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Abstract:  

There is growing scientific and societal consciousness that the environmental risks and impacts of plant 

protection products (PPPs) cannot be properly assessed without considering ecosystem services. 

However, the science on this issue remains incomplete and fragmented, as recently illustrated in a 

collective scientific assessment that pointed out the limited knowledge on the risks and impacts of 

PPPs on soil ecosystem services, which are clearly overlooked. Beside soil ecosystem services, certain 

key players involved in these services are largely overlooked in the scientific literature on the risks and 

impacts of PPPs, namely soil microbial photosynthetic communities. Here, we followed the principles 

of evidence-based logic chain approaches to show the importance of considering these 

microorganisms when studying the impacts of PPPs on certain services provided by soil ecosystems, 

with a focus on regulating and maintenance services that play a role in the regulation of baseline flows 

and extreme events. Terrestrial microalgae and cyanobacteria are ubiquitous photosynthetic 



2 

 

microorganisms that, together with other soil micro- and macro-organisms, play key roles in the 

ecosystem functions that underpin these ecosystem services. There is an extensive literature on the 

ecotoxicological effects of PPPs on different organisms including soil microorganisms, but studies 

concerning soil microbial photosynthetic communities are very scarce. However, there is scientific 

evidence that herbicides can have both direct and indirect impacts on these microbial photosynthetic 

communities. Given that they play key functional roles, we argue that soil microbial photosynthetic 

communities warrant greater attention in efforts to assess the environmental risks and impacts of PPPs 

and, ultimately, help preserve or restore the regulating and maintenance services provided by soil 

ecosystems. 

 

Effects of PPPs on the regulating and maintenance services provided by soils 

Prompted by recommendations made by the European Food Safety Authority (EFSA 2010; 2016), 

scientists, environmental managers, stakeholders, and regulators are increasingly conscious of the 

importance of protecting ecosystem services against the adverse effects of plant protection products 

(PPPs) (Nienstedt et al. 2012; Arts et al. 2015; Rumschlag et al. 2020). Several scientists in the fields of 

ecotoxicology and environmental risk assessment of chemicals have been working for years to develop 

research and propose conceptual and operational approaches to achieve this objective (e.g., Cairns 

and Niederlehner 1994; Forbes and Calow 2013; Brown et al. 2021; Faber et al. 2021; Maltby et al. 

2022). However, there are still few studies providing hard information on the risks and effects of PPPs 

on ecosystem services, and the resulting science on this issue remains incomplete and fragmented 

(Pesce et al. 2023a). This was highlighted by the conclusions of a collective scientific assessment 

performed between 2020 and 2022 addressing the state of knowledge on the effects of PPPs on 

biodiversity and ecosystem services (Pesce et al. 2021). In particular, this collective scientific 

assessment pointed out the limited knowledge on the effects of PPP on services provided by soil 

ecosystems (Pesce et al. 2023b). According to the most recent version of the Common International 

Classification of Ecosystem Services (CICES, version 5.1.; Haines-Young and Potschin 2018), these 

services include regulating and maintenance services belonging to the group “regulation of baseline 

flows and extreme events,” especially the classes “control of erosion rates,” “buffering and attenuation 

of mass movement,” and “hydrological cycle and water flow regulation, including flood control and 

coastal protection,” which are largely neglected in the scientific literature dealing with the impacts of 

PPPs. 

 

Abundance, diversity, and functional role of soil microbial photosynthetic communities in soil 

ecosystems 

Terrestrial microalgae and cyanobacteria communities (mainly designated hereafter as soil microbial 

photosynthetic communities) are ubiquitous photosynthetic microorganisms. They are pioneer 

autotrophic components of microbial communities growing on the surface of soils (Fig. 1). In 

temperate agricultural soils, they are highly abundant (from 1 × 104 to 1 × 107 cells/g soil, depending 

on season and land use, (Metting 1981; Zancan et al. 2006). Soil microbial phototroph communities 

can reach for around 25% of the microbial biomass of agricultural soils (Abinandan et al. 2019). These 

communities are highly diversified: eukaryotic microalgae are mainly represented by Chlorophyceae, 

Bacillariophyceae (Foets et al. 2021), Xanthophyceae and Chrysophyceae, while prokaryotic 

cyanobacteria include Oscillatoriales, Nostocales, and Chroococcales, many of which are filamentous 

(Metting 1981; Davies et al. 2013; Lentendu et al. 2014; Djemiel et al. 2020). While certain groups are 

thought to be specific to soils, others are also found in aquatic environments (Bérard et al. 2004), 

suggesting biological transfers between aquatic and terrestrial environments (Pfister et al. 2017).  

