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Abstract: This study focuses on the thermal properties and structural features of blends consisting
of thermoplastic starch (TPS) and poly(ethylene-co-methacrylic acid) copolymer (EMAA) or its
ionomer form (EMAA-54Na). The aim is to investigate how carboxylate functional groups of the
ionomer form intervene in blends compatibility at the interface of the two materials and how this
impacts their properties. Two series of blends (TPS/EMAA and TPS/EMAA-54Na) were produced
with an internal mixer, with TPS compositions between 5 and 90 wt%. Thermogravimetry shows
two main weight losses, indicating that TPS and the two copolymers are primarily immiscible.
However, a small weight loss existing at intermediate degradation temperature between those of
the two pristine components reveals specific interactions at the interface. At a mesoscale level,
scanning electron microscopy confirmed thermogravimetry results and showed a two-phase domain
morphology, with a phase inversion at around 80 wt% TPS, but also revealed a different surface
appearance evolution between the two series. Fourier-transformed infrared spectroscopy analysis
also revealed discrepancies in fingerprint between the two series of blends, analysed in terms of
additional interactions in TPS/EMAA-54Na coming from the supplementary sodium neutralized
carboxylate functions of the ionomer.

Keywords: thermoplastic starch; ionomer; blends; interactions; morphologies; thermal analysis;
infrared spectroscopy

1. Introduction

Starch is mainly composed of two polysaccharides named amylose (essentially linear)
and amylopectin (hyper-branched). Composition is completed by a minor amount of lipids,
proteins and ashes [1]. These two polysaccharides are widely used in numerous applica-
tions as they are abundant, low cost and renewable and since they can give degradability
features to materials if required [2]. Starch can be added to polymeric materials as filler,
or plasticized to give thermoplastic starch (TPS) [3]. As for the gelatinization process,
plasticizers such as water or glycerol break up the native granule organization [4], separate
chains and dismantle double helix conformations, leading to random coil chain state and
amorphous material [5–7]. At a macromolecular scale, multiple binding situations arise,
and chains are swollen depending on the quantity and the nature of plasticizer [8,9]. TPS is
sensitive to temperature and humidity variations, inducing with time multiple structural
changes, grouped under the term of retrogradation [10–12]. This phenomenon implies
a crystallinity recovery, taking place on several scale times and affecting dimensional,
thermal and mechanical TPS properties [13]. Some additives such as glycerol may attenuate
retrogradation, but since they are not chemically bounded, they can exude from TPS or
attract more water. To prevent it, several associations with other plasticizers have been
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tested [14,15]. Lipids and fatty acids interact with amylose by inserting aliphatic segments
inside its hydrophobic helix cavity, forming V-amylose conformations [16,17]. Then, parts
of complexed amylose chains are hidden from recrystallization behavior, lowering retrogra-
dation. Salts or ionic liquids may also be of interest regarding this phenomenon [10,18].
Nevertheless, only modifying the TPS composition is often insufficient regarding prop-
erties of use. Considering packaging applications, some reviews propose solutions to
overcome starch and TPS shortcomings [19,20], for example, blending starch, modified or
not, with other polymers. As viscosity ratio is a dominant factor in interface handling [21],
a first step is to optimize the TPS viscosity in line with the other components by adjust-
ing the plasticizer amount. When viscosity ratio is sufficiently lowered, the size of TPS
droplets is lowered and their shape is distorted, giving a thinner and better distributed
droplet/matrix morphology, increasing interface. Subsequently, phase inversion is reached
at a higher starch percentage and co-continuous morphology may cover a larger percent-
age of components proportions, depending on the plasticizer amount [22,23]. However,
due to thermodynamic and steric considerations, mixing plasticized polysaccharides with
hydrophobic polymers is nearly impossible at a molecular level. Then, mixing requires
supplementary strategies to increase the components compatibility, essentially by lowering
interfacial tension. This can be achieved using chemical modifications of components [24].

A first approach consists of rendering polysaccharides more hydrophobic via chemi-
cal modifications to promote compatibility with low polar polymers. Modifications may
be obtained through etherification or esterification of alcohol functions [25]. A second
approach is to increase the polarity of the second polymer. With polyethylene, a com-
monly adopted solution is to graft anhydride maleic moieties to obtain PE-g-MA, which
is assumed to be located at the interface [26,27]. In such situations, interface saturation
determined by emulsification experiments becomes critical [28–30]. The underestimated
compatibilizer amount does not saturate interface and properties are thus not maximized.
If the amount is overestimated, compatibilizer forms micelles and separate from the matrix
phase [31]. When used in TPS, glycerol amount is also a factor which must be considered
when optimizing the interface [32]. Thus, TPS droplet morphology in blends is directly
linked to both percentages of glycerol in TPS and of PE-g-MA compatibilizer [33]. In a
controlled situation, the blend can show coalescence inhibition, postponing co-continuous
morphology at high TPS amounts, and producing a high elastic network [34,35]. A third
approach is to use a polymer already containing hydrophilic moieties, making control of
compatibilizer diffusion and saturation useless. However, in many situations, instead of a
chemical bonding, a physical network develops. Polyvinyl alcohol is strongly compatible
with starch [36]. Ethylene vinyl alcohol copolymer and polyethylene oxide are also good
candidates [37]. However, some brittleness develops in blends during aging, corollary to
the lack of chemical bindings or strong interactions [38].

