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Abstract22

H9N2 avian influenza viruses (AIVs) are a major concern for the poultry sec-23

tor and human health in countries where this subtype is endemic. By fitting a24

model simulating H9N2 AIV transmission to data from a field experiment, we25

characterise the epidemiology of the virus in a live bird market in Bangladesh.26

Many supplied birds arrive already exposed to H9N2 AIVs, resulting in many27

broiler chickens entering the market as infected, and many indigenous back-28

yard chickens entering with pre-existing immunity. Most susceptible chickens29

become infected within one day spent at the market, owing to high levels of30

viral transmission within market and short latent periods, as brief as 5.3 hours.31
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Although H9N2 AIV transmission can be substantially reduced under moderate32

levels of cleaning and disinfection, effective risk mitigation also requires a range33

of additional interventions targeting markets and other nodes along the poultry34

production and distribution network.35

Introduction36

H9N2 Avian influenza virus (AIV) is considered to be the most prevalent AIV in37

poultry globally1. Despite being classified as a low pathogenic virus, H9N2 AIV38

is responsible for substantial economic loss for the poultry industry2,3. Infection39

is typically associated with moderate to severe respiratory symptoms, delayed40

growth, reduced egg production and increased mortality, specially when co-41

infection with other pathogens is involved4. Some H9N2 AIV lineages are known42

to be zoonotic, with resulting symptoms being typically mild. Co-circulation43

with other AIV subtypes may lead to the emergence of reassortant viruses with44

increased pathogenicity and/or zoonotic potential5–7. H9N2 appears to be in-45

volved in the origin of several novel zoonotic AIVs, whose number has been46

rapidly increasing since 20138. AIVs with H9N2-derived genes include H7N99,47

H5N1, H10N810–12 and, more recently, H3N813.48

In many Asian countries, prevalence of H9N2 AIVs is particularly high in49

live bird markets (LBMs), with estimates in Bangladeshi markets as high as50

80%14,15. LBMs play a central role in marketing of poultry in developing coun-51

tries, being the place of choice for many people to purchase meat for consump-52

tion. At the same time, high prevalence of AIV infection among traded poultry53

is concerning due to the risk of zoonotic spillover to humans5,16,17. In LBMs,54

the latter may be exposed to AIV through contaminated dust particles, water,55

surfaces and the slaughtering of infected birds. LBMs are also known to pro-56

mote the mixing and evolution of AIVs, in that they enable the intermingling57

of multiple poultry species from many distant locations and diverse farming58

systems18–20. Over the last 25 years, public health concerns around LBMs have59

prompted health authorities in several Asian countries to take steps to con-60

trol AIV transmission in these settings; adopted measures included enhanced61

hygiene protocols, bans on overnight poultry storage, as well as periodic rest62

days21–26. Temporary and permanent market shutdowns have also been em-63

ployed in response to outbreaks of emerging zoonotic AIVs27.64

The central role played by LBMs in disseminating AIVs, including H9N265

viruses, calls for a better understanding of AIV transmission dynamics in these66

settings, which is paramount to design and implement effective and appropriate67

interventions. Previous field research focused on specific epidemiological aspects68

of AIV transmission, e.g. contamination in the environment28–31, or involved69

cross-sectional investigations of AIV circulation in LBMs15. Unfortunately, link-70

ing results from these studies to viral dynamics is not straightforward. Challenge71

and transmission experiments in which live virus is inoculated artificially into72

chickens, and eventually transmitted onwards15,32, allow to estimate important73

properties of AIV epidemiology. However, because these experiments are con-74
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ducted within a controlled environment, it remains difficult to draw general75

conclusions about AIV transmission in LBMs.76

Here we aimed to fill these gaps by modelling H9N2 AIV transmission in an77

LBM. Mathematical modelling has proven useful to study AIV transmission dy-78

namics in LBMs, but such investigations have been mostly theoretical so far22.79

Our work is instead grounded on a longitudinal dataset of H9N2 AIV acquisi-80

tion in exotic and indigenous chickens in an LBM in Chattogram, Bangladesh33.81

Using Bayesian methods, we estimated quantities of epidemiological relevance,82

including H9N2 AIV transmission rate, host-specific latent periods, and quanti-83

fied within-market prevalence as well as the likelihood of prior chicken exposure84

to H9N2 before entering the LBM. Finally, we leveraged these results to assess85

the impact of a range of hypothetical veterinary public health interventions on86

