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Abstract: Glucose-6-phosphate dehydrogenase (G6PDH) catalyzes a metabolic hub between glycoly-
sis and the pentose phosphate pathway (PPP), which is the oxidation of glucose-6-phosphate (G6P) to
6-phosphogluconolactone concomitantly with the production of nicotinamide adenine dinucleotide
phosphate (NADPH), a reducing power. It is considered to be the rate-limiting step that governs
carbon flow through the oxidative pentose phosphate pathway (OPPP). The OPPP is the main sup-
plier of reductant (NADPH) for several “reducing” biosynthetic reactions. Although it is involved in
multiple physiological processes, current knowledge on its exact role and regulation is still piecemeal.
The present review provides a concise and comprehensive picture of the diversity of plant G6PDHs
and their role in seed germination, nitrogen assimilation, plant branching, and plant response to
abiotic stress. This work will help define future research directions to improve our knowledge of
G6PDHs in plant physiology and to integrate this hidden player in plant performance.

Keywords: glucose-6-phosphate dehydrogenase; seed germination; apical dominance; sugar
signaling; abiotic stress; ROS

1. Introduction

Plant performance intrinsically depends on balanced carbon flux through intercon-
nected metabolic hubs. Glucose-6-phosphate dehydrogenases (G6PDHs) catalyze a metabolic
node between glycolysis and the pentose phosphate pathway (PPP), i.e., the oxidation of
glucose -6-phosphate (G6P)—A substrate generated by hexokinase during glycolysis—to
6-phosphogluconolactone, concomitant with the production of the reductant nicotinamide
adenine dinucleotide phosphate (NADPH). This reaction is considered as the rate-limiting
step of the oxidative pentose phosphate pathway (OPPP), and controls OPPP-dependent
carbohydrate allocation [1–3]. The PPP is divided into two branches with two distinct
functions. The OPPP is the irreversible oxidative branch of the PPP. It comprises three
irreversible reactions that convert glucose 6 phosphate (G6P) into carbon dioxide (CO2)
and ribulose-5-phosphate (Ru5P, a pentose phosphate) while two molecules of NADPH
are produced (Figure 1). Ru5P becomes the substrate of the reversible non-oxidative phase
(NOPPP), which is the reversible branch of the PPP. The second branch is the non-oxidative
pentose pathway (NOPP). It is composed of reversible transaldolase and transketolase
reactions enabling the cell to control carbon flux between the PPP and glycolysis [3–6].
Including two NADPH-producing steps, the OPPP is the main provider of reductant
(NADPH) for “reductive” biosynthetic reactions (e.g., assimilation of inorganic nitrogen,
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fatty acid synthesis) and for ROS scavenging. The NOPPP rather provides precursors
(ribose-5-phosphate; erythrose-4-phosphate) for aromatic amino-acid, nucleotide, and co-
factor synthesis [3,6]. The OPPP is an almost ubiquitous pathway, present in all eukaryotic
cells and most bacteria, and seems to be more recent than the NOPPP in evolution [3,5].
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Figure 1. Overview of the reactions of the pentose phosphate pathway (PPP) and its connection
to glycolysis. The glycolytic pathway is colored in green. The oxidative part of the PPP is col-
ored in orange, the non-oxidative part in purple; one-headed arrows designate physiologically
irreversible reactions, two-headed arrows reversible ones; abbreviation meanings: G6PDH, glucose-6-
phosphate dehydrogenase (EC 1.1.1.49); 6PGL, 6-phosphogluconolactonase (EC 3.1.1.31); 6PGDH,
6-phosphogluconate dehydrogenase (EC 1.1.1.44); RPI, ribose-5-phosphate isomerase (EC 5.3.1.6);
RuPE, ribulose-5-phosphate 3-epimerase (EC 5.1.3.1); TKT, transketolase (EC 2.2.1.1); TAL, transal-
dolase (EC 2.2.1.2); PHI, hexose-6-phosphate isomerase (EC 5.3.1.9); SBPase, sedoheptulose-1,7-
bisphosphatase (EC 3.1.3.37); other details in the text.

