ

))
+ log

( n

rδ

))}
.

As in the dense case, we have 4(r̄(s)
k −1) ≤ rk. Set τ̄ (s)

k as the best approximation
of τk in the grid D

r̄
(s)
k

at scale τk. By definition of the dyadic grid, we have

|τ̄ (s)
k −τk| ≤ r̄

(s)
k /4. We introduce below two statistics for handling this problem.

3.2.2. Berk-Jones test

The Berk-Jones test [29] is a variation of the Higher-Criticism test originally
introduced in [11] for signal detection. It has been previously studied in [6] for
sparse segment detection. We decided to use the Berk-Jones test in this paper
because of its intrinsic formulation in terms of the quantiles of a Bernoulli dis-
tribution, but the Higher-Criticism test would reach the same rates of detection
within a constant factor. We use the notation N

∗ to denote the set of positive
itegers. Given (l, r) in the grid GD, we first introduce Nx,l,r as the number of
coordinates of Cl,r that are larger than x in absolute value.

Nx,l,r =
p∑

i=1
1|Cl,r,i|>x (12)

If (l, r) ∈ H0, then the rescaled CUSUM statistic follows a standard normal
distribution and Nx,l,r therefore follows a Binomial distribution with parameters
p and 2Φ(x). The Berk-Jones test amounts to rejecting the null, when at least
one of the statistics Nx,l,r, for x ∈ N

∗, is significantly large. Next, we formalize
what we mean by ‘large’.

For any u > 0, any q0 ∈ [0, 1], and positive integer p0, denote Q(u, p0, q0) =
P[B(p0, q0) > u] the tail distribution function of a Binomial distribution with
parameters p0 and q0. Given δ ∈ [0, 1], we then write Q

−1(δ, p0, q0) for the
corresponding quantile function,

Q
−1(δ, p0, q0) = inf

u
[P[B(p0, q0) > u] ≤ δ] .
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Given a scale r ∈ R and a positive integer x, we define the weights

δ(BJ)
x,r = 6δr

π2x2|Dr|n
. (13)

This allows us to define the Berk-Jones statistic over [l − r, l + r) as the test
rejecting the null when at least one Nx,l,r is large.

T
(BJ)
l,r = max

x∈N∗
1
{
Nx,l,r > Q

−1(δ(BJ)
x,r , p, 2Φ(x))

}
. (14)

Equivalently, T
(BJ)
l,r is an aggregated test based on the statistics Nx,l,r with

weights δ
(BJ)
x,r . From the above remark and a union bound, we deduce that the

probability that the collection of tests {T (BJ)
l,r , (l, r) ∈ GD} rejects a least one

false positive is at most δ:

P

[
max

(l,r)∈H0∩GD

T
(BJ)
l,r = 1

]
≤
∑
r∈R

∑
l∈Dr

∑
x∈N∗

δ(BJ)
x,r ≤

∑
r∈R

∑
l∈Dr

δr

|Dr|n
≤
∑
r∈R

δr

n
≤ δ,

where we recall that (l, r) ∈ H0 if and only if Θ is constant on [l − r, l + r).
Although one may think from the definition (14) that T (BJ)

l,r involves an infinite
number of Nx,l,r, this is not the case. Indeed, Nx,l,r is a non-increasing function
of x whereas for all x such that 2pΦ(x) ≤ δ

(BJ)
x,r , we have Q

−1(δ(BJ)
x,r , p, 2Φ(x)) =

0. Writing x0,r the smallest x such that 2pΦ(x) ≤ δ
(BJ)
x,r we derive

T
(BJ)
l,r = max

x=1,...,x0,r
1
{
Nx,l,r > Q

−1(δ(BJ)
x,r , p, 2Φ(x))

}
.

Since, for any x > 0, we have Φ(x) ≤ e−x2/2, one can deduce that x0,r ≤
c[log(np/(rδ))]1/2, for some numerical constant c > 0.

3.2.3. Partial norm statistics

The Berk-Jones test is able to detect change-points τk for which there exists
s such that the s largest squared coordinates of μk − μk−1 are larger than
C(log(ep/s2) + log(n/rk)/s) with a large enough constant C. However, it may
happen that τk satisfies the energy condition (8) and that the s largest coor-
dinates of μk − μk−1 are negligible compared to log(n/rk)/s, mainly because
s �→ 1/s is not summable. To solve this issue, we introduce a second sparse
statistic based on the partial sums. Let

Z =
{

1, 2, 22, . . . , 2�log2(p)	
}

denote the dyadic set. Only the sparsities s ∈ Z will be analysed by the par-
tial norm statistic. For any (l, r) in the grid GD, we respectively write Cl,r,(1),
Cl,r,(2), . . . the reordered entries of Cl,r by decreasing absolute value, that is
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|Cl,r,(1)| ≥ · · · ≥ |Cl,r,(p)|. Then, for s ∈ Z, we define the partial CUSUM norm
by

Ψ(p)
l,r,s =

s∑
i=1

(
Cl,r,(i)

)2
. (15)

Then, we define the test T
(p)
l,r rejecting the null when at least one of the partial

norms is large

x(p)
r,s := x(p)

r,s (δ) = 4s log
(

2ep
s

)
+ 4 log

( n

rδ

)
; T

(p)
l,r = max

s∈Z
1
{

Ψ(p)
l,r,s > x(p)

r,s

}
.

Finally, we define the sparse test by aggregating both the Berk-Jones test
and the partial norm test. For any (l, r) ∈ GD, let T (s)

l,r = T
(p)
l,r ∨T

(BJ)
l,r . The next

proposition controls the error of this collection of tests.

Proposition 2. There exists a universal constant κs > 0 and an event ξ(s) of
probability larger than 1− 4δ such that (i) T

(s)
l,r = 0 for all (l, r) ∈ H0 ∩ GD and

(ii) T
(s)
τ̄
(s)
k ,r̄

(s)
k

= 1 for all κs-sparse high-energy change-point τk.

Here we introduced two different statistics for the same sparse regime sk ≤
[p log(n/(rkδ))]1/2 – the Berk-Jones statistic and the partial sums statistic –
mainly to solve a problem of integrability. We made this choice for the sake of
simplicity, but we could have used a single test, as presented in [28]

Ψ(LGS)
x,l,r =

p∑
i=1

(
C2

l,r,i − E [Z|Z ≥ x]
)
1{C2

l,r,i ≥ x} ,

where Z follows a standard normal distribution N (0, 1). This statistic leads to
the same type of result as the Berk-Jones statistic when enough coordinates
μk − μk−1 are large in absolute value, and it is comparable to the partial sums
statistic when its threshold x becomes low enough.

3.3. Consequences

To conclude this section, it suffices to observe that, for c0 in (8), any c0-high-
energy change-point τk in the sense of (8) is either a c0

2 -dense or a c0
2 -sparse

high-energy change-point. Hence, upon defining the test Tl,r = T
(d)
l,r ∨ T

(s)
l,r for

(l, r) ∈ GD, we consider the change-point procedure τ̂ defined in Algorithm 1.
Gathering Theorem 1 with Proposition 1 and Proposition 2, we obtain the
following.

Corollary 2. There exists a universal constant c0 > 0 such that, with probability
higher than 1 − 6δ, the estimator τ̂ satisfies (NoSp) and detects all c0-high-
energy change-points (as defined in (8)) τk in the sense

dH,1(τ̂ , τk) <
r∗k
2 ≤ rk

2 ,
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where r∗k is defined in (9).

If the change-points are of high-energy, that is K∗ = [K], then Corollary 2
can be reformulated as follows:

Corollary 3. Assume that for all k = 1, . . . ,K, τk is a c0-high-energy change-
point (see (8)) where c0 is the same as in Corollary 2. Then, with probability
higher than 1 − 6δ, the estimator τ̂ satisfies K̂ = K and

|τ̂k − τk| <
r∗k
2 ≤ rk

2 , for all k = 1, . . . ,K .

In particular, one can respectively bound the Hausdorff and the Wasserstein
losses, with probability higher than 1 − 6δ by

dH(τ̂ , τ) ≤ max
k=1,...,K

r∗k
2 and dW (τ̂ , τ) ≤

∑
k=1,...,K

r∗k
2 . (16)

In Section 5, we establish that the Condition (8) is (up to a multiplicative
constant) unimprovable and corresponds to the detection threshold for multi-
variate change-points.

Corollary 3 can be compared to the result of [46] on multivariate change-
point detection in the multiple change-point setting. Using a method based on
the CUSUM statistic and assuming that there are only high-energy change-
points, the authors also obtain an upper bound on the energy necessary to
detect the change-points. However, this result does not adapt to rk,Δk, sk, and
the detection rate is suboptimal in many regimes. Writing r = mink=1,...,K rk,
Δ = mink=1,...,K Δk and s = maxk=1,...,K sk, Theorem 5 of [46] requires two
conditions of the type rΔ2 ≥ c(nr )4 log(np) and rΔ2 ≥ csn

r log(np). This
detection rate is therefore suboptimal by a polynomial factor in n/r when
r is of smaller order than n, and by a logarithmic factor log(np) instead of
log(1 + √

p/s log(n/r)) + 1
s log(n/r) when r is of order n. Closer to our results,

[5] have introduced another bottom-up procedure in the very specific asymp-
totic setting n = ep

ζ for ζ ∈ (0, 1) with a fixed K number of change-points.
Assuming that, for each change-point, at least s coordinates of μk+1 − μk+1
are larger than ζ in absolute value, [5] establish that their procedure provably
detects the change-points as long as

rsζ2 ≥ c

{√
p log(n) if s ≥ 0.5

√
p log(n)

s log
(

p
s2 log (n)

)
if s ≤ 0.5

√
p log(n) .

In their specific asymptotic regime and when all non-zero coordinates are of
the same order, and all the change-points have a similar length rk, their result
is similar to ours up to the logarithmic terms. Indeed, for equispaced change-
points, our logarithmic term log(n/rk) = log(K) is much smaller than log(n).
Besides, their result does not handle the presence of low-energy change-points
and does not hold beyond the asymptotic regime n = ep

ζ . In contrast, our
condition (8) for high-energy change-points entails that the detection conditions
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are qualitatively different for other scalings in n and p. On the technical side,
our condition (8) is of l2 type whereas that in [5] is of minimal non-zero type.
Recovering the tight l2 conditions turns out to be much more challenging as
we need to handle situations where some coordinates have different orders of
magnitude. This is the main reason why we need to resort to a combination of
the Berk-Jones and the partial-norm statistics.

Comparison to one change-point problem. When one knows that K ≤ 1
(at most one change-point), then [28] proved that it is possible to detect τ1
if and only if r1Δ2

1 ≥ cσ2[s1 log(1 + 1
s1

√
p log log 8n) + log log 8n

]
. As in the

univariate setting, the problem with only one change-point is simpler than for
general K ≥ 2. As for our procedure, Liu et al. [28] rely on statistics based on
the CUSUM – a chi square statistics in the dense case and a thresholded sum of
squared coordinates in the sparse case – to detect and localize τ1. It turns out
that the detection procedure of [28] adapts to distance r1 = max(τ1−1, n+1−τ1)
the boundary, and one could refine their result by stating that τ1 is detectable if
and only if r1Δ2

1 ≥ cσ2[s1 log(1 + 1
s1

√
p log log(2n/r1)) + log log(2n/r1)] which

is more smaller when r1 is of the order of n. This refined result is in the same
spirit as our bounds for mutiple change-point, but the rate is faster because
one obtains log log(n/r1) – instead of log(n/rk) in our case. The reason for
this faster rate is due to the relative simplicity of the problem with only one
change-point. Indeed, in single change-point detection, there is no need to look
for change-points at all positions and scale at the same time, since scale and
positions are related. This implies that it is possible to attain faster rates than
in multiple change-point detection. The comparison between single and multiple
change-point detection is thoroughly done in [38] for univariate models.

Computational Cost. The cost of the tests T (d)
l,r in the dense regime is O(rp).

The computation of the partial norm statistic requires to sort the coordinates
Cl,r,i of the CUSUM statistic, which takes O(p(r + log(p))) operations. Since
only the thresholds x ≤ c log(np/(rδ))1/2 are needed to compute the Berk-
Jones statistic, it holds that, for δ ≥ (np)−c with a numerical constant c > 0,
the computational cost of the Berk-Jones statistic is O(p(r + log(np))). Thus,
for each (l, r), the overall computational cost of the test Tl,r = T

(d)
l,r ∨ T

(s)
l,r is

Λ = O(p(r + log(np))), and the computational cost of the whole change-point
detection procedure on the dyadic grid is O(np log(np)).

4. Multi-scale change-point detection with sub-Gaussian noise

We now turn to the more general case of sub-Gaussian distributions [37]. Given a
random variable Z, define its ψ2-norm by ‖Z‖ψ2

= inf{x > 0, E[exp(Z2/x2)] ≤
2} . Given L > 0, a mean zero real random variable is said to be L-sub-
Gaussian if ‖Z‖ψ2

≤ L. This implies in particular that, for all x ≥ 0, one
has P (|Z| ≥ x) ≤ 2 exp(−x2/L2). Throughout this section, we assume that,
for t = 1, . . . , n, the random vectors εt are independent, have independent
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L-sub-Gaussian components εt,i, for i = 1, . . . , p with variance σ2. As in the
previous section, we apply the general aggregation procedures introduced in
Section 2. As a consequence, our main task boils down to introducing a near-
optimal multiple testing procedure indexed by a grid for detecting the exis-
tence of a change-point. Here, we shall rely on the complete grid GF = Jn ={
(l, r) : r = 1, . . . ,

⌊
n
2
⌋

and l = r + 1, . . . , n− r
}

whose size is quadratic with
respect to n. All the results presented in this section are still valid (but with
different numerical constants) if we keep the dyadic grid GD as in the previous
section. Here, we use the complete grid as a proof of concept that one can rely
on the full collection of possible segments without deteriorating the rates. Still,
controlling the behavior of the procedure on the complete grid is technically
more involved and requires chaining arguments. A detailed comparison between
the complete and dyadic grids is made in Section 7.

In order to emphasize the common points with the previous section, we use
the same notation K∗ for the collection of high-energy change-points1, r̄k for
the scales associated to the k-th change-points2, Ψ for the statistics, T for the
test and x for the thresholds although these quantities are slightly changed to
cope with the sub-Gaussian tail distribution. We follow the same scheme as for
the Gaussian case and first introduce multi-scale tests for dense change-points
before turning to sparse change-points. As in the previous section, we consider
some δ ∈ (0, 1) corresponding to the type I error probability.

4.1. Dense change-points with sub-Gaussian noise

Recall that, for a change-point τk, sk stands for the sparsity of the difference
μk+1 − μk. We focus here on dense change-points for which sk is possibly as
large as p. Given κ > 0, τk is a κ-dense high-energy change-point if

rkΔ2
k ≥ κL2

(√
p log

(
n

rkδ

)
+ log

(
n

rkδ

))
. (17)

This condition is very similar to its counterpart (10) for Gaussian noise. Still,
we introduce it here for the sake of completeness. For k ∈ [K] such that τk is
a κ-dense high-energy change-point, we define r̄

(d)
k as the minimum length such

that an inequality similar to (17) is satisfied:

r̄
(d)
k = min

{
r ∈ N

∗ : 4rΔ2
k ≥ κL2

(√
p log

( n

rδ

)
+ log

( n

rδ

))}
.

As in the Gaussian case in Section 3, r̄(d)
k corresponds to the smallest scale such

that τk is guaranteed to be detected. For any κ-dense high-energy change-point,
it holds that 4(r̄(d)

k − 1) < rk. For any positive integers (l, r) ∈ GF , we consider
the same CUSUM-based statistic Ψ(d)

l,r := ‖Cl,r‖2 − p as for Gaussian noise.
1See Equation (20) as the energy condition is slightly different in the sub-Gaussian setting.
2Re-defined in Equation (21).
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Let c̄
(d)
thresh > 0 be a tuning parameter to be discussed later. To calibrate the

corresponding multiple test procedures (T (d)
l,r ) with (l, r) ∈ GF rejecting for large

values of Ψ(d)
l,r we introduce

T
(d)
l,r := 1

{
Ψ(d)

l,r > x(d)
r

}
; x(d)

r = c̄
(d)
thresh

L2

σ2

(√
p log

( n

rδ

)
+ log

( n

rδ

))
.

Proposition 3. There exists a numerical constant c̄
(d)
thresh > 0 such that the

following holds for any κd > 32c̄(d)
thresh. With probability higher than 1 − δ, one

has (i) T
(d)
l,r = 0 for all (l, r) ∈ GF ∩ H0 and (ii) T

(d)
τk,r̄

(d)
k

= 1 for all κd-dense
high-energy change-points τk.

In comparison to Proposition 1 in the previous section, there are two differ-
ences. First, we need to cope with sub-Gaussian distribution by applying the
Hanson-Wright inequality. Most importantly, the grid GF is much larger than
GD so that we cannot simply consider each test Tl,r separately and simply apply
a union bound as in the previous section. To handle the dependencies between
the statistics Ψ(d)

l,r , we have to apply a chaining argument. In fact, the thresh-
olds x

(d)
r are similar to their counterpart in the previous section, whereas the

number |GF | of tests is now proportional to n2. In principle, the benefit of us-
ing the full grid GF is that (τk, r̄(d)

k ) belongs to GF so that we can consider
the CUSUM statistic based on a segment [τk − r̄

(d)
k , τk + r̄

(d)
k ] centered around

the change-point τk. In contrast, (τk, r̄(d)
k ) does not necessarily belong to the

dyadic grid GD and we needed to consider its best approximation (τ̄ (d)
k , r̄

(d)
k ).

The segment [τ̄ (d)
k − r̄

(d)
k , τ̄

(d)
k + r̄

(d)
k ] is therefore not centered on τk and the

corresponding statistic Ψ(d)
τ̄
(d)
k ,r̄

(d)
k

is in expectation smaller than Ψ(d)
τk,r̄

(d)
k

. In sum-

mary, both the collections of dense tests Ψ(d)
l,r on GD and GF are able to detect

change-points whose energy is, up to some multiplicative constants, higher than
L2[[p log( n

rkδ
)]1/2 + log( n

rkδ
)].