Some years ago, a copolymer composed of ethylene and acrylic acid, poly(ethylene-co-
acrylic acid) (EAA), was used in TPS/EAA/PE blends to produce blown biodegradable
films, with acrylic acid moieties acting as compatibilizer [39]. Subsequent studies high-
lighted that ethylene segments may interact with polysaccharides like lipids or fatty acid
do, binding polysaccharides into a physical network [40,41]. Moreover, in blend with fatty
acid, the dimer associations of two carboxylic acid functions from EAA persist and may
even be included in the V-amylose complexes [42].

In solution, at elevated pH, the carboxylic acid functions may be transformed into
carboxylate ones which may interact with alcohol functions of polysaccharides, stabilize the
EAA micelles, decrease coagulation and promote the inclusion complexes [43,44]. Indeed,
compatibilization can be helped with ionic molecules due to electrostatic forces acting at
molecular level [45].

However, studies were preferably focused on assessing properties of biodegradable
TPS/PE blends containing EAA compatibilizer for agricultural mulch and were also focused
on EAA inclusion complex formation with polysaccharides conducted in solution. The
EAA used was a low mass grafted polyethylene, acting more as a surfactant than a true high
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mass polymer component such as PVOH or EVOH. Finally, blends have also been made
with the help of urea and ammonia, both plasticizing polysaccharides and transforming
acid functions into carboxylates in an uncontrolled way.

In the present paper, TPS was blended with a copolymer of poly(ethylene-co-methacrylic
acid), named EMAA, and its ionomer derivative, a self-healing polymer where 54% of acid
moieties are transformed into carboxylate functions and named EMAA-54Na [46,47]. In
such situation, we can take advantages of the following:

1. The capacity of strong interactions coming from inclusion complex formation and
ionic plasticization in the case of EMAA-54Na used;

2. The optimization of the viscosity ratio, thanks to glycerol plasticization of starch;
3. Working without a supplementary compatibilizer, which allows us to avoid control-

ling its dilution and its saturation at blend interface.

Two series of blends were prepared, named TPS/EMAA and TPS/EMAA-54Na.
Formulations covered the entire range in percentages allowing us to study phase inversion
and the evolution of structural features at interfaces. Differences in results between the
two series are interpreted at a molecular level as a supplementary contribution of the
carboxylate functions regarding the interface establishment.

2. Experimental Procedures
2.1. Materials

Poly(ethylene-co-methacrylic acid) (EMAA) and its ionomer derivative are commercial
grades supplied by DuPont company. The composition of these two grades in ethylene
(E) and in methacrylic acid (MAA) are very similar. Hence, the two products differ only
by the neutralized percentage of the acid function. The percentage of MAA given by the
supplier is 9 wt% for EMAA, meaning 3.12% in mole. The ionomer form corresponds to
EMAA containing 10 wt% of MAA, meaning 3.08% in mole, and where 54% of COOH
functions are neutralized, i.e., the proton is replaced by sodium [48]. Its chemical structure
is represented in Figure 1.
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Figure 1. Chemical structure of the neutralized form of EMAA.

When neutralized, EMAA becomes the ionomer EMAA-54Na. The wheat starch was a
Natilor grade, supplied by Chamtor company (Bazancourt, France). Glycerol was supplied
by Sigma-Aldrich (St. Louis, MO, USA) and both were used as received.

2.2. TPS and Blends Preparation

All blends were prepared in an internal mixer (Thermo Scientific Haake Polylab QC,
Waltham, MA, USA) equipped with a Rheomix 600 chamber, using roller rotors. The
chamber volume is 69 cm3.

2.2.1. TPS Preparation

The wheat starch was previously oven-dried at 70 ◦C for at least 24 h. In an aluminum
pan, fresh glycerol and starch were mixed by hand to obtain a homogeneous dough. The
maximum duration of this premix process was fixed at 6 min. The dough was then inserted
in the mixer at a low temperature (40–50 ◦C) and low speed (30 rpm) for 2 min. Then, the
rotor speed was increased to 100 rpm and the temperature set point was adjusted around
120 ◦C in order to not exceed 170 ◦C for the TPS. Starch plasticization was monitored
by torque measurement. After reaching a maximum value, it returned to equilibrium,
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indicating a steady state regime. All mixing times were less than 15 min. After preparation,
TPS were stored in desiccators under silica gel.

2.2.2. Blends Preparations

Two series of eight formulations based on TPS/EMAA and TPS/EMAA-54Na blends
were prepared through melt mixing with the previously prepared and stored TPS. The
maximum temperature of the blends was fixed at 170 ◦C by adjusting the chamber tem-
perature, with maximum rotor speed fixed at 100 rpm. The chamber was loaded to its
maximum capacity and closed by the piston to avoid loss of plasticizer. During insertion
of the mass fractions of the two components into the chamber, the rotor speed was fixed
at 10 rpm and the set point temperature at 120 ◦C (above the softening temperature of
EMAA). The insertion time was around 2 min. Once the insertion peak had been obtained
and the material had melted, the rotor speed was quickly increased to 100 rpm and the set
point temperature adjusted (decreased to around 110 ◦C) to obtain a final temperature of
170 ◦C for the sample. The maximum mixing time in this condition was less than 10 min.
The obtained samples were stored in desiccators under silica gel at room temperature. The
targeted compositions in TPS for the two series of blends were 5, 10, 20, 30, 40, 60, 70 and
90 wt%, and blends were labelled from A to G, respectively.

