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We consider the task of filtering a dynamic parameter evolving as a diffusion process, given data
collected at discrete times from a likelihood which is conjugate to the marginal law of the diffusion,
when a generic dual process on a discrete state space is available. Recently, it was shown that duality
with respect to a death-like process implies that the filtering distributions are finite mixtures, making
exact filtering and smoothing feasible through recursive algorithms with polynomial complexity in the
number of observations. Here we provide general results for the case of duality between the diffusion and
a regular jump continuous-time Markov chain on a discrete state space, which typically leads to filtering
distribution given by countable mixtures indexed by the dual process state space. We investigate the
performance of several approximation strategies on two hidden Markov models driven by Cox–Ingersoll–
Ross and Wright–Fisher diffusions, which admit duals of birth-and-death type, and compare them with
the available exact strategies based on death-type duals and with bootstrap particle filtering on the
diffusion state space as a general benchmark.
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1 Introduction

Hidden Markov models are widely used statistical models for time series that assume an unobserved
Markov process (Xt)t≥0, or hidden signal, driving the process that generates the observations
(Yti)i=0,...,n, e.g., by specifying the dynamics of one or more parameters of the observation density
fXt(y), called emission distribution. See [9] for a general treatment of hidden Markov models. In
this framework, the first task is to estimate the trajectory of the signal given noisy observations
collected at discrete times 0 = t0 < t1 < · · · < tn = T , which amounts to performing sequential
Bayesian inference by computing the so-called filtering distributions p(xti |yt0 , . . . , yti−1), i.e., the
marginal distributions of the signal at time ti conditional on observations collected up to time
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ti−1. Originally motivated by real-time tracking and navigation systems and pioneered by [38,
39], classical and widely known explicit results for this problem include: the Kalman–Bucy filter,
when both the signal and the observation process are formulated in a gaussian linear system; the
Baum–Welch filter, when the signal has a finite state-space as the observations are categorical; the
Wonham filter, when the signal has a finite state-space and the observations are Gaussian. These
scenarios allow the derivation of so-called finite-dimensional filters, i.e., a sequence of filtering
distributions whose explicit identification is obtained through a parameter update based on the
collected observations and on the time separation between the collection times, such that the
resulting computational cost increases linearly with the number of observation times. Other explicit
results include [14, 23, 24, 26, 27, 47, 48]. Outside these classes, explicit solutions are difficult to
obtain, and their derivation typically relies on ad hoc computations. This is especially true when the
map x 7→ fx is non-linear and when the signal transition kernel is known up to a series expansion,
often intractable, as is the case for many widely used stochastic models. When exact solutions are
not available, one must typically make use of approximate strategies, whose state of the art is most
prominently based on extensions of the Kalman and particle filters. See, for example, [5, 13].

A somewhat weaker but useful notion with respect to that of a finite-dimensional filter was for-
mulated in [11], who introduced the concept of computable filter. This extends the former class
to a larger class of filters whose marginal distributions are finite mixtures of elementary kernels
rather than single kernels. Unlike the former case, such a scenario entails a higher computational
cost, usually polynomial in the number of observation times, but avoids the infinite-dimensionality
typically implied by series expansion of the signal transition kernel. See [12].

Recently, [45] derived sufficient conditions for computable filtering based on duality. A dual process
is a process Dt which enjoys the identity

E[h(Xt, d)|X0 = x] = E[h(x,Dt)|D0 = d]. (1)

Here the expectation on the left-hand side is taken with respect to the transition law of the signalXt,
and that on the right hand side with respect to that of Dt, while the class of functions h(x, d) which
satisfy the above identity are called duality functions. See [36] for a review and for the technical
details we have overlooked here. Duality has received an increasing amount of attention recently,
and has found applications in Markov process theory, interacting particle systems, statistical physics
and population genetics, among other fields. See, e.g., [6, 10, 18, 20, 21, 22, 28, 29, 30, 33, 43, 44].
In the framework of duality, [45] showed that for a reversible signal whose marginal distributions
are conjugate to the emission distribution (i.e., the Bayesian update at a fixed t can be computed
in closed-form), computable filtering is guaranteed if the stochastic part of the dual process evolves
on a finite state space. This in turn allows one to derive recursive formulae for the filtering
distributions for non-linear hidden Markov models involving signals driven by Cox–Ingersoll–Ross
(CIR) processes and K-dimensional Wright–Fisher (WF) processes. Along similar lines, duality
was exploited for computable smoothing, whereby one conditions also on future data points, in
[42] and for nonparametric hidden Markov models driven by Fleming–Viot and Dawson–Watanabe
diffusions in [2, 3, 46].
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In this paper, we investigate the impact on filtering problems for hidden Markov models when
the dual process takes the more general form of a continuous-time Markov chain on a discrete
state space. This is of interest for example in some population genetic models with selection [6]
or interaction [22] whose known dual processes are of birth-and-death (B&D) type, whose specific
filtering problems are currently under investigation by some of the authors. When the dual process
evolves in a countable state space, the filtering distribution can in general be expected to be
countably infinite mixtures. This leads to inferential procedures which are not computable in the
sense specified above, since the computation of the filtering distribution can no longer be exact.
However, it is natural to wonder how the inferential procedures obtained in such a scenario perform,
possibly aided by some suitable approximation strategies.

The paper is organized as follows. In Section 2 we identify sufficient conditions for filtering based
on discrete duals and provide a general description of the filtering operations in this setting. In
Section 3, we apply these results to devise practical algorithms which allow to evaluate in recursive
form filtering and smoothing distributions under this formulation. Section 4 and 5 investigate
hidden Markov models driven by Cox–Ingersoll–Ross and K-dimensional Wright–Fisher diffusions,
and show that the first admits a dual given by a one-dimensional B&D process, and the second a
dual given by a K-dimensional Moran model. Section 6 discusses several approximation strategies
used to implement the above algorithms with these dual processes, and compares their performance
with exact filtering based on the results in [45] and with a bootstrap particle filter as a general
benchmark. Finally, we conclude with some brief remarks.

2 Filtering via discrete dual processes

Let the hidden signal (Xt)t≥0, which here takes the role of a temporally evolving target of estimation,
be given by a diffusion process on X ⊂ RK , for K ≥ 1. Observations Yti ∈ Y ⊂ RD, D ≥ 1 are

collected at discrete times 0 = t0 < t1 < · · · < tn = T with distribution Yti
ind∼ fx(·), given Xti = x.