G6PDH was discovered in the early 1930s, when Otto Warburg et al. investigated
the enzymatic oxidation of glucose-6-phosphate to 6-phosphogluconate (6PG) in yeast.
It was initially called Zwischenferment (ZWF1) or intermediate enzyme [5]. Plant G6PD-
cDNA sequences were first isolated from potato [7–9] and have been identified in several
monocot and dicot crops [4,10]. Although the available results are assigned to a variety
of fundamental processes, including those related to plant growth and plant resistance to
abiotic stress, most of them are still piecemeal. This situation hampers the building up of a
comprehensive picture of its central role throughout plant life cycle and prevents us from
obtaining further insights into the main regulatory network governing its involvement in
plant growth and resistance to stresses. We propose a concise overview of the diversity
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of plant G6PDHs and their mechanisms of regulation, and of their role in four main
plant physiological processes: seed germination, nitrogen assimilation, plant branching,
and plant response to abiotic stresses. This work will provide a solid basis for future
lines of research aimed at improving our knowledge of G6PDHs in plant physiology and
integrating this hidden player in plant resilience to climate change.

2. Classification and Regulation of G6PDH

In higher plants, G6PDHs reside in two cellular compartments, the cytosol and plas-
tids [11,12]. Genome-wide analysis of Arabidopsis G6PDH indicates the existence of four
plastidial (pla-G6PD) and two cytosolic (cy-G6PD) isoforms [13,14], also reported in several
crops [15,16]. Plastidial G6PDH comprises three functional isoforms belonging to two dis-
tinct groups [P1 (G6PD1), P2 (G6PD2, G6PD3)] and a non-functional one (G6PD4) belonging
to the P0 group. Cytoplasmic G6PDH is divided into two groups [P5 (G6PDH5) and P6
(G6PDH6)], providing 60–80% of the total activity. Besides their respective location, these
G6PDH isoforms differ by their amino-sequences and their mode of regulation (Figure 2).
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Figure 2. Comparison of different G6PDH isoforms from 8 higher plants; (A), phylogenetic tree
showing the relative positions of 39 different gene encoding isoforms from higher plants, inferring
by the maximum likelihood method of complete protein sequences; 10 sequences are P1-G6PDH,
10 sequences are P2-G6PDH, 8 sequences are P0-G6PDH; and 11 sequences are Cy-G6PDH. Legend for
plant species: At, Arabidopsis thaliana; Os, Oryza sativa Japonica Group; Zm, Zea mays; Rc, Rosa chinensis;
Vit, Vitis vinifera; Pp, Prunus persica; Solyc, Solanum lycopersicum; St, Solanum tuberosum. (B), List of
G6PDH isoforms and their relative gene symbol from different higher plants, summarizing from the
phylogenetic tree constructed in (A). The complete list of sequences using for tree construction is
showed in Table S1.
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2.1. P1-G6PDH

The chloroplastic G6PDH has been defined as a P1-G6PDH and is mainly post-
transcriptionally inhibited by high redox status (a high content of NADPH) and accu-
mulation of ribulose-5P [17,18]. During photosynthetic electron transport in the light, a
redox chain (the ferredoxin/thioredoxin system) inactivates the P1-G6PDH to guarantee
an efficient photosynthesis, which activates the Calvin cycle and several stromal target
enzymes such as fructose-1,6-bisphosphatase, NADP-malate dehydrogenase, phospho-
ribulokinase, and others [7,19]. This inhibitory effect of P1-G6PDH is removed in the dark
when the NADPH level dropped, enabling the activation of the OPPP pathway to produce
reducing equivalents [20].

2.2. P2-G6PDH

The plastidial P2-G6PDH is highly related to the rate of the OPPP, and expressed in
almost all plant organs including growing tissues, photosynthetic, and non-photosynthetic
tissues [13,21]. The activity of P2-G6PDH is more likely to be regulated in a similar manner
as P1-G6PD, but their sensitivity to NADPH differs [22,23]. P2-G6PDH exhibits a 5–10 fold
higher inhibition by NADPH than Cy-G6PDH and P1-G6PDH [24]. In addition, P2-G6PDH
is much less sensitive than P1-G6PDH to regulation by thioredoxin and glutathione (GSH).
A relatively significant role of P2-G6PDH generally consists in providing reductant in
heterotrophic tissues in the absence of photochemical generation of reductants.

