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Abstract 83 

Transition to novel environments, such as groundwater colonization by surface organisms, 84 

provides an excellent research ground to study phenotypic evolution. However, interspecific 85 

comparative studies on evolution to groundwater life are few because of the challenge in 86 

assembling large ecological and molecular resources for species-rich taxa comprised of surface 87 

and subterranean species. Here, we make available to the scientific community an operational 88 

set of working tools and resources for the Asellidae, a family of freshwater isopods containing 89 

hundreds of surface and subterranean species. First, we release the World Asellidae database 90 

(WAD) and its web application, a sustainable and FAIR solution to producing and sharing data 91 

and biological material. WAD provides access to thousands of species occurrences, specimens, 92 

DNA extracts and DNA sequences with rich metadata ensuring full scientific traceability. 93 

Second, we perform a large-scale dated phylogenetic reconstruction of Asellidae to support 94 

phylogenetic comparative analyses. Of 424 terminal branches, we identify 34 pairs of surface 95 

and subterranean species representing independent replicates of the transition from surface 96 

water to groundwater. Third, we exemplify the usefulness of WAD for documenting phenotypic 97 

shifts associated with colonization of subterranean habitats. We provide the first 98 

phylogenetically controlled evidence that body size of males decreases relative to that of 99 

females upon groundwater colonization, suggesting competition for rare receptive females 100 

selects for smaller, more agile males in groundwater. By making these tools and resources 101 

widely accessible, we open up new opportunities for exploring how phenotypic traits evolve in 102 

response to changes in selective pressures and trade-offs during groundwater colonization. 103 

 104 

KEYWORDS collaborative database, phylogeny, comparative analysis, phenotypic 105 

evolution, molecular resources, subterranean biodiversity 106 
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1  INTRODUCTION 107 

Homo sapiens has been fascinated by the subterranean world throughout its history (Mammola 108 

and Martinez, 2020) and the peculiar features of subterranean organisms have attracted 109 

scientists since their first discovery over the 16th to 17th centuries (Malard, 2022). However, it 110 

was not until the mid-twentieth century that the idea that the subterranean world provides an 111 

excellent research ground for addressing general scientific questions in ecology and evolution 112 

gained momentum (Poulson and White, 1969; Mammola et al., 2020). A long-standing 113 

perspective of subterranean life evolution is that of convergence whereby phylogenetically 114 

distant organisms acquire similar phenotypes because of a convergent selective environment 115 

that includes no light, environmental stability and energy limitation (Christiansen, 1961; Pipan 116 

and Culver, 2012). Since the 2000’s, a broader evolutionary perspective of subterranean life 117 

has emerged, one that has also incorporated the role of non-adaptive processes (Lefébure et al., 118 

2017; Wilkens and Strecker, 2017; Policarpo et al., 2021) and divergent selection (Trontelj et 119 

al., 2012; Fišer et al., 2023) in shaping the phenotype of organisms. 120 

 121 

Phylogenetically controlled and replicated comparisons between closely related surface and 122 

subterranean organisms provide ideal models to study evolution during colonization of a novel 123 

environment (Protas and Jeffery, 2012; Saclier et al., 2018; Rétaux and Jeffery, 2023). Indeed, 124 

surface organisms that colonize subterranean habitats experience dramatic environmental 125 

changes (e.g. darkness, food limitation) and evolve characteristic regressive (e.g. reduced eyes 126 

and pigment) and constructive (e.g. increased extra-optic sensory structures) traits (Culver and 127 

Pipan, 2019; Hose et al. 2022). Subterranean colonization is considered an irreversible habitat 128 

transition because it leads to eye degeneration (Niemiller et al., 2013; Langille et al., 2022). 129 
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Only in very rare cases, blind and depigmented animals can re-colonize surface habitats that 130 

are characterized by low competitive pressure (Copilas-Ciocianu et al., 2018). 131 

 132 

The scientific scope of surface-subterranean comparative studies ultimately depends on the 133 

acquisition of ecological and molecular resources - from biological trait data to phylogenetic 134 

and genomic resources - in model organisms. These resources are increasingly becoming 135 

available at intraspecific level in species comprised of surface and subterranean populations 136 

such as the teleost Astyanax mexicanus (Kowalko et al., 2020; Gross et al., 2023), the isopod 137 

Asellus aquaticus (Konec et al., 2015; Protas et al., 2023), the amphipod Gammarus minus 138 

(Fong et al., 2023) and the urodele amphibian Proteus anguinus (Kostanjšek et al., 2023). 139 

However, comparative studies at the interspecific level remain scarce essentially because of the 140 

difficulty in assembling large-scale phylogenetic and species trait data sets in clades comprised 141 

of multiple surface and subterranean species (Stern et al., 2017; Lefébure et al., 2017; Saclier 142 

et al., 2018; Mammola et al., 2019; Langille et al., 2022). Although intraspecific studies often 143 

provide deeper insights into the genetic and developmental basis of phenotypic traits, only 144 

interspecific studies can document evolutionary changes taking place over time periods longer 145 

than the lifespan of natural populations. 146 

 147 

Performing phylogenetic comparative analyses of clades comprised of surface and subterranean 148 

species faces several challenges. First, only a few clades of metazoans contain both a high 149 

number of surface species and subterranean species because the surface ancestors of many 150 

subterranean taxa went extinct (Humphreys, 2000). Candidate clades often have a wide 151 

geographic distribution, sometimes spanning several continents, which makes it particularly 152 

difficult to obtain biological material (Mammola and Isaia, 2017; Faille, 2019; Fišer, 2019a; 153 
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Lukić, 2019). Second, the taxonomic units to be used in comparative analyses are not firmly 154 

established. Molecular species delimitation methods often reveal highly divergent operational 155 

taxonomic units within subterranean described species that have been historically delimited 156 

based on morphological criteria (Fišer et al., 2018; Eme et al., 2018). Third, we lack large dated 157 

phylogenies of clades with multiple independent subterranean colonization events (but see 158 

Ledford et al., 2011; Morvan et al., 2013; Stern et al., 2017). Last, when phylogenetic inferences 159 

are available, biological traits for the taxonomic units of interest are often not available in the 160 

literature and voucher specimens for measuring those traits are difficult to locate (but see 161 

Mammola et al., 2022). 162 

 163 

Here, we address the aforementioned challenges by releasing the World Asellidae database 164 

(WAD) and phylogeny, a backbone resource to support comparative studies on life evolution 165 

in subterranean habitats. The Asellidae (Isopoda, Pancrustacea) is one of the few families of 166 

aquatic metazoans containing both surface and subterranean species, thereby potentially 167 

providing multiple independent replicates of the transition from surface water to groundwater. 168 