Given an observation Y = y, define the update operator ϕy acting on measures ξ on X by

ϕy(ξ)(x) :=
fx(y)ξ(x)

µξ(y)
, µξ(y) :=

∫
X
fx(y)ξ(x). (2)

Here the probability measure ξ acts as prior distribution which encodes the current knowledge on
the signal Xt, whereas µξ(y) is the marginal likelihood of a data point y when Xt has distribution
ξ. The update operator thus amounts to an application of Bayes’ theorem for conditioning the
probability measure ξ on a new observation y, leading to the updated measure ϕy(ξ). Define also
the propagation operator ψt by

ψt(ξ)(dx
′) := ξPt(dx

′) =

∫
X
ξ(x)Pt(x,dx

′). (3)

where Pt is the transition kernel of the signal. Hence ψt(ξ) is the probability measure at time t
obtained by propagating forward the law ξ of the signal at time 0 by means of the signal semigroup.
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We will make three assumptions, the first two of which are the same as in [45].

Assumption 1 (Reversibility). The signal Xt is reversible with respect to the density
π, i.e., π(x)Pt(x, dx

′) = π(x′)Pt(x
′,dx).

See the discussion in [45] on the possibility of relaxing the above assumption. For K ∈ Z+, define
now the space of multi-indicesM = ZK

+ to be

M = {m = (m1, . . . ,mK) : mj ∈ Z+, for j = 1, . . . ,K},

whose origin is denoted 0 = (0, . . . , 0).

Assumption 2 (Conjugacy). For Θ ⊂ Rl, l ∈ Z+, let h : X ×M× Θ → R+ be such
that supx∈X h(x,m, θ) < ∞ for all m ∈ M, θ ∈ Θ and h(x,0, θ′) = 1 for some θ′ ∈ Θ.
Then fx(·) is conjugate to distributions in the family

F = {g(x,m, θ) = h(x,m, θ)π(x), m ∈M, θ ∈ Θ},

i.e., there exist functions t : Y×M→M and T : Y×Θ→ Θ such that ifXt ∼ g(x,m, θ)
and Yt|Xt = x ∼ fx, we have Xt|Yy = y ∼ g(x, t(y,m), T (y, θ)).

Here g(x,m, θ) takes the role of “current” prior distribution, i.e., the prior on the signal state
which was possibly derived from previous conditioning and propagations, and g(x, t(y,m), T (y, θ))
takes the role of the posterior, i.e., g(x,m, θ) conditional on the new data point y. The functions
t(y,m), T (y, θ) provide the transformations that update the parameters based on y. In absence of
data, the condition h(x,0, θ′) = 1 reduces g(x,m, θ) to π(x).

The third assumption weakens Assumption 3 in [45] by assuming the dual process has finite activity
on a discrete state space, and possibly has a deterministic companion.

Assumption 3 (Duality). Given a deterministic process Θt ∈ Θ and a regular jump
continuous-time Markov chain Mt on ZK

+ with transition probabilities

pm,n(t; θ) := P(Mt = n|M0 = m,Θ0 = θ), (4)

equation (1) holds with Dt = (Mt,Θt) and h as in Assumption 2.

The following result provides a full description of the propagation and update steps which allow to
compute the filtering distribution.

Proposition 2.1. Let Assumptions 1-3 hold, and let
∑

m∈Mwmg(x,m, θ) be a countable mixture
with

∑
m∈Mwm = 1. Then, for ψt as in (3) we have

ψt

( ∑
m∈M

wmg(x,m, θ)

)
=

∑
n∈M

w′n(t)g(x,n,Θt), (5)
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where
w′n(t) =

∑
m∈M

wnpm,n(t; θ), (6)

and pm,n(t; θ) are as in (4). Furthermore, for ϕy as in (2), we have

ϕy

( ∑
m∈M

wmg(x,m, θ)

)
=

∑
m∈M

ŵn,θ(y)g(x, t(y,m), T (y, θ)) (7)

where ŵm,θ(y) ∝ wmµm,θ(y) and

µm,θ(y) :=

∫
X
fx(y)g(x,m, θ)dx. (8)

Proof. First observe that ψt(g(x,m, θ)) =
∑

n∈M pm,n(t; θ)g(x,n,Θt), which follows similarly to
Proposition 2.2 in [45]. Then the claim follows by linearity using the fact that

ψt

(∑
i≥1

wiξi

)
=

∑
i≥1

wiψt(ξi)

so that

ψt

( ∑
m∈M

wmg(x,m, θ)

)
=

∑
m∈M

wmψt(g(x,m, θ))

=
∑

m∈M
wm

∑
n∈M

pm,n(t; θ)g(x,n,Θt) =
∑
n∈M

∑
m∈M

wmpm,n(t; θ)g(x,n,Θt)

Using now the fact that

ϕy

(∑
i≥1

wiξi

)
=

∑
i≥1

wiµξi(y)∑
j wjµξj (y)

ϕy(ξi), (9)

we also find that

ϕy

( ∑
m∈M

wmg(x,m, θ)

)
=

∑
m∈M

wmµm,θ(y)∑
n∈Mwnµn,θ(y)

g(x, t(y,m), T (y, θ))

where

µm,θ(y) =

∫
X
fx(y)g(x,m, θ)dx =

∫
X
fx(y)h(x,m, θ)π(x)dx.

The expression (5), together with (6), provides a general recipe on how to compute the forward
propagation of the current marginal distribution of the signal g(x,m, θ), based on the transition
probabilities of the dual continuous-time Markov chain. Since the update operator (2) can be easily
applied to the resulting distribution, Proposition 2.1 then shows that under these assumptions all
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filtering distributions are countable mixtures of elementary kernels indexed by the state space of
the dual process, with mixture weights determined by the dual process transition probabilities
pm,n(t; θ). When the latter happens to give positive mass only to points {n ∈ M : n ≤ m}, as
is the case for a pure-death process, then the right-hand side of (5) reduces to a finite sum, and
one can construct an exact filter with a computational cost that is polynomial in the number of
observations, as shown in [45].

The above approach can be seen as an alternative to deriving the filtering distribution of the signal
by leveraging on a spectral expansion of the transition function Pt in (3), which typically requires
ad hoc computations and does not lend itself easily to explicit update operations through (2). Note
also that expressions like (5) can be used, by taking appropriate limits of pm,n(t; θ) as t → 0, to
identify the transition kernel of the signal Pt itself, see, e.g., [6, 33, 45].

3 Recursive formulae for filtering and smoothing

In order to translate Proposition 2.1 into practical recursive formulae for filtering and smoothing,
we are going to assume for simplicity of exposition that the time intervals between successive data
collections ti − ti−1 equal ∆ for all i. For ease of the reader, we will therefore use the symbol P∆

instead of Pti−ti−1 for the signal transition function over the interval ∆ = ti − ti−1. We will also
use the established notation whereby i|0 : i− 1 indicates that the argument refers to time ti = i∆,
and we are conditioning on the data collected at times from 0 to ti−1 = (i− 1)∆.