H9N2 AIV transmission.87

Results88

Parameter inference89

Our model simulated transmission of avian influenza viruses (AIVs) among90

chickens in an LBM in Chattogram, Bangladesh. There, a fast turnover of91

poultry (Fig. S1A) drew together a steady supply of susceptible animals and92

unsold chickens offered for sale in previous days, thus creating opportunities for93

amplification of AIVs.94

Following our experimental design, explained in detail in33, we focused on95

exotic broiler (BR) and local, backyard-raised (BY) chicken types, which repre-96

sent a large share of chickens traded daily in the LBM (Fig. S1B). We further97

distinguished between control (c) and intervention (i) chickens, according to98

whether they were recruited at the market or from farmers, respectively. We99

assumed these chickens could differ in terms of prior exposure to AIVs, possibly100

due to our intervention, which consisted in applying strict biosecurity measures101

during the collection and transport of farm-acquired chickens before introduc-102

ing them to the LBM. Control chickens, instead, were recruited from market103

vendors among those recently supplied by mobile traders.104

We fitted our model to H9N2 Polymerase chain reaction (PCR) positivity105

data33. We considered samples with a cycle threshold (Ct) < 40 as positive,106

in accordance with the laboratory protocols of the Australian Animal Health107

Laboratory (Geelong, Australia, http://www.csiro.au/places/AAHL). A more108

conservative criterion for positivity (Ct < 33) was also considered throughout109

the analysis. We obtained posterior estimates and credible intervals (C.I.) for110

thirteen parameters listed in Table 1; these include H9N2 AIV transmissibility β,111

latent periods TE,b for types b =BR and BY (panels Fig. 1A-C, respectively) and112

probabilities of prior exposure ρg,b for different combinations of chicken type and113

recruitment group g = c, i. A description of prior distributions for each fitted114

parameter can be found in Table S1, while posterior marginal distributions and115

pairwise plots are shown in Fig. S2.116
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Table 1: Fitted parameters. Description of fitted parameters.
Name Description
β Transmissibility
σBR Latent to infectiousness rate (broiler)
σBY Latent to infectiousness rate (backyard)
µ Recovery rate
η Positivity waning rate
λBR inverse scale past exposure time (broiler)
λBY inverse scale past exposure time (backyard)
κBR shape past exposure time (broiler)
κBY shape past exposure time (backyard)
ρc,BR Prior exposure prob. (control, broiler)
ρi,BY Prior exposure prob. (intervention, broiler)
ρc,BR Prior exposure prob. (control, backyard)
ρi,BY Prior exposure prob. (intervention, backyard)

From our model’s output, we found a shorter latent period in exotic broiler117

compared to backyard chickens (Fig. 1B,C), lasting an average of 5.3 hours for118

exotic broiler, and 1 days for backyard chickens. With a more conservative119

criterion for positivity (Ct < 33 instead of Ct < 40), these estimates increased120

to 6.1 hours and 1.3 days. In these exercises we assume that infected chickens121

would test positive only from the point where they start shedding, i.e. since the122

onset of infectiousness. We also found remarkably high levels of transmission in123

the LBM, which translated into more than 80% of chickens entering the market124

as susceptible, becoming infected within 20 hours, regardless of whether we set125

the threshold for positivity to Ct = 40 or Ct = 33 (Fig. 1D). However, we126

estimated higher transmission under Ct = 40, where more than 80% of poultry127

became infected within 10 hours, in contrast to nearly 55% for Ct = 33. This128

was likely due to the fact that the latter threshold corresponds to less positive129

samples in the data with respect to Ct = 40.130

We also obtained posterior estimates for the proportions of chickens that131

were already infected (i.e. latent or infectious, E+I) or immune to H9N2 (R)132

at recruitment, for any combination of chicken type and recruitement group133

(Fig. 1E,F, show exotic broilers and backyard chickens, respectively). Interest-134

ingly, we found different patterns across chicken types: in the case of exotic135

broilers, most chickens with prior exposure to H9N2 were either infectious or la-136

tent, with only a minor proportion of them being immune (Fig. 1E). In contrast,137

most previously-exposed backyard chickens were immune to H9N2 (Fig. 1F).138

Our results thus tentatively suggest that prior infection occurs close to market-139

ing age for broilers, whereas in backyard chickens it may occur further in the140

past, which is consistent with the latter being raised for a longer time compared141

to broilers (more than 6 months and up to 1 month for backyard and broiler142

chickens, respectively). See also Fig. S3 for distributions of time since exposure.143