2.3. Characterizations
2.3.1. Rheological Behavior of EMMA, Ionomer and TPS

Viscous properties were obtained through the Haake mixer data at 170 ◦C for the
raw components (i.e., the two copolymers and the TPS). The methodology was based on a
previous study [49], but adapted in temperature (170 ◦C) as glycerol was used as plasticizer
instead of water. The rotor speed was decreased from 100 rpm to 5 or 10 rpm in five to six
steps. For each speed, the temperature was adjusted to maintain the material at 170 ◦C
and the torque was evaluated when the steady state regime was reached. Torque and rotor
speed were then transformed into stress and shear rate, respectively [50].

2.3.2. Scanning Electron Microscopy (MEB)

Low magnification scanning electron microscopy (×500) was performed using an
ITACHI TM-1000 microscope. Prior to the observations, samples were broken in liquid
nitrogen and the surface was observed with no further modification.

2.3.3. Thermogravimetric Analysis

Mass losses were measured with a TGA Netzsch TG 209 F3 piloted by Proteus 6 version.
Sample weights varied from 9 to 15 mg. The heating rate was fixed at 5 ◦C/min from
ambient to 550 ◦C under nitrogen atmosphere. Thermograms (TG) and first derivative
(dTG) data were exported in Excel format for analysis. The methodology of mass loss
analysis used a fitting procedure [51], where TG traces were approximated by a sum of
sigmoid curves, according to Equation (1):

∆m = mu − ml ∗

 1(
1 + exp

(
T−θ1

θ2

))
 (1)

where mu and ml are, respectively, the upper and lower limits of mass percentage of
the applied sigmoid. T is the temperature and θ1 and θ2 are parameters analogous to
temperature. In an ideal situation, where mass losses are well separated, θ1 is related
to the temperature corresponding to the peak of the dTG curve. Its value corresponds
to the inflexion point of the sigmoid. As real conditions do not give separated mass
losses, θ1 obtained by approximation did not correspond exactly to the dTG peak. The
temperature θ2 is related to the spreading of the sigmoid. If the curve shows significant
temperature spreading, the value of θ2 is high. Optimization was performed with the
Levenberg-Marquardt type algorithm supplied by the Excel worksheet. For each sigmoid
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curve, the estimated parameters of Equation (1) were provided to the algorithm. Then, a
TG curve was fitted by applying the convergence algorithm, based on the minimization
of the least square between the sums of all sigmoids and the TG curve. A correlation
coefficient similar to that used in a non-linear regression was calculated in order to check
the fitting performance.

2.3.4. Fourier Transform Infrared Spectroscopy (FTIR)

A Shimadzu IR Affinity-1S equipped with a Miracle™ single attenuated total reflection
(ATR) cell from Pike Technologies was used to sample the absorbance of TPS, EMAA,
ionomer and blends. A diamond/ZnSe cell was mounted on the ATR. For each spectrum,
32 or 64 scans were performed at a resolution of 4 cm−1 from 650 cm−1 to 4000 cm−1.
Multiple point baseline correction was applied to all samples to minimize baseline drift.
Several spectral band resolutions were obtained thanks to Fityk 1.3.1, a peak fitting software.
The shapes of individual bands were modelled by Gaussian distributions, the sum of bands
being used for calculation of the nonlinear fit. The convergence of the calculation was
based on minimizing the weighted sum of squared residuals and was ensured by the
iterative Levenberg-Marquardt algorithm. The relevance of the calculation was framed by
the weighted sum of squared residuals value (WSSR). All fits showed a WSSR below 10−3.

3. Results and Discussion
3.1. Viscosity Ratio Evaluation

The viscosity ratio of the raw components is one of the factors affecting the blends
morphology. When the viscosity ratio is close to unity, a fine dispersion of the minor
component in the matrix may be obtained [23,52]. Viscosity measurements of the raw
components are shown in Figure 2. At 100 rpm, the estimated shear rate in the internal
mixer is 82 s−1. Each viscosity curve can be correctly fitted by a power-law (R2 values were
above 0.988 for the three fits). TPS showed the lowest viscosity in this shear rate range. The
viscosity ratio is given by Equation (2):

x =
ηd
ηm

(2)

where ηd and ηm are the viscosities of the dispersed phase and of the matrix, respectively.
For non-Newtonian fluids, this ratio depends on the shear rate. In the present case, the
viscosity curves of the three components are parallel, and thus this ratio is quite constant.
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Figure 2. Viscosity curves at 170 ◦C of TPS, EMAA and EMAA-54Na.

Values obtained at 82 s−1 are given in Table 1. When TPS was used as the matrix,
the value of the ratio was greater than one. On the contrary, when TPS was the dispersed
phase, the value of the ratio was less than one. However, these values remained close to
unity, indicating an appropriate choice for blend components.
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Table 1. Viscosity ratios of TPS, EMAA and EMAA-54Na.

Dispersed Phase
Matrix Phase

TPS EMAA EMAA-54Na

TPS 0.64 0.35
EMAA 1.5

EMAA-54Na 2.82

3.2. Thermal Properties

TGA provided the degradation temperature range of all basic components and of all
blend formulations, TPS/EMAA and TPS/EMAA-54Na. Based on the TGA thermograms
of basic components and using a simple additive law, theoretical thermograms can be built
for all formulations, which are representative of blends composed with fully incompatible
materials [53]. The curves of real blends were fitted with the methodology detailed in
Section 2.3.3.