Define the filtering density

νi|0:i(xi) := p(xi|y0:i) ∝
∫
X i

p(x0:i, y0:i)dx0:i−1, (10)

i.e., the law of the signal at time ti given data up to time ti, obtained by integrating out the past
trajectory. Define also the predictive density

νi+1|0:i(xi) := p(xi+1|y0:i) =
∫
X
p(xi|y0:i)P∆(xi+1|xi)dxi, (11)

i.e, the marginal density of the signal at time ti+1, given data up to time ti. This can be expressed
recursively as a function of the previous filtering density p(xi|y0:i), as displayed. Finally, define the
marginal smoothing density

νi|0:n(xi) := p(xi|y0:n) ∝
∫
Xn

p(x0:n, y0:n)dx0:i−1dxi+1:n, (12)

where the signal is evaluated at time ti conditional on all available data. The first two distributions
above are natural objects of inferential interest, whereas the latter is typically used to improve
previous estimates once additional data become available. Finally, for Θ∆ as in Assumption 3 and
t(·, ·), T (·, ·) as in Assumption 2, define for i = 0, . . . , n the quantities

ϑi|0:i :=T (yi, ϑi|0:i−1), ϑi|0:i−1 := Θ∆(ϑi−1|0:i−1), ϑ0|0:−1 := θ0. (13)
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Here, ϑi|0:i−1 denotes the state of the deterministic component of the dual process at time i, after
the propagation from time i− 1 and before updating with the datum collected at time i, and ϑi|0:i
the state after such update.

The following Corollary of Proposition 2.1 extends a result of [45] (see also Theorem 1 in [42] for
an easier comparison in a similar notation).

Corollary 3.1. Let Assumptions 1-3 hold, and assume that

νi−1|0:i−1(x) =
∑

m∈M
w

(i−1)
m g(x,m, ϑi−1|0:i−1).

Then (11) can be written, through (3), as

νi|0:i−1(x) =ψ∆(νi−1|0:i−1(x)) =
∑

m∈M
w

(i−1)′
m g(x,m, ϑi|0:i−1),

w
(i−1)′
m =

∑
n∈M

w
(i−1)
n pn,m(∆;ϑi−1|0:i−1), m ∈M,

(14)

with pn,m(∆;ϑi|0:i) as in (4). Furthermore, given the observation yi, (10) can be written, through
(2), as

νi|0:i(x) =ϕyi(νi|0:i−1(x)) =
∑

m∈M
w

(i)
m g(x,m, ϑi|0:i),

w
(i)
m ∝µn,ϑi|0:i−1

(yi)w
(i−1)′
n , m = t(yi,n),n ∈M,

(15)

with µm,θ as in (8).

Algorithm 1 outlines the pseudo-code for implementing the update and propagation steps of Corol-
lary 3.1. How to use these results efficiently can depend on the model at hand. When the transition
probabilities pm,n(t; θ) are available in closed form, their use could lead to the best performance,
but can also at times face numerical instability issues (as is the case pointed out in Section 4 below).
When the transition probabilities pm,n(t; θ) are not available in closed form, one can approximate
them by simulating N replicates of the dual component Mt, and then regroup probability masses
according to the arrival states as done in (14). The dual is typically easier to simulate than the
original process, given its discrete state space. For instance, pure-death or B&D processes are
easily simulated using a Gillespie algorithm [31], whereby one alternates sampling waiting times
and jump transitions for the embedded chain. Depending on the dual process, there might also be
more efficient simulation strategies.

A different type of approximation of the propagation step (14) in Corollary 3.1 can be based on
pruning the transition probabilities or the arrival weights (cf. (14)) under a given threshold, followed
by a renormalisation of the weights. Both this approximation strategy and that outlined above
assign positive weights only to a finite subset ofM, hence they overcome the infinite dimensionality

7



Algorithm 1: Filtering

Input: Y0:n, t0:n
Result: ϑi|0:i, Mi|0:i and Wi = {w(i)

m ,m ∈Mi|0:i}
Initialise

Set ϑ0|0 = T (Y0, θ0) with T as in Assumption 2
Set M0|0 = {t(Y0,0)} = {m∗} and W0 = {1} with t as in Assumption 2
Compute ϑ1|0 from ϑ0|0 as in (13)
Set M∗ = B(M0|0) and W

∗ = {pm∗,n(∆, ϑ0|0),n ∈M∗} with pm,n as in (4)

for i from 1 to n do
Update

Set ϑi|0:i = T (Yi, ϑi|0:i−1)

Set Wi =

{
w∗

mµm,ϑi|0:i−1
(Yi)∑

n∈M∗ w∗
nµn,ϑi

(Yi)
,m ∈M∗

}
with µm,θ defined as in (8)

Set Mi|0:i = {t(Yi,m),m ∈M∗} and update the labels in Wi

Copy ϑi|0:i, Mi|0:i and Wi to be reported as the output

Propagation
Compute ϑi+1|0:i from ϑi|0:i

Set M∗ = B(Mi|0:i) and W
∗ =

{ ∑
m∈Mi|0:i

w(i)
m pm,n(∆, ϑi|0:i),n ∈M∗

}
end

Note: Mi|0:i = {m ∈M : w
(i)
m > 0} ⊂ M is the support of the weights of νi|0:i; B(m) denotes

the states reached by the dual process from m, and B(M) those reached from all m ∈M.

of the dual process state space. In the next sections we will investigate such strategies for two hidden
Markov models driven by Cox–Ingersoll–Ross and K-dimensional Wright–Fisher diffusions.

Next, with the purpose of describing the marginal smoothing densities (12), we need an additional
assumption and some further notation.

Assumption 4 For h as in Assumption 3, there exist functions d : M2 → M and
e : Θ2 → Θ such that for all x ∈ X , m,m′ ∈M, θ, θ′ ∈ Θ

h(x,m, θ)h(x,m′, θ′) = Cm,m′,θ,θ′h(x, d(m,m′), e(θ, θ′)), (16)

where Cm,m′,θ,θ′ is constant in x.

Denote by
←
ϑ i,
←
ϑ
′
i the quantities defined in (13) computed backwards. Equivalently, these are

computed as in (13) with data in reverse order, i.e. using yn:0 in place of y0:n, namely

←
ϑ i|i+1:T =Θ∆(

←
ϑ i+1|i+1:T ),

←
ϑ i|i:T = T (yi,

←
ϑ i|i+1:T ),

←
ϑT |T = T (yT , θ0)

The following result extends Proposition 3 and Theorem 4 of [42]:
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Proposition 3.2. Let Assumptions 1-4 hold, and let ν0 = π. Then, for 0 ≤ i ≤ n− 1, we have

p(xi|y0:n) =
∑

m∈M, n∈M
w

(i)
m,ng(xi, d(m,n), e(

←
ϑ i|i+1:n, ϑi|0:i)),

with
w

(i)
m,n ∝←−w (i+1)

m w
(i)
n C

m,n,
←
ϑ i|i+1:n,ϑi|0:i

,

←
ω
(i+1)

m =
∑
n∈M

←
ω
(i+2)

n µ
n,
←
ϑ i+1|i+2:n

(yi+1)pt(yi+1,n),m(∆;
←
ϑ i+1|i+1:n)

w
(i)
n as in (15) and C

m,n,
←
ϑ i|i+1:n,ϑi|0:i

as in (16).