We also found differences between control and intervention chickens already144
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at recruitment. In the broiler case, intervention chickens were less likely to be145

already exposed at recruitment compared to their control counterparts (odds146

ratio 0.44-0.58, depending on Ct, see Fig. 1E). However, the reverse was the147

case in backyard chickens, with a larger proportion of intervention chickens148

being already exposed to H9N2 compared to controls (odds ratio 2.37-2.13,149

depending on Ct).150

Our results, in particular posterior estimates of latent periods and probabil-151

ity of prior exposure, are robust to prior assumptions on transmissibility β and152

time to viral clearance–i.e. the sum of infectious and latent periods–(Fig. S4 and153

S5). Furthermore, all scenarios yielded large levels of transmission. These trans-154

lated, under default priors, into sustained transmission of AIV in the absence of155

repeated external introductions (Fig. S6). Finally, our inferential procedure was156

able to recover model parameters in the context of synthetic data simulated from157

the same generative process used for inference (Fig. S7). In particular, we show158

that inference succeeds in a range of scenarios where model parameters differ159

across chicken types and recruitment groups and in the presence of moderately160

biased prior assumptions about shedding time.161

Modelling interventions162

In the last 20 years, LBMs have often been the target of veterinary public163

health interventions aiming to mitigate AIV transmission. Yet, effectiveness of164

individual measures is difficult to assess and are likely to vary between differ-165

ent social, economic and political contexts. Here, we leveraged our inferential166

results to evaluate the impact of various potential control measures to reduce167

H9N2 transmission in an LBM. In doing so, we considered different modes of168

transmission, namely direct and mediated by environmental contamination, and169

assessed sensitivity of our results to each assumption. With environmentally-170

driven transmission, the force of infection was assumed to be proportional to171

environmental contamination Ienv(t); Ienv(t) accumulates due to shedding from172

infectious chickens and decays progressively at rate Θ. We did not attempt to173

fit this model to data; rather, we mapped each value of ”direct” transmissibility174

β from previous posterior samples into an appropriate value of environmental175

transmissibility (βenv) yielding similar prevalence levels. The exact mapping,176

suggested by22 and derived in the Materials and Methods section, is:177

β −→ βenv = β · (1− e−Θ) . (1)

Note that this relation depends on the decay rate Θ and that a slower decay178

corresponds to a smaller βenv, which compensates for the longer persistence in179

the environment. Here we consider three values of Θ, namely Θ−1 = 10, 3, 1days,180

corresponding to slow, intermediate and fast decay, respectively. These values181

are based on actual estimates from the scientific literature and capture a broad182

range of environmental conditions (see Supplementary Text S1.3). Fig. S8 shows183

a numerical validation of our mapping.184
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Figure 1: Model fit results. Posterior distributions for β (A), TE,BR

(B) and TE,BY (C) obtained from fits to Ct = 40 (coral) and Ct = 33 (teal)
data. (D) Average posterior probability of a chicken remaining susceptible after
a given amount of time spent at the market and 95% C.I. (shaded area). (E-F)
Average proportions of exotic broiler and backyard chickens in either control
(solid) or intervention (dashed) groups entering the market as latent or infec-
tious (E + I) or recovered (R). For both fits we set prior hyper-parameters
lβ = 0.005 and T̄EI = 5 days (see S1.2). Results in (D) are based on 30000
simulations based on 3000 samples from the posterior, each simulation tracking
106 experimental chickens; all other panels are based on 8360 posterior sam-
ples, obtained after discarding the first 10000 MCMC iterations and keeping
one sample every 1000th iteration.
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To start with, we implemented three measures based on either (i) early re-185

moval/culling of unsold chickens, (ii) control of chickens entering the market or186