2.3. The Enigmatic P0-G6PDH

P0-G6PDH is considered as an enigmatic isoform found in peroxisomes and without
any enzymatic activity. P1-G6PDH is involved in cysteine-dependent interaction with
P0-G6PDH [25]. Due to the presence of a peroxisome targeting sequence (PTS) at the
C-terminus of P0-G6PDH, these heterodimers can enter peroxisomes [26]. It is generally
believed that the oxidative portion of the PPP exists in peroxisomes [27,28]. Additionally,
some irreversible reactions of PPP are catalyzed by 6-phosphogluconolactonase (6-PGL)
and 6-phosphogluconate dehydrogenase (6PGDH), both localized in the Arabidopsis
peroxisome; hence, it is considered an efficient NADPH production mechanism in this
organelle [26,29,30].

2.4. Cytosolic G6PDH (Cy-G6PDH)

In higher plants, the two cytosolic isoforms G6PD5 and G6PD6 are differently ex-
pressed in various tissues, even though they were initially purified from roots [13,21,31,32].
The cy-G6PD isoform is lowly sensitive to energy changes, which are regulated by the
NADPH/NADP+ ratio and inhibited by NADPH [31]. However, the activity of Cy-G6PDH
is regulated by a sugar-sensing mechanism, and plays an important role in amino acid
biosynthesis according to the carbon status of plants [33]. Moreover, Cy-G6PDH expression
is tightly induced by abscisic acid (ABA; Hou et al., 2006) and sensitive to light [34], which
mainly control the activity of P1-G6PDH [35].

3. G6PDH and Seed Germination

In the 1980s, a great deal of studies carried out on several species (e.g., Gossypium,
Pisum sativum, Arachis hypogaea, Prunus cerasus, Phaseolus mungo, Avena fatua) reported a
tight correlation between dormancy breaking treatments and increased G6PDH activity.
These investigations were based on the activity of the two cytosolic enzymes of the OPPP
(G6PDH and 6-PDGH) and one glycolysis-related enzyme (aldolase) in seed tissues during
dormancy-breaking treatments (e.g., stratification, after-ripening). Aldolase catalyzes the
conversion of fructose 1-6-diphosphate to glyceraldehyde 3-phosphate and dihydroxy-
acetone phosphate through the glycolysis pathway [36]. These authors hypothesized that
activation of the OPPP in germinating seeds played a pivotal role in dormancy breaking
and storage mobilization by controlling redox homeostasis and enzyme activities [37–43].
The OPPP was found highly induced during seed germination, much more so in the
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endosperm than in the radicle [44]. The specificity of the spatial regulation of the OPPP
pointed out the respective roles of these sub-compartments in the regulation of Arabidopsis
seed germination.