Proof. Note that Bayes’ Theorem and conditional independence allow to write (12) as

νi|0:n(xi) = p(xi|y0:n) ∝ p(yi+1:n|xi)νi|0:i(xi)

where the right-hand side involves the filtering distribution, available from Corollary 3.1, and the so
called cost-to-go function p(yi+1:n|xi) (sometimes called information filter), which is the likelihood
of future observations given the current signal state. Along the same lines as Proposition 3 in [42]
we find that

p(yi+1:n|xi) =
∑

m∈M

←
ω
(i+1)

m h(xi,m,
←
ϑ i|i+1:n)

with
←
ω
(i+1)

m as in the statement. The main claim can now be proved along the same lines as
Theorem 4 in [42].

The main difference between the above result and Theorem 4 in [42] lies in the fact that the support

of the weights {←ω
(i+1)

m ,m ∈ M} (which is [42] is denoted by
←
M i|i+1:n) can possibly be countably

infinite and coincide with the whole of M. Indeed, which points of M have positive weight are
determined by the transition probabilities of the dual process, which in the present framework is no
longer assumed to make only downward moves inM. Section 6 will deal with this possibly infinite
support for a concrete implementation of the inferential strategy.

4 Cox–Ingersoll–Ross hidden Markov models

The Cox–Ingersoll–Ross diffusion, also known as the square-root process, is widely used in financial
mathematics for modelling short-term interest rates and stochastic volatility. See [7, 8, 25, 32, 35].
It also belongs to the class of continuous-state branching processes with immigration, arising as
the large-population scaling limit of certain branching Markov chains [41] and as the time-evolving
total mass of a Dawson–Watanabe branching measure-valued diffusion [17].
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Let Xt be a CIR diffusion on R+ that solves the one-dimensional SDE

dXt =
(
δσ2 − 2γXt

)
dt+ 2σ

√
XtdBt, X0 ≥ 0, (17)

where δ, γ, σ > 0, which is reversible with respect to the Gamma density π = Ga(δ/2, γ/σ2). The
following proposition identifies a B&D process as dual to the CIR diffusion.

Proposition 4.1. Let Xt be as in (17), let Mt be a B&D process on Z+ which jumps from m to
m+ 1 at rate λm = 2σ2(δ/2 +m)(θ − γ/σ2) and to m− 1 at rate µm = 2σ2θm, and let

h(x,m, θ) =
Γ(δ/2)

Γ(δ/2 +m)

( γ

σ2

)−δ/2
θδ/2+mxme−(θ−γ/σ

2)x. (18)

Then (1) holds with Dt =Mt.

Proof. The infinitesimal generator associated to (17) is

Af(x) = (δσ2 − 2γx)f ′(x) + 2σ2xf ′′(x),

for f : R+ → R vanishing at infinity. Letting h(x,m) denote (18) constant with respect to θ, a
direct computation yields

Ah(·,m)(x) = (δσ2 − 2γx)
(
mxm−1 − xm(θ − γ/σ2)

) Γ(δ/2)

Γ(δ/2 +m)

( γ

σ2

)−δ/2
θδ/2+me−(θ−γ/σ

2)x

+ 2σ2x
(
m(m− 1)xm−2 + xm(θ − γ/σ2)2 − 2mxm−1(θ − γ/σ2)

)
× Γ(δ/2)

Γ(δ/2 +m)

( γ

σ2

)−δ/2
θδ/2+me−(θ−γ/σ

2)x

=
δσ2mθ

δ/2 +m− 1
h(x,m− 1) + 2γ(θ − γ/σ2)δ/2 +m

θ
h(x,m+ 1)

− [2γm+ δσ2(θ − γ/σ2)]h(x,m) + 2σ2m(m− 1)
θ

δ/2 +m− 1
h(x,m− 1)

+ 2σ2(θ − γ/σ2)2 δ/2 +m

θ
h(x,m+ 1)− 4σ2m(θ − γ/σ2)h(x,m)

= 2σ2θmh(x,m− 1) + 2σ2(δ/2 +m)(θ − γ/σ2)h(x,m+ 1)

− [2γm+ σ2(δ + 4m)(θ − γ/σ2)]h(x,m).

where it can be checked that

2σ2θm+ 2σ2(δ/2 +m)(θ − γ/σ2) = 2γm+ σ2(δ + 4m)(θ − γ/σ2).

Hence the r.h.s. equals

Bg(m) = λm[g(m+ 1)− g(m)] + µm[g(m− 1)− g(m)]

with g(·) := h(x, ·), λm = 2σ2(δ/2 +m)(θ − γ/σ2), and µm = 2σ2θm, which is the infinitesimal
generator of a B&D process with rates λm, µm. The claim now follows from Proposition 1.2 in
[36].
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Assign now prior ν0 = Ga(δ/2, γ/σ2) to X0, and assume Poisson observations are collected at

equally spaced intervals of length ∆, specifically Y |Xt = x
iid∼ Po(τx), for some τ > 0. By the well-

known conjugacy to Gamma priors, we have Xt|Y = y ∼ Ga(δ/2+y, γ/σ2+τ). For simplicity, and
without loss of generality, we can set τ = 1, which allows to interpret the update of the gamma rate
parameter as the size of the conditioning data set. The filtering algorithm starts by first updating
the prior ν0 for the signal to ν0|0 := ϕY0(ν0). If we observe Y0 = (Y0,1, . . . , Y0,k) at time 0, then ν0|0
is the law of X0|

∑k
j=1 y0,j = m ∼ Ga(δ/2 +m, γ/σ2 + k). Then ν0|0 is propagated forward for a

∆ time interval, yielding ν1|0 := ψ∆(ν0|0). In light of Proposition 4.1, an application of (5) to ν0|0
yields the infinite mixture

ψ∆

(
Ga(δ/2 +m, γ/σ2 + k)

)
=

∑
n≥0

pm,n(∆)Ga(δ/2 + n, γ/σ2 + k), (19)

where pm,n(t) are the transition probabilities ofMt in Proposition 4.1. Hence, the law of the signal is
indexed by integers, i.e., points of the dual state space, where after the first update the distribution
gives mass one to the sum of the observations

∑k
j=1 y0,j = m, whereas after the propagation the

mass is spread over the whole Z+ by the effect of the dual process. We then observe Y1 ∼ fX1 ,
which is used to update ν1|0 to ν1|1 and has the effect of shifting the probability masses of the
mixture weights. For example, the weight pm,n(∆) in (19) is assigned to n ∈ Z+, but after the

update based on Y1 = (Y1,1, . . . , Y1,k′) it will be assigned to n +m′ if
∑k′

j=1 y1,j = m′, on top of
being transformed according to (9). We then propagate forward again and proceed analogously.