First, we describe the guiding principles and content of WAD, a collaborative database 169 

specifically designed to promote the joint production and sharing of primary ecological and 170 

molecular data and metadata by multiple research laboratories. Second, we take advantage of 171 

new sequence data available in WAD for two mitochondrial genes and two nuclear genes to 172 

perform a large-scale dated phylogenetic reconstruction of the Asellidae family that can be used 173 

more widely in future comparative studies. Third, we exemplify the usefulness of WAD for 174 

documenting phenotypic changes associated with colonization of subterranean habitats. We use 175 

the Asellidae phylogeny and body size (BS) data from literature articles and morphological 176 

measurements made on specimen lots referenced in WAD to test for differences in male and 177 
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female BS between surface and groundwater habitats. We predict no difference in female BS 178 

between habitats because fecundity selection probably favors large-bodied females with large 179 

brood sizes in both habitats. In contrast, we predict smaller-bodied males in groundwater than 180 

in surface water due to a shift in male mating strategy. In surface water, we hypothesize that 181 

competition for synchronously receptive females selects for large males that are more likely to 182 

win mating contests (Bertin and Cezilly, 2003). In groundwater, competition for rare, highly 183 

asynchronous, receptive females potentially favors smaller, more agile males that are more 184 

likely to be successful in finding mates (Andersson, 1994; Blanckenhorn, 2000). 185 

 186 

2  MATERIALS AND METHODS 187 

2.1  The World Asellidae Database (WAD) 188 

We use the free and open‐source application GOTIT (https://github.com/gotit-dev/gotit; Malard 189 

et al., 2020) to input, manage and share ecological and molecular data and metadata in WAD. 190 

The application manages every step of an every-day laboratory workflow process leading to the 191 

production of species occurrence data and DNA sequences. A demo version of GOTIT 192 

application is available at https://gotit.cnrs.fr. WAD hosts all species occurrence data, sampling 193 

and sequencing metadata and biological vouchers (specimens, microscopic slides and DNA 194 

extracts) generated over the workflow (Table 1). The database also manages species occurrence 195 

data and DNA sequence metadata from the literature and biodiversity facilities, the 196 

bibliographic referencing of information and the assignment of DNA sequences to molecular 197 

operational taxonomic units (MOTUs). We provide in supplemental figures 1 and 2 (SI Figures 198 

1 and 2) the simplified and full logical models of the database, respectively. User access to 199 

WAD, either as a data end-user or contributor, is at https://gotit.univ-lyon1.fr upon request from 200 

the corresponding author.  201 

https://github.com/gotit-dev/gotit
https://gotit.cnrs.fr/
https://gotit.univ-lyon1.fr/
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 202 

2.2  Species delimitation and dated phylogeny 203 

2.2.1  Taxon sampling and molecular data 204 

To build the phylogeny, we extracted from WAD an initial molecular data set representing 299  205 

described and undescribed morphospecies of Aselloidea (278 Asellidae and 21 Stenasellidae 206 

used as outgroup). Specimens were collected at 943 localities in Europe, North America, North 207 

Africa and Asia (SI Table 1). Localities spanned a wide range of surface and subsurface fresh-208 

water habitats including lotic and lentic surface water bodies, cave streams and pools, the 209 

hyporheic zone of surface streams and groundwater in unconsolidated sediments. Throughout 210 

this paper, we used the term morphospecies to refer to species, either formally described or 211 

undescribed (i.e. waiting a formal description), that were identified based on morphological 212 

criteria. Species names of North American asellids follow the latest taxonomic revision to be 213 

published by Lewis and coauthors (2023). For morphological identification of specimens to 214 

species level, we relied on the shape of male copulatory organs (pleopods 2), plus secondary 215 

characteristics including the morphology of the male pereopods 1 and 4, pleopods 3-5, and 216 

uropods (Lewis et al., 2023). We dissected copulatory pleopods 1 and 2 of male specimens and 217 

mounted them on slide for examination using a compound microscope. 218 

 219 

We used the Chelex protocol of Casquet and coauthors (2012) to extract DNA from specimen. 220 

We incubated three pereopods of each specimen in a solution of 150 μl of 7% chelex and 10 μl 221 

of proteinase K at 15 mg / ml for 90 minutes at 56 °C, and then 15 minutes at 90 °C. We 222 

amplified DNA using primers targeting the mitochondrial cytochrome oxidase subunit I (COI) 223 

gene, the 16S mitochondrial rDNA gene, the FASTKD4 nuclear gene and the 28S nuclear 224 

rDNA gene. We provide in supplemental tables 2 and 3 (SI Tables 2 and 3) the list of all PCR 225 
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primers, among which 66 were specifically designed as part of this study. For the two 226 

mitochondrial genes, we applied several methods to prevent misleading inclusion of nuclear 227 

mitochondrial DNA segments (NUMT) in the data set, including different primer pairs, long-228 

range amplification and pre-PCR dilution of genomic DNA (Calvignac et al., 2011). 229 

 230 

We amplified 16S fragments with two independent pairs of primers (SI Tables 2 & 3). PCR 231 

settings were as follows: one step of 3 min at 95 °C; 35 cycles of 20 s at 95 °C, 30 s at 53 °C, 232 

30 s at 72 °C; and one step of 5 min at 72 °C. We performed PCRs for COI fragments using a 233 

previously optimized protocol (Calvignac et al., 2011), but with a Taq polymerase (Eurobiotaq) 234 

amount of 0.05 U instead of 0.15 U and a PCR volume of 25 µl instead of 35 µl. We used the 235 

following PCR settings: one step of 3 min at 95 °C, 37 cycles of 20 s at 95 °C, 30 s at 51 °C, 236 

45 s at 72 °C, and one step of 5 min at 72 °C. A semi-nested PCR was performed whenever the 237 

first amplification failed. Using the first PCR product as DNA template, we performed a second 238 

PCR using one of the two primers used in the first PCR and another, different primer. The 239 

second round PCR was run on 1 µl of the first round PCR product, using the same settings as 240 

above but 35 cycles. We amplified FASTKD4 fragments using several pairs of primers (SI 241 

Tables 2 & 3) with the following PCR settings: one step of 5 min at 95 °C, 38 cycles of 30 s at 242 

95 °C, 45 s at 54 °C, 45 s at 72 °C, and one step of 5 min at 72 °C. As for the COI gene, we 243 

performed a semi-nested PCR whenever the first amplification failed. We completed PCRs for 244 

28S fragments with two independent pairs of primers in order to detect divergent copies. We 245 

used the following PCR settings: one step of 3 min at 95 °C; 37 cycles of 30 s at 95 °C, 30 s at 246 

62 °C, 30 s at 72 °C; and one step of 5 min at 72 °C. 247 

 248 
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Microsynth France SAS (Vaulx-en-Velin, France) performed Sanger sequencing for the four 249 

genes. Chromatograms were visualized with FinchTV (Geospiza, Seattle, WA, USA). All 250 

sequences were aligned with Muscle as implemented in Seaview (Gouy et al., 2010) and 251 

checked visually for the presence of anomalies, including stop codons and frameshifts for 252 

protein coding genes. 253 

 254 

2.2.2  Molecular operational taxonomic units (MOTUs) 255 

We delimited MOTUs based on a COI alignment of 1385 haplotypes, which were defined from 256 

the sequences obtained from 2093 specimens belonging to 299 morphospecies of Aselloidea 257 

(SI Tables 1 & 4). We used the following procedure to select specimens for which we obtained 258 