4.2. Sparse change-points with sub-Gaussian noise

Unlike in the Gaussian case, we do not know the exact distribution of the noise.
As a consequence, the Berk-Jones test and more generally higher-criticism type
tests cannot be applied to this setting. This is why we only rely on the partial
norm statistic. Recall that Z =

{
1, 2, 22, . . . , 2�log2(p)	

}
stands for a dyadic set

of sparsities. For (l, r) ∈ GF and s ∈ Z, we also recall that the partial CUSUM
norm is defined as Ψ(p)

l,r,s =
∑s

i=1
(
Cl,r,(i)

)2. Then, for any (l, r) ∈ GF , the test
T

(p)
l,r rejects the null when at least one of the partial norms is large

x(p)
r,s = s + c̄

(p)
thresh

L2

σ2

[
s log

(
2ep
s

)
+ log

( n

rδ

)]
;T (p)

l,r = max
s∈Z

1
{

Ψ(p)
l,r,s > x(p)

r,s

}
,
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where c̄(p)
thresh is a tuning parameter in Proposition 4 below. The partial norm test

alone is not able to detect sparse high-energy change-points in the sense of (11)
and we need to introduce a stronger condition on the energy. Given κ > 0,
a change-point τk is a κ-sparse high-energy change-point in the sub-Gaussian
setting if sk ≤ [p log( n

rkδ
)]1/2 and

rkΔ2
k ≥ κL2

[
sk log

(
ep

sk

)
+ log

(
n

rkδ

)]
. (18)

Both Conditions (11) and (18) are compared at the end of the subsection. For
a κ-sparse high-energy change-point τk, we define its scale r̄

(s)
k by

r̄
(s)
k = min

{
r ∈ N

∗ : 4rΔ2
k ≥ κL2

[
sk log

(
ep

sk

)
+ log

( n

rδ

)]}
. (19)

For any κ-sparse high-energy change-point, it holds that 4(r̄(s)
k − 1) ≤ rk.

Proposition 4. There exists a numerical constant c̄
(p)
thresh > 0 such that the

following holds for any κs > 32c̄(p)
thresh. With probability higher than 1 − δ, one

has (i) T
(p)
l,r = 0 for all (l, r) ∈ GF ∩ H0 and (ii) T

(p)
τk,r̄

(s)
k

= 1 for all κs-sparse
high-energy change-point τk in the sense of (18).

As for Proposition 3, the proof relies on a careful analysis of the joint distri-
butions of the statistics Ψ(p)

l,r,s to handle the multiplicity of GF .

4.3. Consequences

Let c0 > 0 be some constant that we will discuss later. A change-point τk is
then said to be a c0-high-energy change-points –in the sub-Gaussian setting– if

rkΔ2
k ≥ c0L

2

[(√
p log

(
n

rkδ

)
∧
(
sk log

(
ep

sk

)))
+ log

(
n

rkδ

)]
. (20)

We here re-introduce K∗ ⊂ [K] as the subset of indices such that τk satisfies (20).
We gather both tests by considering, for any (l, r) ∈ GF , the test Tl,r =

T
(d)
l,r ∨T

(p)
l,r with tuning parameters c̄(d)

thresh and c̄
(p)
thresh as in Propositions 3 and 4.

Consider any c0 > 32(c̄(d)
thresh ∨ c̄

(p)
thresh) and any c0-high-energy change-point τk,

which is either a c0-sparse or a c0-dense high-energy change-point. Defining

r̄k = r̄
(d)
k ∧ r̄

(s)
k , (21)

we straightforwardly derive from Proposition 3 and Proposition 4 the following
result.

Corollary 4. There exists two numerical constants c̄
(p)
thresh > 0 and c̄

(d)
thresh > 0

such that the following holds. With probability higher than 1 − δ, it holds that
(i) Tl,r = 0 for all (l, r) ∈ GF ∩ H0 and (ii) Tτk,r̄k = 1 for any c0-high-energy
change-point τk in the sense of (20).
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Then, it suffices to combine this multiple testing procedure with Algorithm 1
to get the change-point procedure τ̂ . Since, for a high-energy change-point in
the sense of (20), we have 4(r̄k−1) < rk, we are in position to apply Theorem 1.

Corollary 5. There exist two numerical constant c̄
(p)
thresh > 0 and c̄

(d)
thresh > 0

such that the following holds. With probability higher than 1 − δ, the estima-
tor τ̂ satisfies (NoSp) and detects c0-high-energy change-point τk (as defined
in (20)), that is

dH,1(τ̂ , τk) ≤ r̄k − 1 ≤ rk
4 ,

where r̄k is defined in (21).

In the case where all change-points are c0-high-energy change-points in the
sense of (20), all of them are detected, and a result similar to Corollary 3
holds here, replacing r∗k/2 by r̄k − 1. Also, both the Hausdorff distance and the
Wasserstein distance, can be bounded as in Equation (16) if we replace r∗k/2 by
r̄k − 1.

As already stated, we could have obtained a similar result (but with different
constants) using the dyadic grid GD instead of GF . To conclude this section, let
us compare the conditions (20) and (8) for high-energy. Define

ψ(sg)
n,r,s = √

pγr ∧
(
s log

(ep
s

))
+ γr ,

where we recall that γr = log
(

n
rδ

)
. If γr ≥ p/2, then ψ

(sg)
n,r,s � γr. In low

dimension, the energy threshold for multivariate change-point detection is the
same as in the univariate setting, see [38]. If γr ≤ p/2, then

ψ(sg)
n,r,s �

⎧⎪⎨⎪⎩
γr if s ≤ γr

log(p)−log(γr)

s log
(
ep
s

)
if γr

log(p)−log(γr) < s <
√
pγr

log(p)−log(γr)√
pγr if s ≥

√
pγr

log(p)−log(γr)

As a consequence, ψ(sg)
n,r,s and ψ

(g)
n,r,s are of the same order of magnitude for

all s when γr ≥ p/2. When log(n/rδ) < p, they are also of the same order of
magnitude except when s is close but smaller than √

pγr, for which the ratio
ψ

(sg)
n,r,s/ψ

(g)
n,r,s between these two quantities can be as large as log(p) − log(γr).

This gap corresponds to the regime where the test based on the Berk-Jones
statistic defined in Equation (14), used in the Gaussian case, outperforms the
test based on the partial CUSUM norm statistic defined in Equation (15).

In the definitions of the tests, the tuning constants c̄
(p)
thresh and c̄

(d)
thresh are

left implicit, although one can find suitable values by following the proofs of
Propositions 3 and 4. In practice, the practitioner can calibrate them by a
Monte-Carlo method by simulating a Gaussian multivariate times series without
any change-points. Then, c̄(p)

thresh and c̄
(d)
thresh are chosen so that the Family-wise

error rate (FWER) of the two collections (T (d)
l,r ) and T

(p)
l,r is equal to δ.
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Computational Cost. The computational cost of the statistic Tl,r = T
(d)
l,r ∨T (p)

l,r

is O(p(r + log(p))). Thus, a naive computation of all the tests Tl,r for (l, r)
in the complete grid GF requires O(p log(p)

∑
(l,r)∈GF

r) = O(pn(n2 + log(p)))
operations. Nevertheless, using the fact that

∑l+r
i=l+1 Yi = (

∑l+r−1
i=l Yi) + Yl+r −

Yl, it is possible to compute all the tests at scale r with cost O(np log(p)). Since
there are n possible scales r on the complete grid, the whole procedure cost is
O(n2p log(p)). Using a grid G = {(l, r) ∈ GF : r ∈ R} that contains dyadic
scales and all possible locations l for each scale, the whole change-point detection
would then require only O(np log(n) log(p)) computations, since there are only
log(n) possible scales r for such grids.

5. Minimax lower bound

In this section, we write for any Θ ∈ R
p×n, the distribution of the time series

Y = (y1, . . . , yn) in the model (2) with Gaussian noise εt ∼ N (0, σ2Ip). In
Section 3, we have established that any change-point satisfying the condition (8),
that is

rkΔ2
k ≥ c0σ

2

[
sk log

(
1 +

√
p

sk

√
log
(

n

rkδ

))
+ log

(
n

rkδ

)]
,

is detected by our change-point procedure. We now show that this energy condi-
tion is unimprovable from a minimax point of view. More precisely, let us define,
for any u > 0, the class P̄(u) of mean parameters Θ with arbitrary K ≥ 0 num-
ber of change points and such that any change-point τk for 1 ≤ k ≤ K satisfies

rkΔ2
k ≥ 1

2σ
2

[
sk log

(
1 + u

√
p

sk

√
log
(

n

rk

))
+ u log

(
n

rk

)]
. (22)

For u small enough, it turns out no change-point estimator is able to detect
all change-points without estimating any spurious change-point with high prob-
ability on the full class P̄(u). Still, using this large class provides somewhat
pessimistic bounds. For instance, the most challenging distributions in P̄(u) for
the purpose of change-point detection satisfy sk = p and rk = 1 (very close
change-points). As a consequence, relying on the full collection P̄(u) turns too
pessimistic. To establish that our bounds are adaptive with respect to the spar-
sity sk and the length rk, we define, for any positive integers 1 ≤ r ≤ �n/2� and
any 1 ≤ s ≤ p the collection

P̄(u, r, s) = {Θ ∈ P̄(u) : min
k

rk ≥ r and max
k

sk ≤ s} .

By convention, constant means Θ with no change-points (K = 0) also belong to
P̄(u, r, s). In the class P̄(u, r, s), all change-points have a sparsity at most s and
a length at least r. Hence, P̄(u, r, s) becomes larger when s increases or when r
increases.
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Theorem 2. Fix any u ∈ (0, 1/8). For any σ > 0, n ≥ 2, p ≥ 1, any length
1 ≤ r ≤ n/4, and any sparsity 1 ≤ s ≤ p, we have

inf
τ̂

sup
Θ∈P̄(u,r,s)

PΘ(K̂ �= K) ≥ 1
4 ,

where the infimum is taken over all estimators τ̂ of the change-point vector τ
and and K̂ = |τ̂ |.

Thus, in the Gaussian setting, if all the change-points have a high-energy in
the sense of (8) but with a smaller multiplicative constant factor, no change-
point estimator can consistently estimate the true number of change-points. The
next corollary restates this negative results in the same lines as Corollary 3.

Corollary 6. Fix any u ∈ (0, 1/8). For any σ > 0, n ≥ 2, p > 1, any length
1 ≤ r ≤ n/4, any sparsity 1 ≤ s ≤ p, and any estimator τ̂ , there exists some
Θ ∈ P̄(u, r, s) such that with PΘ-probability larger than 1/4, at least one of the
two following properties is satisfied

• τ̂ contains at least one spurious change-point
• at least a change-point τk with 1 ≤ k ≤ K is not detected, i.e. there is

no change-point estimated in the interval [(τk−1 + τk)/2, (τk + τk+1)/2].

This corollary is to be compared to Corollary 3 – indeed, the energy condition
in Equation (22) differs from Equation (8) only by a numerical multiplicative
constant. As a consequence, the energy condition (22) is minimal for detection
by a change-point estimator that achieves (NoSp).

6. Application to other change-point problems

In this section, we apply the general methodology of Section 2 to two other prob-
lems, namely detection of covariance and nonparametric change-points. This
allows us to obtain the first tight minimax detection conditions for these prob-
lems.

6.1. Covariance change-point detection

Following Wang et al. [40], we consider the covariance change-point model where
the covariance matrices Σt of the centered random vectors yt ∈ R

p are piece-
wise constant. Then, the goal is to estimate the times 0 < τ1 < . . . < τK <
τK+1 = n+1 such that Σt is varying. See [40] for motivations. As in that work,
we assume that the random vectors yt are independent and are sub-Gaussian
with a uniformly bounded Orlicz norm, that is maxt=1,...,n ‖yt‖ψ2 ≤ B for some
known fixed B. The Orlicz norm of a random vector y is the supremum of the
Orlicz norm of any uni-dimensional projection of y – see e.g. [37]. If the yt’s follow
a normal distribution, this amounts to assuming that maxt=1,...,n ‖Σt‖op ≤ 2B2

where ‖.‖op is for the operator norm. The purpose of Wang et al. was to detect
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small changes in operator norm, that is detecting instants τk such that Στk �=
Στk−1 with ‖Στk−Στk−1‖op possibly small. Apart from the operator norm, other
norms have also been considered e.g. in [10]. Here, we focus on the operator norm
as in [40].

Recalling the generic procedure introduced in Section 2, we consider the
dyadic grid GD and some δ ∈ (0, 1). For any (l, r) ∈ G, we respectively write
Σ̂l,−r and Σ̂l,r for the empirical covariance matrices

Σ̂l,−r = r−1
l−1∑

t=l−r

yty
T
t ; Σ̂l,r = r−1

l+r−1∑
t=l

yty
T
t .

Then, we consider the test Tl,r rejecting for large values of ‖Σ̂l,r − Σ̂l,−r‖op.

Tl,r = 1

⎧⎨⎩‖Σ̂l,r − Σ̂l,−r‖op ≥ c0B
2

⎡⎣√p

r
+ p

r
+

√
log(2n

δr )
r

+
log(2n

δr )
r

⎤⎦⎫⎬⎭ ,

(23)
where the numerical tuning constant c0 is set in the proof of the following
proposition. Relying on concentration bounds [23] for the empirical covariance
matrix of sub-Gaussian random vectors, we easily prove that the FWER of the
multiple testing procedure (Tl,r) with (l, r) ∈ GD is small. Then, we can analyze
the type II error probability and plug it into the generic result (Theorem 1)
to control the behavior of the change-point estimator τ̂ . This leads us to the
following result. In the sequel, a change-point τk is said to have a high-energy if

rk‖Στk − Στk−1‖2
op ≥ c1B

4
[(

p + log
(

2n
rkδ

))
∧ rk

]
, (24)

where the numerical constant c1 is introduced in the proof of the following propo-
sition. We recall that, by definition of the model, we have ‖Στk−Στk−1‖op ≤ 4B2.

Proposition 5. There exist positive numerical constants c0, c1, and c2 such
that the following holds for any B > 0 and any sequence of independent centered
random vectors (yt) satisfying maxt ‖yt‖ψ2 ≤ B. With probability higher than
1−δ, the change-point estimator τ̂ satisfies (NoSp) and detects all high-energy
change-points in the sense of (24). Besides, any such high-energy change-point
τk satisfies

dH,1(τ̂ , τk) ≤ c2B
4 p + log

(
2δ−1B−4n‖Στk − Στk−1‖2

op

)
‖Στk − Στk−1‖2

op

≤ rk
4 , (25)

under the same event of probability than 1 − δ.

Let us compare our condition (24) for detection with Theorem 2 in Wang et
al. [40]. The authors assume that all the change-points satisfy

min
k

rk min
k

‖Στk − Στk−1‖2
op ≥ c′1B

4p log(n) .
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In addition to the fact that we allow some change-points to have an arbitrarily
low energy, our requirement for detection scales like √

p +
√

log(n/rk) instead
of
√

p log(n).
The next proposition establishes that the latter condition is minimal. By ho-

mogeneity, we can only consider the case where B = 3/2. We focus our attention
on Gaussian distributions so that the distribution of the sequence (y1, . . . , yn)
is uniquely defined by the sequence (Σ1, . . . ,Σn) of covariance matrices. Given
an integer 1 ≤ r ≤ n/4 and ζ ∈ (0, 1/

√
2), we define P̄(r, ζ) the collection of

sequences η = (Σ1, . . . ,Σn) of covariance matrices that satisfy either Σt = Ip or
‖Σt‖op = 1+ ζ. Besides, the corresponding change-points (τ1, . . . , τK) of η must
satisfy mink rk ≥ r and mink ‖Στk −Στk−1‖op ≥ ζ. For η ∈ P̄(r, ζ), we write Pη

for the corresponding distribution of (y1, . . . , yn).

Proposition 6. There exists a positive numerical constant c such that, for any
n, p and any length 1 ≤ r ≤ n/4 the following holds. Provided that rζ2 ≤
c(p + log(n/r)) ∧ r

2 , we have

inf
τ̂

sup
η∈P̄(r,ζ)

Pη(K̂ �= K) ≥ 1
4 .

As a consequence, our procedure τ̂ achieves the minimal separation condi-
tion (24) for change-point detection. In their work, [40] obtain faster localization
errors than (25) to the price of stronger separation conditions. Our focus in this
work is to provide optimal detection conditions and we did not try to opti-
mize (24).

6.2. Univariate nonparametric change-point detection

We now turn to the univariate nonparametric change-point model considered
in [33]. Let m ≥ 1 be any positive integer. At each time t = 1, . . . , n, the random
vector yt is an m-sample of a univariate distribution with cumulative distribu-
tion function Ft. Then, we aim at detecting a vector τ = (τ1, . . . , τK) of change-
points such that Fτk �= Fτk−1 . As in [33], we quantify the distance between two
distributions by the Kolmogorov distance ‖F1 −F2‖∞ = supz∈R |F1(z)−F2(z)|.

As in the previous subsection, we build a procedure τ̂ with our generic algo-
rithm on the dyadic grid. Regarding the collection of tests (Tl,r), we consider
two-sample Kolmogorov-Smirnov tests. More precisely, we denote F̂t the em-
pirical distribution function associated with the sample yt and we define the
test

Tl,r = 1

⎧⎨⎩
∥∥∥∥∥r−1

(
l+r−1∑
t=l

F̂t −
l−1∑

t=l−r

F̂t

)∥∥∥∥∥
∞

≥
√

2 log(4n/(δr))
mr

⎫⎬⎭ .

In the following, a change-point τk is said to have a high-energy if

rk‖Fτk − Fτk−1‖2
∞ ≥ c1

m
log
(

n

rkδ

)
, (26)
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where the numerical constant c1 is introduced in the proof of the next proposi-
tion. As in Subsection 6.1, it is straightforward to prove, based on Dvoretzky–
Kiefer–Wolfowitz inequality, that the FWER of the multiple testing procedures
(Tl,r) with (l, r) ∈ GD is small. Then, we analyze the type II error probability of
this test and plug it into the generic result (Theorem 1) to control the behavior
of the change-point estimator τ̂ .

Proposition 7. There exist positive numerical constants c1 and c2 such that the
following holds. With probability higher than 1 − δ, the change-point estimator
τ̂ satisfies (NoSp) and detects all high-energy change-points τk in the sense
of (26). Besides, any such high-energy change-points τk satisfies

dH,1(τ̂k′ , τk) ≤ c2
log
(
δ−1nm‖Fτk − Fτk−1‖2

∞
)

m‖Fτk − Fτk−1‖2
∞

≤ rk
4 , (27)

under the same event of probability than 1 − δ.

In [33], the authors introduce a procedure detecting all the change-points
provided that

min
k

rk min
k

‖Fτk − Fτk−1‖2
∞ ≥ c1

log(n)
m

.

Comparing this last condition with (26), we observe that our logarithmic term
is tighter and that we allow arbitrarily low-energy change-points.