The involvement of different isoforms of G6PDH—cytosolic as well as plastidial
ones—in dormancy release was investigated. It was proposed that Cy-G6PDH controls
germination by maintaining a steady-state level of ROS (Figure 3) required for breaking
dormancy [45,46], yet a limited one to avoid excessive oxidative damage in the root apical
meristems [47]. Genetic evidence supports that ROS provided by NADPH oxidase in
germinating seeds under salt stress stimulate the two cytosolic G6PDHs (Cy-G6PDH5
and Cy-G6PDH6) and increase the cytosolic NADPH content, which in turn dampens
ROS damage by activating the GSH–ascorbate cycle involved in H2O2 scavenging [48].
Using cy-g6pdh deficient mutants, researchers demonstrated that Cy-G6PD5 is required to
release dormancy and reduce seed sensitivity to ABA—a hormone involved in germination
inhibition—through the repression of the Abscisic Acid Insensitive 5 (ABI5) gene [49]. The
authors described that ABA induces excessive accumulation of ROS in germinating seeds
and seedlings of the cy-g6pd5-deficient mutant. ROS control dormancy through post-
transcriptional regulation by selective proteins and via RNA oxidation [50,51], cell wall
loosening for cell wall elongation, and endosperm weakening [52], the response to ethylene,
or through the control of the ABA catabolism/GA biosynthesis [53,54]. Nevertheless, to
avoid the deleterious effects of ROS, their level must be finely balanced by the reducing
power or detoxifying enzymes that seem to be largely provided by OPPP-derived NADPH.
Moreover, Cy-G6PD is described to be induced by ABA, hydrogen peroxide (H2O2), or
nitric oxide (NO) [15,49,55] and is crucial for plant tolerance to stresses, more likely by
maintaining the redox balance [33]. Controlling the redox status of the germinating seeds
should be central to optimize plant fitness. At this developmental stage, cyt-G6PDH may
modulate both the adaptive mechanisms of dormancy and the plant responses to biotic
and abiotic stresses.
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Figure 3. Cytosolic G6PDH in radicle of imbibed seed modulates ROS homeostasis and hormonal
signaling in the control of seed germination. The NADPH provided by cytosolic G6PDH activity
is required both for ROS production by NADPH oxidase and for ROS scavenging by activation of
GSH ascorbate cycle; the working model based on genetic evidence proposed that G6PDH modulates
ROS to a steady state level controlling ABA and GA activities and dormancy release; GSH, reduced
glutathione; ROS, reactive oxygen species; ABA, abscisic acid; GA, gibberellic acid.



Int. J. Mol. Sci. 2022, 23, 16128 6 of 16

The contribution of G6PDH in reserve mobilization through the regulation of thiore-
doxin (Trx) at the end of germination has also been suggested. Many investigations have
underlined the important role of NADPH-dependent Trx systems in reserve mobiliza-
tion [56–61]. Cytosolic Trx-dependent reduction in storage proteins provides essential
organic resources for the transition of germinating seeds to autotrophic seedlings. More-
over, seed plastidial y-type Trxs (Trx y) induce plastidial P1-G6PDH, a major source of
reducing power in heterotrophic tissues [62]. A functional genetic approach documented
that y-type Trxs contribute to seed germination by regulating ROS levels through the
activation of plastidial G6PDH [37,63].

Elucidating the molecular mechanisms whereby G6PDH controls the hormonal
metabolism and hormone sensing, ROS detoxification, but also the carbon metabolism
and carbon reallocation during the germinating-seed-to-autotrophic-seedling transition
will be crucial in the near future (Figure 3). A recent analysis of the whole transcriptome
changes following nitrate treatment during seed imbibition showed that genes involved in
nitrate assimilation and transport as well as the plastidial P2-G6PDH were upregulated,
highlighting a potential link between G6PDH and the well-known nitrate signaling effect
on the ABA catabolism and dormancy release.