(iii) preemptive immunisation through vaccination. Fig. 2 displays effectiveness187

of various interventions, computed as the reduction in cumulative daily preva-188

lence relative to a baseline scenario with no intervention (See Fig. S9 and S10189

for prevalence dynamics over a single day). Green and yellow bars correspond190

to direct and environmental transmission, respectively. In the latter case we191

present a single value of Θ, but our results are independent of this choice.192

In (i), unsold chickens are automatically removed from the market if still193

unsold after a time Tm. Fig. 2 shows that (i) is not effective at reducing preva-194

lence (A,D), unless chickens are removed after 1 day or less. Indeed, high levels195

of transmission, combined with a short latent period in broilers (Fig. 1B), lead196

to a rapid build-up of infectious chickens well before Tm. This result holds,197

both qualitatively and quantitatively, regardless of whether we consider direct198

(green) or environmental (yellow) transmission.199

Intervention (ii) aims at reducing the proportion of exposed chickens enter-200

ing the market, either as the result of control measures acting upstream, e.g.201

by enhancing farmers’ and traders’ compliance with bio-security practices. In202

practice, we implement (ii) by reducing the proportion of previously exposed203

chickens from ρc,b to (1− r)ρc,b, where r represents the intervention’s strength.204

Panels B,E in Fig. 2 reveal that a reduction in ρc,b by a factor r = 0.9 alone205

(filled bars) is not sufficient to lower transmission significantly. Indeed, latent206

& infectious chickens arriving at the LBM, albeit fewer compared to baseline,207

are still able to sustain high levels of transmission. Effectiveness of (ii) is even208

smaller in the presence of environmental transmission due to AIV persistence209

in the environment, which is not directly affected by the intervention. How-210

ever, a combined control strategy involving both (i) and (ii) proves superior to211

individual measures (hatched bars).212

With intervention (iii) a proportion p of chickens are immunised through213

vaccination, and are assumed to be completely protected from AIV infection.214

This measure not only reduces the number of chickens entering the market while215

infectious or latent, but also reduces overall susceptibility to AIV in the flock.216

Fig. 2C,F show that preemptive vaccination is particularly effective at reducing217

transmission; in particular, the reduction arising from vaccinating just 20% of218

all chickens is comparable to that of the most stringent implementations of219

interventions (i) or (ii).220

The inclusion of environmental transmission in our model allowed us to ex-221

plore the impact of sanitation, which is often adopted in the context of LBMs.222

Here, sanitation is assumed to reduce environmental contamination by a factor223

δ. First, we note that while direct and environmental transmission were shown224

to yield similar stationary dynamics (Fig. S8) and sensitivity to interventions (i)225

to (iii) (Fig. 2), significant dynamical differences arose in presence of sanitation.226

Specifically, Fig. 3A shows that after depopulating and disinfecting the LBM,227

baseline prevalence levels were recovered rapidly under direct transmission, but228

not under environmental transmission. The mechanistic reason lies in the ”in-229

ertia” inherent to the environmental reservoir, relative to an equivalent model230
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Figure 2: Effectiveness of intervention measures. Results for early re-
moval/culling of unsold chickens (A,D), control of chickens entering the market
(B,E) and preemptive immunisation through vaccination (C,F). Bars represent
mean reduction in average, cumulative daily prevalence with respect to a base-
line scenario with no intervention, based on 5000 simulations from 500 posterior
samples. Green and yellow bars correspond to direct and environmental trans-
mission, respectively. In the latter case we set Θ−1 = 3 days for the sake of
visualization. In (B,D), solid and hatched bars correspond to a maximum length
of stay of 5 (baseline) and 1 days, respectively. First and second rows are based
on posterior distributions obtained from fits to Ct = 40 and Ct = 33 data,
respectively.

with direct transmission. This inertia is expressed by the apparent trade-off be-231

tween environmental transmissibility βenv and persistence in the environment,232

as quantified by Θ. We stress that while this effect follows from Eq. 1, it is not233

an artefact: βenv and Θ should be expected to behave in this way, with, e.g.,234

longer persistence in the environment (smaller Θ) corresponding to slower relax-235

ation. This is indeed confirmed by Fig. 3B,C, where we compare three values of236

Θ and use Ct = 40 and Ct = 33 posterior samples, respectively. At low Θ, the237

typical relaxation time is at least 15 days and increases rapidly with disinfection238