When the current distribution of the signal, after the update, is given by a mixture of type∑
m∈Z+

wmGa(δ/2 +m, γ/σ2 + k), it is enough to rearrange the mixture weights after the propa-
gation step as in (6).

The main difference with qualitatively similar equations found in [42] is now given by the transition
probabilities pm,n(t) in (19), which are those of the B&D process in Proposition 4.1. Before tackling
the problem of how to use the above expressions for inference, we try to provide further intuition of
the extent and implications of such differences. To this end, consider the simplified parameterization
α = δ/2, β = γ/σ2, σ2 = 1/2, τ = 1, whereby one can check that the embedded chain of the B&D
process of Proposition 4.1 has jump probabilities

pm,m+1 =
k(α+m)

k(α+m) +m(β + k)
, pm,m−1 = 1− pm,m+1.

Herem, k are the same as in the left-hand side of (19), som/k is the sample mean. It is easily verified
that pm,m+1 < pm,m−1 if m/k > α/β and viceversa. Therefore, the dual evolves on Z+ so that it
reverts m/k to the prior mean α/β. Indeed, the dual has ergodic distribution NB (α, β/(β + k)),
whose mean is kα/β, i.e., such that m/k on average coincides with α/β.

Recall now that the dual process elicited in [45] for the CIR model is Dt = (Mt,Θt), with Mt

a pure-death process with rates from m to m − 1 equal to 2σ2θ and Θt a deterministic process
that solves dΘt/dt = −2σ2Θt(Θt − γ/σ2), Θ0 = θ. This dual has a single ergodic state given by
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(0, β) (note that [45] use a slightly different parameterization, where the ergodic state (0, β) means
that, in the limit for t → ∞, the gamma parameters are the prior parameters). In particular this
entails the convergence of pm,n(t) in (19) to 1 if n = 0 and 0 elsewhere as t → ∞. Whence the
strong ergodic convergence ψt(g(x,m, θ)) → π as t → ∞, whereby the effect of the observed data
become progressively negligible as t increases. One could then argue that in the long run, the
filtering strategy based on the pure-death dual process in [45] completely forgets the collected data.
Hence one could expect filtering with long-spaced observations (relative to the forward process
autocorrelation) to be similar to using independent priors at each data collection point. On the
other hand, the B&D dual can be thought as not forgetting but rather spreading around the
probability masses in such a way as to preserve convergence of the empirical mean to the prior
mean. It is not obvious a priori which of these two scenarios could be more beneficial in terms of
filtering, hence in Section 6.1 we provide numerical experiments for comparing the performance of
strategies based on these different duals.

In view of such experiments, note that the transition probabilities of the above B&D dual are in
principle available in closed form (cf. [4, 15]), but their computation is prone to numerical instability.
Alternatively, we can approximate the transition probabilities pm,n(t) in (19) by drawing N sample
paths of the dual started in m and use the empirical distribution of the arrival points. This can
in principle be done through the Gillespie algorithm [31], which alternates sampling waiting times
and jumps of the embedded chain. A faster strategy can be achieved by writing the B&D rates in
Proposition 4.1 as λm = λm+ β and µm = µm with

λ = 2σ2(θ − γ/σ2), β = σ2δ(θ − γ/σ2), µ = 2σ2θ,

where λ, µ represent the per capita birth and death rate and β is the immigration rate. Then
write Mt = At+Bt where At is the population size of the descendant of autochthonous individuals
(already in the population at t = 0), and Bt the descendants of the immigrants. These rates define
a linear B&D process, whereby [49] suggests simulating At by drawing, given A0 = i,

F ∼ Bin(i, g(t)), At ∼ NBin(F, h(t)) + F, (20)

with h(t) = (λ − µ)/(λ exp{(λ − µ)t} − µ) and g(t) = h(t) exp{(λ − µ)t}, with the convention
NBin(0, p) = δ0. Let now Ns be the number of immigrants up to time s, which follows a simple
Poisson process with rate β, so given Nt the arrival times are uniformly distributed on [0, t]. Once
in the population, the lineage of each immigrating individual follows again a B&D process and can
be simulated using (20) starting at i = 1. Summing the numerosity of each immigrant family at
time t yields Bt.

5 Wright–Fisher hidden Markov models

TheK-dimensional WF diffusion is a classical model in population genetics which is also widely used
in many areas of applied probability and statistics, as it can model temporally evolving probability
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frequencies. It takes values in the simplex

∆K =

{
x ∈ [0, 1]K :

∑
1≤i≤K

xi = 1

}
and, in the population genetics interpretation, it models the temporal evolution of K proportions
of types in an underlying large population. Its infinitesimal generator on C2(∆K) is

A =
1

2

K∑
i,j=1

xi(δij − xj)
∂2

∂xi∂xj
+

1

2

K∑
i=1

(αi − θxi)
∂

∂xi
(21)

for α = (α1, . . . , αK) ∈ RK
+ , θ =

∑K
i=1 αi, and its reversible measure is the Dirichlet distribution

whose density with respect to Lebesgue measure is

πα(x) =
Γ(θ)∏K

i=1 Γ(αi)
xα1−1
1 · · ·xαK−1

K , xK = 1−
K−1∑
i=1

xi.

See for example [18], Chapter 10. The transition density of this model is (cf., e.g., [17], eqn. (1.27))

pt(x,x
′) =

∞∑
m=0

dm(t)
∑

m∈ZK
+ :|m|=m

MN(m;m,x)πα+m(x′), (22)

where MN(m;m,x) =
(

m
m1,...,mK

)∏K
i=1 x

mi
i , and where dm(t) are the transition probabilities of the

block counting process of Kingman’s coalescent on Z+, which has an entrance boundary at∞. Cf.,
e.g., [17], eqn. (1.12).

It is well known that a version of Kingman’s typed coalescent with mutation is dual to the WF
diffusion. This can be seen as a death process on ZK

+ which jumps from m to m− ei at rate

qm,m−ei = mi(θ + |m| − 1)/2. (23)

See, for example, [20, 21, 34]. See also [45], Section 3.3. The above death process with transitions
dm(t) is indeed the process that counts the surviving blocks of the typed version without keeping
track of which types have been removed.