COI sequences. Whenever possible, we first obtained 16S sequences from three specimens of 259 

each morphospecies present at a site. Second, we obtained a COI sequence for each specimen 260 

whose 16S sequence differed by more than 5 nucleotides with any 16S sequence of the two 261 

other specimens.  262 

 263 

We used the fixed COI threshold method (TH) implemented by Lefébure and coauthors (2006) 264 

for crustaceans, and the Poisson tree processes (PTP) proposed by Zhang and coauthors (2013), 265 

to delimit MOTUs. The TH method was previously used in several studies for delimiting 266 

species of asellids (Morvan et al., 2013; Eme et al., 2013, 2018). It is based on the observation 267 

made from hundreds COI sequences of crustaceans that two clades diverging by more than 0.16 268 

substitution per site, as measured by patristic distances, have a strong probability (ca. 0.99%) 269 

of belonging to different described morphospecies. It is a conservative method insofar as it 270 

identifies both fewer MOTUs and MOTUs that are more divergent than tree-based methods 271 

such as the PTP method (Eme et al., 2018). We applied the TH and PTP methods on a COI 272 
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haplotype alignment in which the longest sequence with the fewest ambiguities was retained as 273 

the best representative sequence for any given haplotype. We constructed a COI haplotype 274 

phylogeny in maximum likelihood with PhyML (Guindon et al., 2010) using a GTR + G + I 275 

model of evolution and Stenasellidae species as outgroup. We computed patristic distances 276 

from this phylogeny with the R package “ape” (Paradis et al., 2004) and delimited MOTUs 277 

according to the TH method with the “cluster” package (Maechler et al., 2002). To delimit 278 

MOTUs with the PTP method, we ran mPTP v0.2.2 (https://github.com/Pas-Kapli/mptp) using 279 

400 000 MCMC generations, with a thinning of 400 and 0.1 (10%) burn-in.  280 

 281 

We performed pairwise taxonomic comparisons between the three different sets of species 282 

hypotheses delimited using morphology, the TH method, and the PTP method. For each 283 

pairwise comparison, we provided the number of species delimited by each of the two methods 284 

as well as the number of matches, splits, lumps and reshuffling (see Eme et al. (2018) for a 285 

definition of these four categories). 286 

 287 

2.2.3  Four-gene alignment and phylogeny 288 

We produced alignments of the COI, 16S, FASTKD4 and 28S genes for 424 MOTUs of 289 

aselloids delimited with the TH method (SI Tables 5 to 9). Using MOTUs delimited with the 290 

TH method rather than the PTP method limited the risk of considering two populations of the 291 

same species as belonging to two distinct MOTUs. In each alignment, we retained the longest 292 

sequence with the fewest ambiguities to represent each MOTU, using the chimera assembler 293 

script (https://github.com/TristanLefebure/chimera_assembler.pl). We aligned the 28S and 16S 294 

genes with MAFFT Q-INS-i using default parameters (Katoh and Standley, 2013) and the COI 295 

and FASTKD4 genes with PRANK codon (Löytynoja and Goldman, 2008). Sites ambiguously 296 

https://github.com/Pas-Kapli/mptp
https://github.com/TristanLefebure/chimera_assembler.pl
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aligned were removed with Gblocks (Castresana 2000). We used the four genes for 424 MOTUs 297 

to build a phylogeny with PhyloBayes (Lartillot et al., 2009) under a CAT-GTR model of 298 

evolution. To guarantee the absence of polytomy, a threshold of 10% was set to obtain the 299 

majority consensus tree, meaning that each clade must be found in at least 10% of the trees of 300 

the Markov process after burn-in. We computed posterior probabilities to estimate the support 301 

of tree topologies and rooted the tree using species of Stenasellidae as outgroup. 302 

 303 

Using the phylogeny, we identified pairs of surface and groundwater asellid species that 304 

provided independent replicates of the ecological transition from surface water to groundwater. 305 

We ensured independence among pairs by selecting them so that the tree paths from one species 306 

to the other within a pair did not contain any branches in common with any other pairs 307 

(Felsenstein, 1988). For comparison with intraspecific studies, using independent species pairs 308 

is statistically more robust than using replicate pairs of surface and groundwater populations 309 

within a single species (Rétaux and. Jeffery, 2023). Indeed, replicate populations pairs within 310 

species can be statistically dependent if gene flow still occurs among surface populations. 311 

 312 

2.2.4  Time-scale phylogeny 313 

In the absence of fossil records for the Aselloidea, we used well-identified paleobiogeographic 314 

events to constrain the age of 17 nodes in the phylogeny (see SI Table 10 for a description of 315 

these events). Paleobiogeographic calibration points spanned a period ranging from 300 to 2 316 

Myr before present. We estimated divergence times among aselloids with PhyloBayes using a 317 

CAT-GTR + G + I model, the 17 calibration points as soft bounds, a birth-death prior on 318 

divergence time and a log-normal auto-correlation of the substitution rates among branches 319 
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(Lepage et al., 2007). The effect of any given calibration point on divergence time estimates 320 

was assessed by removing that given calibration point during time tree reconstruction. 321 

 322 

2.3  Comparative phylogenetic analyses of body size 323 

2.3.1  Body size and sexual body size dimorphism 324 

Here, we provide a case study of body size and sexual body size dimorphism to show how 325 

WAD resources and the World Asellidae phylogeny allow exploring how phenotypic traits 326 

evolve upon groundwater colonization. We completed literature data with laboratory 327 

measurements made on specimen lots contained in WAD to quantify the maximum body size 328 

of adult males and females of 162 asellid MOTUs included in the World Asellidae phylogeny 329 

(SI Table 11). We defined body size as the distance between the anterior margin of the cephalon 330 

and the posterior margin of the pleotelson (Prevorčnik et al. 2004). Maximum body size 331 

(subsequently abbreviated to BS) provides an estimator of the size of full-grown specimens in 332 

a species: it avoids including immature specimens and is often the only measurement provided 333 

in publications. For each MOTU, we provide in SI Table 11 our best estimate of the number of 334 

specimens used for quantifying BS, as the exact number is not always reported in the source 335 

articles. For measurements made on specimen lots contained in WAD, we took photos of 336 

specimens with a DP25 Olympus camera connected to a dissecting microscope (SZX16 337 

Olympus) and measured BS using ImageJ (Schneider et al., 2012). 338 

 339 

To quantify sexual body size dimorphism (SBSD), we used the size dimorphism index (SDI) 340 

as follows (Lovich and Gibbons, 1992; Fairbairn, 2007): 341 

SDI =
Body size of largest sex

Body size of smallest sex
− 1 342 
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SDI equals zero for monomorphic species in which the two sexes have the same body size and 343 

is arbitrarily given a negative sign when males are larger than females. 344 

 345 

2.3.2  Habitat specialization and habitat size 346 

We used presence and absence of eyes and body pigment as evidence of specialization to 347 

surface water and groundwater habitats, respectively. Hence, in the ensuing text, groundwater 348 

species designate eyeless and depigmented species whereas surface water species designate 349 

occulated and/or pigmented species. Of the 162 MOTUs included in the phylogenetic 350 

comparative analyses (see below), 61 were surface water species and 101 were groundwater 351 

species. 352 

 353 

We assessed the size of habitat or pore volume available to species because it is potentially a 354 

major determinant of maximum BS (Pipan and Culver, 2017). We used a fuzzy coding approach 355 

(Chevenet et al., 1994; Degen et al., 2018) to assess habitat size because most groundwater 356 

ecological studies do not provide any quantitative estimates of pore volume available to species. 357 