δ. As Θ increases, the relaxation time becomes shorter and less dependent on239

the disinfection rate.240

Consistently with Fig. 3A-C, we found increasing returns from routinely241

(daily) disinfecting the market when Θ is small, even if disinfection is not perfect242

(Fig. 3D-G). A multi-pronged approach featuring interventions (i) and (ii) and243

small levels of disinfection, say δ = 0.3, is able to curb cumulative daily preva-244

lence by more than 80% for any explored value of Θ and in both parameter245

configurations (Fig. 3G). Preventing 90% of prior infections (Fig. 3E) proved246

more effective than just limiting maximum length of stay to 1 day (Fig. 3F)247
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when coupled with routine disinfection, but not in absence of it (i.e. δ = 0).248

Figure 3: Effectiveness of market depopulation and disinfection under

direct vs environmental transmission (A) Cumulative daily prevalence,
expressed as a fraction of its stationary value, after depopulating and fully dis-
infecting (δ = 1) the LBM, under direct (yellow) and environmental (green)
transmission. In the latter case we set Θ−1 = 3 days. (B,C) Average relaxation
time as a function of disinfection δ, based on Ct = 40 and Ct = 33 posterior dis-
tributions. Light to dark lines correspond to Θ−1 = 10, 3, 1 days, respectively.
Relaxation time is defined as the time at which cumulative daily prevalence
crosses a given threshold value for the first time since LBM depopulation. Here,
this threshold is set to a fraction (0.95) of expected cumulative daily preva-
lence in the pre-intervention period. We compute 500 relaxation times from
as many posterior samples, using 10 independent simulations to estimate mean
cumulative daily prevalence. (D,G) Cumulative daily prevalence under various
combinations of reduced length of stay (from left to right), reduced probability
of prior exposure (from left to right) and disinfection, on the x-axis, for varying
rates of environmental decay. Prevalence is calculated relative to a scenario with
no interventions and the same Θ. Results corresponding to solid and dashed
lines are based on samples from Ct = 40 and Ct = 33 posterior distributions,
respectively.

Discussion249

In this work we characterised H9N2 transmission patterns in a single LBM in250

Bangladesh by fitting a mechanistic transmission model to a longitudinal data-251

set collected in the context of a field experiment.252

Our results confirm the important role of LBMs as hotspots of AIV trans-253

mission. We found high prevalence of H9N2 AIV, in agreement with previous254

studies and LBM surveillance in Bangladesh15,16. Our simulations further sug-255
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gest that H9N2 AIV prevalence varies considerably during a single day due to256

high transmission rates. Such an effect has been illustrated in previous mod-257

elling work22, and should be accounted for by AIV surveillance initiatives and258

in the design of chicken sampling strategies in general.259

From a systemic perspective, high persistence and prevalence of H9N2 AIV260

in LBMs are concerning for the whole poultry production and distribution in-261

frastructure in which LBMs are embedded. Although our analysis is based on262

data collected from a single LBM, our results are relevant to LBMs with similar263

features. Indeed, vendors operating in the same types of markets and locations264

are expected to adopt similar practices20,25 and source chickens from overlap-265

ping catchment areas20. The fast turnover of susceptible chickens in LBMs is266

concerning since it is likely to promote amplification of AIV subtypes with short267

latency other than H9N2, e.g. H5N1 AIV32. This virus is routinely detected in268

Bangladeshi wholesale markets, albeit at a lower frequency compared to H9N2269

AIV14; this likely reflects the lower abundance of traded backyard ducks, which270

act as the primary source of H5N1 infections in markets15,34.271

We estimated an average latent period of 5.3-6 hours and 1-1.3 days, de-272

pending on Ct threshold, for exotic broiler and backyard chickens, respectively.273

Short latent times in exotic broiler chickens are compatible with a fast onset of274

viral shedding, already after one day post-inoculation, as observed in laboratory275

experiments32,35–41. Moreover, we believe that our experimental design, which276

includes inter-sampling periods as short as 12 hours, is more suitable to resolve277

short latent periods than many laboratory experiments, which typically collect278

the first samples post-inoculation only after 1 day. Our estimates were robust279

with respect to prior assumptions about the duration of shedding, as shown in280

sensitivity analyses. Unfortunately, we could not reliably estimate the infectious281

period since our data did not include enough information about viral clearance.282