4. G6PDHs and Nitrogen Assimilation

Nitrogen (N) is one of the most limiting factors for plant growth and productivity. Con-
sequently, plants have various mechanisms for maximum N efficiency [64]. Plant nitrogen
nutrition occurs through organic (amino acids, urea) and inorganic (nitrate, ammonium)
forms of nitrogen and is governed by a complex regulatory network [65,66]. The main route
of nitrate assimilation involves nitrate reductase (NR) and nitrite reductase (NiR), resulting
in its reduction into ammonium (NH4), which is incorporated into amino acids through the
joint action of glutamine synthetase (GS) and the glutamine oxoglutarate aminotransferase
(GOGAT) cycle [67–69]. A link between the OPPP and inorganic nitrogen assimilation has
mainly been reported in non-photosynthetic tissues (e.g., root systems), with a prevailing
role of plastidial G6PDH [19], which can meet the high demand for reducing power upon
nitrogen assimilation [3]. Early data showed that NiR activity in barley roots relies on
elevated levels of NADPH, suggesting that G6PDH could play a key role during nitrate
assimilation [70]. In accordance with this, synthesis of glutamate (a final product of the
GOGAT cycle) by isolated pea root plastids fed with two GOGAT substrates (glutamine
and 2-oxoglutarate) requires the OPPP substrates (Glc6P, ribose P), coordinated with the
reducing activity of G6PDH [70,71]. Exogenous supply of inorganic nitrogen (nitrate or
ammonium) to barley roots induced plastidial G6PDH at both the transcriptional and
protein levels [21,72]. This nitrate-dependent upregulation of G6PDH was also reported in
seedlings of NIR knockout mutants, assuming that it is directly triggered by the nitrate-
related signaling pathway [73,74]. This fine tuning between nitrogen and the OPPP was
transposed to the induction of the major root nitrate uptake transporters (NRT1.1 and
NRT2.2) in Arabidopsis roots [75,76]. In this case, photosynthesis-derived sugar induces
nitrate transporters in the roots, which are repressed by 6-amino-nicotinamide (6-AN), an
inhibitor of both G6PDH and 6PGDH (6-phospho-gluco-dehydrogenase) [77,78]. This effect
is independent of the hexokinase- and trehalose-6P signaling pathway [75], supporting
that sugar-dependent upregulation of nitrate transporters involves an OPPP-dependent
signaling mechanism. Taken together, the OPPP and nitrogen uptake/assimilation by
heterotrophic organs (roots) are a tightly coordinated process [79], with a key role of root
plastidial G6PDH [3]. Huge efforts are still required to disclose the molecular regula-
tory network mechanisms governing this coordination between nitrogen assimilation and
G6PDH regulation. Early studies indicate that the promoter sequences of NiR and G6PDH
present the same NIT2 motif, which is a N-metabolism regulating factor [80,81]. Based on
this, a promising line of study would be to investigate this close relationship between the
OPPP and nitrogen assimilation in other non-photosynthetic organs such as vegetative
buds, which also require organic and inorganic nitrogen to sustain their outgrowing activ-
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ity [65]. Such a study would obviously bring new insights into the common and specific
mechanisms in different biological contexts.

5. G6PDHs and Plant Branching

Shoot branching is crucial for plant development and yield and is greatly dependent
on the ability of axillary buds to grow out along the stem [82–84]. Bud outgrowth is very
finely regulated by multiple endogenous (e.g., hormones, sugar) and exogenous (e.g., light,
water stress) cues [85–92]. In this intricate regulation, sugars behave as signaling entities
that promote bud outgrowth through several sugar signaling pathways corresponding to
the trehalose 6P-, hexokinase-, glycolysis/tricarboxylic acid (TCA)-, and OPPP-dependent
signaling pathways [83,93,94]. The involvement of the OPPP in plant branching was
identified following the discovery that bud outgrowth relies on the bud H2O2 content:
cytokinins (CKs) promote bud outgrowth by reducing H2O2 through the induction of the
GSH/ascorbate cycle, and, conversely, H2O2 accumulation reduces bud ability to grow
out [95,96]. The authors of [94] first evidenced the role of the OPPP in sugar branching
by demonstrating that the promotive effect of sucrose on bud outgrowth is repressed by
6-AN—an inhibitor of G6PDH—in Rosa sp. Molecular experiments conducted on in vitro-
cultured vegetative buds and on stably transformed Rosa calluses revealed that the OPPP-
dependent signaling pathway is involved in both sugar-mediated transcriptional (promoter
level) and posttranscriptional (3′untranslated region) downregulation of Teosinte Branched
1/Branched1 (TB1/BRC1) [91,94,97]. BRC1 is the main inhibitor of shoot branching [98].
An OPPP-specific 300-bp region was identified in the BRC1 promoter between 1900 and
1600 bp [94]; its 3′UTR contains six putative motifs of the Pumilio/FBF RNA-binding
protein family (PUF) [97]. One future task will consist of deciphering the molecular
mechanisms underlying the OPPP-mediated downregulation of BRC1.