 



3 

 

 

In some crops alternating between flooding and drying out (e.g., rice paddies),cyanobacteria, and, to 

a much lesser extent, microalgae have been deeply studied on the surface of emerged and submerged 

soil (Singh et al. 2018; Kaushik et al. 2019). Soil microbial photosynthetic communities form a soil–

atmosphere microbial interface (subjected to sprayed PPP), which makes them central to addressing 

the challenges of sustainable agriculture and preservation and management of ecosystem services, in 

particular soil health and agricultural production (Ramakrishnan et al. 2023). 

 

Fig. 1: Pictures illustrating soil microbial phototrophs. a Conventional cropland (maize), b conservation cropland 

(barley), and c forest (Mediterranean). Microscopy observations: d diatoms; e cyanobacteria; f and g 

photosynthetic microbial biofilms growing in 50 days incubated microcosms on soil aggregates from organic 

cropping system: incubation with the herbicide isoproturon (g) at field dose recommended as 2.4 L ha−1 of the 

commercial formulation clearly inhibited the development of photosynthetic biofilms on soil aggregates, 

compared with incubated microcosms without isoproturon (f) 

 

 

Indeed, these microbial communities are involved in many ecosystem functions, which are achieved 

via various ecological processes (Fig. 2), such as photosynthesis, pigment production, biofilm/filament, 

and exopolysaccharide production (Malam Issa et al. 2007; Chamizo et al. 2018), enzymes, hormone 

and biocide production (Abinandan et al. 2019; Poveda 2021; Santini et al. 2021; Righini et al. 2022; 

Osman et al. 2023), and N2 fixation (Peng and Bruns 2019). In croplands that experience frequent soil 

surface disturbances (e.g., tillage practices), microbial production by soil photosynthetic 

microorganisms can range from 80 to 157 g C m−2 year−1, which represent 6 to 7% of the net primary 

production of terrestrial vegetation (Shimmel and Darley 1985; Jassey et al. 2022). The presence of soil 

microbial photosynthetic communities has also been shown to reduce the net emission of CO2 from 

agricultural soils under experimental conditions (Sauze et al. 2017).  
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Experimental and field studies have already demonstrated that soil microbial photosynthetic 

communities play a role in maintaining soil structure by producing exopolysaccharides and 

filaments/biofilms that help to control (i) soil aggregation and thus limiting erosion (Metting 1987; 

Knapen et al. 2007; Kidron and Drahorad 2021; Keqiang et al. 2023) and (ii) soil water retention that 

contributes to hydrological cycle and water flow regulation (Cantón et al. 2020; Rossi et al. 2021; Giora 

et al. 2020; Kidron 2021). Native soil microbial photosynthetic communities can also enhance soil 

dissipation of some PPPs, suggesting a key role on soil surface as a bio-filter (Davies et al. 2013). The 

inoculation of biocrust organisms (particularly pioneer cyanobacteria) is increasingly used as a soil 

restoration solution (e.g., Chamizo et al. 2020; Zhao et al. 2021, Dhawi 2023). However, in the context 

of agroecosystems, the knowledge about the functional role of soil microbial photosynthetic 

communities is scarce and mostly outdated (Metting 1987; Knapen et al. 2007; Malam Issa et al. 2007; 

Peng and Bruns 2019), with the exception of rice fields, where microalgae and cyanobacteria are 

recognized for their beneficial effects on crops and are sometimes taken into account in rice cropping 

system simulations (Gaydon et al. 2012). 