The next proposition establishes that the condition (26) is unimprovable.
Given an integer 1 ≤ r ≤ n/4 and ζ ∈ (0, 1/4), we focus our attention on
the collection P̄(r, ζ) of sequences (F1, . . . , Fn) of distributions such that the
corresponding change-points (τ1, . . . , τK) satisfy mink rk ≥ r and mink ‖Fτk −
Fτk−1‖∞ ≥ ζ. For η ∈ P̄(r, ζ), we write Pη for the corresponding distribution of
the sequence (y1, . . . , yn).

Proposition 8. There exists a positive numerical constant c such that, for any
n, p and any length 1 ≤ r ≤ n/4 the following holds. Provided that rζ2 ≤
c′ log(n/r)/m, we have

inf
τ̂

sup
η∈P̄(r,ζ)

Pη(K̂ �= K) ≥ 1
4 .

7. Discussion

7.1. Noise distribution for multivariate change-point detection

Comparison between Gaussian and sub-Gaussian rates In this work,
we have studied two types of noise distribution: Gaussian (Section 3) and gen-
eral sub-Gaussian distributions (Section 4) without further knowledge on the
distribution functions. Since the Gaussian setting is a specific instance of the
sub-Gaussian setting, it is clear that the minimax lower bounds from Section 5
apply in both settings. As described in the previous subsection, the performances
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in the sub-Gaussian case almost match those in the Gaussian setting except for
sk slightly lower but close to

√
p log(en/rk). Indeed, in that regime, Berk-Jones

or Higher-Criticism type statistics heavily rely on the probability distribution
function of the noise, which is not available in the general sub-Gaussian case.
Still, we could slightly improve the sub-Gaussian rates if we further assume that
the noise components are identically distributed with common CDF F .

• If F is known (know noise distribution), then one may adapt Berk-Jones
test by replacing Φ̄(x) in Equation (14) by F (−x)+(1−F (x)). This would
allow us to recover the exact same detection condition as in the Gaussian
setting.

• If F is unknown and if there are not too many change-points, one could
hope to estimate the quantiles of the CUSUM statistic at each scale r
and plug them into a Berk-Jones statistics. This goes however beyond the
scope of this paper.

Unknown variance or more general variance matrix We assumed in
the sparse multivariate sections that the variance σ2 is known. Whereas the
partial norm test only requires the knowledge of an upper bound on σ, the
dense statistic Ψ(d)

l,r requires the exact knowledge of the variance. As soon as
there are not too many change-points, it is possible to roughly estimate σ and
therefore accommodate the partial norm test with an unknown variance. In
contrast, the dense statistics needs to be replaced by a U -statistics. Consider
any even positive integer r and define

C̃l,r(Y ) =
√
r

2

⎛⎝2
r

r/2∑
t=1

Yl−2(t−1)−1 −
2
r

r/2∑
t=1

Yl+2(t−1)

⎞⎠ ,

C̃′
l,r(Y ) =

√
r

2

⎛⎝2
r

r/2∑
t=1

Yl−2t −
2
r

r/2∑
t=1

Yl+2(t−1)+1

⎞⎠ ,

where C̃l,r(Y ) and C̃′
l,r(Y ) are independent. If there is one change-point at

position l and no other change-points in (l − r, l + r), then these statistics are
identically distributed and we consider Ψ̃′′ (d)

l,r = 〈C̃l,r(Y ), C̃′
l,r(Y )〉 whose expec-

tation is null when there are no change-points in the segment. As a consequence,
Ψ̃′′ (d)

l,r does not require the knowledge of σ; only an upper bound of σ is required
to calibrate the corresponding test. Such a U -statistics has already been intro-
duced in [45] and analyzed in an asymptotic setting. Unfortunately, since we
can only consider even r, this precludes us to detecting change-points that are
very close together with rk = 1.

In the general case where there is spatial covariance in the noise, that is
var(εt) = Σ for an unknown but general Σ, we can still use the same U -statistic
described in the previous paragraph for the dense case. For the sparse case, one
could use the supremum norm of the CUSUM statistics as in Jirak [21] and Yu
and Chen [48]. To calibrate those tests, we need to estimate both the Frobenius
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and the operator norm of Σ, which seems to be doable as soon as there are
not too many change-points. If the spatial covariance matrix var(εt) is unknown
and even allowed to change with time, we suspect that the problem becomes
intrinsically more involved.

7.2. Optimal localization rates

In this work, we mainly considered the problem of detecting change-points
in the mean of a random vector. We provided tight conditions on the energy
so that a change-point is detectable. When such a change-point τk is detected,
Corollary 2 states that its position is estimated up to an error of r∗k, which is
also of the order of σ2Ψ(g)

n,rk,sk
Δ−2

k – see the definition (9). It is not clear whether
this error is optimal or not.

In the univariate setting (p = 1), [38] has established that, above the detection
threshold, a specific change-point position τk can be localized at the rate σ2Δ−2

k .
In the multivariate setting, the situation is more tricky and there are certainly
several localization regimes beyond the detection threshold. It is an interesting
direction of research to pinpoint the exact localization rate between σ2Δ−2

k and
σ2Ψ(g)

n,rk,sk
Δ−2

k . We leave this for future work.

7.3. On the choice of the grid in the generic algorithm

Our general procedure is defined for almost any arbitrary grid. Optimal proce-
dures with the dyadic grid are introduced in Sections 3 and 6, whereas we use
a near-optimal procedure on the complete grid in Section 4.

From a computational perspective, the procedure’s worst-case complexity is
proportional to the size |G| of the grid G. In that respect, the dyadic grid and
more generally the a-adic grids benefit from a linear size whereas the size of the
complete grid is quadratic.

From a mathematical perspective, it is much easier to control the behaviour
of the procedure for an a-adic grid by a simple Bonferroni correction on all the
statistics as it turns out that this correction is sufficient for our purpose – see
the proofs of Section 3. In constrast, controlling larger collections of tests turns
out to be much more challenging as one needs to carefully take into account the
dependences between the test statistics, which becomes all the more challenging
for complex models. As an example, we introduced in Section 3 Berk-Jones
statistics to achieve the tight minimax condition for change-point detection.
Unfortunately, we did not manage to apply a suitable chaining argument to these
statistics and were therefore unable to control the behavior of the corresponding
change-point detection procedure on the complete grid.

From a purely statistical perspective, it is difficult to appreciate the respec-
tive benefits of denser or sparser grids. On the one hand, for denser grids, the
approximation τk of τk at scale r will be closer to τk so that the corresponding
test Tτk,r may be more powerful. On the other hand, for a denser grid, the tests



1272 E. Pilliat et al.

possibly suffer from a higher price for multiplicity. This price can be mild if one
takes into account the dependences between the tests. Still, except perhaps in
the univariate Gaussian change-point model for which delicate controls of the
CUSUM process exist, it is challenging to provide theoretical guidance towards
the best choice of the grid.

7.4. Optimality of the generic algorithm in a broader context

Algorithm 1 aggregates homogeneity tests and provides theoretical guarantees
on the event A (T,K∗, (τ̄k, r̄k)k∈K∗) – i.e. the event where the outcomes of the
tests are consistent – as stated in Theorem 1. In the possibly sparse high-
dimensional mean change-point model, we introduced a suitable multiple testing
procedure which, when combined with Algorithm 1, leads to a minimax optimal
change-point detection procedure.

We described in Section 2 how to adapt this approach to other change-
point problems and this was already illustrated in Section 6 with covariance
and nonparametric problems. One may then wonder whether this roadmap still
leads to minimax optimal procedures for general problems. Consider the gen-
eral setting from Section 1 where we are interested in detecting change-points
in (Γ (Pt))t∈[n]. Upon endowing the space V with some distance d, we define, for
any k,

Δ̄k = d
(
Γ (Pτk) ,Γ

(
Pτk−1

))
,

which corresponds to the change-point height. Then, one may wonder how large
Δ̄k has to be – as a function of rk – so that a change-point detection procedure
achieving the no-spurious property (NoSp) with high probability is able to de-
tect τk. In this discussion, we restrict our attention to independent observations,
that is the random variables yt are assumed to be independent and we consider
the dyadic grid GD.

Fix δ ∈ (0, 1). At each scale r ∈ {1, 2, . . . , 2�log2(n)	−1} and for each l ∈ Dr,
with Dr defined in (5), we consider the testing problem H0,l,r : {P : Γ(Pl−r) =
. . . = Γ(Pl+r−1)} versus

Hρ,l,r :

⎧⎨⎩P :
Γ(Pl−r) = . . . = Γ(Pl−m−1)
Γ(Pl−m) = . . . = Γ(Pl+r−1)
d(Γ(Pl−m−1),Γ(Pl−m) ≥ ρ)

for some integer m ∈ [−r/2, r/2]

⎫⎬⎭
This amounts to testing whether there is a single change-point near l of height
at least ρ in the segment (l − r, l + r). Given δ ∈ (0, 1) and a test T we define
the δ-separation distance of T by

ρ∗l,r(T, δ) = inf
{
ρ : sup

P∈H0,l,r

P(T = 1) ∨ sup
P∈Hρ,l,r

P(T = 0) ≤ δ

}
.

This corresponds to the minimal change-point height that is detected by the test
T . Then, the minimax separation distance ρ∗l,r(δ) is simply infT ρl,r(T, δ), i.e. the
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infimum over all tests T of the separation distance. By translation invariance of
the testing problem, note that ρ∗l,r(δ) does not depend on l and is henceforth
denoted ρ∗r(δ).

For any (l, r), take any test Tl,r (nearly)3 achieving the minimax separation
distance ρ∗r(δ|Dr|−1βr) with βr = 6 log−2

2 (n/r))π−2. Then, it follows from a
simple union bound on the dyadic grid that, with probability higher than 1− δ,
the collection of tests Tl,r, where (l, r) belongs to the dyadic grid, does not detect
any false positive and detects any change-point τk such that Δk is higher than
ρ∗r̃k(δ|Dr̃k |−1βr̃k), where r̃k is the largest scale in R such that 4(r̃k−1) ≤ rk. As
a consequence of Theorem 1, the corresponding detection procedure achieves,
with probability higher than 1 − δ, the property (NoSp) and detects any
change-point satisfying the energy condition Δk ≥ ρ∗r̃k(rδβr/2n).

Conversely, we believe that this energy condition is almost tight. Indeed, fix
any even range r ≥ 2. To simplify the discussion suppose that n/(2r) is an
integer. We consider a specific instance of the problem where the statistician
knows that there are n/(2r) − 1 evenly-spaced change-points respectively at
2r + 1, 4r + 1, . . . , n − 2r + 1 that allow to reduce the change-point detection
problem to n/(2r) change-point detection problem in intervals (l−r, l+r] for l =
r+1, 3r+1, 5r+1, . . .. Furthermore, it is known that, in each such segment, there
exists at most one change-point that is situated in [l− 0.5r, l + 0.5r], and if the
change-point is present then its height is at least ρ = ρ∗r(δ)− ζ for ζ arbitrarily
small. Since all n/(2r)−1 evenly-spaced change-points 2r+1, 4r+1, . . . , n−2r+1
are known to the statistician, detecting all remaining change-points is equivalent
to building an n/(2r) multiple test of the hypotheses H0,l,r versus Hρ,l,r for
l = r + 1, 3r + 1, 5r + 1, . . .. If a change-point procedure achieves (NoSp) and
detects all change-points with radius at least r/2 and height at least ρ with
probability at least 1 − δ, then one is able, with probability uniformly higher
than 1 − δ, to simultaneously perform without error n/(2r) independent tests
H0,l,r versus Hρ,l,r. Since any single test must endure an error with probability
at least δ in the worst case, no collection of independents tests is able to endure
less than 1 − (1 − δ)n/(2r). When n/r is large and δ < 2r/n, the latter is of the
order of δ2r/n. Based on this, we conjecture that no change-point procedure is
able to achieve, with probability higher than 1 − δ the property (NoSp), and
also to detect all change-points with radius at least r/2 and height at least
ρ∗r(2rδ/n) − ζ for ζ > 0 arbitrarily small.

Comparing the performances of our procedure with the negative arguments
that we just outlined, we see that aggregating optimal tests on a dyadic grid
allows to detect change-points with (almost) uniform height higher

ρ∗r̃k(rkδβrk/(2n)) whereas, as explained above, we conjecture that a change-
point τk can be detected only if Δ̄k ≥ ρ∗rk(2rkδ/n). Since r̃k ≥ (rk/8)∨ 1- as we
considered the dyadic grid when constructing r̃k – the difference between these
two bounds is mostly due to the term βr which is of the order of log2(n/r).

3Since the minimax separation distance is defined as an infimum, it is not necessarily
achieved by a test. Still, we can build a test whose separation distance is arbitrarily close to
the optimal one. We neglect the additive error term for the purpose of the discussion.
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Whereas it is possible to detect change-points at a given scale with a test of
type I error probability 2rδ/n, our multi-scale procedure relies on a collection
of single tests with type I error probability of the order of rδ/n/ log2(n/r). This
mild mismatch – that we introduce to deal with the multiplicity of scales – of
order log2(n/r) is harmless for the Gaussian mean-detection problem. Indeed,
one may deduce from our analysis in Section 3 that ρ∗rk(2rkδ/n) is of the same
order as ρ∗r̃k(δ|Dr̃k |−1βr̃k).

In conclusion, one can build through Algorithm 1 an almost optimal change-
point procedure in any model provided that we are given optimal homogeneity
tests of the form H0,l,r versus Hρ,l,r. This provides a universal reduction of the
problem of change-point detection to the problem of homogeneity testing.

8. Numerical experiments

In this section, we illustrate the behavior of our procedure to detect change-
points in a sparse high-dimensional setting (2).

Performance Measure. To assess the quality of change-point estimator τ̂ , we
first measure whether the estimated number of change-points K̂ = |τ̂ | is equal
to the true number K of change-points. We also define the SAND loss as the
proportion of Spurious estimated change-points And true change-points that
are Not Detected:

SAND((τk), (τ̂k′))= 1
K

K∑
k=1

∣∣∣|[(τk+τk−1)/2, (τk+τk+1)/2] ∩ {τ̂k, k∈ [K̂]}| − 1
∣∣∣ .

Change-point Detection Methods. In the experiments, we implemented
the bottom-up aggregation procedure Algorithm 1 with partial norm tests T (p)

and dense test T (d) corresponding to Section 4 on a semi-complete grid GF =
{(l, r) : l ∈ {r + 1, . . . , n − r + 1, r ∈ R} – we take scales r in the dyadic set
for computational purposes. On a location l and a scale r, each test statistic
can be seen as a partial norm test relying on the statistic Ψ(p)

l,r,s defined in
Section 4.2 and a threshold Thresh(r, s) which is either equal to x

(d)
r when

s = d – see Section 4.1 – or to x
(p)
r,s when s ∈ Zr := {1, 2, 4, . . . , 2�log2(smax)	} with

smax :=
√
pγr

log(p)−log(γr) – see Section 4.3 for the definition of the boundary between
sparse and dense regimes smax. We actually do not use the definition of x(d)

r and
x

(p)
r,s for our thresholds Thresh(r, s) since they rely on constants that are not

necessarily tight, but we rather calibrate them by a Monte-Carlo method using
10.000 independant samples. For each sample consisting in a time series made
of n gaussian normal centered vector in R

p, and for each r ∈ R, s ∈ Zr ∪ {p},
we compute the maximum over all l of the statistics Ψ(p)

l,r,s. Considering the list
of all the 10.000 maximums and taking δ = 5%, Thresh(r, s) is then defined as
the (1 − δ/(2|R||Zr|))-quantile if s ∈ Zr and as the (1 − δ/(2|R|))-quantile if
s = p, so that, by a union bound, the total probability of finding a false positive
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is less than δ. Note that this calibration step only depends on n, p, and σ and
only needs to be performed once and for all.

We compare our procedure with the inspect method of [46] which is available
as an R package. The tuning parameters of inspect are computed with the
automatic method defined in the same R package.

In all the following experiments, we fix the dimension p = 100 and the sample
size n = 200. We generate a piecewise constant signal (ηt)nt=1 in R

p with possible
change-points (τ1, . . . , τK) using one of the three following settings. We then
add a scaling factor α > 0 and apply our procedure to the data yt = αηt + εt,
which amounts to setting θt = αηt in model (2). We fix the variance of all the
coordinates of εt to be equal to one. Increasing α on a grid with step 0.1 allows
us to experimentally identify a transition between the regime where we do not
detect precisely the change-points – in which case the two losses tend to be close
to one – and the regime where we do detect the change-points – in which cases
the losses are smaller. We consider three simulation settings:

1. Segment. We generate a signal η which is zero everywhere, except on
[80, 100] where we set it equal to a random vector Δ with ‖Δ‖ = 1 and
‖Δ‖0 = s, for s = 1, 20, 100. In each one of these cases, we choose the
location of the s non null coordinates of Δ uniformly at random and their
value uniformly at random in the set {−1/

√
s, 1/

√
s}. Each time, η has 2

true change-points, and we generate the noise (εt) as independent centered
and normalized gaussian vectors.

2. Multiple Change points. We generate 10 uniform random locations
τ1 < τ2 < . . . < τ10 on [1, 200]. For each location τi, we generate a uniform
random integer si ∈ [1, 100] and a vector Δi as in the segment setting with
‖Δi‖ = 1 and ‖Δi‖0 = si. We generate a uniform random real number
Ni ∈ [1, 5] and define the time series ηi by (ηi)t = NiΔi1t≥τi . Finally, the
signal η =

∑10
i=1 ηi has exactly 10 change-points with random locations.

As previously, the noise components (εt) follow independent centered and
standard gaussian vectors.

3. Time-dependencies. We use the same signal as in the segment setting
with s = 20 but we move away from our assumptions by considering time
dependencies. More precisely, the (εt)’s are now defined according to an
AR process such taht εt+1 = ρεt +

√
1 − ρ2ε′t+1 for t ≥ 0 where (ε′t) are

independent centered and normalized gaussian vectors, ρ = 0.05 for the
simulation and by convention ε0 ∼ N (0, Ip).

Risk estimation with Monte-Carlo In each setting, we generate 500 inde-
pendent samples and compute the twpo losses SAND((τk), (τ̂k′)) and 1{K̂ �=
K}. We estimate the risks E[SAND((τk), (τ̂k′))] and P(K �= K̂) by averaging
the loss over the 500 trials. We also compute 95% confidence intervals.

Results In the segment setting – see Figure 4, 5, 6, the risks tend to decrease
as α increases since the higher α, the higher the energy of the generated change-
points are. As s increases, we can see that both methods need a higher scaling
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Fig 4. Estimation of E[SAND((τk), (τ̂k′ ))] and P(K̂ �= K) in the segment setting with s = 1.

