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Abstract  36 

Green area index (GAI), leaf chlorophyll content (LCC) and canopy chlorophyll content 37 

(CCC) are key variables that are closely related to crop growth. Concurrent and continuous 38 

monitoring of GAI, LCC and CCC is critical to keep consistency among variables and make 39 

decisions for field precision managements. Previous studies have developed several 40 

instruments and algorithms to monitor continuous GAI, while the autonomous monitoring of 41 

three variables simultaneously has been lacking. This study presents a novel algorithm to 42 

retrieve daily GAI, LCC and CCC from continuous directional observations acquired by a 43 

fixed and economic affordable multi-band spectrometer (6 bands covering red, red-edge and 44 

near infrared domains) and a photosynthetically active radiation (PAR) sensor in the field. It 45 

is composed of three main steps, corresponding to three crucial questions when retrieving 46 

variables under natural environments using multi-band spectrometer installed on a near-47 

surface platform: diffuse fraction in each spectral band, radiometric calibration and diurnal 48 

sun variation of daily acquisitions. First, we estimated diffuse fraction in each spectral band 49 

from the relationship with PAR diffuse fraction based on simulations of the 6S atmospheric 50 

radiative transfer model. Second, we computed the relative value of each band to the 51 

reference of mean of measurements on all six bands from near-surface measurements, in place 52 

of absolute radiometric calibration to limit the influence of changing illumination conditions. 53 

In the third step, we combined PROSAIL canopy radiative transfer model and kernel-driven 54 

models to retrieved GAI, LCC and CCC from artificial neural network using above spectral 55 

diffuse fraction and diurnal multi-angle relative observations. The algorithm was evaluated 56 

over 43 IoTA (Internet of things for Agriculture) systems that were installed in 29 wheat 57 

fields in France from March to May 2019. Results showed that our method provides good 58 

estimates of GAI with root mean square error (RMSE) of 0.54, relative RMSE (RRMSE) of 59 

26.95%, R
2
 of 0.86, LCC (RMSE = 12.06 µg/cm

2
, RRMSE = 33.34%, R

2
 = 0.52) and CCC 60 

(RMSE = 0.23 g/m
2
, RRMSE = 24.58%, R

2
 = 0.93). This study shows great potentials for 61 

concurrent estimates of GAI, LCC and CCC from continuous ground measurements. It will be 62 

useful over other vegetations or other near-surface platforms for simultaneous estimations of 63 

biophysical variables.  64 

Keywords:  65 

Green Area Index (GAI), Leaf Chlorophyll Content (LCC), Canopy Chlorophyll Content 66 

(CCC), Daily measurements, Wheat, Near-surface system 67 
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1 Introduction 68 

The world population is expected to reach about 10 billion by the end of 2050 (FAO, 69 

2017). This will require a huge boost of agricultural production to satisfy the population 70 

needs. To secure food supplies for the future and keep the sustainability of natural resources 71 

involved, agricultural technologies are rapidly evolving towards to a new paradigm-72 

Agriculture 4.0 (Santos Valle and Kienzle, 2020). Daily, continuous and autonomous 73 

monitoring of crop state using near-surface monitoring system is a key component of this 74 

paradigm (Raj et al., 2021). Farmers could benefit from the daily measurements to monitor 75 

fields remotely, especially for those with inconvenient access. Sudden changes due to pests or 76 

diseases within the field of view of Internet-of-Things (IoT) systems can be promptly detected 77 

and intervened (Ojha et al., 2015). In addition, daily variables estimated from measurements 78 

can feed decision tools for precision fertilization, irrigation and harvest managements 79 

(Lemaire et al., 2021). 80 

Leaf area index (LAI), leaf chlorophyll content (LCC) and canopy chlorophyll content 81 

(CCC) are three important variables that are closely related to the crop status. LAI represents 82 

one half of the total green leaf area per unit horizontal ground surface area (Chen and Black, 83 

1992) and it is an essential vegetation structural variable in several functioning processes 84 

(GCOS, 2011). In this study, we focus on Green Area Index (GAI) in place of LAI since we  85 

consider all the green parts of the plants that are involved in photosynthesis, including green 86 

leaves, stems and reproductive organs (Baret et al., 2010). LCC is the amount of chlorophyll a 87 

and b per unit leaf area (µg/cm
2
 leaf) and CCC is the canopy integrated chlorophyll content, 88 

which can be approximated as multiplication of GAI and LCC. Both are important 89 

physiological indicators and provide indirect estimations of leaf/canopy nitrogen content 90 

(Berger et al., 2020; Croft et al., 2017; Gitelson et al., 2014; Verrelst et al., 2021). In the 91 

context of precision agriculture, continuous and concurrent in-situ observations of GAI and 92 