For the 162 asellid MOTUs incorporated in the comparative analyses, we attributed positive 358 

scores (from 0=no affinity to 3=strong affinity) to three categories of habitat size (large, 359 

medium and small pore volumes). We attributed habitat size scores independently of the eye 360 

and pigmentation status of species. Hence, we assigned a high affinity for large size habitats to 361 

species living in the benthic layer of surface streams as well as to those living in the benthic 362 

layer of cave streams. Scores were attributed to all species separately by two of us (F.M. and 363 

J.J.L.) using species occurrence data per habitat category as guideline data (data extracted from 364 

WAD). Then, we corrected for inconsistencies between the two sets of scores to produce a 365 

single “habitat trait categories per species” matrix. We provide the species habitat scores and 366 
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the scoring procedure in supplemental table 11 (SI Table 11) to ensure data traceability and 367 

reproducibility, and potential revision of scores in the event of new habitat data of species. 368 

Then, we performed a fuzzy correspondence analysis (COA) of the “habitat trait categories per 369 

species” matrix (Chevenet et al., 1994) and used the coordinates of species along the first axis 370 

of the COA, representing 85% of total variability, as quantitative surrogates of their habitat size. 371 

The COA was performed using the R package ”ade4” (Thioulouse et al., 2018). 372 

 373 

2.3.3  Data analysis 374 

We performed phylogenetic generalized least-squares (PGLS) regression models (Martins and 375 

Hansen, 1997) to test for the effect of habitat specialization and habitat size and its interaction 376 

on BS of females and males and SDI. To account for phylogenetic non‐independence among 377 

species, we used the Asellidae time-scale phylogeny, pruned to the 162 MOTUs for which BS 378 

data were available for the two sexes. We selected the best model of trait evolution and its 379 

associated covariance structure - in this study, the Brownian motion model - according to 380 

minimum Akaike information criterion. We tested the significance of each predictor (i.e. habitat 381 

specialization and habitat size) in the regression by comparing with a likelihood ratio test (LRT) 382 

a model without the predictor to a model with the predictor. We assessed the proportion of 383 

variance explained by phylogenetic regressions using Cox-Snell pseudo-R2. PGLS were 384 

performed in R using the “APE” (Paradis et al., 2004) and “nlme” (Pintero et al., 2022) 385 

packages. 386 

 387 

3  RESULTS 388 

3.1  The World Asellidae Database (WAD) 389 
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The database contains 9438 distributional records for 163 surface water species and 285 390 

groundwater species of Asellidae belonging to 23 genera (Tables 1 and 2). Asellids are widely 391 

distributed in the Northern Hemisphere with species belonging to four formerly recognized 392 

groups of morphospecies, which occupy distinct but partially overlapping distribution ranges 393 

(Figure 1). All four groups include both surface and groundwater species, although in different 394 

proportions. (Table 2). The first group is the "Asellus pattern", so named by Henry and Magniez 395 

(1995) in reference to the specific shape of copulatory organs shared by several genera of 396 

Asellidae. It has nine genera (61 species); all distributed in Asia and North Western America, 397 

except the genus Asellus, which is also represented in Europe by the widespread Asellus 398 

aquaticus species complex (Verovnik et al., 2005). The second group to which we refer as the 399 

North American asellids include seven genera (152 described species), all located in North 400 

America, except Gallasellus and Baicalasellus, which are endemic to western France and Lake 401 

Baikal (Russia), respectively. The third group containing the two genera Bragasellus and 402 

Synasellus (56 species) is endemic to the Iberian Peninsula. The fourth group corresponding to 403 

the genus Proasellus (174 species) extends from southern Scandinavia to northern Africa and 404 

from Portugal to Iran.  405 

 406 

WAD describes the content of 1943 specimen lots, which were sampled by 324 collectors in 38 407 

countries. Lot description comprises the number of male and female mature specimens, 408 

juveniles and ovigerous females. Collection material referenced in WAD also includes 4362 409 

specimen DNA extracts and 1584 specimen microscopic slides. Specimen lots and DNA 410 

extracts are preserved at -20°C in the zoology collection at University Claude Bernard of Lyon: 411 

they are available for subsequent collaborative morphological and molecular analyses upon 412 

request from the corresponding author. 413 
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 414 

WAD provides metadata – from sampling of specimens to PCR and chromatogram settings – 415 

for 8914 validated sequences of Asellidae belonging to two mitochondrial and three nuclear 416 

genes (Table 1). Of these, 3692 sequences were submitted to NCBI, essentially from the present 417 

article authors, as part of previous studies, and 4082 sequences were submitted as part of the 418 

present study (SI Table 12). In WAD, COI sequences are assigned to MOTUs using different 419 

molecular species delimitation methods. The geographic distribution of MOTUs within 420 

morphospecies can be visualized using ready-to-use queries implemented in GOTIT application 421 

(SI Figure 3). 422 

 423 

3.2  The Asellidae timetree 424 

3.2.1  Molecular operational taxonomic units (MOTUs) 425 

The TH and PTP molecular species delimitation methods provided respectively, 1.6 and 1.9 426 

more MOTUs than morphospecies (Figure 2). The two molecular methods essentially split 427 

morphospecies into smaller clusters of individuals. Reshuffling cases were rare: of the 466 and 428 

557 MOTUs respectively delimited by TH and PTP, only 10 (2.1%) and 12 (2.2%) fell in that 429 

category. PTP split morphospecies into smaller clusters than TH, thereby generating 1.2 more 430 

species hypotheses than TH. 431 

 432 

3.2.2  Time-scale phylogeny 433 

The phylogeny included 384 MOTUs of asellids delimited with the TH method. They 434 

collectively represented 268 morphospecies, among which 195 were formally described (Figure 435 

3, Table 2). The tree topology recovered the monophyly of the four main species groups 436 

described above and that of all asellid genera, with posterior probabilities > 0.9, except the 437 
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genus Conasellus (PP=0.43) (Figure 3, SI Figure 4). The Asellus pattern (group 1 in Figures 1 438 

and 3) formed a sister clade to the rest of a larger clade comprised of the North American asellid 439 

clade (group 2), the Bragasellus + Synasellus clade (group 3), and the Proasellus clade (group 440 

4). However, relationships among the later three clades were not resolved. The tree topology 441 

for Proasellus was also consistent with earlier subdivisions of this species-rich genus into four 442 

clades (Morvan et al., 2013). Within that genus, the slavus clade was sister to a larger clade 443 

comprised of the ibero-aquitanian, anophtalmus-coxalis, and Alpine clades, but the 444 

relationships among the later three clades were not resolved (Figure 3). 445 

 446 

Divergence time estimates were robust to the removal of any single paleobiogeographic 447 

calibration point, except the deepest one that constrained the divergence between Stenasellidae 448 

and Asellidae to be more recent than 300 Myr (SI Figure 5). Removing this point yielded older 449 

divergence times, notably pushing back the divergence between the Stenasellidae and Asellidae 450 

to 300 Myr (95% Credibility Interval [CI]: 415-222 Myr) instead of 139 Myr (CI: 174-106 451 