Fig 5. Estimation of E[SAND((τk), (τ̂k′ ))] and P(K̂ �= K) in the segment setting with s = 20.

factor to achieve the same risk, which translates the fact that the higher s, the
more energy is needed to detect a change-point with vector Δ of sparsity s. In
the segment settings, our bottom-up procedure tends to achieve significantly
smaller loss than the inspect method on average. It is not the case in the mul-
tiple change-points setting – see Figure 7 – where the inspect method tends to
perform slightly better. In the setting with time-dependencies – see Figure 8 –
the risks are worse than the corresponding setting without time-dependencies –
see Figure 5 – mainly because adding time-dependencies tends to create more
spurious change-points (i.e. false positives).

Computation time Our code is implemented with python 3.9 and it mainly
uses the convolution function conv1d from pytorch 1.12.1 to compute the Cusum
statistics. Simulations are run on CPU (Intel(R) Core(TM) i7-10510U CPU @
1.80GHz) with 32Go of memory. Running our method on pure noise – i.e. θt = 0
for all t – takes 101±2 ms while the inspect method takes only 18±2 ms to run
on average, but optimizing our code is out of the scope of this paper. All the
experiments are described in the repository https://github.com/epilliat/
multicpdetec.

https://github.com/epilliat/multicpdetec
https://github.com/epilliat/multicpdetec
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Fig 6. Estimation of E[SAND((τk), (τ̂k′ ))] and P(K̂ �= K) in the segment setting with s =
100.

Fig 7. Estimation of E[SAND((τk), (τ̂k′ ))] and P(K̂ �= K) in a multiple change-point setting
with K = 10 where change-points have random norms in [1, 5] and random sparsities in [1, p].

Fig 8. Estimation of E[SAND((τk), (τ̂k′ ))] and P(K̂ �= K) in the segment setting with s = 20
but with time-dependent noise that have an auto-correlation of ρ = 5%.
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Appendix A: An alternative algorithm

In Algorithm 2 below, we also introduce a variant of the procedure, where instead
of merging relevant interesting intervals at the same scale, we only keep one
of them. More precisely, we choose the convention of discarding the interval
[l − r + 1, l + r − 1] if there exists l′ < l such that Tl′,r = 1 and [l − r + 1, l +
r− 1]∩ [l′ − r+ 1, l′ + r− 1] �= ∅. Alternatively, we could have chosen to discard
one of the intervals at random.

Data: yt, t = 1 . . . n and local test statistic (Tl,r)(l,r)∈G
Result: (τ̂k)k≤K̂

S = ∅ T = ∅;
for r ∈ R do

for l ∈ Dr s.t. Tl,r = 1 do
if [l− r + 1, l + r − 1] ∩ S = ∅ then

S ← S ∪ [l− r + 1, l + r − 1];
T ← T ∪ {l};

end
end

end
return T

Algorithm 2: Variant bottom-up aggregation procedure of multiscale tests

Appendix B: Proofs

B.1. Proof of Theorem 1

Let Θ ∈ R
n×p, T be a local test statistic, K∗ be a set of indices of significant

change-points and (τ̄k, r̄k)k∈K∗ be elements of the grid G that satisfy (6). We
assume that A(Θ, T,K∗, (τ̄k, r̄k)k∈K∗) holds, that is:

1. (No False Positive) Tl,r = 0 for all (l, r) ∈ H0 ∩ G, where H0 is defined
by (7)

2. (Significant change-point detection) for every k ∈ K∗, we have
Tτ̄k,r̄k = 1.

For every r ∈ R define

T ∗
r = {l ∈ Tr : ∃k ∈ K∗ s.t. τk ∈ [l − r + 1, l + r − 1]},

S∗
r =

⋃
l∈T ∗

r

[l − r + 1, l + r − 1].

In other words, for all r ∈ R, T ∗
r is the subset of Tr for which each interval

of detection [l − r + 1, l + r − 1] contains a significant change-point. The next
proposition recursively analyzes the detection sets corresponding to significant
change-points (S∗

r )r≥1. The first inclusion means that significant change-points
which can be detected with a local statistic with radius smaller than r are
detected before step r, while the second inclusion means that each connected
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component of
⋃

r∈R
S∗
r is included in a close neighborhoods of some significant

change-point τk, k ∈ K∗.

Proposition 9. For all r ∈ R ∪ {0}, we have the double inclusion

{τk : k ∈ K∗ and r̄k ≤ r}⊂
⋃

r′≤r,r′∈R
S∗
r′ ⊂

⋃
k∈K∗

[τk − 2(r̄k − 1), τk + 2(r̄k − 1)] .

(28)

The next proposition shows that for each step r ∈ R, the subset of detection
corresponding to non significant change-point is disjoint from

⋃
r′∈R S∗

r′ .

Proposition 10. For all r ∈ R, we have⋃
l∈Tr\T ∗

r

[l − r + 1, l + r − 1] ∩
( ⋃

r′∈R
S∗
r′

)
= ∅ .

Recall that (Ck)k=1,...,K̂ are defined as the connected component of
⋃

r∈R Sr.
To ease the notation, re-index (Ck) so that τk is the closest true change-point
to τ̂k = min Ck+max Ck

2 . Since there is no false positive, τk ∈ Ck.
By Proposition 10, the two closed subset

⋃
r∈R

⋃
l∈Tr\T ∗

r
[l − r + 1, l + r −

1] and
⋃

r∈R S∗
r are disjoint. For all k ∈ K∗, it holds by Proposition 9 that

τk ∈
⋃

r∈R S∗
r , so that Ck is a connected component of

⋃
r∈R S∗

r containing the
significant change-point τk. In particular, K̂ ≥ |K∗|. We have

• By Proposition 9, Ck ⊂ [τk − 2(r̄k − 1), τk + 2(r̄k − 1)] for every k ∈ K∗.
Thus

|τ̂k − τk| ≤ (r̄k − 1) < rk
4 .

• For all k ∈ [K]\K∗, either τk does not belong to
⋃

r∈R Sr and it is simply
not detected, or it is the closest true change-point to τ̂k = min Ck+max Ck

2
so that

τ̂k ∈
[
τk − τk + τk−1

2 , τk + τk + τk+1

2

]
.

In particular,

{τ̂k′ , k′ ≤ K̂} ⊂
[
τ1 −

τ1 − τ0
2 , τK + τK+1 − τK

2

]
.

• Finally, if there exists two estimated change-points τ̂k1 , τ̂k2 in[
τk − τk+τk−1

2 , τk + τk+τk+1
2

]
, then either Ck1 or Ck2 does not contain τk.

Then Θ is constant on Ck1 or on Ck2 and we obtain a contradiction since
there is no false positive.

This concludes the proof of Theorem 1.

Proof of Proposition 9. To prove the proposition, we do an induction on r ∈
R ∪ {0}. The case r = 0 is trivial since by definition, S0 = ∅. Let r ∈ R and
assume that the double inclusion Proposition 9 holds for all r′ < r, r′ ∈ R∪{0}.
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First inclusion: Let k ∈ K∗ be such that r̄k = r and assume that the corre-
sponding significant change-point τk has not been detected before step r, that
is τk �∈

⋃
r′<r

S∗
r′ . Since k ∈ K∗, this implies in particular that τk �∈

⋃
r′<r

Sr′ . Let us

show that τk ∈ Sr. To this end we prove that

[τ̄k − r + 1, τ̄k + r − 1] ∩
⋃

r′<r,r′∈R
Sr′ = ∅ (29)

and

Tτ̄k,r = 1, (30)

which will be enough since |τ̄k − τk| ≤ r̄k − 1 = r − 1.

• Proof of (29): Assume for the sake of contradiction that there exists an
integer z which belongs to [τ̄k−r+1, τ̄k+r−1]∩

⋃
r′<r
r′∈R

Sr′ . There exists r′ < r

such that z ∈ Sr′ and l(z) ∈ Tr′ such that z ∈ [l(z)− r′ + 1, l(z) + r′ − 1].
Since τk �∈

⋃
r′<r

Sr′ , we have τk �∈ [l(z) − r′ + 1, l(z) + r′ − 1]. Moreover,

|l(z) − τk| ≤ |l(z) − z| + |z − τ̄k| + |τ̄k − τk|
≤ (r′ − 1) + (r − 1) + |τ̄k − τk|
< rk − r′ ,

Where the last inequality comes from the hypothesis 3(r̄k−1)+|τ̄k − τk| ≤
rk Consequently,

[l(z) − r′, l(z) + r′] ⊂ [τk − rk, τk + rk) \ {τk} ,

so that θ is constant on [l(z)− r′, l(z) + r′)∩N. Thus, (l(z), r′) ∈ H0 and
l(z) �∈ Tr′ since there is no false positive. This gives a contradiction and
concludes the proof of (29).

• Proof of (30): This is simply a consequence of the fact that significant
change-point are detected on the grid (See Item 2 in the definition of A).

We have just shown that τk ∈ Sr and hence τk ∈ S∗
r so that the first inclusion

holds at step r.

Second inclusion : Let x be an element of S∗
r . There exists l(x) ∈ T ∗

r such
that

x ∈ [l(x) − r + 1, l(x) + r − 1]. By definition of T ∗
r , there exists a significant

change-point τk (i.e. such that k ∈ K∗) belonging to [l(x) − r + 1, l(x) + r − 1].
We necessarily have r̄k ≥ r. Indeed, if r̄k < r, then by the induction hypothe-

sis, τk ∈ S∗
r′ for some r′ < r, which contradicts the fact that S∗

r′ is disjoint from
[l(x) − r + 1, l(x) + r − 1] ⊂ S∗

r . Consequently,

|l(x) − τk| + r − 1 ≤ 2r − 2
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≤ 2(r̄k − 1)

Thus

x ∈ [l(x) − r + 1, l(x) + r − 1] ⊂ [τk − 2(r̄k − 1), τk + 2(r̄k − 1)] .

We have just shown that S∗
r ⊂

⋃
k∈K∗

[τk − 2(r̄k − 1), τk + 2(r̄k − 1)].

Therefore, the proposition is verified at step r and the induction is proved.

Proof of Proposition 10. Let k ∈ K∗ and Ck be the detected connected compo-
nent containing the significant change-point τk

Ck =
⋃

r′∈R
S∗
r′ ∩ [τk − 2(r̄k − 1), τk + 2(r̄k − 1)] .

We know from Proposition 9 that Ck is a connected component of
⋃

r′∈R S∗
r′ and

we want to prove now that Ck does not overlap with
⋃

l∈Tr\T ∗
r
[l−r+1, l+r−1]

for some r ∈ R. Let r0 be such that Ck is the connected component of Sr0 ,

Ck ⊂ S∗
r0 .

Such an r0 exists and is unique since the sets (S∗
r′) are disjoint. We have from

Proposition 9 that τk ∈
⋃

r′∈R,r′≤r̄k
S∗
r′ so that

r0 ≤ r̄k .

Let r ∈ R and l ∈ Tr\T ∗
r and assume without loss of generality that l+r−1 < τk.

Since there is no false positive, (l, r) �∈ H0 and there exists at least one true
change-point in the interval of detection [l − r + 1, l + r − 1]. Denote τa, . . . , τb
with a ≤ b the true change-points belonging to [l−r+1, l+r−1]. By definition
of Tr \ T ∗

r , τa, . . . , τb are not significant change-points, i.e. a, a + 1, . . . , b �∈ K∗.
We consider the two cases r > r̄k and r ≤ r̄k

• r > r̄k: In that case, since the sets (Sr′) are disjoint and Ck ⊂ S∗
r0 , we

have Ck ∩ [l − r + 1, l + r − 1] = ∅.
• r ≤ r̄k: In that case, we have

l + r − 1 ≤ τb + 2(r − 1) ≤ τb + 2(r̄k − 1) < τk − 2(r̄k − 1) ,

where we used the fact that 4(r̄k−1) < rk ≤ τk−τb. Since by Proposition 9
we have Ck ⊂ [l− r + 1, l + r − 1], we also have in that case Ck ∩ [l− r +
1, l + r − 1] = ∅.

This concludes the proof of the proposition.

B.2. Proofs for Gaussian multivariate change-point detection

From now on, we use the following notation for all (l, r) ∈ Jn.
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• For any (v1, . . . , vn) with vt ∈ R
p, the left mean and right mean of v on

[l − r, l + r) are denoted by

v̄l,+r = 1
r

l+r−1∑
t=l

vt v̄l,−r = 1
r

l−1∑
t=l−r

vt .

• The population term of the CUSUM statistic Cl,r is written

Ul,r =
√

r

2
(
θ̄l,+r − θ̄l,−r

)
.

• With these notation, we write vl,+r,i, vl,−r,i, Ul,r,i for the ith coordinate of
the vector vl,+r, vl,−r, Ul,r.

• We define, for 1 ≤ s ≤ p, the order statistics Ul,r,(s) by |Ul,r,(1)| ≥
|Ul,r,(2)| ≥ . . . |Ul,r,(p)|.

B.2.1. Proof of Proposition 1

Step 0: Consequence of Equation (10) on the grid Let k ∈ [K] and
assume that τk is a κd-dense high-energy change-point (see Equation (10)). We
have that∥∥∥Uτ̄

(d)
k ,r̄

(d)
k

∥∥∥2 ≥ 9
16

∥∥∥Uτk,r̄
(d)
k

∥∥∥2
≥ 9

16 × 12κd

⎛⎝
√√√√p log

(
n

r̄
(d)
k , δ

)
+ log

(
n

r̄
(d)
k , δ

)⎞⎠ ,

(31)

since by definition ‖τk − τ̄
(d)
k ‖ ≤ r̄

(d)
k /4, so that ||θ

τ̄
(d)
k ,+r̄

(d)
k

− θ
τ̄
(d)
k ,−r̄

(d)
k

||2 ≥
9
16 ||θτk,+r̄

(d)
k

− θ
τk,−r̄

(d)
k

||2.

Step 1: Introduction of useful high probability events Remark that

r

2

[∥∥yl,+r − yl,−r

∥∥2 − ∥∥θl,−r − θl,+r

∥∥2]− σ2p

= r〈εl,+r − εl,−r, θl,+r − θl,−r〉 + r

2 ‖εl,+r − εl,−r‖2 − σ2p .

The first term, written as

r〈εl,+r − εl,−r, θl,+r − θl,−r〉 ,

is a crossed term between the noise and the mean vector θ. Lemma 1 states that
near the change-points and on the grid defined by the sets R,Dr, it is jointly
controlled with high probability.
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Lemma 1. Let 1 ≥ δ > 0. The event

ξ
(d)
1 =

⋂
k∈[K]

{
r̄
(d)
k

∣∣∣〈ετ̄(d)
k ,+r̄

(d)
k

− ε
τ̄
(d)
k ,−r̄

(d)
k

, θ
τ̄
(d)
k ,+r̄

(d)
k

− θ
τ̄
(d)
k ,−r̄

(d)
k

〉
∣∣∣

≤ 1
8 r̄

(d)
k

∥∥∥θτ̄(d)
k ,+r̄

(d)
k

− θ
τ̄
(d)
k ,−r̄

(d)
k

∥∥∥2 + 16σ2 log
(

2 n

r̄
(d)
k δ

)}
.

holds with probability larger than 1 − δ.
The second term, written as

r

2 ‖εl,+r − εl,−r‖2 − σ2p ,

is a term of pure noise. Lemma 2 states that it is controlled jointly with high
probability on the grid defined by the sets R,Dr.
Lemma 2. Let 1 ≥ δ > 0. The event

ξ
(d)
2 =

⋂
r∈R

⋂
l∈Dr

{∣∣∣r2 ‖εl,+r − εl,−r‖2 − σ2p
∣∣∣≤4σ2

[√
p log

(
2 n

rδ

)
+log

(
2 n

rδ

)]}
,

holds with probability larger than 1 − δ.
Set now

ξ(d) := ξ(d) = ξ
(d)
1 ∩ ξ

(d)
2 .

Note that

P(ξ(d)) ≥ 1 − 2δ .

Step 2: Study in the ‘no change-point’ situation Consider r ∈ R, l ∈ Dr

such that {τk, k ∈ [K]} ∩ [l − r, l + r) = ∅. Note that since {τk, k ∈ [K]} ∩ [l −
r, l + r) = ∅, we have θl,−r = θl,+r so that

r

2
∥∥θl,−r − θl,+r

∥∥2 = 0 ,

and

r〈εl,+r − εl,−r, θl,+r − θl,−r〉 = 0.

Moreover we have on ξ(d) that – see Lemma 2∣∣∣r2 ‖εl,+r − εl,−r‖2 − σ2p
∣∣∣ ≤ 4σ2

[√
p log

(
2 n

rδ

)
+ log

(
2 n

rδ

)]
= σ2x(d)

r .

And so

Ψ(d)
l,r ≤ x(d)

r ,

so that

T
(d)
l,r = 0 ,

on ξ(d). This concludes the proof of the first part of the proposition.
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Step 3: Study in the ‘change-point’ situation Consider k ∈ [K] τk is a
κd-dense high-energy change-point – that is Equation (10) holds. We have from
(31) that for κd large enough,

r̄
(d)
k

2

∥∥∥θτ̄(d)
k ,−r̄

(d)
k

− θ
τ̄
(d)
k ,+r̄

(d)
k

∥∥∥2
≥ 9

16 × 12κdσ
2

⎛⎝
√√√√p log

(
n

r̄
(d)
k , δ

)
+ log

(
n

r̄
(d)
k , δ

)⎞⎠ > 4σ2x
(d)
r̄
(d)
k

.

So on ξ(d) this implies that – see Lemma 1

r̄
(d)
k

∣∣∣〈ετ̄(d)
k ,+r̄

(d)
k

− ε
τ̄
(d)
k ,−r̄

(d)
k

, θ
τ̄
(d)
k ,+r̄

(d)
k

− θ
τ̄
(d)
k ,−r̄

(d)
k

〉
∣∣∣

≤ r̄
(d)
k

4

∥∥∥θτ̄(d)
k ,+r̄

(d)
k

− θ
τ̄
(d)
k ,−r̄

(d)
k

∥∥∥2 .
Moreover we have on ξ(d) that – see Lemma 2∣∣ r̄(d)

2

∥∥∥ετ̄(d)
k ,+r̄

(d)
k

− ε
τ̄
(d)
k ,−r̄

(d)
k

∥∥∥2 − σ2p
∣∣

≤ 4σ2

⎡⎣
√√√√p log

(
2 n

r̄
(d)
k

δ−1

)
+ log

(
2 n

r̄
(d)
k

δ−1

)⎤⎦ = σ2x
(d)
r̄
(d)
k

.