Recall now that a Moran model with N individuals of K types is a particle process with overlap-
ping generations whereby at discrete times a uniformly chosen individual is removed and another,
uniformly chosen from the remaining individuals, produces one offspring of its own type, leaving
the total population size constant. See, e.g., [19]. In the presence of mutation, upon reproduction,
the offspring can mutate to type j at parent-independent rate αj . The generator of such process
on the set B(ZK

+ ) of bounded functions on ZK
+ can be written in terms of the multiplicities of types

n ∈ ZK
+ as

Bf(n) = 1

2

∑
1≤i ̸=j≤K

ni(αj + nj)f(n− ei + ej)−
1

2

∑
1≤i ̸=j≤K

ni(αj + nj)f(n), (24)
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where an individual of type i is removed at rate ni, the number of individuals of type i, and is
replaced by an individual of type j at rate αj + nj .

The following proposition extends a result in [10] (cf. Section 5).

Proposition 5.1. Let Xt have generator (21), let Nt ∈ ZK
+ be a Moran model which from n jumps

to n− ei + ej at rate ni(αj + nj)/2, and let

h(x,n) =
Γ(θ + |n|)

Γ(θ)

K∏
i=1

Γ (αi)

Γ (αi + ni)
xni
i , θ =

K∑
i=1

αi.

Then (1) holds with Dt = Nt and h as above.

Proof. From (21), since θ =
∑K

i=1 αi, we can write

2A =
∑

1≤i≤K
xi(1− xi)

∂2

∂x2i
−

∑
1≤i ̸=j≤K

xixj
∂2

∂xi∂xj
+

∑
1≤i≤K

(αi(1− xi)− xi
∑

1≤j≤K,j ̸=i

αj)
∂

∂xi

=
∑

1≤i ̸=j≤K
xixj

∂2

∂x2i
−

∑
1≤i ̸=j≤K

xixj
∂2

∂xi∂xj
+

∑
1≤i≤K

αi

∑
1≤j≤K,j ̸=i

xj
∂

∂xi
−

∑
1≤i ̸=j≤K

αj
∂

∂xi
.

Then one can check that

2Ah(x,n) =
∑

1≤i ̸=j≤K
ni(αi + ni − 1)

Γ(θ + |n|)
Γ(θ)

xn−ei+ej

K∏
h=1

Γ (αh)

Γ (αh + nh)

−
∑

1≤i ̸=j≤K
ni(αj + nj)x

nΓ(θ + |n|)
Γ(θ)

K∏
h=1

Γ (αh)

Γ (αh + nh)

=
∑

1≤i ̸=j≤K
ni(αj + nj)h(x,n− ei + ej)−

∑
1≤i ̸=j≤K

ni(αj + nj)h(x,n).

Hence we have

(Ah(·,n))(x) = (Bh(x, ·))(n)

where the right hand side is (24) applied to h(x,n) as a function of n. The claim now follows from
Proposition 1.2 in [36].

Assign now prior ν0 = πα to X0, and assume categorical observations so that P(Y = j|Xt =
x) = xj . By the well-known conjugacy to Dirichlet priors, we have Xt|Y = y ∼ πα+δy , where
α + δy = (α1, . . . , αj + 1, . . . , αK) if y = j. When multiple categorical observations with vector
of multiplicities m ∈ ZK

+ are collected, we write πα+m. The filtering algorithm then proceeds by
first updating ν0 to ν0|0 := ϕY0(ν0) = πα+m, if Y0 = (Y0,1, . . . , Y0,n) yields multiplicities m, then
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propagating ν0|0 to ν1|0 := ψ∆(ν0|0). In light of the previous result, an application of (5) to a single
distribution g(x,m, θ) = πα+m yields the mixture

ψt (πα+m) =
∑

n:|n|=|m|

pm,n(t)πα+n, (25)

where pm,n(t) are the transition probabilities of Nt in Proposition 5.1. We then observe Y1|X1,
which is in turn used to update ν1|0 to ν1|1, as so forth. We refer again the reader to [42], Section
2.4.2, for details on qualitatively similar recursive formulae.

In (25), the overall multiplicity |n| equals the original |m|, as an effect of the population size
preservation provided by the Moran model. The space {n : |n| = |m|} is finite, which shows
that Assumption 3 need not lead to filtering distributions being infinite mixtures. However, it is
not obvious a priori how (25) compares in terms of practical implementation with the different
representation obtained in [45], namely

ψt (πα+m) =
∑

n:|n|≤|m|

p̂m,n(t)πα+n (26)

where p̂m,n(t) are the transition probabilities of the death process on ZK
+ with rates (23). Similarly

to what has already been discussed for the CIR case, the death process dual has a single ergodic
state given by the origin (0, . . . , 0), which entails the convergence of p̂m,n(t) to 1 if n = (0, . . . , 0)
and 0 elsewhere, implying the strong convergence ψt (πα+m) → πα in (26). This is ultimately
determined by the fact that Kingman’s coalescent removes lineages by coalescence and mutation
until absorption to the empty set.

At first glance, a similar convergence is seemingly precluded to (25). However, we note in the first
sum of (24) that the new particle’s type is either resampled from the survived particles or drawn
from the baseline distribution, in which case the new particle is of type j with (parent-independent)
probability αj/

∑K
i=1 αj . Hence a heuristic argument is that each particle will be resampled from

the baseline distribution in finite time. Together with the fact that
∑K

j=1 πα+δjαj/
∑K

i=1 αi = πα,
which follows from Corollary 1.1 in [1], and considering that the number of particles is finite, we
can therefore expect that, as t→∞, we have the convergence ψt (πα+m)→ πα in (25) in this case
as well.

The transition probabilities pm,n(t) in (25), induced by the Moran model, are not available in
closed form. This poses a limit on the direct applicability of the presented algorithms for numerical
experiments. The first alternative is then to approximate them by drawing N points from the
discrete distribution on the dual space before the propagation, making use of the Gillespie algorithm
to draw as many paths, and evaluating the empirical distribution of the arrival points. Further
alternatives are suggested by the fact that an appropriately rescaled version of the Moran model
converges in distribution to a WF diffusion (see, e.g., [19], Lemma 2.39). This would mean spatially
rescaling the Moran model in (24) and writing the resulting generator as (cf. (24))

C|n|f(x) = |n|2
∑

1≤i ̸=j≤K

ni
|n|

αj + nj
|n|

[
f

(
x− ei
|n|

+
ej
/|n|

)
− f(x)

]
,
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where pi = ni/|n|, which by using a Taylor expansion can be shown to yield (21), when |n| → ∞.
We could therefore use the WF diffusion to approximate the Moran dual transitions in (25). This
strategy in principle needs to deal with the intractable terms dm(t) in the transition function
expansion (22) of the diffusion, but in this regard, one can adopt the solution found by [37].

It is also known that one could also construct a sequence of WF discrete Markov chains indexed by
the population size which, upon appropriate rescaling, converge to the desired WF diffusion (see,
e.g., [40], Sec. 15.2.F or [19], Sec 4.1). Since two sequences that converge to the same limit can to
some extent be considered close to each other, one could then consider a WF discrete chain indexed
by |n| with a parameterization that would make it converge to (21), and use it to approximate the
Moran transition probabilities. This would permit a straightforward implementation, given WF
discrete chains have multinomial transitions.