LCC are key to achieve consistent estimates of CCC and capture crop structure and 93 

physiological status simultaneously (Darvishzadeh et al., 2012; M. Weiss et al., 2020; P. 94 

Zhang et al., 2021).  95 

Substantial efforts have been made to develop automatic ground monitoring systems for 96 

observations of these variables. Continuous ground GAI can be measured through 97 

transmittance in a single band, e.g., PASTIS-57 (Fang et al., 2018; Raymaekers et al., 2014) 98 

and 4S (Kim et al., 2019), through above and below canopy photosynthetically active 99 

radiation (PAR)(Rogers et al., 2021), through gap fraction in RGB images (Chen et al., 2022; 100 

Wang et al., 2022), or digital camera traps (Chianucci et al., 2021; Niu et al., 2021; Ryu et al., 101 



4 
 

2012). However, all these systems focus on GAI estimations solely and do not allow to 102 

provide concurrent continuous estimations of LCC and CCC. As LCC has been demonstrated 103 

to be strongly related to reflectance in red-edge and NIR bands (Gitelson, 2005; Main et al., 104 

2011), using transmittance from PAR sensors or a single spectral band is not appropriate to 105 

derive accurate estimation of LCC or CCC. Alternatively, LCC estimations using RGB 106 

images was investigated in several studies (do Amaral et al., 2019; Guo et al., 2020; Sánchez-107 

Sastre et al., 2020; Zheng et al., 2018). Although good correlations between RGB indices and 108 

LCC values were found, the empirical relationships were various and need to be calibrated 109 

depending on the experiment (Baresel et al., 2017; Rigon et al., 2016), limiting their 110 

applications in various locations autonomously.   111 

Continuous and concurrent measurements of GAI, LCC and CCC require data from 112 

multiple spectral bands. Several automated field spectroscopy systems composed of high or 113 

ultra-high resolution spectrometers were developed to collect canopy reflectance and canopy 114 

sun-induced fluorescence signals (Campbell et al., 2019; Cogliati et al., 2015a; Grossmann et 115 

al., 2018a; Yang et al., 2018). However, these high-resolution spectrometers are designed for 116 

studying the SIF signal, which requires very accurate calibration and fine spectral resolution, 117 

with a cost ranging from 900$ to 8000$. Additionally, they are mounted on a tripod (Cogliati 118 

et al., 2015b) or towers (Campbell et al., 2019; Grossmann et al., 2018b; Yang et al., 2018), 119 

making them not practical when removing them for field management purposes. Therefore, 120 

the recent advances of low-cost and portable multi-band spectrometers provide an attractive 121 

option for assessing vegetation status by measuring the radiation reflected by the canopy 122 

autonomously in multiple wavebands ranging from visible to near infrared (NIR) (Fletcher 123 

and Fisher, 2018). The very low price of the sensor (e.g., less than 10$ from the 124 

manufacturer) makes it possible to put several systems in the field to better capture the spatial 125 

heterogeneity. Additionally, this type of device can be easily installed in the field without 126 

requiring any specific knowledge from the user. Despite these advantages, only few studies 127 

attempted to use these sensors (Garrity et al., 2010; Heusinkveld et al., 2023; Kim et al., 128 

2022). Relatively few investigations have been devoted for simultaneous estimation of GAI, 129 

LCC and CCC from similar multi-band spectrometers, especially under natural environment. 130 

Unlike the experiments in laboratory with controlled environment, the varying illumination 131 

conditions (e.g., totally clear, sparse clouds or overcast) are inevitable in natural environment. 132 

They may have significant impact on the observations, and proper attention must be paid to 133 

possible calibration issues when using radiative transfer model or vegetation indices to 134 

retrieve canopy traits. Indeed, three crucial questions need to be solved when retrieving 135 
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variables under natural environments using multi-band spectrometer installed on a near-136 

surface platform. 137 

(1) Contribution of the direct and the diffuse component of the irradiance in each spectral 138 

band: retrieving vegetation variables from radiative model inversion requires to compute 139 

the reflectance (Fang et al., 2019; Jay et al., 2017; J. Wang et al., 2022). Natural irradiance 140 

is actually composed of a direct component and a diffuse component, which should be 141 

taken into account when using near-surface monitoring systems (Durand et al., 2021; 142 

Schaepman-Strub et al., 2006). Although some studies have investigated the partitioning 143 

of the radiation into its diffuse and direct components in the full solar domain, applicable 144 

with a reasonable accuracy everywhere at the Earth’s surface (Gueymard and Ruiz-Arias, 145 