And so on ξ(d), combining the three previous displayed equations implies

Ψ(d)
τ̄
(d)
k ,r̄

(d)
k

≥
r̄
(d)
k

2

∥∥∥θτ̄(d)
k ,+r̄

(d)
k

− θ
τ̄
(d)
k ,−r̄

(d)
k

∥∥∥2
2σ2 − x

(d)
r̄
(d)
k

> (2 − 1)x(d)
r̄
(d)
k

= x
(d)
r̄
(d)
k

,

so that

T
(d)
τ̄
(d)
k ,r̄

(d)
k

= 1 .

This concludes the proof of the second part of the proposition.

Proof of Lemma 1. Let k ∈ [K]. Since the vectors εt are i.i.d. and distributed
as N (0, σ2Ip), it holds that

r̄
(d)
k 〈ε

τ̄
(d)
k ,+r̄

(d)
k

− ε
τ̄
(d)
k ,−r̄

(d)
k

, θ
τ̄
(d)
k ,+r̄

(d)
k

− θ
τ̄
(d)
k ,−r̄

(d)
k

〉

∼ N
(

0, 2r̄(d)
k σ2

∥∥∥θτ̄(d)
k ,+r̄

(d)
k

− θ
τ̄
(d)
k ,−r̄

(d)
k

∥∥∥2) .

And so for δk > 0, it holds with probability larger than 1 − δk it holds that

r̄
(d)
k

∣∣∣〈ετ̄(d)
k ,+r̄

(d)
k

− ε
τ̄
(d)
k ,−r̄

(d)
k

, θ
τ̄
(d)
k ,+r̄

(d)
k

− θ
τ̄
(d)
k ,−r̄

(d)
k

〉
∣∣∣

≤ 2σ
∥∥∥θτ̄(d)

k ,+r̄
(d)
k

− θ
τ̄
(d)
k ,−r̄

(d)
k

∥∥∥√r̄
(d)
k log(2δ−1

k ) .



Multivariate change-point detection 1285

Let us set δk = (r̄(d)
k )2δ
2n2 . Note that∑

k∈[K]

δk =
∑
r∈R

∑
k∈[K]:r̄(d)

k =r

(r̄(d)
k )2δ
2n2 ≤

∑
r∈R

∑
l∈Dr

r2δ

2n2 ≤
∑
r∈R

rδ

2n ≤ δ ,

since rk ≥ r̄
(d)
k and |Dr| ≤ 2n/r, and also by definition of R which implies∑

r∈R
r
n ≤ 1. And so if δ ≤ 1, then with probability larger than 1 − δ, for any

k ∈ [K], we have

r̄
(d)
k

∣∣∣〈ετ̄(d)
k ,+r̄

(d)
k

− ε
τ̄
(d)
k ,−r̄

(d)
k

, θ
τ̄
(d)
k ,+r̄

(d)
k

− θ
τ̄
(d)
k ,−r̄

(d)
k

〉
∣∣∣

≤ 2σ
∥∥∥θτ̄(d)

k ,+r̄
(d)
k

− θ
τ̄
(d)
k ,−r̄

(d)
k

∥∥∥ ≤
√√√√2r̄(d)

k log
(

2 n

r̄
(d)
k

δ−1

)
.

This implies in particular that with probability larger than 1−δ, for any k ∈ [K],
we have

r̄
(d)
k

∣∣∣〈ετ̄(d)
k ,+r̄

(d)
k

− ε
τ̄
(d)
k ,−r̄

(d)
k

, θ
τ̄
(d)
k ,+r̄

(d)
k

− θ
τ̄
(d)
k ,−r̄

(d)
k

〉
∣∣∣

≤ r̄
(d)
k

2

∥∥∥θτ̄(d)
k ,+r̄

(d)
k

− θ
τ̄
(d)
k ,−r̄

(d)
k

∥∥∥2
4 + 16σ2 log

(
2 n

r̄
(d)
k

δ−1

)
.

Proof of Lemma 2. Let r ∈ R and l ∈ Dr. Since the vectors εt are i.i.d. and
distributed as N (0, σ2Ip), it holds that

r

2 ‖εl,+r − εl,−r‖2 ∼ σ2χ2
p,

which implies by properties of the χ2
p distribution – see e.g. Lemma 1 of [26] –

that for any δr > 0 we have with probability larger than 1 − δr∣∣∣r2 ‖εl,+r − εl,−r‖2 − σ2p
∣∣∣ ≤ 2σ2

√
p log(2/δr) + 2σ2 log(2/δr) .

If we set, for δ > 0, δr = r2δ
2n2 , we have that with probability larger than 1− rδ

n ,
that ∀l ∈ Dr∣∣∣r2 ‖εl,+r − εl,−r‖2 − σ2p

∣∣∣ ≤ 2σ2
√
p log(2/δr) + 2σ2 log(2/δr) ,

since |Dr| ≤ 2n/r. And so with probability larger than 1 − δ, for all r ∈ R and
l ∈ Dr ∣∣∣r2 ‖εl,+r − εl,−r‖2 − σ2p

∣∣∣ ≤ 2σ2
√
p log(2/δr) + 2σ2 log(2/δr) ,

since
∑

r∈R
r
n ≤ 1. And so finally for δ ≤ 1 and with probability larger than

1 − δ, for all r ∈ R and l ∈ Dr∣∣∣r2 ‖εl,+r − εl,−r‖2 − σ2p
∣∣∣ ≤ 4σ2

[√
p log

(
2n
r
δ−1
)

+ log
(
2n
r
δ−1
)]

.

This concludes the proof.
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B.2.2. Proof of Proposition 2

Step 1 : Analysis of the Berk-Jones statistics We first define a threshold
x

(BJ)
r,s for the Berk-Jones statistics for all r, s ≥ 1

x(BJ)
r,s = min

{
x ≥ 2 : Φ(x) ≤ s2

282p log(2δ−1
x,r)

}
, (32)

where we recall that δx,r are the weights defined by (13):

δx,r = 6δr
π2x2|Dr|n

.

Remark that (x(BJ)
r,s ) is nonincreasing with s and define for all r ≥ 1

s̄r = min
{
s ∈ Z : s ≥ 28

3 log
(
2δ−1

x
(BJ)
r,s ,r

)}
. (33)

The second point of the following proposition ensures that if there exists s ∈ Z
such that Ul,r,(s) ≥ ts for some s ≥ s̄r, for (l, r) = (τ̄ (s)

k , r̄
(s)
k ), then T

(BJ)
l,r = 1

with high probability. We recall that |Ul,r,(1)| ≥ · · · ≥ |Ul,r,(p)| are the sorted
absolute values of the coordinate of Ul,r and that H0 is defined by (7).

Proposition 11. There exists an event ξ(BJ) of probability larger than 1 − 2δ
such that the following holds:

• T
(BJ)
l,r = 0 for any (l, r) ∈ H0 ∩G.

• For all k ∈ [K], if there exists s ∈ Z such that s ≥ s̄
r̄
(s)
k

and U
τ̄
(s)
k ,r̄

(s)
k ,(s) >

x
(BJ)
r̄
(s)
k ,s

, then T
(BJ)
τ̄
(s)
k ,r̄

(s)
k

= 1.

Step 2 : Analysis of the partial norm statistics Since it may happen
that τk is a sparse high-energy change-point but there is no s ≥ s̄

r̄
(s)
k

such that

U
τ̄
(s)
k ,r̄

(s)
k ,(s) ≥ x

(BJ)
r̄
(s)
k ,s

, we use the following proposition on the partial norm test

statistic T
(p)
l,r :

Proposition 12. There exists an event ξ(p) of probability larger than 1 − 2δ
such that the following holds:

• T
(p)
l,r = 0 for any (l, r) ∈ H0 ∩G.

• for any k ∈ [K], if there exists s ∈ Z such that

s∑
s′=1

∣∣∣Uτ̄
(s)
k ,r̄

(s)
k ,(s′)

∣∣∣2 > 4x(p)
r̄
(s)
k ,s

, (34)

then T
(p)
τ̄
(s)
k ,r̄

(s)
k

= 1.
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Step 3 : Combination of the two statistics Let us return to the proof of
Proposition 2. To conclude the proof, it suffices to show that if τk is a κs-sparse
high-energy change-point – see (11) – for some large enough constant κs, then
the result of one of the two preceding propositions holds. This is precisely what
the following lemma shows.

Lemma 3. There exists a constant κs such that if τk is a κs-sparse high-energy
change-point, then one of the following propositions is true:

• There exists s ∈ Z such that s > s̄
r̄
(s)
k

and
∣∣∣Uτ̄

(s)
k ,r̄

(s)
k ,(s)

∣∣∣ > x
(BJ)
r̄
(s)
k ,s

.

• There exists s ∈ Z such that s ≤ s̄
r̄
(s)
k

and
∑s

s′=1

∣∣∣Uτ̄
(s)
k ,r̄

(s)
k ,(s′)

∣∣∣2 > 4x(p)
r̄
(s)
k ,s

.

Proof of Proposition 11. The first part of the proposition is a simple conse-
quence of the definition together with a union bound.

P

[
max

(l,r)∈H0
T

(BJ)
l,r = 1

]
≤

∑
r∈R

∑
l∈Dr

∑
x∈N∗

δ(BJ)
x,r

≤
∑
r∈R

∑
l∈Dr

δr

|Dr|n
≤
∑
r∈R

δr

n
≤ δ.

We focus on the second part of the proposition. To ease the reading, we introduce
some notation

γx,r = Q
−1[δx,r, p, 2Φ(x)] ; ηx,r,s = Q

−1[1 − δx,r/2, p− s, 2Φ(x)] ;

ψx,r,s(u) = Q
−1[1 − δx,r/2, s,Φ(x− u) + Φ(x + u)] ,

for x ≥ 0. In fact, γx,r is the threshold of the statistics Nx,l,r. As for ηx,r,s, it
stands for the contribution to Nx,l,r of the (p− s) coordinates i such that θ·,i is
constant over [l− r, l+ r). Finally, ψx,r,s(u) stands for the contribution to Nx,l,r

of the s coordinates i whose population CUSUM statistics Ul,r,i is equal to u.

Lemma 4. Consider any r ∈ R and l ∈ Dr. If for some positive integers s and
x we have

ψx,r,s(|Ul,r,(s)|) > γx,r − ηx,r,s , (35)

then P[T (BJ)
l,r = 1] ≥ 1 − δx,r.

Denote H[θ] the collection of (l, r) with r ∈ R and l ∈ Dr that satisfy
Condition (35) for some s and some x. We easily deduce from the above Lemma
together with an union bound that, with probability higher than 1−δ, T (BJ)

l,r = 1
for all (l, r) ∈ H[θ].

Let us now provide a more explicit characterisation of H[θ] with the following
Lemma.

Lemma 5. For any 1 ≤ s ≤ p and r ∈ R define xs by

xs := x(BJ)
r,s = min

{
x ≥ 2 : Φ(x) ≤ s2

282p log(2α−1
x,r)

}
.
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We have ψxs,r,s(ts) > γxs,r − ηxs,r,s provided that

s ≥ 28
3 log(2δ−1

xs,r) . (36)

Combining Lemma 5 and Lemma 4, we conclude the proof of the proposition.

Proof of Lemma 4. Denote S any subset of size s, such that for any j ∈ S,
|Ul,r,j | ≥ |Ul,r,(s)|. Define

N
(1)
x,l,r =

p∑
i=1

1i/∈S1|Cl,r,i|>x, N
(2)
x,l,r =

p∑
i=1

1i∈S1|Cl,r,i|>x

Since, for any x > 0, the function u �→ Φ(x + u) + Φ(x − u) is non-decreasing.
As a consequence, the random variable N

(1)
x,l,r is stochastically dominated by a

Binomial distribution with parameters (p−s, 2Φ(x)). Besides, N (2)
x,l,r is stochasti-

cally dominated by a Binomial distribution with parameters (s,Φ(x+|Ul,r,(s)|)+
Φ(x− |Ul,r,(s)|)). We obtain

P[T (BJ)
l,r = 0] ≤ P[Nx,l,r ≤ γx,r] ≤ P[N (1)

x,l,r < ηx,r,s] + P[N (2)
x,l,r ≤ γx,r − ηx,r,s]

≤ δx,r
2 +1 −Q[γx,r − ηx,r,s, s,Φ(x− |Ul,r,(s)|)+Φ(x + |Ul,r,(s)|)]

≤ δx,r
2 + δx,r

2 ≤ δx,r .

Proof of Lemma 5. From Bernstein inequality, we deduce that, for any positive
integers s and x,

γx,s ≤ 2pΦ(x) + 2
√

pΦ(x) log(δ−1
x,r) + 2

3 log(δ−1
x,r) ;

ηx,r,s ≥ 2(p− s)Φ(x) − 2
√
pΦ(x) log(2δ−1

x,r) −
2
3 log(2δ−1

x,r) .

Hence, it follows that

γx,s − ηx,r,s ≤ 2sΦ(x) + 4
√
pΦ(x) log(2δ−1

x,r) + 4
3 log(2δ−1

x,r) .

For u = x, we have Φ(x − u) + Φ(x + u) ≥ Φ(0) = 1/2 and we derive from
Bernstein inequality that

ψx,r,s(t) ≥
s

2 −
√

s log(2δ−1
x,r) −

2
3 log(2δ−1

x,r) .

As a ce, ψx,r,s(t) > γx,s − ηx,r,s as long as

s(1 − 4Φ(x)) > 12
√
pΦ(x) log(2δ−1

x,r) + 12
3 log(2δ−1

x,r) .
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Provided that we take x ≥ 2, the latter holds if

s ≥ 14
√
pΦ(x) log(2δ−1

x,r) + 14
3 log(2δ−1

x,r) (37)

In view of the definition (32) of xs, we have 14
√
pΦ(xs) log(2δ−1

xs,r) ≤ s/2.
Hence, under Condition (33), (37) holds and we conclude that ψxs,r,s(xs) >
γxs,s − ηxs,r,s.

Proof of Proposition 12. The following lemma ensures that the partial norm
test returns 0 with high probability jointly at all positions where there is no
change-point. We write C̄s

p for the set of all combinations of s indices taken
from [p].

Lemma 6 (concentration of the pure noise for the second sparse statistic). If
1 ≥ δ > 0, then the event

ξ
(p)
1 =

{
∀r ∈ R, l ∈ Dr, s ∈ Z max

S∈C̄s
p

∑
i∈S

r

2σ2 (ε̄l,+r,i − ε̄l,−r,i)2 ≤ x(p)
r,s

}

holds with probability higher than 1 − δ.

We now state the following lemma, which ensures that the partial norm test
returns 1 with high probability jointly at relevant positions which are close to
a change-point.

Lemma 7 (concentration on the change-points for the second sparse statistic).
We write K̄∗ for the set of k ∈ [K] such that

• sk ≤
√
p log

(
n

rkδ

)
•
∑s

s′=1

∣∣∣Uτ̄
(s)
k ,r̄

(s)
k ,(s′)

∣∣∣2 ≥ 4x(p)
r̄
(s)
k ,s

If 1 ≥ δ > 0, the event

ξ
(p)
2 =

{
∀k ∈ K̄∗ : ∃s ∈ Z s.t. Ψ(p)

τ̄
(s)
k ,r̄

(s)
k ,s

> x
(p)
r̄
(s)
k ,s

}
,

holds with probability higher than 1 − δ.

Lemmas 6 and 7 directly imply the result of the proposition.

Proof of Lemma 6. Let r ∈ R, l ∈ Dr, s ≤ s̄r and S ∈ C̄s
p . Let δ > 0, δr,s =(

r
n

)2 ( s
2ep

)s
δ. Since

√
r

2σ2 (ε̄l,+r,i − ε̄l,−r,i) follows a N (0, 1) distribution for all
l, r, i, we have by Bernstein’s inequality that with probability larger than 1−δr,s,

∑
i∈S

(ε̄l,+r,i − ε̄l,−r,i)2 ≤ s + 2

√
s log

(
1
δr,s

)
+ log

(
1
δr,s

)
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≤ 2
(
s + log

(
1
δr,s

))
= 2
(
s + s log

(
2ep
s

)
+ log

(
n2

r2δ

))
≤ 4
(
s log

(
2ep
s

)
+ log

( n

rδ

))
.

Since the number of such S is smaller than
(
ep
s

)s, a union bound gives

P

(
ξ
(p)
1

)
≥ 1 −

∑
r∈R

∑
l∈Dr

∑
s∈Z

∣∣C̄s
p

∣∣ ( s

2ep

)s ( r
n

)2
δ

≥ 1 −
∑
r∈R

∑
l∈Dr

∑
s∈Z

(
1
2

)s ( r
n

)2
δ

≥ 1 − δ ,

which yields the result.

Proof of Lemma 7. Let k ∈ K̄∗, and s ∈ Z such that
s∑

i=1
U2
τ̄
(s)
k ,r̄

(s)
k ,(i)

> 4x(p)
r̄
(s)
k ,s

. (38)

To ease the reading, we write (τ, r) = (τ̄ (s)
k , r̄

(s)
k ). Then on the event ξ

(p)
1 which

holds with probability 1 − δ, we have

Ψ(p)
τ,r,s = max

S∈C̄s
p

∑
i∈S

r

2σ2

(
θ̄τ,+r,i + ε̄τ,+r,i − θ̄τ,−r,i − ε̄τ,−r,i

)2
≥ max

S∈C̄s
p

∑
i∈S

1
2U

2
τ,r,i −

r

2σ2 (ε̄τ,+r,i − ε̄τ,−r,i)2

> 2x(p)
r,s − x(p)

r,s

= x(p)
r,s ,

where in the second inequality, we used the fact that (a+ b)2 ≥ 1
2a

2 − b2 for all
a, b ∈ R.