6 Numerical experiments

To illustrate how the above results can be used in practice and how they perform in comparison with
other methods, we are going to consider particle approximations of the dual processes to evaluate
the predictive distributions for the signal, denoted p̂(xk+1|y1:k). We compare these distributions
with the exact predictive distribution obtained through the results in [45] and those obtained
through bootstrap particle filtering which make use of (22). Particle filtering can be considered the
state of the art for this type of inferential problems, a general reference being [13]. The experiments
in this section provide an argument in favour of using the proposed approximations for filtering
and smoothing in light of the fact that these tasks can be successfully tackled once one obtains an
accurate inference on the signal prediction distribution, as shown in [42].

We first briefly describe the specific particle approximation on the dual space we are going to use.
To approximate a predictive distribution νi|0:i−1(xi), the classical particle approximation used in
bootstrap particle filtering can be described as follows:

• sample Xm
i−1

iid∼ νi−1|0:i−1;

• propagate the particles by sampling Xm
i ∼ pt(Xm

i−1, ·) for m = 1, . . . , N , with pt as in (22);

• estimate νi|0:i−1 with ν̂i|0:i−1 :=
1
N

∑N
m=1 δXm

i
.

The filtering distributions obtained from the dual processes considered in this work are mixtures of
distribution of the form νi−1|0:i−1(xi−1) =

∑
mwmh(xi−1,m)π(xi−1). We can use the approxima-

tion ν̂i−1|0:i−1(xi−1) :=
1
N

∑N
n=1 h(xi−1,m

(n))π(xi−1), where m
(n) ∼

∑
mwmδm, which amounts to

transposing the previous approximation to the dual space or to perform a particle approximation
of the discrete mixing measure. The natural approximation of νi|0:i−1(xi) is therefore as follows:

• sample m(n) iid∼
∑

mwmδm;

• propagate the particles by sampling n(n) ∼ pm(n),·(t) where pm(n),·(t) are the transition prob-
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abilities of the dual process;

• estimate νi|0:i−1(xi) with ν̂i|0:i−1(xi) :=
1
N

∑N
n=1 h(xi,n

(n))π(xi).

Here some important remarks are in order. The above dual particle approximation is a finite
mixture approximation of a mixture which can be either finite or infinite. Hence the above strategy
can be applied both to filtering given death-like duals but also given general duals on discrete state
spaces. The quality of the dual particle approximation, in general, may differ from that obtained
through the particle filtering approximation since the particles live on a discrete space in the first
case and on a continuous space in the second. This is the object of the following sections, at least
for these specific examples. Finally, the ease of implementation of the two approximations may
be very different because simulating from the original Markov process may be much harder than
simulating from the dual process. An example is the simulation of Kingman’s typed coalescent,
immediate as compared to the simulation from (22), which would be unfeasible without [37].

6.1 Cox–Ingersoll–Ross numerical experiments

The CIR diffusion admits two different duals:

• the death-like dual given by Dt = (Mt,Θt), with Mt a pure-death process on Z+ with rates
2σ2θm from m to m − 1 and Θt a deterministic process that solves the ODE dΘt/dt =
−2σ2Θt(Θt − γ/σ2), Θ0 = θ. Cf. [45], Section 3.1.

• the B&D dualMt on Z+ with birth rates fromm tom+1 given by λm = 2σ2(δ/2+m)(θ−γ/σ2)
and death rates from m to m− 1 given by µm = 2σ2θm respectively. Cf. Proposition 4.1.

Note that the latter is time-homogeneous, the former is not. In general, temporal homogeneity
is to be preferred since a direct simulation with a Gillespie algorithm in the inhomogeneous case
would require a time-rescaling. However, for this specific case, there is a convenient closed-form
expression for the transition density of the first dual, which can be used to simulate for arbitrary
time transitions (see the third displayed equation at page 2011 in [45]). The second dual, by virtue
of the temporal homogeneity, can be simulated directly using a Gillespie algorithm. This may be
slow if the event rate becomes large, but as suggested in Section 4 we can see it as a linear B&D
process, and a convenient closed-form expression can be used to simulate arbitrary time transitions.

We compare these two particle approximations with an exact computation of the predictive distri-
bution following [45] and to a bootstrap particle filtering approach on the original state space of
the signal, which is easy to implement for arbitrary time transitions thanks to the Gamma-Poisson
expansion of the CIR transition density (see details in [42], Section 5).

Figure 1 shows the comparison of the above-illustrated strategies, with prediction performed for a
forecast time horizon of 0.05. The CIR parameters were specified to δ = 11, σ = 1, γ = 1.1. The
starting distribution for the prediction is a filtering distribution for a dataset whose last Poisson
observation equals 4 (so the starting distribution is a mixture of Gamma distributions roughly
centred around 4). The density estimates for the bootstrap particle filter were obtained from a
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Gamma kernel density estimator with bandwidth estimated by cross-validation. This is expected to
induce a negligible error because the target distribution is a finite mixture of Gamma distributions.

The figure suggests that the bootstrap particle filter is slow to converge to the exact predictive
distribution. However, with 50 particles, both dual approximations are already almost indistin-
guishable from the exact predictive distribution. This shows that accurately approximating the
mixing measure on the discrete dual space seems to require fewer particles than approximating the
continuous distribution on the original continuous state space.
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0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
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Figure 1: Comparison of the signal predictive distribution p̂(xk+1|y1:k) obtained through the approximation ap-
proach to the death-process dual and the B&D dual, and through the bootstrap particle filter, with the
exact predictive. The number of particles used for the approximations are 50, 100, 500, 1000 and are
indicated in the panel labels.

Next, we turn to investigating the error on the filtering distributions, which combines successive
particle approximations. Since the update operation can be performed exactly through (7), particle
filtering using the dual process is conveniently implemented like a bootstrap particle approxima-
tion to a Baum-Welch filter with systematic resampling. We quantify the error on the filtering
distributions by measuring the absolute error on the first moment and the standard deviation of
the filtering distributions (with respect to the exact computation). We also include the error on
the signal retrieval, measured as the absolute difference between the first moment of the filtering
distributions and the value of the simulated “true” hidden signal. The mean filtering error is aver-
aged over the second half of the sequence of observations to avoid possible transient effects at the
beginning of the observation sequence and further averaged over 50 different simulated datasets.
The parameter specification is again δ = 11, σ = 1, γ = 1.1, with a single Poisson observation at
each of 200 observation times, with interval spacing equal to 0.1. Figure 2 shows that the pure-
death particle approximation performs better than the B&D particle approximation, but the latter
performs comparably to the bootstrap particle filter, possibly with a modest advantage.
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Figure 2: Mean filtering error as a function of the number of particles for the various particle approximation
methods.