2016; Yang and Gueymard, 2020), only few of them considered the PAR using data 146 

driven approaches calibrated on a single site experiment (Jacovides et al., 2010; Ma Lu et 147 

al., 2022; Spitters et al., 1986) or semi-empirical models (Oliphant and Stoy, 2018).  148 

(2) Radiometric calibration: absolute radiometric calibration is a critical step to convert the 149 

radiance measured from spectrometer into reflectance, to limit the influence of changing 150 

illumination conditions. In the field, it can be achieved by performing radiance 151 

measurements over a Spectralon reference panel or a gray carpet with known reflectance 152 

placed close to the target (Cao et al., 2019; Li et al., 2021b; Peltoniemi et al., 2005; 153 

Sandmeier, 2000). However, this method is difficult to implement for continuous multi-154 

band spectrometer monitoring in natural environments, because some calibration errors 155 

may be caused when the reference gets dirty and/or when its reflection properties change 156 

over time (Peltoniemi et al., 2005; Roosjen et al., 2017). When accurate radiometric 157 

calibration is not available, studies from Verger et al., (2014) and Jay et al., (2019) 158 

showed that using the ratio of the signal measured in a given band to the average of all 159 

measured bands or a single band, is an effective solution for retrieving vegetation 160 

variables. 161 

(3) Diurnal variation of the sun position over the day:  multiple sun viewing angles are 162 

available through continuous measurements in few minutes or hours steps. Many field 163 

instruments rely on the angular variations of the gap fraction either using the variation of 164 

the viewing or solar directions (Yan et al., 2019; Yin et al., 2017). This has also been 165 

investigated for multispectral observations from satellite and drones (Dorigo, 2012; Duan 166 

et al., 2014; Roosjen et al., 2018; Roujean and Lacaze, 2002; X. Zhang et al., 2021). But 167 

exploiting the dense diurnal sun variations of daily acquisitions using multi-band 168 

spectrometer has not been yet explored at our knowledge.  169 
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Under this context, the objective of this study is to find solutions to those three questions 170 

in order to develop a synthetic and practical algorithm to generate daily GAI, CCC and LCC 171 

from continuous ground measurements. We first present a method to partition the PAR 172 

incident radiation into its direct and diffuse component using a data driven approach. Then, 173 

we establish relationships between the diffuse fraction in the PAR domain and each spectral 174 

bands using the 6S radiative transfer model (Vermote et al., 1997). Then they were used in 175 

simulation of hemispherical-directional reflectance factor (HDRF) through a kernel-driven 176 

model (Roujean et al., 1992) and PROSAIL model (Jacquemoud et al., 2009). Both 177 

observations and simulations were converted into relative terms as a substitute of absolute 178 

radiometric calibration. Kernel parameters were calculated from the kernel-driven model and 179 

diurnal relative multi-band spectrometer measurements. The Artificial Neural Network 180 

(ANN) algorithm was employed to retrieve GAI, LCC and CCC from kernel parameters and 181 

geometric configurations. Using continuous multi-band spectrometer observations from IoTA 182 

(Internet of Things for Agriculture) systems over several wheat fields in France, we studied 183 

the robustness and accuracy of this algorithm. To evaluate the accuracy and uncertainties, we 184 

compared estimated diffuse fraction on each waveband, GAI, LCC and CCC with 185 

corresponding reference measurements.  186 

2 Experiments and measurements 187 

2.1 Study area 188 

The experiments were conducted in 2019 in winter wheat fields of six areas close to the 189 

following French cities: Gréoux-les-Bains (43.75 °N, 5.88 °E), Nîmes (43.8 °N, 4.36 °E), 190 

Boigneville (48.3 °N 2.4 °E), Muizon (49.27 °N, 3.89 °E), Chalons-en-Champagne (49.0 °N, 191 

4.4 °E) and Saint-Hilaire-en-Woëvre (49.1 °N, 5.7 °E) (Fig. 1). The Gréoux and Nîmes sites 192 

are characterized by a typical Mediterranean climate, with a maximum average temperature of 193 

20 °C (Meteo France). The Boigneville site has a more continental climate, with maximum 194 

average temperature of 15 °C. In Muizon, Chalons-en-Champagne and Saint-Hilaire-en-195 

Woëvre, the climate is temperate and humid and the maximum average annual temperature is 196 

around 13°C. 197 

In total, 43 IoTA systems were installed (Table S1). Six of them were located in small 198 

experimental fields of 10 × 2 m² size where wheat was fertilized with different amounts of 199 

nitrogen. The remaining 37 sensors were installed in farm fields, with a size around 800 × 200 200 

m².  In the four northern sites, seven winter soft wheat (Triticum aestivum) cultivars were 201 
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grown. In the two southern sites, the fields were sown with three winter durum wheat 202 