3.2.1. Blend Components

Figure 3a shows that glycerol evaporated first with an onset at 150 ◦C; the process
was completed before 250 ◦C with no residue. Wheat starch showed three mass losses.
The first one, due to the remaining free water, was visible around 80 ◦C. With our drying
procedure condition, it represents 3.2% of the total mass. The other two mass losses were
associated with polysaccharides. The onset degradation temperature of starch was visible
around 250 ◦C. The main decomposition followed with a small loss under 300 ◦C and a
maximum rate observed at 300 ◦C. A residue around 26% remained at 400 ◦C. These results
are in accordance with those observed by several authors [54,55]. The decomposition of
TPS and its fit are shown in Figure 3b and agree with previous observations [56]. The
frontier between mass loss of glycerol and starch detected by the fitting is indicated by a
red arrow on Figure 3b and gives the weight composition in starch/glycerol of the TPS:
74.8/25.2 (wt%).
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Figure 3. (a) TG and dTG curves of glycerol, starch and TPS and (b) TG and dTG of TPS, the TG fit of
the TPS, and linear combination of starch/glycerol (74.8/25.2 in wt%). The red arrow indicates the
end of glycerol evaporation and the beginning of starch degradation in the thermogram obtained by
linear combination.
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When the same weight ratio was used in a linear combination, the curve, corrected
for the presence of the remaining water coming from the starch, led to a plateau between
glycerol and starch decompositions. This plateau cut the experimental curve just above the
beginning of the starch degradation found by the fit.

The shape of the curve estimated with a linear combination differed from the TPS one.
Because of the intimate mixing of TPS components at the molecular level, due to strong
interactions between starch and glycerol, mass losses are not well separated. This leads
to a decomposition temperature of the glycerol above its usual endset temperature and a
more gradual mass loss. To a lesser extent, the same analysis could be performed for starch
but in the opposite direction. Its decomposition may occur at a lower temperature than
expected, making it more difficult to estimate the frontier between the starch and glycerol
range of weight loss. This drawback, i.e., a situation where components are not clearly
separated due to their close decomposition temperatures, was overcome with the help of
the method described in Section 2.3.3.

EMAA and EMAA-54Na were also subjected to fitting. Products were stable until
400 ◦C. Only volatiles were lost below this temperature, representing 2.8% of mass loss
for EMAA and 3.8% for EMAA-54Na. The ionomer was able to absorb water through
carboxylate functions that could participate in the supplementary mass loss. The two
copolymers showed multistage decompositions between 400 ◦C and 490 ◦C [57]. Above
490 ◦C, EMAA showed a residue of around 1%. Due to the presence of sodium carboxylate
functions, the residue of the ionomer was greater and reached 6%. It is believed that it
was composed of sodium carbonate [58]. The last maximum rate of decomposition was
observed at 456 ◦C and 449 ◦C for the ionomer and EMAA, respectively.

3.2.2. TPS/EMAA and TPS/EMAA-54Na Blends

In totally immiscible or weakly miscible blends with well-separated degradation
temperatures, composition is easily estimated by TGA. Experimental TG curves and linear
combinations (LC) overlap well, interfaces between components are rough, limited and
the features of raw components are kept. With miscible or compatible materials such as
starch and glycerol in TPS, however, new strong interactions arise at the interface. The
minor phase, if it remains, is finely dispersed, and the TG curves of blends deviate from
those made from the linear combinations of raw components [59]. In that situation, the
temperature range of the mass loss may be shifted by varying the composition and nature
of raw components [60]. In a situation of total miscibility, decomposition temperatures
merge [61]. The shifts of the main decomposition temperatures of components in blends
compared to the original ones depend on the synergy between them. During thermal
decomposition, chemical reactions occur, leading to the stabilization or destabilization
of products. Each mixing situation is unique, and caution must therefore be exercised in
analyzing data [62].

It can be seen on Figures 4 and 5 that the onset temperatures of degradation of
the two copolymers, around 400 ◦C, are far above the endset temperature of TPS. The
degradation temperature ranges of the components do not overlap, confirming that the
phases remain separated and indicating a slightly compatible situation. Figures 4 and 5 also
show some discrepancies in TPS degradation behavior between the two blends. Concerning
the compatibility and influences of components on each other, the key for interpreting
Figures 4 and 5 is the position of the LC curves compared to the experimental TG ones.
When the latter are under the LC ones, it indicates a destabilization effect on the degradation
behavior of the component in the blend.

A first remark that can be made about Figure 4 is that above 300 ◦C, the char formed
by the polysaccharide continues to lose weight in the range of temperature associated with
the decomposition of EMAA or ionomer. For the two blends, the final residue at 550 ◦C
may be composed of the two components and thus divided into two parts, as well. A
second remark concerns the shape of the TG curves. Deviations from LC were observed in
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all formulations, indicating interactions between TPS and copolymers. Moreover, the two
series of blends do not look alike, meaning that the interactions may be different.
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Figure 4. TG and linear combination (noted LC) of formulations B (10 wt% TPS), F (60 wt% TPS) and
H (90 wt% TPS) for (a) TPS/EMAA and (b) TPS/EMAA-54Na. The red arrow points to the occurrence
of the intermediate mass loss between the two main losses associated with TPS and ionomer.
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Figure 5. dTG curves of all formulations for (a) TPS/EMAA and (b) TPS/EMAA-54Na. Percentages
are relative to TPS in weight. The red arrow has the same meaning as in Figure 4b.