6. G6PDHs and Sugar Signaling

Sugar perception and signaling enable plants to integrate various internal and external
cues to achieve nutrient homeostasis, mediate developmental programs, and orchestrate
their stress response [99,100]. To sense different sugars, plants have evolved a complex
mechanistic system that includes hexose-, disaccharide-, and the OPPP–signaling path-
ways [101,102]. The OPPP–dependent signaling pathway has been reported in two biologi-
cal contexts related to sink organs. It drives sugar-mediated stimulation of nitrogen and
sulfur acquisition by the roots, downstream and independently of hexokinase signaling and
the trehalose-6P signaling pathway [75,76]. It has also been described as a main signaling
route of sugar-dependent stimulation of bud outgrowth [94]. However, OPPP-dependent
sugar signaling might be more complex and operate through different pathways [75,79].
Three hypotheses are still plausible: (1) one of the carbon metabolites generated through the
OPPP could act as a cue; (2) an enzyme of the OPPP—e.g., G6PDH—could exhibit a dual
(catalytic and signaling) function like hexokinase (HXK) does [103]; and (3) NADPH result-
ing from G6PDH activity could be involved in redox regulation via the NADPH-dependent
signaling pathway. This latter hypothesis was recently reported for the sugar-mediated
regulation of NRT2.1 expression in the roots, which is related to the redox status of the
plant [104]. This regulatory mechanism might also be involved in the OPPP-mediated
sugar stimulation of bud outgrowth. Recent data indicate that the ability of Rosa buds to
grow out depends on their redox status: high levels of H2O2 in the buds strongly prevent
outgrowth, while high activity of the GSH–ascorbate cycle, which is directly linked to the
activity of G6PDH, decreases the H2O2 content and promotes bud outgrowth [95]. The
relevance of the GSH–ascorbate cycle has been confirmed for CK-induced bud outgrowth
under darkness [96]. In this case, CKs positively affect GSH synthesis to stimulate H2O2
scavenging, and this allows for bud outgrowth [96]. However, whether CKs regulate
G6PDH inside the buds still remains to be unveiled, while we do know that G6PDH is
upregulated by sugar [90]. It will be of great interest to deeply investigate the role of
G6PDH in bud outgrowth regulation by sugars, hormones, and ROS, and to identify the
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OPPP-dependent regulatory molecular network. All these findings lay the cornerstones for
deciphering the exact role of G6PDH in shoot branching, for instance, by characterizing the
branching phenotype of G6PDH-deficient Arabidopsis mutants.

7. G6PDH and Abiotic Stress
7.1. Identification of Link between G6PDH and Abiotic Stress

As sessile organisms, plants have to cope with various abiotic stresses such as salin-
ity, drought, or temperature changes [105]. G6PDHs play a crucial function in modu-
lating redox homeostasis when plants are exposed to abiotic stresses [3,106–108]. Some
researchers found the role of a cytosolic G6PDH (NbG6PDH-Cyto) and two plastidial iso-
forms of G6PDH (NbG6PDH-P1 and NbG6PDH-P2) in the stress physiology of Nicotiana
benthamiana [109]. ROS production in link with hypersensitive-response (HR) cell death and
NADPH oxidase (NOX, also known as respiratory burst oxidase, RBOH) activity decreased
in NbG6PDH-P2-silenced plants. Silencing of the cytosolic NAD kinase NbNADK1, which
phosphorylates NADH to NADPH, compromised HR cell death and ROS production. The
concomitant silencing of NbG6PDH-P2 reduced HR cell death and ROS down to levels near
those of NbG6PDH-P2-silenced plants. These authors suggested that NADPH produced by
NbG6PDH-P2 was responsible for HR cell death and ROS production mediated by RBOH.
Increased G6PDH activity could also stimulate ROS generation by regulating NADPH
oxidase activity in rice [110]. G6PDH may be involved in maintaining redox homeostasis
by regulating the activity of superoxide dismutase (SOD), peroxidase (POD), and ascorbate
peroxidase (APX) [111–113]. Treatment with Acibenzolar-S-methyl (an inducer of disease
resistance in plants) increased G6PDH activity and the ascorbic acid (AsA) level, while the
GSH and NADPH contents and the expression level of redox homeostasis-related genes
such as SOD, APX, or dehydroascorbate reductase (DHAR) were reduced [114]. G6PDH
activity markedly increased in soybean under drought stress [115]. Upon PEG6000 treat-
ment, the activity of the antioxidant enzymatic machinery (superoxide dismutase (SOD),
catalase (CAT), peroxidase (POD), glutathione reductase (GR), dehydroascorbate reductase
(DHAR), monodehydroascorbate reductase (MDHAR)) increased in soybean, and GSH
and ascorbic acid (AsA) reached elevated levels; once again, these results demonstrate that
G6PDH plays a central role in redox homeostasis by maintaining the GSH and Asc levels.