(Triticum durum) cultivars. The sowing dates varied from end of October to beginning of 203 

November due to different planting practices and local weather. The IoTA measurement 204 

campaign started from the end of March (beginning of growth) to mid- May 2019 (maximum 205 

GAI) for most of the systems. Few of them were maintained on the field until the harvest date 206 

(Table S1). The systems were placed sufficiently far from the field border so that no border 207 

effect could impact the signal. 208 

 209 

 210 

Fig. 1. The location of IoTA systems on production fields (orange stars) and experiment fields 211 

(red crosses), PAR measurements (black filled circles) and spectral diffuse fraction 212 

measurements (green filled circles) in 2019. Google Earth satellite were loaded from QGIS 213 

and they do not represent images during the measurements. 214 

 215 

2.2 Ground measurements 216 

2.2.1 IoTA systems 217 

The IoTA system, developed by the HIPHEN and Bosch companies, is an autonomous 218 

system equipped with a miniature multispectral spectrometer, an upward looking 219 
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hemispherical PAR sensor, a meteorological sensor, as well as a RGB camera (Fig. 2a) 220 

(Velumani et al., 2020).It is powered by a battery that can provide continuous power support 221 

of 4 months. The multi-band spectrometer (AS7263 from AMS) is characterized by six 222 

wavebands, centered in the red (610 nm, 680 nm), red-edge (730 nm, 760 nm) and near 223 

infrared (810 nm, 860 nm) domains, with a full-width at half-maximum of 20 nm (Fig. 2b). 224 

More details about the spectrometer can be found in the producer website 225 

(https://ams.com/as7263). 226 

The head of the IoTA was located 1.5 m above the ground, which roughly corresponded 227 

to a height of 0.5 m above canopy during the peak growth stage, (e.g., maximum height). It 228 

was oriented at a zenith angle of 45° from the vertical, with a      field of view to allow 229 

enough spatial sampling, and positioned so that the azimuth direction was perpendicular to the 230 

row in the field in order to maximize the amount of vegetation seen by the sensor (Baret et al., 231 

2010). The PAR sensor points vertically upwards to measure the downward flux radiation. 232 

Canopy reflected radiation and downwelling PAR were measured simultaneously every 15 233 

minutes during the whole campaign. The measurements were transferred automatically to a 234 

cloud storage system through a Global System for Mobile Communications (GSM) network.  235 

 236 

Fig. 2. (a) Illustration of an IoTA system installed in Gréoux (ID: FS-11, 43.797°N, 6.11°E, 237 

Table S1). The photo was taken at 12:37 on 11/12/2018. The head part inclined at 45° hosts 238 

the multi-band spectrometer and one RGB camera as described by Velumani et al., (2020) to 239 

monitor wheat phenology, in particular wheat heading. The cylinder box attached to the 240 

vertical pole was installed sensors to measure PAR, temperature and moisture. (b) Normalized 241 

spectral responsivity of each waveband of multispectral spectrometer. 242 

https://ams.com/as7263
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2.2.2 PAR diffuse fraction  243 

In this study, we used multi-year direct and diffuse PAR measurements acquired in 244 

meteorological weather stations located close to the experimental sites: Avignon (43.91 °N, 245 

4.88 °E) near Gréoux-les-Bains and Nîmes, and Ouzouer (47.92 °N, 1.53 °E) near Boigneville 246 

(Fig. 1). Measurements were continuously acquired every 15 minutes with a BF3 sunshine 247 

sensor (Delta-T Devices Ltd, 2002). After removing outliers (negative values and diffuse 248 

PAR larger than total PAR), we kept 89116 valid measurements performed between 2001 and 249 

2019 in the Avignon site and 10149 valid measurements performed in 2016 in the Ouzouer 250 

site. The PAR diffuse fraction was computed as the ratio of the diffuse PAR to the total PAR. 251 

2.3 Validation datasets 252 

2.3.1 Reference measurements of effective GAI, LCC and CCC 253 

Reference effective GAI measurements were collected using downward-looking RGB 254 

cameras (Table S1) inclined at 45° zenith angle at around 1.5 m above the top of canopy, 255 

facing perpendicularly to the row. To maintain the 45° zenith direction during the acquisition, 256 

the cameras were mounted on a vertical monopod equipped with a spirit level. Three to five 257 

photos were taken in the area surrounding each IoTA system, which was considered sufficient 258 

regarding the strong homogeneity of the sampled area. Although the segmentation algorithm 259 

is robust against illumination conditions (Madec et al., 2023; Serouart et al., 2022), all photos 260 

were taken between 10 am to 3 pm local time in order to reduce possible shadow impacts. 261 