For the TPS/EMAA blends (Figure 4a), the TPS decomposed at 300 ◦C with little to no
deviation of its temperature. Differences between experiments and LC were small. On the
contrary, for TPS/EMAA-54Na, a clear deviation was observed for the TPS decomposition
temperature in the B and F formulations under 300 ◦C (Figure 4b). Experimental curves
were lower than the LC ones, meaning that interactions seem to destabilize the TPS phase
by lowering its thermal properties. A close look at formulation B of the TPS/EMAA-
54Na blend (Figure 4b) shows a small inflexion of the TG curve around 350 ◦C (red
arrow), between the decomposition temperatures of starch and EMAA-54Na, indicating
the decomposition of a possible intermediate structure.
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This inflexion is not clearly seen in the B formulation of the TPS/EMAA blend
(Figure 4a), even though a strong deviation exists at the onset of the main degradation
temperature of EMAA in B and F blends, around 400 ◦C. In the H formulation of the
two series of blends, TPS is the main component and only small to no deviation seems to
occur before 450 ◦C, as expected. On the contrary, in the temperature range of copolymer
degradation, the slopes of the H experimental curves are less pronounced than in the linear
combination. This may be explained by a phase inversion and the encapsulation of EMAA
or EMAA-54Na by the char formed by the TPS, delaying and slowing its decomposition [63].
For the B and F formulations of TPS/EMAA-54Na, deviations in the temperature range of
TPS decomposition lead to a strong destabilization of TPS minor phase in comparison with
LC curves, which will be better observed through the following dTG curve study (Figure 5).

The dTG curves of Figure 5a confirm that the analyses from Figure 4a and TPS/EMAA
blends show sharp peaks around 300 ◦C, similar to TPS alone. In addition, as the TPS
percentage increases, small shoulders and peaks develop under 300 ◦C, indicating creation
of a glycerol-rich polysaccharide phase. This behavior comes to reinforce an already
proposed model [32]. This situation expands for TPS/EMAA-54Na blends (Figure 5b),
where the TPS degradation temperature range is divided into multiple peaks that evolve
with the percentage of TPS. At a low TPS content (formulation A), a first decomposition
is seen near 250 ◦C and precedes a second one above 350 ◦C (insert in Figure 5b). This
inflexion also appears in the B and C formulations.

When the percentage of TPS increases, the low temperature decomposition peak
around 250 ◦C splits and the higher temperature shoulder expands. Its maximum tempera-
ture increases from 250 ◦C in the A formulation to reach 300 ◦C for the H one, while the
peak at 350 ◦C is reduced and eventually disappears. This suggests that a small part of
the TPS is destabilized, i.e., more plasticized, and starts its decomposition at a lower tem-
perature (250 ◦C) than expected. We may suggest that EMAA-54Na replaces the glycerol
in its plasticizing role of polysaccharide chains. The liberated glycerol may overplastify
polysaccharides chains, constituting the enriched glycerol TPS domains. A second part of
TPS is strongly associated to the ionomer and decomposes at an intermediate temperature
(350 ◦C). Obviously, when the quantity of TPS increases (and thus the amount of ionomer
decreases), the proportion of TPS bonded to ionomer decreases proportionally, and the
deviations around 250 ◦C and 350 ◦C tend to disappear, while the TPS degradation temper-
ature returns to its expected value of 300 ◦C. It is to be noted that in the TPS/EMAA-54Na
blends, peaks associated to TPS degradation occur over a wider temperatures range than in
the TPS/EMAA one, reinforcing the hypothesis of stronger interactions with EMAA-54Na.
The maximum peak temperatures of EMAA and EMAA-54Na increase slightly due to the
screening of the TPS char, as the latter increases in proportion.

The weight loss occurring between 300 ◦C and 400 ◦C visible in the A, B and C formu-
lations of TPS/EMAA-54Na blends (arrow in Figure 5b) may also exist in TPS/EMAA. To
check this, the EMAA experimental dTG curve was subtracted from that of the A blends
(5 wt% of TPS). The results, also for TPS/EMAA-54Na, are shown in Figure 6. The subtrac-
tion eliminates the weight loss of EMAA or EMAA-54Na in the corresponding A blends,
revealing the intermediate degradation temperature peak. The temperature associated
with this degradation in TPS/EMAA-54Na is lower (350 ◦C) than that in TPS/EMAA
(385 ◦C), confirming the destabilizing thermal effect of the carboxylate functions on TPS
decomposition. Associations between starch and poly(ethylene-co-acrylic acid) (EAA) were
detected through different techniques and were due to a particular complexion interaction
of EAA polyethylene main chain segments inside the polysaccharide helix [43]. This kind
of interaction resembles those encountered between fatty acids and polysaccharides.