Myr), when including it (Figure 3, SI Figure 5). The diversification of Asellidae might have 452 

started in early Cretaceous (132 Myr, CI: 168-102 Myr) and that of Proasellus at the end of 453 

Cretaceous or beginning of the Paleogene (72 Myr, CI: 88-58 Myr). 454 

 455 

We identified up to 34 independent pairs of surface and groundwater asellid species in the 456 

phylogeny (Figure 3, SI Figure 4). Species pairs were present in all four major groups of asellid 457 

species, although several species-rich clades were almost exclusively comprised of 458 

groundwater species, including the Alpine Proasellus clade, Synasellus and Caecidotea. The 459 

uneven distribution of species pairs among the Proasellus (21 pairs), North American asellids 460 

(10 pairs) and the Asellus pattern (one pair) essentially reflected a too low sampling in the latter 461 
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two groups (Table 2). Transitions to groundwater have probably occurred throughout the 462 

evolutionary history of the Asellidae (Figure 3, SI Figure 4). Using the speciation event leading 463 

to a congeneric species pair as a surrogate of the transition time to groundwater (but see 464 

discussion), some transitions occurred less than 10 million years ago (6.9, CI: 11.4 -4.2 Myr for 465 

the Asellus aquaticus – A. kosswigi species pair), whereas others potentially occurred much 466 

longer ago (at most 40.4, CI: 50.9 - 30.4 Myr for the Conasellus burkensis - Conasellus reddelli 467 

species pair) (SI Figure 4). 468 

 469 

3.3  Comparative phylogenetic analyses of body size 470 

Female and male BS ranged from 2.3 to 18 mm (mean=6.3±2.7 mm, n=162 MOTUs) and from 471 

2.1 to 25 mm mean=7.3±4.1 mm, n=162 MOTUs), respectively (SI Table 11, SI Figure 6). BS 472 

increased significantly with habitat size, both for females and males (Table 3, Figure 4, SI Table 473 

13). Species colonizing open habitats, both above (e.g. surface lakes and streams) and below 474 

ground (e.g. cave streams), had larger BS than species colonizing interstitial habitats (e.g. 475 

groundwater in unconsolidated sediment). The effect of habitat specialization on BS was gender 476 

dependent (Table 3, Figure 4, SI Table 13). Male BS was significantly smaller in groundwater 477 

species than in surface water species, whereas we found no significant differences in female BS 478 

between surface water and groundwater species. However, habitat specialization accounted for 479 

a smaller proportion of variance in male body size (Cox-Snell R2 = 0.074) than habitat size (R2 480 

= 0.161) (SI Table 13). We found no interactions between the effects of habitat size and habitat 481 

specialization on male and female body size, indicating that constraints imposed by the size of 482 

habitats on body size applied similarly to eyeless and depigmented species and occulated and/or 483 

pigmented species. 484 

 485 
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Asellids showed substantial variation in sexual body size dimorphism (SBSD) among species. 486 

Of the 162 species examined in this study, 94 (58 %) exhibited male-biased dimorphism, 62 487 

(38.3 %) exhibited female-biased dimorphism and 6 (3.7 %) were monomorphic for BS. We 488 

found a significant effect of habitat specialization on SBSD: mean SDI was -0.33±0.22 (n=61) 489 

and 0.01 ±0.28 (n=101) for surface water species and groundwater species, respectively (Table 490 

3, Figure 4, SI Table 13). Males were larger than females in 57 of 61 (i.e. 93.4 %) surface water 491 

species examined in this study, whereas they were larger than females in only 37 of 101 (i.e. 492 

36.6 %) groundwater species. The size dimorphism index (SDI) decreased significantly with 493 

increasing habitat size (Table 3, Figure 4). Male-biased SBSD (SDI<0 in Figure 4) 494 

predominated in open habitats whereas female-biased SBSD (i.e. SDI >0) predominated in 495 

interstitial habitats. However, habitat size accounted for a smaller proportion of variance in 496 

SBSD (Cox-Snell R2 = 0.069) than habitat specialization (R2 = 0.110). We found no interactions 497 

between the effect of habitat size and habitat specialization on SBSD. 498 

 499 

4  DISCUSSION 500 

4.1  The World Asellidae Database (WAD) 501 

Collaborative databasing has become essential to biodiversity sciences because the amount of 502 

data and biological material needed to address broad-in-scope questions exceeds the production 503 

capabilities of even the most performing laboratories (Nelson et al., 2011; Hobern et al., 2012; 504 

Fišer, 2019b). The structure of the database used in the present study and its web application 505 

GOTIT have been conceived to provide scientists with an efficient tool to jointly produce 506 

multiple-species ecological and molecular resources to study life evolution in groundwater. The 507 

tool has been used with success since 2017 to amass worldwide data at an unprecedented rate 508 

for the Asellidae. WAD provides to date one of the most important resource of species 509 
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occurrence, DNA sequences and biological material for testing eco-evolutionary hypotheses 510 

pertaining to groundwater colonization using comparative phylogenetic methods and 511 

evolutionary model fitting (Stern et al., 2017; Lefébure et al., 2017; Saclier et al., 2018; Langille 512 

et al., 2022). 513 

 514 

Beyond Asellidae, the tool offers several desirable features when collaboratively producing 515 

species occurrence and sequencing data (Malard et al., 2020). First, the database structure 516 

portrays a standard workflow - from field sampling to DNA sequencing - that is common to 517 

many laboratories. Second, a user-friendly web application allows implementing that laboratory 518 

workflow on a day-by-day basis while simultaneously feeding a centralized database. Third, 519 

the database guarantees scientific repeatability by offering a full traceability of field and 520 

laboratory protocols and biological vouchers. Fourth, intellectual property rights and citation 521 

issues are resolved in a way to encourage information sharing before publishing. Sequence 522 

metadata are available to all as DNA sequence production flows, hence well before publicly 523 

releasing the latter. Sharing metadata before publishing data is key to minimize duplication of 524 

work among producers, thereby promoting sustainable data production. Fifth, the database 525 

structure and its web application are free and open‐source, so that the developer community can 526 

modify the source code to address new user requirements. Four updates of the tool have been 527 

released since its publication in 2019, with the last update containing a user-friendly query 528 

builder for non-SQL experts to extract large data sets (https://github.com/gotit-dev/gotit).  529 

 530 

Current development efforts are following two main directions. The first direction is widening 531 

the database structure for housing biological species trait data, including but not limited to 532 

morphological traits, which are measured on referenced specimens (see for example Lefèbure 533 

https://github.com/gotit-dev/gotit
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et al. (2017) and Saclier et al. (2018) for data on genome size and rate of molecular evolution, 534 

respectively). The second direction consists in providing user-friendly tools to promote 535 

expertize sharing among users. One example expert tool could guide sequence producers in 536 

selecting the most appropriate primers for sequencing any given species from the hundred 537 

primers available in the database (see SI Tables 2 and 3). 538 

 539 

4.2  Species delimitation and dated phylogeny 540 

The presence of highly genetically divergent units (i.e. MOTUs) – often referred to as cryptic 541 

species - within morphospecies is a common phenomenon across most animal taxa (Bickford 542 

et al., 2007; Pfenninger and Schwenk, 2007), and asellids do not escape the rule (Eme et al., 543 