GAI was then estimated after applying a semantic segmentation to the images in order to 262 

separate the green vegetation from the background and inverting the Poisson model that 263 

relates the gap fraction    in a direction    to GAI:  264 

           
           

       
                            (1) 265 

Where   is the view zenith angle,    is the average leaf inclination angle, and         is 266 

the mean projection of a unit foliage area. We used the same methodology as Baret et al. 267 

(2010) who took advantage of a view zenith direction at 57.5° to get a direct gap fraction-GAI 268 

relationship which is independent of the leaf inclination (Weiss et al., 2004).  However, for 269 

such high viewing angles, it is difficult to obtain accurate classification results for dense 270 

canopies (GAI > 3) due to some saturation effects which prevent from discriminating 271 

accurately the green material from the background. Therefore, a lower viewing angle of 45° 272 

was preferred as it eases the image segmentation and still allows assuming that the G-function 273 
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is almost constant for wheat. Indeed, although wheat cultivars may present a range of leaf 274 

inclination types between erectophile and planophile depending on the phenological stage, the 275 

overall green material inclination (e.g. culms) was demonstrated to be erectophile (from 70° 276 

to 80°), by Barillot et al. (2019). For this specific range, Fig. 3 shows that         can be 277 

assumed constant (G-slope = -0.0013).  278 

 279 

Fig. 3. (a): Variation of the mean projection of the unit foliage area (G-function) with the 280 

average leaf inclination (assuming an ellipsoidal leaf inclination distribution).  (b): Slope of 281 

the G-function for erectophile canopies (          ) as a function of the view zenith 282 

angle  . 283 

 284 

The semantic segmentation of the gap fraction images relies on a deep learning approach 285 

developed on wheat and described and evaluated by Serouart et al. (2022). This method was 286 

composed of two steps. A U-net model was first trained over a large dataset to separate 287 

vegetation from background. Then, a support vector machine was used to classify the 288 

vegetation masks into green and non-green components. The training dataset of each step is 289 

independent using wheat at different phenological stages in a variety of environments and 290 

under different illuminations. The gap fraction of each RGB image was calculated as the ratio 291 

of the number of non-green pixels to the total number of pixels in the image. The RGB 292 

images used to derive the GAI were cropped so that the original vertical field of view was 293 

restricted to 45° ± 5° to meet the constant-G assumption while ensuring enough spatial 294 

sampling while the original horizontal field of view was restricted to ± 20° to meet the IoTA 295 
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characteristics (examples were shown in Fig. S1). This allowed us to remove blurred objects 296 

at the border of image when the distance of the sensor to the vegetation is large. By 297 

considering the image cropping in this study, we finally computed the equivalent coefficient 298 

to derive GAI from the gap fraction (Eq. (3)), the latter being obtained from the segmented 299 

cropped image as the ratio between the number of background pixels and the cropped image 300 

size:  301 

      
    

       
                                         (2) 302 

For    between     and    , and view zenith angle   between     and    (camera 303 

inclination angle is     and we crop the images from the center to    ), Eq. (2) is 304 

reformulated as: 305 

 306 

      
 

  
       

    
     

  
  

  
  

         , where   
       

    
     

  

  

  

  
           (3) 307 

 308 

GAI of each image was computed and mean value was used in the validation. 309 

The leaf chlorophyll content was measured using the SPAD device (Minolta, 2009) with 310 

a minimum of 15 leaves randomly located at the top of the canopy per sample within the field 311 

of view of the IoTA during March 28 to June 18 in 2019. The SPAD measurement dates were 312 

different among fields, but generally every 10 to 20 days on key growth stages. These SPAD 313 

raw readings should be converted into content of chlorophyll (µg/cm
2
) using relationships 314 

with absolute LCC measured in laboratory. Since there was no absolute LCC measurement in 315 

this study, we proposed an ensemble method to compute the reference. First, we applied 316 

multiple equations in literatures (Table S2) to convert our SPAD readings to LCC. Then the 317 

median of all LCC from single SPAD reading was computed as reference to validate 318 

corresponding IoTA retrieval. The standard deviation of LCC from different equations was 319 

used as the uncertainty of the reference dataset. Only equations built with only wheat dataset 320 

or including wheat were selected. The total canopy chlorophyll content (g/m
2
) was then 321 

obtained by multiplying the GAI and the LCC that were measured within three days. 322 

2.3.2 Reference measurements of multispectral camera diffuse fraction 323 

One important step of the algorithm is to estimate spectral diffuse fraction from IoTA 324 