Proof of Lemma 3. First remark that there exists a large enough constant C
such that for all r, s ≥ 1,(

x(BJ)
r,s

)2
≤ C log

(ep
s2 log

( n

rδ

))
s̄r ≤ C log

(
log
(
ep

s̄2
r

)
n

rδ

)
,

where we recall that s̄r is defined by (33) and x
(BJ)
r,s by (32). These two inequalies

come from the fact that for all t ≥ 2 and all A > 0, if t ≤ A+log (t) then t ≤ 2A.
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Assume that for all s′ = s̄
r̄
(s)
k

+ 1, . . . , sk we have |U
τ̄
(s)
k ,r̄

(s)
k ,(s′)| < x

(BJ)
r̄
(s)
k ,s′

. To
ease the notation, we write s̄ = s̄

r̄
(s)
k

∧ sk and in what follows we prove that∑s̄
s′=1 |Uτ̄

(s)
k ,r̄

(s)
k ,(s′)|

2 > 4x(p)
r̄
(s)
k ,s̄

when κs is a large enough constant. We have

sk∑
s′=s̄

r̄
(s)
k

+1
U2
τ̄
(s)
k ,r̄

(s)
k ,(s′)

≤ C1

�log(sk)	∑
i=0

2i log
(

ep

22i log
(

n

r̄
(s)
k δ

))

≤ C1sk log
(

2e log
(

n

r̄
(s)
k δ

))
+C1

�log(sk)	∑
i=0

2i log
( p

22(i+1)

)
,

for some universal constant C1. To handle the second term remark that since
x �→ log

(
p
x2

)
is decreasing, we have

�log(sk)	∑
i=0

2i log
( p

22(i+1)

)
≤
∫ 2sk

1
log
( p

x2

)
dx

= 2sk log
(

p

(2sk)2

)
+ 2sk − 1

≤ 2sk log
(

p

s2
k

)
,

and thus
sk∑

s′=s̄
r̄
(s)
k

+1
U2
τ̄
(s)
k ,r̄

(s)
k ,(s′)

≤ 2C1sk log
(

2e p

s2
k

log
(

n

r̄
(s)
k δ

))
,

which finally gives

s̄∑
s′=1

U2
τ̄
(s)
k ,r̄

(s)
k ,(s′)

≥ 9
16 r̄

(s)
k Δ2

k − 2C1sk log
(

2ep
s2
k

log
(

n

r̄
(s)
k δ

))
≥ 4x(p)

r̄
(s)
k ,s̄

.

In the first inequality we used the fact that∣∣∣τ̄ (s)
k − τk

∣∣∣ ≤ 1
4 r̄

(s)
k ,

so that for all i,∣∣∣θ̄τ̄(s)
k ,+r̄

(s)
k ,i

− θ̄
τ̄
(s)
k ,−r̄

(s)
k ,i

∣∣∣
= 1

r̄
(s)
k

∣∣∣(r̄(s)
k + τ̄

(s)
k − τk

)
μk,i −

(
r̄
(s)
k − τ̄

(s)
k + τk

)
μk−1,i

∣∣∣
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≥

⎛⎝1 −

∣∣∣τ̄ (s)
k − τk

∣∣∣
r̄
(s)
k

⎞⎠ |μk,i − μk−1,i| >
3
4 |μk,i − μk−1,i| = 3

4Uk,i .

In the second inequality, we used the fact that

• 8r̄(s)
k Δ2

k ≥ κsσ
2
(
sk log

(
p
s2k

log
(

n

r̄
(s)
k δ

))
+ log

(
n

r̄
(s)
k δ

))
for a large

enough constant κs (see (11)),
• x �→ x log

(
ep
x2

)
is increasing for x ≤ p, so that sk can be replaced by s̄,

• s̄ ≤ C log
(
log
(
ep
s̄2

)
n
rδ

)
.

This concludes the proof of the lemma.

B.2.3. Proof of Corollary 2

Let ξ(d) and ξ(s) be two events such that Proposition 1 and Proposition 2 hold
respectively with constants κd, κs and with probability 1 − 2δ and 1 − 4δ, and
write ξ = ξ(d) ∩ ξ(s). From now on, we work on the event ξ, which holds with
probability 1 − 6δ. Let us choose c0 ≥ 2(κd ∨ κs) in (8). For all k such that τk
is a c0-high-energy change-point, define

(τ̄k, r̄k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(τ̄ (d)

k , r̄
(d)
k ) if sk >

√
p log

(
n

rkδ

)

(τ̄ (s)
k , r̄

(s)
k ) if sk ≤

√
p log

(
n

rkδ

)
.

(r̄k, τ̄k) is well defined. Indeed, If sk ≤
√

p log
(

n
rkδ

)
then

sk log
(

1 +
√
p

sk

√
log
(

n

rkδ

))
+ log

(
n

rkδ

)
≥ 1

2

(
sk log

(
p

s2
k

log
(

n

rkδ

))
+ log

(
n

rkδ

))
.

Now if sk ≥
√
p log

(
n

rkδ

)
then using log (1 + x) ≥ x

2 for x ∈ [0, 1] we have

sk log
(

1+
√
p

sk

√
log
(

n

rkδ

))
+log

(
n

rkδ

)
≥ 1

2

(√
p log

(
n

rkδ

)
+log

(
n

rkδ

))
.

According to Theorem 1, it is sufficient to prove that the event
A (Θ, T,K∗, (τ̄k, r̄k)k∈K∗) defined in Section 2.3 holds on ξ:
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1. (No false positive): for every r ∈ R and l ∈ Dr, if Θ is constant on
[l − r, l + r) then

Tl,r = T
(d)
l,r ∨ T

(s)
l,r = 0,

by Proposition 1 and Proposition 2.
2. (High-energy change-point detection): for every k such that τk has

c0-high-energy, it holds by definition of r̄(d)
k and r̄

(s)
k that

4(r̄k − 1) ≤ rk.

Moreover, T (s)
τ̄k,r̄k

= 1 if (τ̄k, r̄k) = (τ̄ (d)
k , r̄

(d)
k ) by Proposition 2 and T

(d)
τ̄k,r̄k

=
1 if (τ̄k, r̄k) = (τ̄ (s)

k , r̄
(s)
k ) by Proposition 1.

Theorem 1 ensures that for all k ∈ [K] such that τk is a c0-high-energy change-
point, there exists k′ ∈ [K̂] such that

|τ̂k′ − τk| ≤ r̄k − 1.

It remains to show that
r̄k − 1 ≤ r∗k

2 ,

where r∗k is define by (9). Using log (1 + x) ≥ x
2 for x ∈ [0, 1] and log (1 + x) ≥

log (x) for x ≥ 1 we have

8r̄kΔ2
k ≤ 4(κd ∨ κs)

[
sk log

(
1 +

√
p

sk

√
log
(

n

r̄kδ

))
+ log

(
n

r̄kδ

)]
,

when r̄k ≥ 2. Thus 2(r̄k − 1) ≤ r∗k for c0 ≥ 2(κd ∨ κs). This concludes the proof
of Corollary 2.

B.3. Proofs for sub-Gaussian multivariate change-point detection

We recall that in this section, we work on the complete grid GF = Jn defined in
Section 2.

B.3.1. Proof of Proposition 3

Step 1: Introduction of useful high probability events We first intro-
duce two events ξ(d)

1 and ξ
(d)
2 on which the noise can be controlled. Remark that

by a simple computation, the noise can be decomposed as follows:

r

2

[∥∥yl,+r − yl,−r

∥∥2 − ∥∥θl,−r − θl,+r

∥∥2]− σ2p = r〈εl,+r − εl,−r, θl,+r − θl,−r〉

+ r

2 ‖εl,+r − εl,−r‖2 − σ2p .
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The first term written as

r〈εl,+r − εl,−r, θl,+r − θl,−r〉

is a crossed term between the noise and the mean vector θ. Lemma 8 states that
for l equal to a true change-point τk and r of order r∗k, it is controlled on event
ξ
(d)
1 with high probability.

Lemma 8 (concentration of the crossed terms). Assume that κ is a large enough
universal constant. The event

ξ
(d)
1 =

{
∀k ∈ [K] s.t. Equation (17) holds for k,

r̄
(d)
k

∣∣∣〈ετk,+r̄
(d)
k

− ε
τk,−r̄

(d)
k

, θ
τk,+r̄

(d)
k

− θ
τk,−r̄

(d)
k

〉
∣∣∣ ≤ r̄

(d)
k

4

∥∥∥θτk,+r̄
(d)
k

− θ
τk,−r̄

(d)
k

∥∥∥2}

holds with probability higher than 1 − δ.

The second term written as
r

2 ‖εl,+r − εl,−r‖2 − σ2p ,

is a term of pure noise. Lemma 9 states that it is controlled on event ξ
(d)
2 with

high probability.

Lemma 9 (concentration of the pure noise). There exists a constant c̄conc > 0
such that the event

ξ
(d)
2 =

{
∀(l, r) ∈ Jn,

∣∣∣r2 ‖εl,+r − εl,−r‖2 − σ2p
∣∣∣ ≤ c̄concL

2
(√

p log
( n

rδ

)
+ log

( n

rδ

))}
holds with probability higher than 1 − 2δ.

Set now

ξ(d) := ξ
(d)
1 ∩ ξ

(d)
2 .

Note that

P(ξ(d)) ≥ 1 − 3δ .

Step 2: Study in the ‘no change-point’ situation We remind that H0
stands for elements (l, r) such that there is no change-point in [l− r, l + r) and
that it is defined in (7). Consider (l, r) ∈ Jn ∩ H0. Note that since {τk, k ∈
[K]} ∩ [l − r, l + r) = ∅, we have θl,−r = θl,+r so that

r

2
∥∥θl,−r − θl,+r

∥∥2 = 0 ,
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and

r〈εl,+r − εl,−r, θl,+r − θl,−r〉 = 0 .

Moreover we have on ξ(d) that – see Lemma 9∣∣∣r2 ‖εl,+r − εl,−r‖2 − σ2p
∣∣∣ ≤ c̄concL

2
(√

p log
( n

rδ

)
+ log

( n

rδ

))
≤ σ2x(d)

r ,

for c̄thresh ≥ c̄conc – note that c̄conc > 0 is a universal constant. And so

Ψ(d)
l,r ≤ x(d)

r ,

so that

T
(d)
l,r = 0 ,

on ξ(d). This concludes the proof of the first part of the proposition.

Step 3: Study in the ‘change-point’ situation Consider k ∈ [K] such
that τk is a κ-dense high-energy change-point – see Equation (17). We have

r̄
(d)
k

2

∥∥∥θτk,−r̄
(d)
k

− θ
τk,+r̄

(d)
k

∥∥∥2 ≥ κ

8L
2

⎛⎝
√√√√p log

(
n

r̄
(d)
k δ

)
+ log

(
n

r̄
(d)
k δ

)⎞⎠ .

So on ξ(d) choosing κ large enough implies that – see Lemma 8

r̄
(d)
k

∣∣∣〈ετk,+r̄
(d)
k

− ε
τk,−r̄

(d)
k

, θ
τk,+r̄

(d)
k

− θ
τk,−r̄

(d)
k

〉
∣∣∣ ≤ r̄

(d)
k

4

∥∥∥θτk,+r̄
(d)
k

− θ
τk,−r̄

(d)
k

∥∥∥2 .

Moreover we have on ξ(d) that – see Lemma 9∣∣ r̄(d)
k

2

∥∥∥ετk,+r̄
(d)
k

− ε
τk,−r̄

(d)
k

∥∥∥2 − σ2p
∣∣

≤ c̄concL
2

⎛⎝
√√√√p log

(
n

r̄
(d)
k δ

)
+ log

(
n

r̄
(d)
k δ

)⎞⎠ ≤ σ2x
(d)
r̄
(d)
k

,

for c̄thresh ≥ c̄conc – note that c̄conc > 0 is a universal constant.
Thus on ξ(d), combining the three previous displayed equations implies

Ψ(d)
τk,r̄

(d)
k

≥ r̄
(d)
k

4σ2

∥∥∥θτk,+r̄
(d)
k

− θ
τk,−r̄

(d)
k

∥∥∥2 − x
(d)
r̄
(d)
k

≥
( c0

16 − c̄thresh

) L2

σ2

⎛⎝
√√√√p log

(
n

r̄
(d)
k δ

)
+ log

(
n

r̄
(d)
k δ

)⎞⎠ > x
(d)
r̄
(d)
k

,

since κ > 32c̄thresh. And so on ξ(d):

T
(d)
τk,r̄

(d)
k

= 1 .

This concludes the proof of the second part of the proposition.
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Proof of Lemma 8. Let k be in [K] and such that Equation (17) is satisfied.
Remark that θ is constant on [τk − r̄

(d)
k , τk) and is equal to μk−1, and is also

constant on [τk, τk + r̄
(d)
k ) and is equal to μk. First, from the definition of the

ψ2-norm of a vector, there exists a universal constant C > 0 such that for all
k = 1 . . .K,

‖r̄(d)
k 〈ε

τk,+r̄
(d)
k

− ε
τk,−r̄

(d)
k

, θ
τk,+r̄

(d)
k

− θ
τk,−r̄

(d)
k

〉‖ψ2

≤ r̄
(d)
k

∥∥∥ετk,+r̄
(d)
k

− ε
τk,−r̄

(d)
k

∥∥∥
ψ2

|μk − μk−1|

≤ C

√
r̄
(d)
k ‖ε1‖ψ2

|μk − μk−1| ≤ C

√
r̄
(d)
k L |μk − μk−1| ≤ CL

√
rkΔ2

k .

Thus by definition of sub-Gaussianity, for all t > 0,

P

(
r̄
(d)
k

∣∣∣〈ετk,+r̄
(d)
k

− ε
τk,−r̄

(d)
k

, θ
τk,+r̄

(d)
k

− θ
τk,−r̄

(d)
k

〉
∣∣∣ ≥ t

)
≤ exp

(
−c

t2

L2rkΔ2
k

)
,

for some constant c > 0. Finally we apply the concentration inequality to t =
rkΔ2

k

4 – remembering that τk is a κ-dense high-energy change-point in the sense
of Equation (17) – and sum over k to obtain a union bound over ξc2:

P (ξc2) ≤
K∑

k=1

P

(
r
∣∣∣〈ετk,+r̄

(d)
k

− ε
τk,−r̄

(d)
k

, θ
τk,+r̄

(d)
k

− θ
τk,−r̄

(d)
k

〉
∣∣∣ ≥ rkΔ2

k

4

)

≤
K∑

k=1
exp
(
−c

rkΔ2
k

16L2

)

≤
K∑

k=1

exp
(
−c′κ log

(
n

r̄
(d)
k

δ−1

))
(c′ = c/16)

≤
K∑

k=1

(
r̄
(d)
k

n

)c′κ

δc
′κ

≤ δ ,

where the last inequality comes from the fact that
∑K

k=1 r̄
(d)
k ≤ n and the fact

that κ is chosen large enough so that c′κ ≥ 1.

Proof of Lemma 9. Remark first that by homogeneity, we can assume without
loss of generality that L = 1. To provide a proof, we will use the Hanson-Wright
inequality in high dimension, which is a way to control quadratic forms of the
noise.

Lemma 10 (Hanson-Wright inequality in high dimension). Let A = (aij) be a
m×m matrix and ε1, . . . , εm be sub-Gaussian vectors of dimension p with norm
smaller than 1. Then

P

⎛⎝∣∣∣∣∣∣
∑

1≤i,j≤m

ai,j〈εi, εj〉 − E

⎡⎣ ∑
1≤i,j≤m

ai,j〈εi, εj〉

⎤⎦∣∣∣∣∣∣ ≥ t

⎞⎠
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≤ 2 exp
(
−cmin

(
t2

p‖A‖2
F

,
t

‖A‖op

))
,

where c is an absolute constant, ‖A‖2
F =

∑
i,j a

2
i,j is the squared Frobenius norm

of A and ‖A‖op is the operator norm of A.

The proof of this lemma relies on the classical Hanson Wright inequality that
is proved for example in [35]. To prove the proposition, we will use a chaining
argument. To this end, we let (Nu)u≥0 be the following covering sets of Jn:

Nu = Jn ∩
{
i2κ1−u, i ∈ N

}2
,

where we define κ1 = �log2(n)�, and more generally κr = �log2(n/r)� for r =
1, . . . n. Remark that the higher u is, the finer the covering set Nu is, and Nκ1 =
Jn. For all u ≥ 0, we define the projection map πu from Jn to Nu by

πu(l, r) = arg min
(l̂,r̂)∈Nu

(
|l̂ − l| + |r̂ − r|

)
.

In the sequel, we will use the slight abuse of notation for (l, r) in Jn:

(lu, ru) = πu(l, r) .

A useful lemma to control the distance between (l, r) and its projection (lu, ru)
can be stated as follow.

Lemma 11. For all (l, r) ∈ Jn and 0 ≤ u ≤ κ1 such that Nu �= ∅,

|lu − l| + |ru − r| ≤ 2 n

2u .

Let (l, r) ∈ Jn. From know on, we write εl,+r = rε̄l,+r =
∑l+r−1

t=l εt and
εl,−r = rε̄l,+r. The chaining relation can be written as

r

2 ‖εl,+r − εl,−r‖2 − σ2p

= 1
2r

[∥∥εlκr ,+rκr
− εlκr ,−rκr

∥∥2 − 2rκrσ
2p
]

+ 1
2r

κ1∑
v=κr

[∥∥εlv+1,+rv+1 − εlv+1,−rv+1

∥∥2
− ‖εlv,+rv − εlv,−rv‖

2 − 2(rv+1 − rv)σ2p
]
.

Remark that the chaining summation starts at scale u = κr so that n
2u � r.

The first term of the chaining is an approximation on the grid at level u of
the term r

2 ‖εl,+r − εl,−r‖2 − σ2p. The second term can be viewed as an error
term, and we will show that it is of the same order as the first term. Since both
terms are quadratic forms of the noise, we will need an upper bound on the
norm of their corresponding matrix to apply the Hanson Wright inequality –
see Lemma 10.
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Lemma 12 (Control of the Frobenius norm). Let (l, r) be a fixed element of Jn.
Let A and B be the corresponding matrix of the two following quadratic form:

εT Aε = ‖εl,+r − εl,−r‖2 and εT B ε = ‖εl,+r − εl,−r‖2 − ‖εl′,+r′ − εl′,−r′‖2
.

Then

‖A‖2
F ≤ 16r2

‖B‖2
F ≤ 24 (|l − l′| + |r − r′|) (r + r′ + |l − l′|) .

The following lemma aims at upper bounding the first term of the chaining
relation with high probability.

Lemma 13. There exists a constant CN such that for all n, the event

ξ
(d)
N =

⋂
u≥0

⋂
(l,r)∈Nu

r≤3 n
2u

{ ∣∣∣‖εl,+r − εl,−r‖2 − 2rσ2p
∣∣∣

≤ CNr
(√

p log (2uδ−1) + log
(
2uδ−1))} .

holds with probability higher than 1 − δ.

For u = κr, (lu, ru) ∈ Nu Lemma 11 gives ru ≤ r+2 n
2u ≤ 3 n

2u . Consequently,
on the event ξ

(d)
N , we obtain∣∣∣∣ 1

2r
∥∥εlκr ,+rκr

− εlκr ,−rκr

∥∥2 − rκr

r
σ2p

∣∣∣∣ ≤ C ′
N

(√
p log

( n

rδ

)
+ log

( n

rδ

))
,

for C ′
N a large absolute constant. To upper bound the second term, we use the

following lemma:

Lemma 14. For all (l, r) and (l′, r′) in Jn, set

ξ
(d)
Δ,v(l, r, l

′, r′) =
{ ∣∣∣‖εl′,+r′ − εl′,−r′‖2 − ‖εl,+r − εl,−r‖2 − 2(r′ − r)σ2p

∣∣∣
≤ CΔ

√
rn

2v
(√

p log (2vδ−1) + log
(
2vδ−1))} .