2013; Morvan et al., 2013). Hence, species molecular delimitation methods based on the COI 544 

gene typically provide more species hypotheses – in the present study 1.6 to 1.9 times as many 545 

– than morphological delimitation. Although molecular methods typically split asellid 546 

morphospecies into several MOTUs, they very rarely reshuffle MOTUs among morphospecies. 547 

Using different elementary species units in biodiversity research can provide novel insights into 548 

the mechanisms underlying biodiversity patterns (Fišer et al., 2018). In their analysis of the 549 

range size pattern of groundwater Asellidae and Niphargidae (Amphipoda) in Europe, Eme and 550 

coauthors (2018) showed that using MOTUs instead of morphospecies reinforced the Rapoport 551 

effect of increasing range size at higher latitudes and increased the proportion of variance in 552 

range size explained by historical climates. In WAD, we are continuously updating the 553 

geographic coverages of COI sequences and MOTUs within morphospecies (see SI Figure 3), 554 

thereby accumulating data for rigorously testing the hypothesis that groundwater species have 555 

a reduced range size compared to their surface counterparts. Despite being a long-standing 556 

hypothesis (Malard et al., 2023), the crayfish study by Stern and coauthors (2017) remains the 557 
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only phylogenetically controlled test to date, even though the authors used morphospecies 558 

rather than MOTU-level data. WAD also provides one of the most comprehensive reference 559 

barcode libraries of groundwater taxa for accurately assigning to existing known species the 560 

COI sequences that arise from a growing number of DNA-based biodiversity studies 561 

(Zagmajster et al., 2022). Such a WAD reference barcode library offers great opportunities to 562 

combine environmental DNA sampling, metabarcoding, DNA taxonomy and traditional 563 

taxonomy to speed up the acquisition of species occurrence data in difficult-to-access 564 

groundwater habitats (Fontaneto, et al., 2015; Saccò et al., 2022; Verdier et al., 2022). 565 

 566 

The World Asellidae phylogeny provides one of the most comprehensive phylogenetic 567 

frameworks available to date for undertaking comparative studies on evolution to groundwater 568 

life (but see also Stern et al., 2017). Here, we highlight key improvements to the phylogeny 569 

since a previous version published by Morvan and coauthors (2013). First, the present version 570 

of the phylogeny contains 2.5 and 2.4 times more MOTUs and morphological species of asellids 571 

respectively, than its previous version. Its geographical coverage is also considerably wider, as 572 

it includes not only European species but also many North American and eastern Mediterranean 573 

species. Yet, the phylogeny is far from being complete since it presently contains 60 % of 574 

described species of asellids, the most species-deficient group being the Asellus pattern in Asia 575 

with only 13 % of described species included in the phylogeny. Second, we improved dating of 576 

divergence times in the phylogeny by adding 14 paleobiogeographic calibration points to the 577 

three points originally used by Morvan and coauthors (2013). This addition resulted in overall 578 

younger divergence times. Thus, in the present phylogeny, the early diversification of the four 579 

Proasellus clades is dated to the Paleogene and not to the Upper Jurassic, as estimated by 580 

Morvan and coauthors (2013). However, paleobiogeographic calibration points are still 581 
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relatively unevenly distributed across the phylogeny, with only a single point for the North 582 

American, albeit species-rich, clade. Adding new calibration points to this clade would require 583 

sampling US regions where species-rich clades might have diversified "on place" following 584 

emergence of lands from the sea (e.g., eastern Texas, Florida and Chesapeake Bay). Third, still 585 

in comparison with Morvan and coauthors (2013)’s phylogeny, we more than doubled the 586 

number of replicates of groundwater evolution by identifying 34 independent pairs of surface 587 

and groundwater asellid species, among which 21 within the genus Proasellus. Further 588 

sampling will likely provide additional species pairs within the Asellus pattern and North 589 

American asellids, thereby providing a more even distribution of groundwater transitions 590 

among three of the four major groups of asellids. Obtaining many replicate species pairs is 591 

crucial to robust testing of common principles of groundwater evolution while accounting for 592 

the effects of local contingencies. Up to now, comparative studies have relied on few replicates 593 

of evolution to groundwater life - i.e., on 3 to 13 independent species pairs - for assessing 594 

changes in the evolution of genome size and rate of molecular evolution in asellids (Lefébure 595 

et al., 2017; Saclier et al., 2018), vision genes in beetles, crayfishes, and fishes (Stern and 596 

Crandall, 2018; Policarpo et al., 2021; Langille et al., 2022), and gene repertoires in beetles 597 

(Balart-García et al., 2023).  598 

 599 

Another desirable attribute of a biological study system for understanding trait evolution in 600 

groundwater is to have species that have colonized groundwater for different lengths of time. 601 

Time is undoubtedly an important factor controlling the evolution of traits, at least those that 602 

evolve under relaxed selection, such as the regression of eyes in subterranean animals (Wilkens 603 

and Strecker, 2017; Policarpo et al., 2021; Langille et al., 2022). Among the asellids, 604 

depigmented and reduced-eye subterranean populations of the surface species Asellus aquaticus 605 
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colonized groundwater less than one hundred thousand years ago (Protas and Jeffery, 2012; 606 

Protas el al., 2023), whereas some eyeless and depigmented species of Proasellus have resided 607 

in groundwater for over 10 million years (Lefébure et al., 2017). However, in a phylogeny, it is 608 

usually unclear at which point along a terminal branch leading to a groundwater species 609 

colonization of groundwater exactly occurred. Specifically, groundwater colonization may be 610 

much more recent than the speciation event leading to a pair of surface and groundwater species 611 

if now-extinct surface species have persisted long after that speciation event. In asellids, a 612 

promising approach is to use the pseudogenization of genes coding for opsin light-sensitive 613 

proteins to estimate the groundwater colonization time, assuming that loss-of-function 614 

mutations accumulate early in the process of groundwater colonization. In a study by Lefébure 615 

and coauthors (2017), colonization time was measured for 19 asellid species as a function of 616 

the speciation time and an estimate of the pseudogenization of the opsin genes on branches 617 

leading to subterranean species. Increasingly sequencing the opsin genes across asellid species 618 

(see Table 2) paves the way for accounting for the effect of colonization time on the evolution 619 

of phenotype in comparative studies. Of note, however, the pseudogenization approach to 620 

dating groundwater colonization times reaches its limits when the gene fails to be amplified, 621 

presumably due to a too long period of time a species spent underground (Lefébure et al., 2017; 622 

Langille et al., 2022). 623 

 624 

4.3  Comparative phylogenetic analyses of body size and sexual body size dimorphism 625 

 626 
Our phylogenetic comparative study of BS and SBSD between surface- and groundwater 627 

species illustrates the usefulness of WAD for documenting evolutionary changes during 628 

transition to novel habitats. We found that BS in asellids was constrained by the size of habitat 629 

in both sexes. This corroborates Pipan and Culver (2017)’s hypothesis that BS within clades 630 
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containing subterranean species is in part controlled by habitat volume because pore size 631 

between rocks can set an upper limit to maximum BS.  632 

 633 

We provide the first, phylogenetically-controlled evidence that the difference in BS between 634 

surface- and groundwater species is sex-dependent. Body size of males was significantly larger 635 

in surface- than in groundwater species. We propose that competition for synchronously 636 

receptive females selects for large males in surface species, while competition for rare, highly 637 

asynchronous, receptive females favors small males in groundwater species (Andersson, 1994; 638 