7.2. Saline-Alkaline Stress and Aluminum Toxicity

Saline-alkaline stress is one of the most serious global issues in plant production [116–118].
The metabolic changes triggered by salt stress result in a high need for reductants supplied
by the OPPP, consistently with increased total G6PDH activity [119]. Arabidopsis thaliana
glycogen synthase kinase3 (ASKα) regulates stress tolerance by activating G6PDH, which
is essential for maintaining the cellular redox balance. Loss of stress-activated ASKα

impairs G6PDH activity, increases ROS levels, and enhances sensitivity to salt stress,
while ASKα-overexpressing plants exhibit high G6PDH activity, lower ROS levels and
are more tolerant to salt stress [33]. In wheat (Triticum aestivum L.), G6PDH transcripts
were rapidly induced at the early stage of NaCl treatment (almost a 2.2-fold increase),
indicating that G6PDH is involved in the initial response of plants to salt stress [120]. In
highland barley (Hordeum vulgare var. nudum Hook. f.), cy-G6PDH confers resistance to
alkaline stress and ultimately improves fresh weight and photosynthetic activity through
NADPH production and accumulation of reduced GSH [121]. In line with these results,
some researchers cloned five G6PDH genes (HvG6PDH1 to HvG6PDH5) from highland
barley and characterized their respective roles in the response to abiotic stresses. The
analysis of enzyme activities and gene expression showed that HvG6PDH1 to HvG6PDH4
were involved in the responses to salt and drought stresses [122]. Cytosolic HvG6PDH2 is
the major isoform against oxidative stress. HvG6PDH1 to HvG6PDH4 and their encoded
enzymes responded to jasmonic acid (JA) and ABA treatments, implying that JA and ABA
are probably key regulators of HvG6PDHs [122–124]. Some researchers characterized the
root behavior of two Arabidopsis single null mutants (g6pdh5 and g6pdh6), one double
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mutant (g6pdh5/6), and two cy-G6PDH isoforms to salt stress exposure. The seed mutants
displayed a reduced germination rate, reduced root elongation, and high accumulation
of ROS under salt stress compared to the wild type [48]. Interestingly, the alteration of
G6PDH5 and G6PDH6 expression affected the activities and transcript levels of various
antioxidant enzymes, especially APX and GR. Exogenous application of ascorbic acid and
GSH rescued the seed and root phenotypes of g6pdh5/6. In response to salt stress, some
researchers characterized the nine members of the G6PDH gene family (GmG6PDHs) in
soybean [125]. The activities and transcripts of GmG6PDHs were dramatically stimulated,
with a notable role of GmG6PDH2—a cytosolic isoform. Enzymatic assays of recombinant
GmG6PDH2 proteins expressed in Escherichia coli (E. coli) showed that this enzyme has
functional NADP+-dependent G6PDH activity, and GmG6PDH2-overexpressing plants
exhibited a high degree of resistance to salt stress related to a close coordination of the
redox state, the ascorbic acid pool and the GSH pool. The G6PDH activity was enhanced
rapidly in the presence of 100mM NaCl in Phaseolus vulgaris, which is associated with a
raise of G6PDH protein [126]. Application of a G6PDH inhibitor blocked the increase in
G6PDH and nitrate reductase activity, as well as NO production. Therefore, G6PDH plays
a pivotal role in nitrate-reductase-dependent NO production and in tolerance to salt stress.

Besides salt stress, exposure to high aluminum concentrations significantly induced
total and cytosolic G6PDH activities in soybean roots, along with NO accumulation [127].
NADPH produced by NO-modulated cytosolic G6PDH is responsible for ROS accumula-
tion mediated by NADPH oxidase under aluminum stress. Further investigations using
pharmacological and transgenic approaches demonstrated that G6PDH positively regulates
the activity of NADPH oxidase under aluminum treatment. These results suggest that
G6PDH mediates Al-induced programmed cell death through NADPH oxidase-dependent
ROS production [128].