 
 

Fig. 2: Putative list of ecological processes performed by terrestrial photosynthetic microorganisms in soil 

ecosystems and possible unweighted contribution of each of these processes to soil ecosystem functions classified 

according to the categories proposed by Pesce et al. (2023a) 

 

 

Given the diversity of ecological processes performed by soil microbial photosynthetic communities, 

they may be significantly involved in many of the 12 categories of ecosystem functions potentially 

impacted by PPPs, as recently proposed by Pesce et al. (2023a). Ultimately, these ecosystem functions 

are the pillars of numerous soil ecosystem services. This is why we call for better consideration of soil 

microbial photosynthetic communities to preserve or restore soil ecosystem services. 
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Limited knowledge about the effects of PPPs on terrestrial microalgae and cyanobacteria 

There is an extensive literature on the ecotoxicological effects of PPPs on different taxonomic groups 

(including for instance terrestrial macro-invertebrates and heterotrophic microorganisms as well as 

aquatic microalgae and cyanobacteria), but soil microbial photosynthetic communities remain some 

of the least documented biological communities in ecotoxicology. However, a few studies have shown 

that pesticides can negatively impact these non-target communities (when considering the community 

level, less than 30 relevant articles were obtained from the bibliographic analysis performed on the 

Web of Science — WoS). For instance, herbicides have been shown to strongly affect these terrestrial 

photosynthetic microbial communities by decreasing their biomass and diversity (Pipe 1992; Zancan 

et al. 2006; Crouzet et al. 2013; Joly et al. 2014). Herbicide effects also disrupt ecological processes 

such as soil photosynthesis (Bérard et al. 2004), biomass production (Pipe 1992), N2 fixation (Dash et 

al. 2018; Wegener et al. 1985), and pigment and exopolysaccharide production (Crouzet et al. 2019; 

Joly et al. 2014; Zaady et al. 2013). Such effects can have further consequences on ecosystem functions. 

Zaady et al. (2013) reported that the triazine herbicide simazine increased soil runoff and decreased 

hydraulic conductivity due to its negative impact on soil chlorophyll biomass and exopolysaccharides. 

Crouzet et al. (2019) showed that the phenylurea herbicide isoproturon has a negative impact on soil 

aggregate stability by decreasing chlorophyll biomass and exopolysaccharide production and changing 

pigment composition. 

 

Potential impacts of PPPs on soil ecosystem services: “regulation of baseline flows and extreme 

events” as an example 

As mentioned in the previous section, scientific evidence exists concerning the impact of some 

herbicides on several ecological processes performed by soil microbial photosynthetic communities, 

including photosynthesis, pigment, EPS, and possibly filament production (components of filamentous 

microalgae and cyanobacteria biomass impacted by herbicides), as well as N2 fixation. Herbicide 

effects on such ecological processes can have consequences on different ecosystem functions which 

themselves support soil ecosystem services.  

 

Fig. 3: Schematic network of logic chains showing how three classes of the “Regulation of baseline flows and 

extreme events” ecosystem services and related goods and benefits can suffer cascading effects caused by 

ecotoxicological impacts of herbicides on selected ecological processes carried out by soil microbial phototrophs. 

EPS, exopolysaccharides excreted by microbial phototrophs in the soil 

 

 

To improve the assessment of the risks and effects of PPPs (or other chemicals) on ecosystem services, 

several authors advocate the development of evidence-based logic chain approaches (Hayes et al. 

2018; Faber et al. 2021; Maltby et al. 2021).  
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These approaches use logic chains on specific impacts, from effects on key lower-trophic-level 

organisms, which disrupt a wide range of ecological processes and functions, to consequences on 

broader ecosystem services (Hayes et al. 2018). In Fig. 3, this kind of approach was used to illustrate 

how ecotoxicological effects of PPPs on the abovementioned ecological processes performed by soil 

microbial photosynthetic communities can impact some ecosystem functions supporting soil 

ecosystem services belonging to the group “regulation of baseline flows and extreme events” and on 

associated goods and benefits (CICES, version 5.1.; Haines-Young and Potschin 2018). 

This specific example, which shows how some regulation and maintenance services provided by soil 

ecosystems can suffer cascading effects caused by ecotoxicological impacts of PPPs on ecological 

processes carried out by soil microbial photosynthetic communities, highlights the need to consider 

these organisms in environmental assessments on the risks and effects of PPPs (and other chemicals), 

not only in order to protect these communities, their diversity, and the ecological processes they 

perform, but also to protect or restore the functioning of soil agroecosystems and the services they 

provide, as addressed in semi-arid contexts with biocrusts (Zhao et al. 2021). However, risk and effect 

assessment targeting more specifically selected soil ecosystem functions and services needs taking into 

consideration all the main biological actors involved, meaning that soil phototrophic microorganisms 

should be studied together with other soil microorganisms identified as key interacting players of a 

soil microbial ecosystem as well as macro-organisms identified as key players in the considered 

evidence-based logic chain. 