PAR measurements. We therefore used a multispectral sensor with band settings similar to 325 

multi-band spectrometer to validate the accuracy of spectral diffuse fraction estimations. A 326 

specific experiment was designed and conducted at the INRAE site of Toulouse (43.53 °N, 327 
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1.50 °E) from the 31
st
 July 2019 to 1

st
 August 2019 (Lopez-Lozano et al., 2019). That period 328 

corresponded to a changeable weather with various illumination conditions induced by 329 

moving clouds during the whole morning on both dates. Measurements were acquired with 330 

the AIRPHEN multispectral camera (https://www.hiphen-plant.com/solutions/airphen/) which 331 

has six synchronized multispectral bands centered at 450 nm, 530 nm, 570 nm, 675 nm, 730 332 

nm and 850 nm, with a full width at half maximum close to 10 nm (Li et al., 2021a), and thus 333 

present some similarities with the IoTA systems (Fig. 2).  More details about the experiment 334 

are presented in Supplementary Materials Part B (Fig. S2, Table S3). 335 

3 Methods 336 

Our approach is split in three steps (Fig. 4): 1) estimation of the PAR diffuse fraction; 2) 337 

the estimation of the spectral diffuse fraction in each IoTA band; and 3) the estimation of 338 

daily GAI, LCC and CCC variables. 339 

 340 

 341 

 342 

Fig. 4. Flowchart of retrieving daily GAI, LCC and CCC from IoTA measurements.  343 
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3.1 Step 1: Estimation of PAR diffuse fraction      344 

We first trained a neural network to directly estimate the PAR diffuse fraction using the 345 

ground total PAR (    ) measured by each IoTA without considering ancillary inputs. 346 

Similarly to Jacovides et al. (2010) who related global and diffuse PAR by fitting empirical 347 

functions, we used      as input and we complemented by the cosine of the sun zenith angle 348 

and the sun-Earth distance correction coefficient      at each acquisition date (Spitters et al., 349 

1986).      is derived as  350 

     
 

                              
                                      (4) 351 

where t is the Julian day corresponding to the acquisition date with reference of 01/01/1950. 352 

Indeed, adding      as input improves the accuracy of estimation.  353 

We used ground measurements of the instantaneous total and diffuse PAR acquired over 354 

multiple years described in Section 2.2.2 to generate the training database. The inputs 355 

included instantaneous total PAR,       and optical path defined as the cosine of sun zenith 356 

angle, and the output was the instantaneous diffuse PAR. The database has in total 84587 357 

cases, and it was divided into two parts: 69659 samples were randomly selected to train the 358 

neural network, and the remaining 14928 samples were used for overfitting control and 359 

evaluation of the theoretical performances.  360 

We found that a Back Propagation Artificial Neural Network (BP-ANN) made of one 361 

hidden layer of four neurons characterized by a tangent-sigmoid transfer function followed by 362 

a single linear transfer function output neuron provided the best results, e.g., no overfitting 363 

and best accuracy. Ten BP-ANN-DF were trained and the performance using the training 364 

dataset was shown in Fig. S3. The best one was selected based on the smallest root mean 365 

square error (RMSE) computed on the validation dataset. It was then applied to instantaneous 366 

PAR measured by each IoTA to estimate corresponding PAR diffuse fraction. 367 

3.2 Step 2: Estimation of the diffuse fraction in each band    368 

Step 2 consists in retrieving the diffuse fraction in each band  
 
 from the PAR diffuse 369 

fraction estimated in step 1 (section 3.1). Based on the study by Spitters et al. (1986), we first 370 

isolated fully cloudy conditions and the other conditions. When  
   

is greater than 0.9 (e.g. 371 

cloudy conditions),  
 
 is assumed to be equal to  

   
; otherwise, the diffuse fraction in each 372 

band was estimated by using a polynomial function calibrated using simulations of 6S 373 

atmospheric correction model (Vermote et al., 1997).  374 
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Using 6S (version v2.1), we simulated the variation of the diffuse fraction by considering 375 

a range of aerosol optical thicknesses (e.g., visibility ranging from 1 km to 40 km by steps of 376 

2 km). We assumed a continental aerosol model that fits with the atmospheric characteristics 377 

of our areas of interest. For each sun zenith angle ranging from 20° to 65° with a step of 5°, 378 

we simulated the direct and diffuse absolute irradiance over 400 – 900 nm and accounted for 379 

the spectral response function of each spectral band (e.g., of the IoTA or the AIRPHEN 380 

camera) to simulate the corresponding   . Similarly, direct and diffuse PAR and 381 

corresponding      were computed by integration over the 400 - 700 nm range. We then 382 

fitted a five-degree polynomial between      and    that we applied when      is lower than 383 