7.3. Drought and Heat

Drought can significantly increase the enzymatic activities of cytosolic G6PD (Cyt-
G6PD) and plastidial G6PD (P2-G6PD) possibly triggered by NO and H2O2 in soybean
roots [55]. In winter wheat, TaG6PDH (Triticum aestivum G6PDH) expression was up-
regulated under cold stress and exogenous ABA application, suggesting that TaG6PDH
positively responds to cold stress and ABA [129]. Similarly, FaG6PDH positively regulated
cold tolerance in strawberry [130], and in silico bioinformatics analysis of 19 FaG6PDH
promoters revealed the presence of at least one stress-responsive cis-acting element [131].
An early stress response would involve the OPPP, which represents a true metabolic sensor
during the response to various stresses. These results indicate that G6PDH might play a
pivotal role in redox homeostasis, ROS signaling, and NO cascade signaling. In line with
this statement, the activity of G6PDH and antioxidant enzymes (APX, CAT, POD, and
SOD) in Przewalskia tangutica and tobacco (Nicotiana tabacum L.) calluses increased after
40 ◦C treatment. When G6PDH was partially inhibited by glucosamine pretreatment, the
antioxidant enzyme activities, the H2O2 content and plasma membrane NADPH oxidase
activity decreased, while H2O2 application increased the activity of G6PDH and antioxidant
enzymes [132]. In Phaseolus vulgaris, the heat-sensitive genotype had a higher G6PDH
activity than the control under normal temperature [133]. However, under elevated tem-
perature treatment, G6PDH activity increased by approximately 78% in the heat-insensitive
genotype but decreased by approximately 37% in the sensitive genotype. These results
indicate that G6PDH confers plants heat stress tolerance by regulating H2O2 levels under
heat stress. Tomato plants grown for 30 days and 45 days without irrigation exhibited
1.67- and 1.32-fold higher total G6PDH activity, respectively [10].

Although all these findings clearly underline the crucial role of G6PDH in plant
tolerance to abiotic stress (Figure 4), many efforts should be deployed to provide a com-
prehensive picture of the molecular regulatory network governing G6PDH regulation in
the context of plant responses to harmful conditions. One outstanding question will be to
elucidate whether these different abiotic stresses mediate upregulation of G6PDH through
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common or specific regulatory pathways and to decipher how G6PDH is regulated in
response to multiple abiotic stresses.

ROS
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Figure 4. Regulatory network of G6PDH in the context of plant responses to abiotic stress. The
NADPH provided by cytosolic G6PDH activity is required both for ROS production by NADPH
oxidase and for ROS scavenging by activation of GSH ascorbate cycle. The working model proposed
that G6PDH plays a pivotal role in redox homeostasis, ROS signaling and NO cascade signaling.
ASKα, Arabidopsis thaliana glycogen synthase kinase3 (GSK3)/SHAGGY-like kinase; ABA, abscisic
acid; APX, ascorbate peroxidase; POD, peroxidase; SOD, superoxide dismutase; GSH, reduced
glutathione; ROS, reactive oxygen species.

8. Conclusions

Glucose-6-phosphate dehydrogenases (G6PDHs) are cytosolic or plastidial enzymes
that catalyze the oxidation of glucose-6-phosphate (G6P) to 6-phosphogluconolactone.
Their activity diverts part of G6P from glycolysis to the oxidative pentose phosphate
pathway (OPPP), so that it is key for determining the balance between these two metabolic
pathways. As the OPPP is also a critical producer of the reductant component NADPH,
G6PDHs play a determining role in ROS scavenging. Besides their role in physiological
processes, G6PDHs play a role in plant life cycle and development, especially by influencing
seeds (germination) and axillary bud dormancy (plant branching), nitrogen assimilation,
responses to abiotic stresses, and by contributing to the recently identified sugar signaling
pathway. Further studies are required to (1) understand the respective roles of the different
G6PDH isoforms and their regulation, (2) decipher the molecular mechanisms allowing
G6PDHs to influence the development and the responses of plants to their environment,
and (3) unveil the role of ROS regulation in these processes. An additional interesting
research question would be to better understand the interaction between G6PDHs and the
molecular regulatory network of hormones and nutrients.
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