TPS engaged in such a complexion interaction may resist temperature degradation
differently in TPS/EMAA-54Na blends compared to TPS/EMAA. As the only structural
difference between the two blends is the neutralization of 54% of the carboxylic acid
in EMAA-54Na, it can be assumed that carboxylate functions are responsible for the
differences observed between the two blend series. Based on this assumption of a strong
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interactions existing at the interface between polysaccharides and copolymers, Figure 6
indicates that the interactions are of different nature, where the carboxylate group in EMAA-
54Na is responsible for the weakening of the interface thermal property, seen at 385 ◦C in
the A blend of TPS/EMAA, but at 350 ◦C in TPS/EMAA-54Na.
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3.3. Morphology of Blends

In the SEM images, contrast variations in grey at low magnification for blends B
indicate that TPS appears in a clearer domain than the copolymer EMAA or its ionomer
(Figure 7). Light grey TPS inclusions are visible in the copolymer matrices for formulations
B to G and are detailed as ghosts, an insoluble part of TPS [64,65]. When the percentage of
TPS increases, the inclusions are more numerous. We observe also a distinct evolution in
the roughness of the fractured copolymer surface, becoming less and less pronounced in
TPS/EMAA with the increase in TPS amount, compared to TPS/EMAA-54Na. Alongside
the inclusions phase, a second TPS distribution size may exist, more finely dispersed in
matrices, invisible at this magnification and coarser in TPS/EMAA (Sample F and G in
Figure 7). Unlike the morphologies of blends B to G, the two H formulations show a totally
different pattern. This reveals that the phase inversion point is situated between formula-
tions G and H, i.e., between 70 and 90 wt% of TPS [34]. At 90 wt%, the TPS becomes the
matrix and encapsulates the EMAA or the ionomer, explaining the increase in degradation
temperatures for the H formulations seen in Figures 4 and 5. For these H formulations,
at this magnification, the copolymer or the ionomer are invisible. Note however that, in
H formulations, rounded starch inclusions previously dispersed in copolymer matrix are
still visible and are embedded in an uniform TPS matrix, meaning that before the phase
inversion, truly gelatinized polysaccharide was thinly diluted in copolymers thanks to the
compatibilization capability of the two copolymers [29].

3.4. Structural Features of Blends by FTIR Analysis

FTIR spectroscopy is a useful methodology to investigate chemical structures and
interactions at short length scales. The main vibration modes of the TPS, EMAA and
EMAA-54Na spectra under 1800 cm−1 are identified in Figure 8. The superimposition
reveals three areas of bands where products show nearly no absorbance overlay between
each other, allowing the impact of one product on the other to be interpreted without
any interferences.
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Figure 8. FTIR spectra of EMAA, EMAA-54Na and TPS, from 650 cm−1 to 1800 cm−1.

The first range concerns bands between 1600 cm−1 and 1800 cm−1, assigned to (C=O)
stretching vibration of the acid form of the carboxyl group existing in EMAA and EMAA-
54Na. In this range, the only band which may interfere with the analysis is the one at
1650 cm−1 assigned to (O-H) bending vibration of the alcohol group of polysaccharides,
glycerol and to the bonded water. The second range is between 1500 cm−1 and 1600 cm−1

and includes asymmetrical vibration modes of the carboxyl group (COO−) in EMAA-54Na
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only [66]. Bands are not resolved, and a maximum appears around 1548 cm−1. The third
range corresponds to the 950–1180 cm−1 fingerprint associated with polysaccharide bands.
It is composed of highly coupled vibration modes of (C-O), (C-O-C) and (C-C) stretching
and (C-OH) bending. Again, in this third wavenumber area, EMAA and EMAA-54Na show
almost no absorption. As a result, in blends, by focusing on the evolution of bands in the
first two domains between 1500 cm−1 and 1800 cm−1, we can observe the consequences of
TPS on the vibration modes of the (C=O) acid group in EMAA and EMAA-54Na and on the
(COO−) carboxyl group in EMAA-54Na. Similarly, we can observe the impact of EMAA or
EMAA-54Na on the polysaccharide vibration bands between 950 cm−1 and 1180 cm−1.

The superimposition of the FTIR spectra of the blends provides three indications.
Firstly, the maxima of the (C=O) stretching vibration observed at 1700 cm−1, which is
assigned to a dimer formation composed of two carboxylic acid functions associated by
hydrogen bonding, remains in its position whatever the amount of TPS. This indicates
that carboxylic acid functions remain under this form in both blends, TPS/EMAA and
TPS/EMAA-54Na. This hypothesis must be moderated, however, because their absorbance
is low in TPS/EMAA-54Na blends and because some of these acid functions may be
involved in the formation of multiplets [67]. Secondly, the overall poorly resolved shape
of the TPS fingerprint, between 950 cm−1 and 1180 cm−1, changes with the amount of
TPS. When the latter decreases, a shoulder of the 1019 cm−1 band, which had almost
disappeared, can be seen emerging around 1050 cm−1, indicating an impact of EMAA and
EMAA-54Na on the configuration of the polysaccharide chains. The shape of the 1115 cm−1

band is also modified. Thirdly, with increasing quantities of TPS, the shoulder visible at
1580 cm−1 seems to disappear more quickly than the maxima located around 1548 cm−1.
A local disruption of the environment around the carboxyl function in TPS/EMAA-54Na
can be a consequence of its interaction with TPS and may cause the disturbance in the
asymmetric stretching (C=O) vibration of the (COO−) group.