There exists a constant CΔ such that, for all n, the event

ξ
(d)
Δ =

⋂
v≥0

{
ξ
(d)
Δ,v (l, r, l′, r′) holds for all ((l, r), (l′, r′)) ∈ Nv ×Nv+1

s.t. |l − l′| + |r − r′| ≤ 3 n

2v

}
.

holds with probability higher than 1 − δ.
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For v ≥ κr, ((lv, rv), (lv+1, rv+1)) ∈ Nv ×Nv+1 and by Lemma 11,

|rv − rv+1| + |lv − lv+1| ≤ |rv − r| + |lv − l| + |r − rv+1| + |l − lv+1|

≤ 3 n

2v .

Therefore, on the event ξ
(d)
Δ ,∣∣∣∣∣ 1

2r

κ1−1∑
v=κr

[∥∥εlv+1,+rv+1−εlv+1,−rv+1

∥∥2 − ‖εlv,+rv−εlv,−rv‖
2−2(rv+1 − rv)σ2p

]∣∣∣∣∣
≤ CΔ

1
2r

κ1−1∑
v=κr

√
rvn

2v
(√

p log (2vδ−1) + log
(
2vδ−1))

≤ C ′
Δ
∑
v′≥0

1
2v′

(√
p log

(
n2v′

rδ

)
+ log

(
n2v′

rδ

))

≤ C ′′
Δ

(√
p log

( n

rδ

)
+ log

( n

rδ

))
,

where C ′
Δ, C ′′

Δ are large absolute constants. Hence, letting c̄conc = C ′
N +C ′′

Δ we
obtain

ξ
(d)
N ∩ ξ

(d)
Δ ⊂ ξ

(d)
2 ,

which must be of probability higher than 1 − 2δ.

Proof of Lemma 11. Since the mesh of the grid Nu is equal to 2κ1−u ≤ n
2u , there

exists (l̃, r̃) ∈ Nu such that

|l − l̃| ≤ n

2u and |r − r̃| ≤ n

2u .

Proof of Lemma 12. Let us write

εT Aε =
∑

l−r≤i,j<l+r

aij〈εi, εj〉 and εT B ε =
∑

m1≤i,j<m2

bij〈εi, εj〉,

where m1 = min(l− r, l′ − r′), m2 = max(l + r, l′ + r′). Remark that for all i, j
in [l − r, l + r), aij ≤ 2. This gives the first inequality.

For the second inequality, assume without loss of generality that l ≤ l′. As
for the first inequality, bij ≤ 2 for all i, j ∈ [m1,m2). Remark that bij can be
non zero only if (i, j) is in one of the following cases:

1. i or j is in [min(l + r, l′ + r′),max(l + r, l′ + r′))
2. i or j is in [min(l − r, l′ − r′),max(l − r, l′ − r′))
3. i or j is in [l, l′).

Hence there is at most (4(|l− l′|+ |r − r′|) + 2|l− l′|)(r + r′ + |l− l′|) non zero
bij , and we obtain the second inequality.
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Proof of Lemma 13. The probability of (ξ(d)
N )c can be written as:

P

(
(ξ(d)

N )c
)

= P

(
∃u ≥ 0,∃(l, r) ∈ Nu s.t. r ≤ 3 n

2u and

∣∣∣‖εl,+r − εl,−r‖2 − 2rσ2p
∣∣∣ ≤ CNr

(√
p log (2uδ−1) + log

(
2uδ−1))) .

First, fix u ≥ 0 and (l, r) ∈ Nu such that r ≤ 3 n
2u .

Applying the first inequality of Lemma 12 and the Hanson-Wright inequality
– see Lemma 10, we obtain for all t ≥ 0

P

(∣∣∣‖εl,+r − εl,−r‖2 − 2rσ2p
∣∣∣ ≥ t

)
≤ 2 exp

(
−cmin

(
t2

pr2 ,
t

r

))
,

where c is an absolute constant. Choosing

t = CNr
(√

p log (2uδ−1) + log
(
2uδ−1)) ,

we obtain

P

( ∣∣∣‖εl,+r − εl,−r‖2 − 2rσ2p
∣∣∣ ≤ CNr

(√
p log (2uδ−1) + log

(
2uδ−1)))

≤ C

(
1
2u

)cCN

δcCN ,

where c, C are absolute constants. Since the cardinal of Nu is upper bounded
by 22u+2, A union bound on each Nu for each u ≥ 0 gives:

P

(
(ξ(d)

N )c
)
≤
∑
u≥0

C |Nu|
(

1
2u

)cCN

δcCN

≤
∑
u≥0

4C
(

1
2u

)2−cCN

δcCN ,

which is convergent. For CN large enough, we obtain P (ξcN ) ≤ 1 − δ.

Proof of Lemma 14.

P

(
(ξ(d)

Δ )c
)

= P

(
∃v ≥ 0,∃((l, r), (l′, r′)) ∈ Nv ×Nv+1

s.t. |l − l′| + |r − r′| ≤ 4 n

2v and (ξ(d)
Δ,v (l, r, l′, r′))c holds

)
.

First fix v ≥ 0 and ((l, r), (l′, r′)) ∈ Nv × Nv+1. Remark that by definition of
Nv,

r ≥ n

2v+1 .
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Thus,

r + r′ + |l − l′| ≤ 2r + |l − l′| + |r − r′| ≤ 10r .

Then by Lemma 12, letting B be the matrix such that
εT B ε = ‖εl′,+r′ − εl′,−r′‖2 − ‖εl,+r − εl,−r‖2, we obtain

‖B‖2 ≤ ‖B‖2
F ≤ 40r n

2v .

Thus, by the Hanson Wright inequality – see Lemma 10,

P
(∣∣εT Bu ε−E

[
εT Bu ε

]∣∣ ≥ t
)
≤ 2 exp

(
−cmin

(
2v

pnr
t2,

√
2v
nr

t

))
.

From now on, we choose

t = CΔ

√
rn

2v
(√

p log (2vδ−1) + log
(
2vδ−1)) .

There are at most 24v+6 elements in Nv ×Nv+1. Therefore, a union bound on
v ≥ 0 and Nv ×Nv+1 gives

P

(
(ξ(d)

Δ )c
)
≤
∑
u≥0

2|Nv ×Nv+1| (2v)−cCΔ δcCΔ

≤
∑
u≥0

27 (2v)4−cCΔ δcCΔ

≤ CδcCΔ ,

where the last inequality holds if CΔ is large enough, for c, C universal constants.

B.3.2. Proof of Proposition 4

Step 1: Introduction of useful high probability events Let s ≤ p and
consider S ∈ C̄s

p . In what follows and for an vector u ∈ R
p, we write u(S) for

the vector u restricted to the set S.
Remark that by a simple computation, the noise can be decomposed as fol-

lows:
r

2

[∥∥∥ȳ(S)
l,+r − ȳ

(S)
l,−r

∥∥∥2 − ∥∥∥θ̄(S)
l,−r − θ̄

(S)
l,+r

∥∥∥2]− σ2s

= r〈ε̄(S)
l,+r − ε̄

(S)
l,−r, θ̄

(S)
l,+r − θ̄

(S)
l,−r〉 + r

2

∥∥∥ε̄(S)
l,+r − ε̄

(S)
l,−r

∥∥∥2 − σ2s .

The first term written as

r〈ε̄(S)
l,+r − ε̄

(S)
l,−r, θ̄

(S)
l,+r − θ̄

(S)
l,−r〉 ,

is a crossed term between the noise and the mean vector θ. Lemma 8 states that
for l equal to a true change-point τk, r of order r∗k, and S being the corresponding
support of the change-point, it is controlled on event ξ(p)

1 with high probability.
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Lemma 15. For k ∈ [K], let us write Sk ⊂ [K] for the support of μk − μk−1.
Assume that c0 is a large enough universal constant. The event

ξ
(p)
1 := ξ

(p)
1 (δ) =

{
∀k ∈ [K] s.t. Equation (18) holds for k,

r̄
(d)
k

∣∣∣∣〈ε̄(Sk)
τk,+r̄

(d)
k

− ε̄
(Sk)
τk,−r̄

(s)
k

, θ̄
(Sk)
τk,+r̄

(s)
k

− θ̄
(Sk)
τk,−r̄

(s)
k

〉
∣∣∣∣ ≤ r̄

(d)
k

4

∥∥∥θτk,+r̄
(s)
k

− θ
τk,−r̄

(s)
k

∥∥∥2}
holds with probability higher than 1 − δ.

The proof of this lemma follows directly from the one of Lemma 8, restricting
the term corresponding to change-point k to Sk – and diminishing the deviation
by doing so.

The second term written as
r

2

∥∥∥ε̄(S)
l,+r − ε̄

(S)
l,−r

∥∥∥2 − σ2s

is a term of pure noise. Lemma 16 states that it is controlled on event ξ
(p)
2 (S)

with high probability.

Lemma 16. There exists a constant c̄conc > 0 such that the event

ξ
(p)
2 (S) := ξ

(p)
2 (S, δ) =

{
∀(l, r) ∈ Jn,

∣∣∣∣r2 ∥∥∥ε̄(S)
l,+r − ε̄

(S)
l,−r

∥∥∥2 − σ2s

∣∣∣∣
≤ c̄concL

2
(√

s log
( n

rδ

)
+ log

( n

rδ

))}
holds with probability higher than 1 − 2δ.

The proof of this lemma is exactly the same as the one of Lemma 9, restricting
all vectors to S.

Set δs = δ/(2s
(
p
s

)
). Lemma 16 implies that with probability larger than 1−2δ,

∀(l, r) ∈ Jn, ∀S ⊂ [p]∣∣∣∣r2 ∥∥∥ε̄(S)
l,+r − ε̄

(S)
l,−r

∥∥∥2 − σ2s

∣∣∣∣ ≤ c̄concL
2

(√
s log

(
n

rδs

)
+ log

(
n

rδs

))
.

And so since
(
p
s

)
≤
(
ep
s

)s, we have probability larger than 1 − 2δ, ∀(l, r) ∈ Jn,
∀S ⊂ [p]∣∣r

2

∥∥∥ε̄(S)
l,+r − ε̄

(S)
l,−r

∥∥∥2 − σ2s
∣∣

≤ c̄concL
2

(√
s log

( n

rδ

)
+ s log

(
2ep
s

)
+ log

( n

rδ

)
+ s log

(
2ep
s

))

≤ 4c̄concL
2
(

log
( n

rδ

)
+ s log

(
2ep
s

))
.
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And so the event

ξ
(p)
2 := ξ

(p)
2 (δ) =

{
∀(l, r) ∈ Jn,∀S ⊂ [p],

∣∣∣∣r2 ∥∥∥ε̄(S)
l,+r − ε̄

(S)
l,−r

∥∥∥2 − σ2s

∣∣∣∣
≤ 4c̄concL

2
(

log
( n

rδ

)
+ s log

(
2ep
s

))} (39)

has probability larger than 1 − 2δ.
Set now

ξ(p) := ξ
(p)
1 ∩ ξ

(p)
2 .

Note that
P(ξ(p)) ≥ 1 − 3δ.

Step 2: Study in the ‘no change-point’ situation Consider (l, r) ∈ Jn
such that {τk, k ∈ [K]} ∩ [l − r, l + r) = ∅, and S ⊂ [p]. Note that since
{τk, k ∈ [K]} ∩ [l − r, l + r) = ∅, we have θ̄

(S)
l,−r = θ̄

(S)
l,+r so that

r

2

∥∥∥θ̄(S)
l,−r − θ̄

(S)
l,+r

∥∥∥2 = 0,

and
r〈ε̄(S)

l,+r − ε̄
(S)
l,−r, θ̄

(S)
l,+r − θ̄

(S)
l,−r〉 = 0.

Moreover we have on ξ(p) that – see Equation (39)∣∣∣∣r2 ∥∥∥ε̄(S)
l,+r − ε̄

(S)
l,−r

∥∥∥2 − σ2s

∣∣∣∣ ≤ 4c̄concL
2
(

log
( n

rδ

)
+ s log

(
2ep
s

))
≤ σ2x(p)

r ,

for c̄thresh ≥ 4c̄conc – note that c̄conc > 0 is a universal constant. And so

Ψ(p)
l,r ≤ x(p)

r ,

so that on ξ(d),
T

(p)
l,r = 0 .

This concludes the proof of the first part of the proposition.

Step 3: Study in the ‘change-point’ situation Consider k ∈ [K] such
that τk is a κ-sparse high-energy change-point, – see Equation (18). Since Sk is
the support of μk − μk−1 – and therefore of θ

τk,−r̄
(s)
k

− θ
τk,+r̄

(s)
k

– we have

r̄
(s)
k

2

∥∥∥∥θ̄(Sk)
τk,−r̄

(s)
k

− θ̄
(Sk)
τk,+r̄

(s)
k

∥∥∥∥2 ≥ κ

8L
2

(
sk log

(
2ep
sk

)
+ log

(
n

r̄
(s)
k δ

))
.

So on ξ(p) this implies that – see Lemma 15

r̄
(d)
k

∣∣∣∣〈ε̄(Sk)
τk,+r̄

(s)
k

− ε̄
(Sk)
τk,−r̄

(s)
k

, θ̄
(Sk)
τk,+r̄

(s)
k

− θ̄
(Sk)
τk,−r̄

(s)
k

〉
∣∣∣∣ ≤ r̄

(s)
k

4

∥∥∥θτk,+r̄
(s)
k

− θ
τk,−r̄

(s)
k

∥∥∥2 .
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Moreover we have on ξ(p) that – see Equation (39)∣∣∣∣∣ r̄
(s)
k

2

∥∥∥∥ε̄(Sk)
τk,+r̄

(s)
k

− ε̄
(Sk)
τk,−r̄

(s)
k

∥∥∥∥2 − σ2s

∣∣∣∣∣ ≤ 4c̄concL
2

(
log
(

n

r̄
(s)
k δ

)
+ 2sk log

(
2ep
sk

))
≤ σ2x

(p)
r̄
(s)
k

,

for c̄thresh ≥ 4c̄conc – note that c̄conc > 0 is a universal constant. And so on ξ(p),
combining the three previous displayed equations implies

Ψ(p)
τk,r̄

(s)
k

≥ r̄
(d)
k

4σ2

∥∥∥∥θ̄(Sk)
τk,+r̄

(s)
k

− θ̄
(Sk)
τk,−r̄

(s)
k

∥∥∥∥2 − x
(p)
r̄
(s)
k

≥
( κ

16 − c̄thresh

) L2

σ2

(
log
(

n

r̄
(s)
k δ

)
+ sk log

(
2ep
sk

))
> x

(p)
r̄
(s)
k

,

since κ > 32c̄thresh. And so on ξ(p)

T
(p)
τk,r̄

(s)
k

= 1.

This concludes the proof of the second part of the proposition.

B.3.3. Proof of Corollary 5

Let ξ(d) and ξ(s) be two events such that Proposition 3 and Proposition 4 both
hold with probability 1 − 3δ, and write ξ = ξ(d) ∩ ξ(p). From now on, we work
on the event ξ, which holds with probability 1− 6δ. Define here simply τ̄k = τk.
Note that by definition of r̄k in the sub-Gaussian regime:

r̄k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r̄
(d)
k if sk log

(
ep

sk

)
>

√
p log

(
n

rkδ

)

r̄
(s)
k if sk log

(
ep

sk

)
≤
√

p log
(

n

rkδ

)
According to Theorem 1, it is sufficient to prove that A (Θ, T,K∗, (τ̄k, r̄k)k∈K∗)
holds.

1. (No false positive): Tl,r = T
(p)
l,r ∨ T

(d)
l,r = 0 for any (l, r) ∈ GF ∩ H0. by

Proposition 3 and Proposition 4.
2. (Significant change-point detection): for every k ∈ K∗ (see (20)), we

have by definition of r̄k:
4(r̄k − 1) ≤ rk.

Now if sk log
(

ep
sk

)
≥
√
p log

(
n

rkδ

)
, we have T

(d)
τ̄k,r̄k

= 1 by Proposition 3,

by definition of c0, and for c̄
(d)
thresh as in Proposition 3.
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If sk log
(

ep
sk

)
≤
√

p log
(

n
rkδ

)
, we have T

(p)
τ̄k,r̄k

= 1 by Proposition 4, by

definition of c0, and for c̄
(p)
thresh as in Proposition 4.

Theorem 1 ensures that for all k ∈ K∗, there exists k′ ∈ [K̂] such that

|τ̂k′ − τk| ≤ r̄k − 1.

This concludes the proof since 4(r̄k − 1) ≤ rk for k ∈ K∗.

B.4. Proof of Theorem 2

Let us fix (r, s) ∈ [1, n/4] × [1, p]. Let Δ be such that

rΔ2 = 1
2σ

2
[
s log

(
1 + u

√
p

s

√
log
(n
r

))
+ u log

(n
r

)]
,

for some u ≤ 1
8 .

In what follows, we consider any change-point detection method that outputs
an estimator τ̂ of the change-points, associated to a number K̂ of detected
change-points, i.e. the length of τ̂ . We also write PΘ for the distribution of the
data when the mean parameter or the time series is fixed to a n× p matrix Θ,
i.e. of Θ + ε where the noise entries (εt)j are i.i.d. and follow N (0, σ2) as in
Section 3. Also abusing slightly notations, we write P0 for the distribution of
the data when the parameter is constant and equal to 0.

Consider also any prior π over the set of n×p matrices Θ such that the number
of true change-points over the support of the prior is larger than 1 – i.e. the
prior puts mass only on problems where more than one change-point occurs.
Let P̄π be the corresponding distribution of the data, namely the distribution
of the matrix of data when the mean parameter of the time series is the random
matrix Θ̃ ∼ π. Otherwise said, P̄π is the distribution of Θ̃ + ε where Θ̃ ∼ π.