6.2 Wright–Fisher numerical experiments

The WF diffusion admits two different duals:

• Kingman’s typed coalescent with mutation dual, given by a pure-death process on ZK
+ with

rates λm,m−ei = mi(|α|+ |m| − 1)/2 from m to m− ei. Cf. [45], Section 3.3.

• a Moran dual process, given a homogeneous B&D process on ZK
+ with rates λm,m−ei+ej =

mi(αj +mj)/2 from m to m− ei + ej . Cf. Proposition 5.1.

Here both processes are temporally homogeneous and can thus be easily simulated using a Gillespie
algorithm, with the only caveat that the simulation can be inefficient when the infinitesimal rates
are large. Similar to the CIR case, there is a closed-form expression for the transition probabilities
in the first case, which can be used for simulation purposes for arbitrary time transitions (see
Theorem 3.1 in [46]). Although this expression is easy to handle in the one-dimensional CIR case,
this is more challenging in the multi-dimensional WF case, with significant numerical stability issues
raised by the need to compute the sum of alternated series with terms that can both overflow and
underflow. In [42], these hurdles were addressed using arbitrary precision computation libraries
and careful re-use of previous computations applicable when data is equally spaced. The Gillespie
simulation strategy presents no such restriction and may be significantly faster when the event
rates remain low.

As mentioned in Section (5), no closed-form expression is available for the Moran dual and the
Gillespie algorithm approach is the main option, likely resulting is a slow algorithm. Alternatively,
it is possible to approximate the Moran dual process by a finite population Wright–Fisher process,
with the quality of approximation increasing with the population size. The interest of this approx-
imation is that the event rate is lower for the finite population Wright–Fisher process than for the
Moran process. This is related to the fact that weak convergence of a sequence of WF chains to
a WF diffusion occurs when time is rescaled by a factor of N (cf. [40], Sec. 15.2.F), whereas a
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Moran model whose individual updates occur at the times of a Poisson process with rate 1, needs
a rescaling by a factor N2 to obtain a similar convergence. In other words, in order to establish
weak convergence to the diffusion, time must be measured in units of N generations in the WF
chain and in units of N2 generations in the Moran model. For this reason, the resulting Gillespie
simulation will be faster using a WF chain approximation to the Moran model.

The above considerations also suggest another possibility. Since the Moran process converges
weakly to a Wright–Fisher diffusion, the latter could also be used as a possible approximation
instead of a WF chain. In this case, it is possible to sample directly from (22) for arbitrary time
transitions using the algorithm in [37]. Hence we would be using a WF diffusion to approximate
the dual Moran transitions in (25).

A standard bootstrap particle filter performed directly on the Wright–Fisher diffusion state space
also crucially relies on the algorithm of [37] for the prediction step, without which approximate
sampling recipes from the transition density would be needed.

In Figure 3, we compare prediction strategies for a K = 4 WF diffusion using (figure legend
indicated in parenthesis):

• the closed-form transition of the pure death dual (“Exact” in Fig. 3);

• an approximation of the above using a Gillespie algorithm (“PD”);

• the Moran dual using a Gillespie algorithm (“BD Gillespie Moran”);

• the WF chain approximation of the Moran dual using a Gillespie algorithm (“BD Gillespie
WF”);

• the WF diffusion approximation of the Moran dual using [37] (“BD diffusion WF”);

• a bootstrap particle filtering approximation using [37] (“Bootstrap PF”).

Figure 3 shows that among these particle approximations of p(xk+1|y1:k), the Wright–Fisher dif-
fusion approximation of the Moran dual seems to converge slowest, followed by the bootstrap
particle filter. Prediction was performed for a forecast time horizon equal to 0.1, with WF param-
eters α = (1.1, 1.1, 1.1, 1.1). The starting distribution for the prediction is a filtering distribution
for a dataset whose last multinomial observation is equal to (4, 0, 9, 2) (so the starting distribution
is a mixture of Dirichlet distributions roughly centred around (4/15, 0, 9/15, 2/15)). The density
estimates for the bootstrap particle filter are obtained from a Dirichlet kernel density estimator
with bandwidth estimated by cross-validation. This is expected to induce a negligible error because
the target distribution is a finite mixture of Dirichlet distributions.
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Figure 3: Convergence of the WF predictive distribution (only the first dimension) with the number of particles
for the various particle approximations.

Figure 4 evaluates the filtering error for a WF process withK = 3 and parametersα = (1.1, 1.1, 1.1),
given 20 categorical observations collected at each time, and 10 collection times with a time interval
of 1. We consider increasing numbers of particles and use 100 replications to estimate the error.
The figure shows that the particle approximation of the pure death dual process using the closed-
form transition exhibits better performance. The bootstrap particle approximation has the fastest
improvement relative to increasing the number of particles. Overall, the Moran dual performs
better or comparably to bootstrap particle filtering.

First moment Signal retrieval Standard Deviation

250 500 750 1000 250 500 750 1000 250 500 750 1000

0.004

0.008

0.012

0.016

0.044

0.048

0.052

0.056

0.005

0.010

0.015

0.020

# particles

E
rr

or
 a

nd
 C

I

Method

BD Moran Gillespie

BD WF Gillespie

BD WF diffusion

PD

Bootstrap PF

Figure 4: Mean filtering error as a function of the number of particles for the various particle approximation
methods.

7 Concluding remarks

We have provided conditions for filtering diffusion processes on RK which avoid computations on
the uncountable state space of the forward process when a dual process is available and is a regular
jump continuous-time Markov chain on a discrete state space. Motivated by certain diffusion models
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for which only duals with a countable state space are known (e.g. B&D-like duals for WF diffusions
with selection), we have investigated the performance of filtering based on a B&D dual for the CIR
diffusion and based on a Moran process dual for the WF diffusion. All approximation methods
proposed appear to be valuable strategies, despite resting on different simulation schemes. The
optimal strategy is bound to depend on the application at hand, together with several other details
like the interval lengths between data collection times, and possibly be constrained by which of
these tools are available. Overall, approximate filtering using B&D-like duals may perform better
or comparably to bootstrap particle filtering, with the advantage of operating on a discrete state
space. The computational effort for each of these strategies is also bound to depend on a series of
factors the identification of which is beyond the scope of this contribution.
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[43] Möhle, M. (1999). The concept of duality and applications to Markov processes arising in
neutral population genetics models. Bernoulli 5, 761–777.

[44] Ohkubo, J. (2010). Duality in interacting particle systems and boson representation. J. Stat.
Phys. 139, 454–465.

[45] Papaspiliopoulos, O. and Ruggiero, M. (2014). Optimal filtering and the dual process.
Bernoulli 20, 1999–2019.

[46] Papaspiliopoulos, O., Ruggiero, M. and Spanò, D. (2016). Conjugacy properties of
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