To investigate the last point, an overlay of some spectra of TPS/EMAA-54Na and their
sets of bands obtained by fitting are shown in Figure 9. Prior to the fitting experiment,
the interference of the TPS product was minimized by subtracting TPS spectra from the
blend one. Subtraction was monitored by the disappearance in the blends of the band
at 850 cm−1, solely due to TPS (Figure 8). The fit was also performed below 1500 cm−1

and above 1600 cm−1 in order to consider the contributions of adjacent bands. The band
positioning is based on the literature and is part of the following discussion. In order to
compare the band contributions to the sum, as well as to take into account the overall
decrease in the bands with the decreasing proportion of EMAA-54Na in the blends, all the
spectra were normalized on the 1547 cm−1 band, the major contribution to the sum of fit.
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The spectra of EMAA-54Na, blends B, E and F, were fitted with five bands. Addition-
ally, the evolutions of two other bands at 1650 cm−1 and 1620 cm−1 are shown. The first
one is assigned to the vibration mode of (O-H) from water in EMAA-54Na. The second
band is assigned to the (C=O) vibration mode of acid functions associated with the carboxyl
group. They form acid salt compounds [68].

Two bands fixed at 1547 cm−1 and 1568 cm−1 correspond to sodium surrounded by
a 6-coordination carboxyl configuration [69]. In our case, a better fit is achieved with a
band at 1565 cm−1. The band existing at 1585 cm−1 is assigned to a 4-coordination (COO−)
configuration around the cation [66]. This band is dominant in Zn2+ neutralized ionomers
because of its strong and well-designed complexion with (COO−) groups. As a result,
zinc-based ionomers have been widely used for the study of 6- and 4-coordination complex
configurations through FTIR [68]. This 4-coordination complex configuration may exist in
Na ionomer, and the band is added to the fit [67,69,70]. A fourth band at 1509 cm−1 was
added where the EMAA-54Na spectrum shows a shoulder. The frequency of the 1547 cm−1

band diminishes to 1540 cm−1 when water is added [71]. Then, to take into account this
evolution and the shoulder appearing in blends under 1540 cm−1, a fifth band centered
at 1528 cm−1 was added to perfect the fit. A close look at other alkali metal cation (Cs+,
Li+) ionomers shows that vibration modes exist under 1540 cm−1, even if they were not
exploited [69]. The frequencies used for these fifth bands are in agreement with those found
in a recent study [70].

Water, temperature, pressure and neutralization percentage have been shown to
change the fingerprint spectrum in this region [67,71–73]. Simultaneous neutralization by
more than one cation also modifies the spectrum [66,74,75]. It was concluded that this
is due to local disturbance of the configurations of the coordination complexes. Some
vibration modes are enhanced while others are reduced, modifying the overall shape of
this region of the spectrum.

When the percentage of TPS increases, the two bands with the strongest frequencies at
1585 cm−1 and 1565 cm−1 decrease while the three lowest ones at 1547 cm−1, 1528 cm−1

and 1509 cm−1 increase slightly. Above 40 wt% of TPS, the opposite behavior is observed
for the 1585 cm−1 band, which starts to rise again. When the percentage of TPS increases,
the 1625 cm−1 and 1650 cm−1 bands also increase. All these results indicate a disturbance
of the sodium coordination complexes configurations caused by new interactions with
TPS. The decrease in absorbance of the higher wavenumber bands signs the weakening
of the carboxylate group bonds, indicating H-bonding with alcohol functions of polysac-
charides or glycerol. However, at this point, it remains hasty to propose specific chemical
interaction configurations.

In the polysaccharides fingerprint, curves fitting shows multiple bands from 952 cm−1

to 1178 cm−1 (Figures 10 and 11). Frequency values are in good agreement with those
previously reported by some authors [76,77]. To account for the decrease in absorbance
with the decrease in TPS amount in the blends, all the spectra were normalized to the
vibration band at 1150 cm−1. The spectrum of pure TPS shows bands associated with a
gelatinized state [78,79], with a well-developed band at 1019 cm−1 and the shoulder at
995 cm−1. For both blends, TPS/EMAA and TPS/EMAA-54Na, the absorbance of these
two bands decreases strongly with a decrease in the TPS amount (Figure 10).

When the amount of TPS is below 20 wt% (C formulation), the 1119 cm−1 band
increases in the two series of blends. For the TPS/EMAA-54Na blend, an increase in
the absorbance of the 1056 cm−1 band is observed, while for TPS/EMAA, the increase is
observed for the 1043 cm−1 and 1100 cm−1 bands (Figure 11). Discrepancies in fingerprint
evolution reveal differences in interactions from the polysaccharide point of view between
the two blends, caused by the carboxyl (COO-) group in EMAA-54Na, which does not exist
in EMAA. In the TPS fingerprint, it is impossible to assign an individual band to a specific
vibration mode of chemical bonds, but the band ratios were used to evaluate and qualify the
polysaccharides configuration states (i.e., amorphous or ordered) [80]. Evolutions of these
ratios are shown in Figure 12. The 1047/1022 absorbance ratio (1043 cm−1 to 1019 cm−1 in
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our case) was used to quantify the crystalline state [77]. FITR is unable to determine the
type of long-range order, i.e., to distinguish between the B or A type of helix packing [80].
However, it determines the relative quantity of short-range order against an amorphous
configuration, and thus indirectly the crystalline amount.
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Figure 11. Bands fitting of the polysaccharide fingerprints, curves of A (5 wt% TPS), B (100 wt% TPS)
and C (20 wt% TPS) blends of (a) TPS/EMAA series and (b) TPS/EMAA-54Na series.