Inferred proportions of chickens that were recruited directly in farms (inter-283

vention group) and that had already been exposed to H9N2 AIV prior to T0284

revealed substantial differences between broiler and backyard chickens. Specif-285

ically, we found most exposed broilers to be actively infected at recruitment,286

with little evidence of accrued immunity. In contrast, the majority of backyard287

chickens were estimated to be already immune to H9N2 AIV at recruitment. A288

recent study found 1% and 15.7% H9N2 AIV antibody prevalence and low viral289

prevalence, 0.2% and 0.5%, in broiler and backyard farms around Chattogram,290

respectively42. These prevalence values are slightly lower than estimates re-291

ported from active surveillance, which found 2.2% and 9.6% of AIV RT-PCR292

positivity in backyards and farms, respectively, with around a fourth of positive293

samples attributable to H9N2 AIV14. At the flock-level, H9N2 AIV prevalence294

around Chattogram has been estimated around 0.7% and 1.9% for backyard295

and broiler chickens, respectively. Another cross-sectional study of household296

chickens performed in the same area found a household-level prevalence of H9N2297

AIV of 3.2%43.298

In absolute terms, our estimates of H9N2 AIV circulation in broilers sampled299

at T0 are larger than previous estimates of viral circulation in farms. In fact,300

crude numbers of broiler chickens recruited in farms that tested positive for301
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H9N2 AIV at T0 (5 out of 110), suggest higher viral prevalence than found by302

other cross-sectional studies. Analogously, we estimated a higher proportion of303

past infections in backyard chickens at T0 than suggested by serological evidence.304

While the reasons for these discrepancies remain unknown, we note that chickens305

included in this study were collected towards the end of a production cycle,306

when they might be exposed to an increased risk of AIV infection. Nonetheless,307

our results remain in broad qualitative agreement with available evidence as308

both suggest a higher prevalence of antibodies against H9N2 AIV in backyards309

compared to broiler farms, in the face of larger viral circulation in broilers.310

Exotic broilers recruited at farm gates were found to be less likely to be311

already exposed to H9N2 AIV compared to chickens recruited at LBM gates312

(control group), suggesting some degree of viral amplification happening along313

channels connecting farms to markets15,20. However, we found the opposite314

relation in the case of backyard chickens. One possible explanation is that315

backyard farmers included in this study saw an opportunity to sell chickens316

that were already sick, potentially due to AIV infection. Selling sick birds is not317

an uncommon practice among backyard farmers near Chattogram, who often318

operate in a world of compromises44.319

High levels of H9N2 AIV circulation in LBMs are concerning from a vet-320

erinary public health standpoint, and may require considerable efforts and re-321

sources to be controlled effectively. Indeed, some of our simulated interventions,322

like reduced length of stay and reduced probability of prior exposure, proved to323

be only modestly effective. Combining both interventions proved considerably324

more effective at reducing transmission compared to individual measures. Bans325

on overnight stay in Hong Kong were estimated to reduce H9N2 AIV isolation326

rates by more than 80%23. It is possible that the combination of high introduc-327

tion levels and baseline within-market transmission is larger in our study, thus328

requiring increased efforts to reduce transmission by an amount similar to what329

had been observed in Hong Kong.330

Pre-emptive vaccination alone proved to be particularly effective in simula-331

tions, under the assumption of complete sterilising immunity. A vaccine against332

H9N2 AIV is already available in Bangladesh, but its use has been limited333

to breeders and layers45. Widespread H9N2 AIV vaccination has been imple-334

mented in China and Korea. In Korea, genetic diversity of H9N2 AIV decreased335

suddenly after implementing vaccination in 200746. Large-scale AIV vaccina-336

tion stamped out H7N9 in Chinese LBMs47 but not H9N2, likely due to vaccine337

failure48. Indeed, continued AIV evolution can jeopardise vaccination efforts,338

requiring effective viral surveillance to inform vaccine composition and timely339

roll-out of updated vaccines.340

We considered two alternative modes of transmission, direct and mediated341

by the environment. Both scenarios were able to explain observed dynamic342

patterns and yielded similar results in the context of interventions targeting343

chickens only. Including environmental transmission allowed us to model the344

impact of LBM disinfection. In this scenario, moderate levels of cleaning could345

curb transmission significantly in simulations, specially if decay rates are small,346

as that corresponds to a slower accumulation of contaminated material. Peri-347
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odic disinfection, usually performed during rest days, has been shown to reduce348