Blanckenhorn, 2000; Kelly et al., 2008; Balázs et al., 2021). In precopulatory mate guarding 639 

crustaceans, among which many surface asellid species are known (Jormalainen, 2007), large 640 

males have a mating advantage because they can more easily displace small guarding males 641 

from their guarded females (Ridley and Thompson, 1979). In groundwater asellids, males no 642 

longer guard females prior to copulation (Henry, 1976) and selection probably favors small 643 

males that are more agile and can attain receptive females more rapidly. In addition, small males 644 

can use energy that they do not invest in growth for searching for mates. 645 

 646 

In contrast to male BS, we found that female BS did not differ between surface water and 647 

groundwater asellids. Whatever the habitat, strong fecundity selection probably favors large 648 

female size because brood size increases with increasing BS (Ridley and Thompson, 1979; 649 

Pincheira-Donoso and Hunt, 2017). However, groundwater females take longer to grow than 650 

surface water females (Henry, 1976). Life history studies of asellids also showed that 651 

groundwater species were long-lived (>> 2 yr) and iteroparous, whereas surface water species 652 

had short lifespan (ca. 1 year) and were semelparous (Steel, 1961; Henry, 1976). 653 

 654 
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We found that habitat specialization significantly influenced SBSD. A predominant pattern of 655 

male-biased SBSD occurred in surface species, whereas groundwater species were in average 656 

monomorphic in BS but exhibited much larger variation in SBSD (Figure 4). We provide two 657 

non-mutually exclusive explanations for difference in SBSD between habitats, in addition to 658 

selective factors influencing male and female BS discussed above. First, the degree of SBSD 659 

decreases in groundwater species because females mate with multiple males and produce 660 

multiple clutches of offspring during their life. Both aspects diminish the sex difference in the 661 

opportunity for selection and hence the potential for SBSD (Shuster and Wade, 2003; Shuster 662 

et al., 2013). Second, in the absence of precopulatory mate guarding, groundwater males may 663 

still prefer larger females that produce more eggs, but they no longer have to be bigger than 664 

females to carry them prior to copulation (Adams et al., 1985). 665 

 666 

A recent morphological study by Balázs and coauthors (2021) investigated sexual dimorphism 667 

in 17 morphological traits, including body size, using nine surface and six cave groundwater 668 

populations of Asellus aquaticus showing various degrees of reduction of eyes and body 669 

pigments (see also Biró et al., 2022). The authors showed that several morphological traits were 670 

significantly less male-biased in cave than in surface populations (for example the shape of 671 

pereopods I). However, contrary to the present study, they found no significant reduction in 672 

male-biased dimorphism in body size upon cave groundwater colonization. A potential 673 

explanation is that the intraspecific comparative study by Balázs and coauthors (2021) may 674 

have been unable to detect a reduction in male-biased SBSD in cave populations of A. aquaticus 675 

due to insufficient time for BS to evolve. Of note, males were reported to be smaller than 676 

females in several depigmented and eyeless subterranean Asellus species including A. 677 

amamiensis, A. hyugaensis, A. primoryensis and A. tamaensis (Matsumoto, 1960, 1961 1963; 678 
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Henry and Magniez, 1993). A potentially important proportion of the variance in SBSD 679 

exhibited by groundwater species might be due to differences in groundwater colonization time 680 

among species. If so, using colonization time as a predictor instead of a qualitative present-day 681 

biological status (i.e., eyeless and depigmented vs occulated and pigmented) would contribute 682 

to a better understanding of trait changes associated with groundwater transitions. This may 683 

become possible in a near future as sequences of genes accumulating loss-of-function mutations 684 

during colonization (e.g. opsin gene, see Lefébure et al. 2017) become available for a large 685 

number of species. 686 

 687 

Dimorphism also significantly depended on habitat size. Groundwater species exhibiting male-688 

biased dimorphism occurred in habitats of larger size than groundwater species exhibiting 689 

female-biased dimorphism or monomorphism. A potential explanation is that the mating 690 

selective pressure for more agile and hence smaller males is less in cave habitats than in 691 

interstitial habitats. Another non-mutually exclusive hypothesis is that even with equivalent 692 

mating selective pressures for BS in both habitats, only the smallest specimens of a surface 693 

population can colonize interstitial habitats. Hence, even those populations that have recently 694 

colonized interstitial habitats would exhibit a weak sexual dimorphism in body size. Yet, 695 

populations that have recently colonized cave habitats would exhibit male-biased dimorphism 696 

until sexual selection has had time to act. 697 

 698 

Beyond BS, WAD provides many of the necessary resources for testing predictions on how 699 

phenotypic traits linked to mating success, fecundity, and survival evolve in response to 700 

changes in selective pressures and trade-offs during groundwater colonization. We provide 701 

below three example predictions. First, if searching for rather than fighting for mates is key to 702 
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determining mating success of male groundwater species, then, selection is likely to target 703 

sensory organs that improve the ability of males to find females. More specifically, the hundreds 704 

of specimens referenced in WAD can be used to test whether males of groundwater species 705 

have longer antennae, relative to BS, than surface males and groundwater females, because long 706 

antennae are advantageous for detecting receptive females (Bertin and Cézilly, 2003; Balázs et 707 

al., 2021). Second, life history theory predicts that relative to their BS, groundwater, iteroparous 708 

species should produce fewer but larger eggs per reproductive event than surface, semelparous 709 

species (Fišer, 2019a; Venarsky et al., 2023). WAD keeps full record of the number of 710 

ovigerous females contained in hundreds of specimen lots for testing this hypothesis. Third, 711 

WAD resources can be used to test for the occurrence of a trade-off between transient fecundity 712 

(i.e. the number of offspring produced per brood per single reproductive event) and adult 713 

survival in long-lived, iteroparous groundwater species. Fecundity selection favors increase in 714 

BS, whereas selection for survival may favor narrow and elongated body shapes that allow 715 

individuals to withdraw into tiny hiding places to escape predators (Miller, 1933; Fišer et al., 716 

2013; Fišer Ž. et al., 2019). A trade-off may arise because an elongated brood pouch prevents 717 

good ventilation of eggs beyond a certain BS. If such a trade-off exists, we predict variation in 718 

BS to be more evolutionarily constrained in groundwater females than in surface females. This 719 

prediction can be tested by comparing best-fit evolution models of BS and shape between 720 

habitats and sexes. 721 

 722 

5  CONCLUSION 723 

The asellids fulfill many of the desirable attributes of a model animal system for studying 724 

evolution during colonization of a new environment, in particular here groundwater. Recently, 725 

Protas and coauthors (2023) synthesized the ecological and molecular resources available for 726 
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studying microevolutionary dynamics of groundwater colonization from multiple cave and 727 

surface populations of Asellus aquaticus. Here, we make available to the scientific community 728 

a comprehensive set of taxonomic, distributional and molecular resources and biological 729 

material that have been acquired for studying macroevolutionary dynamics of groundwater 730 

colonization from multiple-species data. Looking at trait variation among multiple independent 731 

colonization events across a wide range of times since colonization can provide better 732 

understanding into the temporal dynamics of phenotypic evolution.  733 

 734 
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TABLES AND FIGURES (WITH CAPTIONS) 1186 