 

Conclusions and recommendations 

Very few studies have been carried out to characterize the risks and impacts of PPPs on the diversity 

and activities of soil photosynthetic microbial communities, and most were published in the 1970s–

1990s, which explains the paucity of quantitative data on these effects (Mamy et al. 2022). Current 

research on this topic mainly concerns rice fields, with a focus on cyanobacteria and their diazotrophic 

activity contributing to N2 fixation (Kaushik et al. 2019). In order to significantly develop knowledge 

concerning the impact of PPPs on soil microbial photosynthetic communities, it is necessary to 

consolidate the methods for sampling and characterizing these communities in different soils and land 

use contexts (Barragan et al. 2018). Besides these methods, which have to be specific to the terrestrial 

environment, it is also important to draw on methodological and conceptual developments from 

research aimed at assessing the impact of PPPs on freshwater photosynthetic microorganisms, which 

are the subject of numerous studies at various biological levels (Vonk and Kraak 2020). For example, 

the use of functional traits, as applied to aquatic microalgae (Baert et al. 2017), could help to better 

understand the functional consequence of the ecotoxicological effects of PPPs on soil microbial 

photosynthetic communities, calling for further investigations about their own functional traits. The 

application of omics approaches (such as metabarcoding, Djemiel et al. 2020; Rivera et al. 2020; as well 

as transcriptomics, proteomics and metabolomics, Moisset et al. 2015, Lips et al. 2022), which are 

increasingly used to investigate the structural and functional responses of aquatic photosynthetic 

microorganisms to PPPs at different biological levels (from strains to communities) could provide new 

insights into the effects of PPPs on soil photosynthetic microorganisms. For instance, it could help to 

investigate their sensitivity to PPPs, based on their phylogeny, and to study alterations in community 

diversity and functions in response to PPP exposure. Fluorimetry techniques (PAM and spectral 

measurements), currently applied to aquatic environments, could also be used to characterize the 

responses of soil photosynthetic microorganisms to PPPs. Promisingly, it has thus been shown that 

spectral analyses based on reflectance or fluorescence can be applied to the study of soil biological 

crusts (Rodriguez-Caballero et al. 2015).  
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Flow cytometry, which is already widely used in aquatic environments, can also be applied to soil 

ecosystems (Menyhart et al. 2018). Finally, the development of imaging tools (Zhang et al. 2022, 2023) 

would also enable progress to be made in taxonomic recognition and more global observation on the 

scale of microbial crusts. 

Moreover, relying on these different methods, terrestrial photosynthetic microbial communities could 

potentially serve as good indicators of soil quality. The biodiversity of freshwater diatoms is currently 

used for biomonitoring purposes, to assess the ecological quality of aquatic ecosystems, thanks to the 

use of biological indices (e.g., BDI, Coste et al. 2009) based on the large ecological amplitude of diatoms 

and their species-specific sensitivity to pollution. The connectivity between terrestrial and aquatic 

environments means that several photosynthetic microorganisms can be found both in soils and 

waters. One example is the taxonomic group of diatoms. Martínez-Carreras et al. (2015) and Klaus et 

al. (2015) demonstrated rapid transfers of terrestrial diatoms from soil surfaces to surrounding waters. 

The diatom group may therefore hold potential for use as an indicator of pollution (especially PPPs) 

throughout the terrestrial–aquatic continuum. 

In general, there is a need to make progress on the links between diversity, function, and services 

impacted by PPPs (Pesce et al. 2023a). Going beyond the simple question of PPPs, this is clearly 

identified as a major challenge in microbial ecotoxicology (Hellal et al. 2023). Thus, efforts to improve 

the evaluation and quantification of the impacts of PPPs and other toxicants on soil ecosystem services 

demand greater interdisciplinarity, with more interaction between ecotoxicologists, environmental 

scientists in other disciplines, such as those that connect to physics and pedology (in order to take into 

account the specific context of soils) and scientists from the humanities and social sciences working in 

the field of ecosystem services. This nexus of sciences and disciplines will be an essential step towards 

sustainable use of PPPs that can help maintain or even restore the ecological quality and functioning 

of soil ecosystems and thus enable them to provide vital ecosystem services. 
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