0.9 (Table S3). 384 

3.3 Step 3: Estimation of daily GAI, LCC and CCC 385 

3.3.1 Generation of PROSAIL training database 386 

Similarly to Li et al., (2015) and Weiss et al., (2020), a training database was simulated 387 

thanks to the PROSAIL radiative transfer model that couples PROSPECT (Jacquemoud and 388 

Baret, 1990) to simulate the leaf optical properties and SAIL (Verhoef, 1985, 1984) to 389 

generate top of canopy reflectance. Table 1 lists the range and distribution law for all 390 

variables of PROSAIL model. The soil reflectance data was simulated using five typical soil 391 

reflectance spectra multiplied by a brightness coefficient allowing to increase the diversity in 392 

actual soil properties (Weiss et al., 2020). This resulted in a total of 41472 combinations of 393 

canopy structures, leaf biophysical properties and backgrounds. For every combination, the 394 

hemispherical-directional reflectance                and bi-directional reflectance 395 

                 at waveband   (Schaepman-Strub et al., 2006) were computed for any sun-396 

sensor geometry, defined by the sun zenith angle   , the view zenith angle    and the relative 397 

sun-sensor azimuth angle  . To consider the multiplicative or additive uncertainties of 398 

measured reflectance and get a more realistic canopy reflectance simulated value, an 399 

uncertainty model was used to describe the additive and multiplicative uncertainties based on 400 

a white Gaussian noise as previous studies (Li et al., 2015; Weiss et al., 2020). 401 

To increase the realism of the distribution of  
 
, we relied on the IoTA measurements of 402 

the PAR diffuse fraction and sun positions to well sample the actual conditions of 403 

illuminations. From all available instantaneous real measurements, we totally extracted 2080 404 

daily combinations and each combination includes several instantaneous  
 
, corresponding 405 

sun zenith angle and relative azimuth angles during one day. Since the sampling interval of 406 
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acquisition is 15 minutes, each daily combination has at least 20 sets of instantaneous  
 
, 407 

corresponding sun zenith angle and relative azimuth angles, after removing outliers (e.g., 408 

negative  
 
, or  

 
  , or sun zenith angles larger than 60°). The 2080 combinations were 409 

repeated to a total size of 41472, randomly sorted. To note, the data in each combination don’t 410 

change. Then, they were combined with each of 41472 cases generated with the other 411 

PROSAIL inputs. Finally, each simulation case is composed of variables for canopy 412 

structures, leaf biophysical properties, backgrounds and a set of instantaneous  
 

, 413 

corresponding sun zenith angle and relative azimuth angles.  414 

 415 

Table 1. List of variables and corresponding distribution laws to run the PROSAIL 416 

simulations. Distribution laws are described by their mean and standard deviation (Std). ALA 417 

= Average Leaf Angle inclination; HOT = Hot-spot parameter; N = leaf structure parameter; 418 

Cdm = dry matter content; Cw_Rel = relative leaf water content; Cbp = brown pigment 419 

concentration; Bs = soil brightness. 420 

 421 

 Variable Minimum Maximum Law Mean Std 

Canopy 

GAI 0.0 7.0 Gauss 2.0 2.0 

ALA (°) 60 80 Gauss 70 20 

HOT 0.1 0.5 Gauss 0.2 0.5 

Leaf 

N 1.20 1.80 Gauss 1.50 0.30 

Cab (µg.m
−2

) 20 80 Gauss 40 10 

Cdm (g.m
−2

) 0.003 0.011 Gauss 0.005 0.005 

Cw_Rel 0.60 0.85 Uniform 0.75 0.08 

Cbp 0.00 2.00 Gauss 0.00 0.30 

Soil Bs 0.50 3.50 Gauss 1.20 2.00 

 422 

3.3.2 Setting up the neural network (BP-ANN-V) for GAI, CCC and LCC estimation 423 

Because practical considerations to make the use of reference panels are not available 424 

and the incoming irradiance is unknown, we cannot perform absolute calibration of the IoTA 425 

spectrometer to derive reflectance values as simulated by PROSAIL. Therefore, we used the 426 

ratio between the signal in a given band  to the mean value over all bands according to Verger 427 

et al. (2014):   428 
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                                            (5) 429 

where             is either the irradiance             measured by the IoTA spectrometer 430 

at waveband  , at sun zenith angle   , view zenith angle    and relative sun-sensor azimuth 431 

angle  , or the reflectance             simulated by PROSAIL.                             represents the 432 

relative correspondence.  433 

Due to operational constraints and computational costs, the inversion of the PROSAIL 434 

model is performed by training a machine learning algorithm as it is currently done in the 435 

remote sensing community (Verrelst et al., 2012). The machine learning algorithm must make 436 

use of the IoTA signal and sun geometry as inputs and the variable of interest (GAI, LCC and 437 