Table 1: Summary content of the World Asellidae Database (WAD). All items, except 1187 
references, are for Asellidae (Isopoda, Pancrustacea). Data extraction on 10 March 2023. 1188 

 1189 

 Items Number 
Species Occurrence  
      Species and subspecies 448 
      Record 9438 
      Country 55 
Collection material 1  
      Specimen lot 1943 
      Specimen microscopic slide 1584 

Specimen used for DNA 
extraction 4901 

      DNA extract 4362 
DNA sequencing metadata  
      Primer 2 138 
      PCR 22743 
      Chromatogram 12052 
      Sequence 3  
            16S 3562 
            COI 2866 
            FASTKD4 922 
            28S 1202 
            Opsin 362 
Literature reference 641 

 1190 
1 All specimens and DNA extracts are stored at -20°C 1191 
2 See SI Tables 2 and 3 1192 
3 Validated sequences. Numbers differ from the number of sequences used in this study because 1193 
the database is regularly updated with new data. 1194 
  1195 
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Table 2: Numbers of surface water (Surf.) and groundwater (Grou.) described species contained 1196 
in the World Asellidae database (WAD) and numbers of morphospecies and MOTUs included 1197 
in the Asellidae timetree. Numbers in bold are totals. 1198 
 1199 

Morphospecies groups 
/genera WAD   Asellidae timetree 

 Described species  Morphospecies 5  MOTUs  Species 
pairs 6 

       Surf. Grou.   Surf. Grou.   Surf. Grou.     

1 - Asellus pattern  31 30  7 1  8 1  1 
Asellus  28 10  5 1  6 1  1 
Calasellus  2        NA 
Columbasellus  1        NA 
Limnoasellus  1    1   1   1   0 
Mesoasellus    1   1   1   0 
Nipponasellus  5        NA 
Phreatoasellus    1 9        NA 
Sibirasellus  2        NA 
Uenasellus  1        NA 

2 - North American asellids 2  68 84  51 24  60 48  10 
Baicalasellus    4   2   2   1 
Caecidotea    9 39   9   28  1 
Conasellus  21 24  13 9  17 10  6 
Gallasellus  1   1   5  0 
Lirceolus  6        NA 
Lirceus  34 4  36 2  41 2  2 
Pseudobaicalasellus  10   3   3  0 

3 - Bragasellus & Synasellus    3 53  2 20  2 32  1 
Bragasellus    3 18  2 8  2 19  1 
Synasellus  35   12   13  0 

4 - Proasellus 3  61 113  54 108  51 181  21 

Others 4  5   1   1  1 
Bowmanasellus  1        NA 
Oregonasellus  1        NA 
Salmasellus  2   1   1  1 
Stygasellus  1        NA 

Asellidae 163 285   114 154   121 263   30 
 1200 
1 Nomen nudum in Hidding et al. (2003) 1201 
2 Genera according to recent revision by Lewis et al. (2023) 1202 
3 Including Chthonasellus bodoni Argano & Messana, 1991 1203 
4 Genera that cannot be assigned to any of the four species groups. 1204 
5 Numbers include undescribed morphospecies 1205 
6 Number of independent species pairs containing a surface water and a groundwater asellid 1206 
species. 1207 
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Table 3: Results of phylogenetic generalized least-squares regression models for testing the 1208 
effects of habitat size and specialization (i.e. surface vs groundwater habitats) on body size of 1209 
females and males and sexual dimorphism index. Significant P values are in bold. 1210 

 1211 

Dependent 
variable 

Explanatory variable Parameter 
estimate 

Standard 
error 

t P 

Male body 
size 

 

Intercept (groundwater) 1.871 0.401 4.662  

Habitat size 0.186 0.044 4.242 <0.001 

Habitat specialization 0.166 0.080 2.084 0.0387 

Habitat Size × habitat specialization -0.039 0.091 -0.427 0.670 

Female 
body size 

 

Intercept (groundwater) 1.768 0.354 4.994  

Habitat size 0.129 0.039 3.350 0.001 

Habitat specialization -0.008 0.070 -0.111 0.912 

Habitat Size × habitat specialization -0.008 0.080 -0.098 0.922 

Sexual 
dimorphism 
index 

 

 

Intercept (groundwater) -0.134 0.289 -0.472  

Habitat size -0.072 0.032 -2.268 0.025 

Habitat specialization -0.203 0.057 -3.534 0.001 

Habitat Size × habitat specialization 0.044 0.065 0.676 0.500 

 1212 

  1213 
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Figure 1: Distribution of four major species groups of Asellidae (Isopoda, Pancrustacea). Dots 1214 
are species occurrence data contained in the World Asellidae Database (black dots: surface 1215 
water species; white dots: groundwater species). 1216 
 1217 

  1218 
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Figure 2: Pairwise taxonomic comparisons between the three different sets of aselloid species 1219 
hypotheses delimited using morphology (Morph.), a COI divergence threshold (TH), and the 1220 
Poisson tree processes model (PTP). 1221 
 1222 

  1223 



48 
 
 

 

Figure 3: Timetree of Asellidae (Isopoda, Pancrustacea). The tree is rooted using Stenasellidae 1224 
as outgroup. Terminal nodes are molecular operational taxonomic units (MOTUs) as delimited 1225 
with the fixed COI threshold method (TH) implemented by Lefébure and coauthors (2006). 1226 
White terminal nodes are eyeless and depigmented MOTUs; black terminal nodes are occulated 1227 
and/or pigmented MOTUs. Color rings show time. Red and gray dots show paleobiogeographic 1228 
calibration points and node supports with posterior probabilities > 0.9, respectively. Black and 1229 
white squares on the outer ring show independent pairs of surface (black) and groundwater 1230 
(white) asellid species (see definition of species pairs in materials and methods). Legends show 1231 
genera and main species groups within the Asellidae family and Proasellus genus. Groups are 1232 
as follows: for Asellidae: 1 – Asellus pattern, 2 – North American asellids, 3 – Bragasellus + 1233 
Synasellus, 4 – Proasellus; for Proasellus: slavus – ibero-aquitanian – anophtalmus-coxalis – 1234 
alpine. 1235 
 1236 

 1237 
  1238 
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Figure 4: A-C: Relationships between body size (males and females) and habitat size and 1239 
between sexual dimorphism index (SDI) and habitat size. Data for habitat size correspond to 1240 
the coordinates of species along the first axis of the fuzzy correspondence analysis performed 1241 
on the “habitat trait categories per species” matrix (See SI Table 11). SDI is negative when 1242 
males are larger than females and positive when females are larger than males. The red lines 1243 
represent the phylogenetic generalized least square regressions. All regressions are statistically 1244 
significant. D-F: Violin plots showing the difference in body size (males and females) and 1245 
sexual dimorphism index (SDI) between surface water- and groundwater-habitat specialist 1246 
species. The white dot, thick black bar, and thin black line show the median value, interquartile 1247 
range, and 95% of all data, respectively. Significant P values are in bold. 1248 
 1249 

 1250 
 1251 
 1252 