Regarding the 1047/1022 absorbance ratio (R1), and starting from 100% of TPS, as
the percentage of EMAA or EMAA-54Na increases, the frequencies associated with a
disorganized state of polysaccharide chains decrease and those related to a retrograded
or crystallized state increase. The configurations of the chains evolve from a disorganized
state (R1 ≈ 0.55 at 100 wt% of TPS) to a more ordered one with the presence of EMAA
or EMAA-54Na (R1 ≈ 0.8 at 20 wt% TPS for both series of blends). This evolution can be
correlated to the capacity of polysaccharide chains to complex ethylene segments of EMAA
or EMAA-54Na inside hydrophobic cavity of helix conformations at interface. Indeed, the
less the TPS amount, the more the remaining one is short-range ordered. This evolution
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means that the polysaccharides located at the interface, becoming proportionally more
important with the decrease in TPS amount, are more short-range ordered due to their
contacts with copolymers. Dimer acid could also be included in the helix cavity as already
suggested [42]. Participation of dimer acid groups to inclusion complexes could explain
why the local structural configuration of the polysaccharide chains is moved to a more
ordered state, while acid dimer groups are not structurally changed. There is a split at a
low TPS level under 20 wt%. We observed a reversal behavior with a decrease in the R1
ratio (R1 ≈ 0.75 at 5 wt% of TPS) for the TPS/EMAA-54Na blends. This implies an upturn
to a less organized polysaccharide chain configuration. It reveals the role of the carboxyl
COO- groups on TPS, which prevents an increase in crystalline quantities via complex
inclusion. Carboxylate functions act as physical reticulation points or, if not engaged in
multiplets, as head of fatty acid, preventing a pronounced insertion of ethylene segments
of EMAA-54Na into the hydrophobic helix cavity of polysaccharides as the acid dimers do.
In comparison, if carboxylate functions do not exist in EMAA, then polysaccharide chains
can complexify ethylene segments easily, increasing the short-range order. Then, the ratio
continues to increase in TPS/EMAA series, until it reaches R1 ≈ 1.
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Figure 12. Evolution of infrared absorbances ratios 1043/1019 and 995/1019 as a function of TPS
content (wt%) for the two series of blends.

The R2 absorbance ratio 1000 cm−1 to 1022 cm−1 (995 cm−1 to 1019 cm−1 in our
situation) reveals the quality of helices packing (i.e., alignment of helices, in short-length
scale) according to different plasticization and moisture situations [79]. Beginning with
100 wt% TPS, this ratio shows a very low value (R ≈ 0.83) in good agreement with a
gelatinized starch containing a low number of plasticizers. In such situations, packing
helices are already highly disorganized. A diminishing ratio is associated with a more
distorted packing, while a higher ratio value corresponds to a better packing state of short
helices. We observed the expected decrease in the ratio with the increased quantity of
hydrophobic EMAA and EMAA54-54Na. Copolymers disrupt the helix packing at the
interface, but, as for the R1 ratio, a divergence in behavior is observed between the two
blends. The ratio increases again in TPS/EMAA-54Na under 10 wt% of TPS, meaning that
the carboxylate group intervenes at low TPS amount by organizing the stacking of the low
quantity of polysaccharide chains and helices at the interface.

4. Conclusions

In this paper, we studied the properties of blends of thermoplastic starch (TPS) with
poly(ethylene-co-methacrylic acid) copolymer (EMAA) and with its ionomer form (EMAA-
54Na). Structurally, these two grades of copolymer differ only by the percentage of car-
boxylic acid functions neutralized by sodium in the ionomer (54 wt%). Sigmoid functions
were used to fit TG curves in order to confirm the composition of formulations of the
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two blends. By assuming that complex interactions exist in both TPS/EMAA-54Na and
in TPS/EMAA blends, the differences in temperature properties detected by TGA can
be explained by the participation of the carboxylate functions in the interactions. The
thermal resistance of a portion of the TPS involved in the inclusion may be altered either
by the direct participation of the carboxylate functions in the inclusion or by their indirect
participation through the presence of physical crosslinking (multiplets, clusters), or by new
interactions between polysaccharide and carboxylate. In that way, a portion of TPS may
degrade in two different temperature ranges. We hypothesize that in the two blends and
for low percentages of TPS (formulations A, B and C), the mass loss observed at 350–400 ◦C
may correspond to part of the remaining interface structure. SEM images confirmed the
phase inversion around 80 wt% of TPS. Dissimilarity in surface roughness indicates a
possible second smaller size distribution of TPS particles dispersed in the matrix and a
difference in the fineness of these TPS particles. Finally, the infrared experiments showed
the existence of interactions between the two components. At a low percentage of TPS
(under 20 wt%), differences in spectra and ratios evolution between the two series reveal
involvement of carboxylate function from EMAA-54Na into the interface construction.
Interaction patterns are distinct due to carboxylate groups. COO− functions maintain a low
short-range order quantity (R1 ≈ 0.75), but promote a better packing of helices (R2 ≈ 0.75),
indicating that the complexion of ethylene segments into hydrophobic helix cavities of
polysaccharides may be limited. At the opposite, thanks to insertion of ethylene segments
of EMAA into hydrophobic cavities of polysaccharide helices, the quantity of short-range
order is high (R1 ≈ 1), but packing perfection is lower (R2 ≈ 0.5). At high percentages of
TPS, polysaccharides involved in the interface are under-represented compared to ones
located inside droplets and are hidden from copolymers. Then, the ratio evolutions of
the two series of blends become similar, giving a parallel decrease in short-range order
amount and helices packing quality with EMAA or EMAA-54Na. As in the TGA and SEM
experiments, the infrared imaging shows differences in results between the two sets of
formulations that can be explained by the presence of carboxylate functions.
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