H5N1 burden in Chinese LBMs22,49. It should be noted, however, that both349

transmission modes are likely to be at play at the same time; unfortunately,350

it was not possible to assess the relative contribution of each mode to overall351

transmission in this study. Overall, our analysis supports a multi-pronged ap-352

proach to reduce the burden of H9N2 AIV in LBMs and makes the case for the353

vaccination of poultry intended to be sold in LBMs in Bangladesh.354

Our study has several limitations. It focused on exotic broiler and backyard355

chickens, i.e. the same chicken types sampled in the field experiment. We did356

not include other chicken types, quails or ducks that are traded at the same357

market, as it would have been difficult to estimate additional parameters in the358

absence of appropriate data. While this could potentially bias our estimate of359

AIV transmissibility, which appears to be sensitive to other prior assumptions as360

well, we believe that our main results, e.g. estimated prevalence, are not affected361

by these simplifying study conditions. We did not consider seasonal variation362

in AIV transmission over the study period50. Nonetheless, explored contamina-363

tion decay rate values can be sensibly mapped to environmental conditions at364

different times of the year.365

We assumed that PCR tests could not detect infections during the latent366

phase, i.e. in absence of viral shedding, but were otherwise perfectly sensitive in367

the case of infectious and recently recovered chickens. High rates of positivity368

to H9N2 AIV suggest however that test sensitivity should not be a problem369

in our analysis. We also believe that positive outcomes were unlikely to arise370

from cross-reactivity induced by other AIVs, but we can not exclude cross-371

contamination of some samples in the laboratory. We note that immune cross-372

reactions between distinct AIVs may still affect susceptibility to H9N2 AIV.373

In addition, it has been proposed that backyard chickens are intrinsically more374

resistant to AIV infection compared to exotic broilers51–54, which could partially375

explain differences in attack rates between them. Future analyses may consider376

further heterogeneities among chicken types. It should be noted, however, that377

increased resistance of domestic types hypothesized by previous studies could378

in fact be the result of earlier exposure to AIVs, as hinted by our results.379

In conclusion, we found that H9N2 AIV is transmitted rapidly among chick-380

ens in LBMs with similar conditions to those in Chattogram, Bangladesh. A381

short latent period, specially in broilers, high transmission rates and a con-382

tinuous daily supply of susceptible chickens provide fertile grounds for H9N2383

AIV amplification despite short length of stay. Virus persistence in LBMs is384

further promoted by poor cleaning, which enables viral accumulation in the en-385

vironment, and frequent introductions of infectious chickens from trade. Con-386

sequently, sustained efforts involving a diverse range of veterinary public health387

interventions will be required to curb circulation of this virus.388
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Materials and Methods389

Model description390

We use a SEEIRR model to simulate disease dynamics. Under the assumptions391

of density-dependent transmission and homogeneous mixing, susceptible (S)392

chickens become infected at rate Λ(t) = βI(t)/N , where β is the transmission393

rate, I(t) counts the number of infectious (I) chickens at time t and N is the394

number of new chickens entering the market daily. Exposed (E) chickens turn395

infectious after an average latent period TE = σ−1 and recover after an average396

infectious period TI = µ−1. The exposed state consists of two consecutive stages397

(E1,2) with the same exit rate 2σ, yielding a gamma-distributed latent period.398

Recovered chickens initially enter the R+ state and then advance to R− at rate399