We remind that in our setting K is the number of true change-points in a
given problem – which would be either 0 under P0, or more than 1 under P̄π. If
the support of π1 is included in P(r, s), then

sup
Θ∈P(r,s)

PΘ(K̂ �= K) ≥ 1
2

(
P̄π(K̂ = 0) + P0(K̂ �= 0)

)
≥ 1

2(1 − dTV (P̄π,P0)), (40)

where dTV is the total variation distance. From the Cauchy-Schwarz inequality,
we have

dTV (P̄π,P0) ≤
1
2

√
χ2(P̄π,P0), (41)

where χ2 is the divergence between probability distributions:

χ2(P̄π,P0) = EP0

[(
dP̄π

dP0
− 1
)2]

.
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By a simple computation that can be found for example in [47]

χ2(P̄π,P0) = EΘ̃,Θ̃′

[
e

1
σ2 〈Θ̃,Θ̃′〉

]
− 1, (42)

where Θ̃ and Θ̃′ are i.i.d. and distributed according to π, 〈Θ̃, Θ̃′〉 = Tr(Θ̃′Θ̃T ) is
the standard scalar product, and EΘ̃,Θ̃′ is the expectation according to Θ̃ and
Θ̃′.

Let us consider the three following cases for the couple (r, s):

Case 1 : u log
(n
r

)
≤ s log

(
1 + u

√
p

s

√
log
(n
r

))
and s ≤ u

√
p log

(n
r

)
,

Case 2 : u log
(n
r

)
≤ s log

(
1 + u

√
p

s

√
log
(n
r

))
and s > u

√
p log

(n
r

)
,

Case 3 : u log
(n
r

)
> s log

(
1 + u

√
p

s

√
log
(n
r

))
.

Each case corresponds to the regime of detection of one of the three statistics.
The first one corresponds to the Berk-Jones statistic, the second one to the
dense statistic and the last one to the partial norm statistic.

Case 1: In that case, rΔ2 ≤ σ2s log
(
4u p

s2 log
(
n
r

))
. Let us define a probabil-

ity distribution on the parameter Θ ∈ P(r, s). For ζ =
⌊
n
r

⌋
− 1 and l ∈ D̃r =

{1, r + 1, 2r + 1, . . . ζr + 1}, define the column vector vl =
∑l+r−1

j=l ej , where
ej is the jth element of the canonical basis of Rn. Let a be a random variable
uniformly distributed in {x ∈ {0, 1}p, |x|0 = s} and ν be a random variable
independent from a and uniformly distributed on {vl : l ∈ D̃r}. Let

Θ̃(1) = Δ√
s
aνT ∈ R

p×n,

and π1 be the distribution of the random variable Θ̃(1), and P̄π1 be the corre-
sponding distribution of the data.

Consider two independent copies Θ̃(1) and Θ̃′
(1) that are distributed like π1.

The probability that Θ̃(1) and Θ̃′
(1) have the same support is exactly 1

ζ+1 . Hence,
from Equation (42)

χ2(P̄π1 ,P0) = 1
ζ + 1

(
Ea,a′

[
e

rΔ2
sσ2 〈a,a′〉 − 1

])
, (43)

where a′ is an independent copy of a, and Ea,a′ is the expectation according to
a, a′. Remark by symmetry that 〈a, a′〉 has the same law as

∑s
i=1 ai. Hence

Ea,a′

[
e

rΔ2
sσ2 〈a,a′〉

]
= Ea

[
e

rΔ2
sσ2

s∑
i=1

ai

]
,
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where Ea is the expectation according to a.
Remark that (a1, . . . , ap) has the same distribution as a random sampling

without replacement of the list of length p containing (1, . . . , 1, 0, . . . , 0) – the
list containing exactly s times the quantity 1 and otherwise only 0. The following
lemma allows us to replace the variables ai by independent Bernoulli random
variables Zi ∼ B(s/p).
Lemma 17. Let c = (c1, . . . , cp) ∈ R

p. We associate to the list c two random
sampling processes: (i) the sampling process without replacement (Xi)i=1...s of s
elements uniformly on the list c and (ii) the sampling process with replacement
(Zi)i=1...s of s elements uniformly in the list. Then for any convex function f ,

E

[
f

(
s∑

i=1
Xi

)]
≤ E

[
f

(
s∑

i=1
Zi

)]
.

The proof of this lemma can be found in [19]. Thus, if (Zi)i=1...s is an i.i.d
sequence of Bernoulli variables with parameter s

p as described above, we obtain

χ2(P̄π1 ,P0) ≤
1

ζ + 1

(
EZ

[
e

rΔ2
sσ2

s∑
i=1

Zi

]
− 1
)

(44)

= 1
ζ + 1

[(
s

p
e

rΔ2
sσ2 + 1 − s

p

)s

− 1
]
≤ 1

ζ + 1

⎡⎣e s2
p

(
e
rΔ2
sσ2 −1

)
− 1

⎤⎦
≤ 2 r

n
e

s2
p

(
e
log
(
4u2 p

s2
log
(
n
r

)))
≤ 2
( r
n

)1−4u2

≤ 1 , (45)

where EZ is the expectation according to the (Zi)i and where in the last in-
equality we used u ≤ 1/3 and n ≥ 4r.

Case 2: In that case, rΔ2 ≤ σ2u
√
p log

(
n
r

)
. Let s0 =

⌈
u
√
p log

(
n
r

)⌉
and b

be a random variable uniformly distributed in {x ∈ {0, 1}p, |x|0 = s0} and ν be
defined as in Case 1. Let

Θ̃(2) = Δ
√
p
bνT ,

let π2 be the distribution of Θ̃(2) and P̄π2 be the associated probability distri-
bution of the data. Doing the same reasoning and similar computations as for
Case 1, see in particular the steps of Equations (43) and (44) – replacing s by
s0 and a by b – we have

χ2(P̄π2 ,P0) = EΘ̃(2),Θ̃′
(2)

[
e

1
σ2 〈Θ̃(2),Θ̃′

(2)〉
]
− 1

= 1
ζ + 1Eb,b′

[
e

rΔ2
pσ2 〈b,b′〉 − 1

]
≤ 1

ζ + 1

⎡⎢⎣e s20
p

(
e

rΔ2
s0σ2 −1

)
− 1

⎤⎥⎦
≤ 1

ζ + 1e
2 s0rΔ2

pσ2 ≤ 2 r
n
e4u log n

r = 2
( r
n

)1−4u
≤ 1 ,
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where EΘ̃(2),Θ̃′
(2)

is the expectation according to Θ̃(2), Θ̃′
(2) (where Θ̃′

(2) is an
independent copy of Θ̃(2)) and where Eb,b′ is the expectation according to b, b′

(where b′ is an independent copy of b), and where in the last step we used
u ≤ 1/8 and n ≥ 4r.

Case 3: In that case, rΔ2 ≤ u log
(
n
r

)
. Let c = (1, 0, 0, . . . , 0) be the vector

with 0 entries except the first one. Let ν be the random vector defined as in
Case 1. Let

Θ̃(3) = ΔcνT ,

and π3 be the distribution of the random variable Θ̃(3) – and P̄π3 be the associ-
ated probability distribution of the data. Doing the same reasoning as in Case
1 – see in particular the step of Equation (43) – replacing a by c and s by 1 –
for the prior π3, we obtain

χ2(P̄π3 ,P0) = EΘ̃(3),Θ̃′
(3)

[
e

1
σ2 〈Θ̃(3),Θ̃′

(3)〉
]
− 1

= 1
ζ + 1e

rΔ2
σ2

≤ 2 r
n
eu log

(
n
r

)

≤ 2
( r
n

)1−u

≤ 1 ,

(46)

where EΘ̃(3),Θ̃′
(3)

is the expectation according to Θ̃(3), Θ̃′
(3) (where Θ̃′

(3) is an
independent copy of Θ̃(3)) and where in the last step we used n ≥ 4r and
u ≤ 1/2.

Thus, in all cases – combining Equations (40) and (41) with Equations (45),
(46) and (46) – we obtain in all three cases

sup
Θ∈P(r,s)

PΘ(K̂ �= K) ≥ 1
4 .

and this concludes the proof.

B.5. Proofs for covariance and nonparametric change-point
detection

Proof of Proposition 5. Consider an r-sample (z1, . . . zr) with mean zero and
covariance matrix Σ and Orlicz norm B. Koltchinskii and Lounici [23] have
proved that, for any x > 0, the empirical covariance matrix Σ̂ = r−1(

∑r
i=1 ziz

T
i )

satistifies
‖Σ̂ − Σ‖op ≤ c′B2

[√
p

r
+ p

r
+
√

x

r
+ x

r

]
,

with probability higher than 1−exp(−x). Here c′ is a suitable positive constant.
Considering a union bound over all (l, r) ∈ GD such that Σt is constant over
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[l− r, l+ r), we have, with probability higher than 1− δ/2, that simultaneously
on all such r ∈ R and l ∈ Dr,

‖Σ̂l,r − Σ̂l,−r‖op ≤ ‖Σ̂l,r − Σl‖op + ‖Σ̂l,−r − Σl‖op

≤ 8c′B2

[√
p

r
+ p

r
+
√

log(2n/(rδ))
r

+ log(2n/(rδ))
r

]
,

where the constant 8 comes from the union bound on all elements of the grid.
As a consequence, the FWER of the multiple testing collection is at most δ/2
provided that we choose c0 ≤ 8c′.

Conversely, consider any high-energy change-point τk. Let rk be the smallest
radius r ∈ R such that

r‖Στk − Στk−1‖2
op ≥ 0.25c1B4

[(
p + log

(
2n
rδ

))
∧ r

]
. (47)

and consider the closest location l ∈ Dr of τk so that |l− τk| ≤ r/2. To ease the
notation, we still write r for rk. Without loss of generality, we assume that l ≥ τk.
Let us decompose the statistic Σ̂l,−r = r−l+τk

r Σ̂τk,−(r−l+τk) + l−τk
r Σ̂l,−(l−τk).

Since r ≤ rk/2, Σt is constant over [l−r, τk) and over [τk, l+r). Then, we apply
three times the deviation inequality of Koltchinskii and Lounici [23] to get

‖Σ̂l,r − Σ̂l,−r‖op

≥ r − l + τk
r

‖Στk − Στk−1‖op − ‖Σ̂l,r − Στk‖op

− l − τk
r

‖Σ̂l,−(l−τk) − Στk‖op −
r − l + τk

r
‖Σ̂τk,−(r−l+τk) − Στk−1‖op

≥ 1
2‖Στk − Στk−1‖op − c′′B2

[√
p

r
+ p

r
+
√

log(2n/(rδ))
r

+ log(2n/(rδ))
r

]
,

with probability higher than 1−0.5δ[r/(2n)]2. As a consequence, we have Tl,r =
1 provided that

‖Στk −Στk−1‖op ≥ 2(c′′ + c0)B2

[√
p

r
+ p

r
+
√

log(2n/(rδ))
r

+ log(2n/(rδ))
r

]
.

Since ‖Στk − Στk−1‖op ≤ 2B2 and if we choose c1 ≥ 17 ∨ 32(c′′ + c0), the
bound (47) is achievable only if r ≥ p + log(2n/(rδ)) and we deduce from (47)
that Tl,r = 1.

Taking a union bound over all high-energy change-points, we deduce from
Theorem 1 that, with probability higher than 1 − δ, τ̂ achieves (NoSp) and
detects all high-energy change-points. Besides, the localization error (25) is a
consequence of the definition (47) together with Theorem 1.

Proof of Proposition 6. As in the proof of Theorem 2, we only consider a specific
setting where one aims at testing K = 0 with Σ1 = Ip versus K = 2 with τ1 ∈
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(n/4; 3n/4), τ2 = τ1 + r, Σ1 = Στ2 = Ip and Στ1 = Ip + ζuuT for some unknown
unit vector u in R

p. Obviously, we have r1 = r2 = r and ‖Στ1 − Στ0‖op =
‖Στ2 − Στ1‖op = ζ so that it suffices to prove that the sum of the type I and
type II error probabilities of any test of these hypotheses is bounded away from
zero. We consider two subcases:

Case 1: ζ ≤ c′
√

p/r∧ 1√
2 . Then, we focus on the specific alternative hypothesis

where τ1 = �n/2� and τ2 = τ1+r, so that the problem reduces exactly to testing
whether the covariance matrix Σ of a r-sample satisfies Σ = Ip or whether
Σ = Ip + ζuuT . This hypothesis testing problem for covariance matrices is well
understood. In particular, one can deduce from Theorem 5.1 in [3] that, as soon
as ζ ≤ c′[

√
p/r ∧ 1], for some c′ sufficiently small, one has

inf
τ̂

sup
Θ∈P̄(r,ζ)

PΘ(K̂ �= K) ≥ 1
4 .

Case 2: ζ ≤ c′
√

log(n/r)/r ∧ 1/
√

2. Here, we consider another specific class of
alternative hypotheses where we fix u = (1, 0, . . . , 0) but τ1 can take different
values, i.e. τ1 ∈ {�n/4�, �n/4� + r, . . . , �n/4� + r�n/2r�}. It turns out that this
is equivalent to a univariate variance testing problem where one observes q =
�n/(2r)� samples of size r with distributions N (0, σ2

1), . . . , N (0, σ2
q ). Under the

null, we have σ1 = σ2 = . . . = σq = 1. Under the alternative, for some j ∈ [q],
we have σj =

√
1 + ζ and σl = 1 for l �= j. For j = 1, . . . , q, write Pj for

the distributions of the j-th sample of size r when σ2
j = 1 + ζ and σl = 1 for

l �= j. Besides, we write Lj for the corresponding likelihood ratio with the null
distribution P0. Then, the mixture distribution is defined as P = 1

q

∑q
j=1 Pj

whereas L stands for the mean likelihood ratio. Following the classical path of
Le Cam’s method we obtain that, for any test T ,

P0[T = 1] + sup
j=1,...,q

Pj [T = 0] ≥ P0[T = 1] + P[T = 0] ≥ 1 − ‖P0 −P‖TV ,

where ‖.‖TV is the total variation norm. Using Cauchy-Schwarz inequality, we
bound this total variation distance between the covariates

‖P0 −P‖TV ≤ E0

[
L

2]− 1

= 1
q

(
E0
[
L2
i

]
− 1
)

= 1
q

[
(1 − ζ2)−r/2 − 1

]
≤ 1

q

[
erζ

2 − 1
]
,

since ζ ∈ (0, 1/2). As a consequence, we derive that ‖P0 −P‖TV ≤ 1/4 as long
as rζ2 ≤ c′ log(q) ∧ 1. The result follows.

Proof of Proposition 7. The proof is based on an application of
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Dvoretzky–Kiefer–Wolfowitz (DKW) inequality [4] together with a union
bound. For a q sample of a univariate distribution with empirical distribution
function F̂ and true distribution function F , DKW inequality ensures that

P

[
‖F̂ − F‖∞ ≥

√
x

2q

]
≤ 2e−x.

Applying two-times DKW inequality to each statistic Tl,r such that no-change-
point occurs on (l − r, l + r), we deduce that, setting c1 sufficiently larger, the
FWER of (Tl,r) is at most δ/2 by summing the probabilities over all scales r ∈ R
and by a union bound on all l ∈ Dr.

Turning to the high-energy change points, we consider τk satisfying (26). Let
rk be the smallest radius r ∈ R such that

r‖Fτk − Fτk−1‖2
∞ ≥ 0.25c1

log
(

n
rδ

)
m

, (48)

and consider the closest location l ∈ Dr of τk so that |l− τk| ≤ r/2 and 2r ≤ rk.
To ease the notation, we still write r for rk. As in the proof of Proposition 5,
we decompose the statistic

l+r−1∑
t=l

F̂t −
l−1∑

t=l−r

F̂t =
l+r−1∑
t=l

F̂t −
τk−1∑
t=l−r

F̂t −
l−1∑
t=τk

F̂t,

and apply DKW inequality to each of three sums. Taking the union bound over
all possible Tl,r we deduce that, with probability higher than 1 − δ/2

r−1‖
l+r−1∑
t=l

F̂t −
l−1∑

t=l−r

F̂t‖∞ ≥ 1
2‖Fτk − Fτk−1‖∞ − c′′

√
log(4n/rδ)

mr
,

so that in view of Condition (48) implies that Tl,r = 1. Applying Theorem 1
allows us to conclude.

Proof of Proposition 8. As in the proof of Proposition 6, we focus on a simpler
testing problem. Write U for the cumulative distribution function of the uniform
distribution on [0, 1], i.e. U(x) = x for any x ∈ [0, 1]. Given ζ ∈ (0, 1/4),
we define the cumulative distribution function Uζ by Uζ(x) = (1 + 2ζ)x for
x ∈ [0, 1/2] and Uζ(x) = (1/2+ ζ)+ (1− 2ζ)(x− 1/2) for x ∈ [1/2, 1]. Note that
‖Uζ − U‖∞ = ζ.

We focus on a testing problem where, under the null, Ft = U for all t =
1, . . . , n, whereas under the alternative there exists

τ1 ∈ {�n/4�, �n/4� + r, . . . , �n/4� + (r − 1)�n/(2r)�} such that Ft = Uζ

for t = τ1, . . . , τ1 + r − 1 and Ft = U otherwise. Defining q = �n/(2r)�, we
observe that this amounts to testing whether q samples of size rm are distributed
according the null distribution or whether exactly one of them is distributed
according to Uζ . Arguing again in the proof of Proposition 6, we only need
to bound the total variation distance between the distribution P0 under the
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null and the mixture distribution q−1∑q
j=1 Pj of the q possible alternatives –

here P0 = ⊗q
k=1U

⊗(rm) is the distribution of the samples when Ft = U and
Pj =

[
⊗j−1

k=1U
⊗(rm)

]
⊗U

⊗(rm)
ζ ⊗

[
⊗q

k=j+1U
⊗(rm)

]
, is for j ≥ 1 the distribution

of the samples when Ft = U except for t ∈ [jr, (j + 1)r), in which case Ft = Uζ .
Let z be a uniform random variable over [0, 1] and w be an independent

Bernoulli random variable with parameter 1/2. Then, one easily checks that
z/2 +w/2 is uniformly distributed on [0, 1]. If w is a Bernoulli random variable
with parameter 1/2−2ζ, then one easily checks that the cumulative distribution
function of z/2 + w/2 is Fζ . As a consequence, by a standard data-processing
inequality [47], one derives that

‖P0 − q−1
q∑

j=1
Pj‖TV ≤ ‖P̃0 − q−1

q∑
j=1

P̃j‖TV ,

where under P̃0 one observes q independent Binomial random variables with
parameter (mr, 1/2), whereas under P̃j , the j-th observation follows a Binomial
distribution with parameter (mr, 1/2 − 2ζ). Using Cauchy-Schwarz inequality,
we upper bound the square of the total variation distance by the χ2 distance
and then compute it explicitly. This leads us to

‖P̃0 − q−1
q∑

j=1
P̃j‖2

TV ≤ 1
q

[
(1 + 16ζ2)rm − 1

]
,

which is smaller than 1/4 provided that 16rmζ2 ≤ log(q/4 + 1). If we choose c′

small enough in the statement of the proposition, this last condition holds and
the result follows.
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