η. In this work we assume that only biological samples retrieved from I or400

R+ chickens can result positive to PCR. We assume that the two chicken types401

considered here, exotic broiler and backyard chickens, share the same biological402

parameters, except the latent period.403

We model an open population of chickens that mimics the activity of an404

LBM: more in detail, we assume that Nb new chickens of type b = BR,BY reach405

the market in bulk every day, always at the same time (note that N =
∑

b Nb).406

Of these, a proportion ρb has already been exposed to influenza prior to entering407

the market. Chickens are then sold progressively over time, their length of stay408

being distributed as in Fig. S1A. We assume for simplicity that the distribution409

of length of stay of backyard chickens is the same as that of broilers. Fig. S11410

shows that this assumption does not affect epidemic dynamics significantly.411

Equivalence between direct and environmental transmis-412

sion413

Under environmental transmission, the expression for the force of infection be-414

comes Λenv(t) = βenvIenv(t)/N , where Ienv(t) represents viral load in the envi-415

ronment at time t; its physical units are arbitrary, but chosen in a way that Ienv416

increases by an amount I(t) (i.e. prevalence of infectious chickens) between t417

and t+ 1.418

A mapping between β and βenv that (approximately) preserves stationary419

viral dynamics can be obtained as follows: let T̃ denote the average time a single420

chicken spends at the market while infectious. Under direct transmission, its421

spreading potential is given by βT̃ ; under environmental transmission, the same422

quantity is evaluated as:423

βenvT̃

∞∑

t=0

e−Θt , (2)

where the last sum accounts for persistence and progressive decay of infectious424

faeces in the environment. Equating the two expressions yields the relation425

βenv = β · (1− e−Θ).426
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Field data collection427

The field experiment consisted in caging 10 chickens together at a market stall428

for 84 hours, and sampling them for positivity to AIV at four time points, T1 =429

0, T2 = 12, T3 = 36 and T4 = 84 hours during the duration of the experiment.430

Of these 10 chickens, a group of 5 were recruited directly at the market right431

before T1 (control group), while the remaining 5 birds had been recruited 2.5432

days in advance (T0) from farms (intervention group) and stored in a biosecure433

environment before being introduced to the LBM at T1. The experiment was434

repeated 30 times with exotic broilers and 34 with backyard chickens for a435

total of 300 and 340 chickens, respectively. In this work we removed 80 broiler436

chickens corresponding to 8 experimental replicates where there was a suspect437

of cross-contamination of samples. More details about the experimental design438

can be found in33.439

Fitting the model to field data440

In the context of experimental data, we further distinguish between intervention441

(i) and control (c) chickens. This translates into four introduction parameters442

ρg,b, according to each combination of group g ∈ {c, i} and type b. We assume443

that control and bulk (i.e. marketed chickens that were not part of the exper-444

iment) chickens are equivalent in all aspects, meaning that ρb = ρc,b. Finally,445

compartment-specific introduction probabilities are fully determined by speci-446

fying three hyper-parameters λBR, λBY and κ. Briefly, these set the timing447

of prior exposure, under the assumption that the latter is gamma-distributed448

with type-specific rate λ and shared shape parameter κ. Further mathematical449

details can be found in Supplementary Text S1.1.450

We used a Bayesian MCMC approach to infer parameters θ listed in Ta-451

ble 1. We chose priors that penalise large values of β and set a narrow range452

for TEI = (σ−1
BR + σ−1

BY )/2 + µ−1, i.e. the average time from exposure to viral453

clearance; for a full account of fitted parameters’ priors see Table S1. The like-454

lihood function is multinomial (see Text S1.2), and depends on the probability455

of a chicken testing positive for the first time at market entrance, i.e. T0 or456

T1, or during any other time segment [Tj , Tj+1]; in addition, we also account457

for chickens that remain susceptible throughout the experiment or until early458

removal. We resort to numerical simulations to evaluate the likelihood, since an459

explicit representation of individual probabilities in terms of model parameters460

is not available. Simulations feature both bulk and recruited chickens from in-461

tervention and control groups. Importantly, we assume that recruited chickens462

do not contribute to transmission, but they can still be affected by exposure to463

infectious bulk chickens, which are way more abundant than the former. Inter-464

vention and control animals are recruited at times T0 and T1, respectively, and465

can not leave the market. From T0 to T1, intervention chickens are completely466

isolated from any source of infection, consistently with experimental conditions.467

The inference routine is based on an ensemble sampler from the Python468

module emcee, version 3.1.155. Briefly, this sampler runs l chains in parallel, and469
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makes proposals based on the collective state of all chains. We checked MCMC470

convergence by visual inspection, e.g. by looking at trace plots (Fig. S12), and471

by looking at MCMC acceptance rates.472
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