CCC) as output. Assuming that these variables are constant during a whole day, the whole set 438 

of 15 min acquisitions composed of six spectral bands and three angles varying from day to 439 

day, can be exploited for a single retrieval. This makes a huge set of inputs with strong 440 

correlations, suggesting to apply dimensionality reduction (May et al., 2011). Therefore, 441 

similarly to Weiss and Baret (1999), we used kernel driven BRDF models (Roujean et al., 442 

1992) to reduce the dimensionality of the directional information. However, conversely to 443 

Weiss and Baret (1999) that was performed on satellite data, we needed to account for the 444 

contribution of the direct and diffuse components and used a modified version of kernel 445 

BRDF models (Dong et al., 2018). 446 

The modeled            , denoted                , is expressed as the sum of the 447 

diffuse and the direct contributions: 448 

                                                                        (6) 449 

where            and                  are, respectively, the canopy hemispherical-450 

directional component and canopy bi-directional component (Schaepman-Strub et al., 2006), 451 

and        is the diffuse fraction at wavelength   and sun zenith angle   . According to Dong 452 

et al. (2018),                 in Eq. (6) can be simulated from a revised kernel-driven 453 

model : 454 

                                                                                  (7) 455 

where           and           are diffuse-light correction (DLC) versions of original kernels 456 

of        and        present in Roujean et al. (1992). The DLC kernels are the sum of original 457 

kernels and their integrals over the illumination hemisphere weighted by       (Dong et al., 458 

2018).        and        are, respectively, the coefficients of the           and           459 

(Roujean et al., 1992).  460 
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For either PROSAIL reflectance simulations or IoTA measurements, 18 kernel 461 

coefficients (three kernels times six bands) were estimated from a series of acquisitions or 462 

simulations by minimizing the following cost function: 463 

                             
                                                                      

  
          

     (8) 464 

where                                      is the relative values obtained by combining Eq. 5 and Eq. 7. The 465 

cost function   was minimized using Sequential Least SQuares Programming algorithm 466 

(Kraft, 1988). 467 

In the case of PROSAIL reflectance simulations, kernel coefficients were estimated for 468 

each case of the 41472 simulations that corresponds to a given set of acquisitions. In the case 469 

of IoTA, only instantaneous measurements with sun zenith angle less than 60°,      is 470 

positive and lower than 1 and measurements are positive were treated as valid and used in the 471 

estimation of kernel coefficients. Since the optimization algorithm requires at least 18 472 

measurements for the estimation of 18 coefficients (3 kernel coefficients × 6 wavelengths) at 473 

the same time, IoTA daily continuous observations acquired during a moving window of 1, 3, 474 

5 or 7 days were used, assuming that the crop variables remain stable during this short period. 475 

The sensitivity of kernel parameter estimation to the size of moving window was evaluated by 476 

computing the RMSE between simulations from kernel parameters and real IoTA 477 

measurements.  478 

3.3.3 Training and applying the BP-ANN-V  479 

Following Weiss and Baret (1999) and Li et al. (2015), we trained one BP-ANN-V per 480 

each variable. The training database was divided into two parts: two thirds of the simulations 481 

were randomly selected to train the neural network and the remaining one third was used for 482 

validation. The inputs were the 18 kernel parameters, and the output was either GAI, LCC or 483 

CCC. Each neural network was made of one input layer, one hidden layer composed of 5 484 

neurons with tangent sigmoid transfer functions and one output layer with a linear transfer 485 

function. For each output variable, ten networks were trained with different initial guess of the 486 

weight.  They were applied to kernel parameters derived from diurnal IoTA measurements 487 

and the median of inversions from ten networks was computed as the final result, which 488 

allows better generalization capacities.  489 

We kept only field measurements for which the BP-ANN-V estimates are within a given 490 

range described in (Table 2) and that the kernel parameters obtained from the IoTA systems 491 

fall within the range of those obtained from the PROSAIL simulations.  492 
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Table 2. The minimum, maximum values and tolerance for each output product. 493 

 Unit Minimum Maximum 

GAI m²/m² 0 7 

LCC µg/cm² 0 80 

CCC g/m² 0 5.6 

3.4 Evaluation procedures 494 

Model accuracy was assessed thanks to different statistics: coefficient of determination 495 

(R
2
), bias and root mean squared error (RMSE), Relative bias which is the ratio between bias 496 

and average of reference, and relative RMSE which is the ratio of RMSE to average of 497 

references are also computed to provide further evaluation information. 498 

 499 

4 Results 500 

4.1 Diffuse fraction from incoming PAR measurements 501 

4.1.1 PAR diffuse fraction  502 

The results presented in Fig. 5 show that, over our experimental sites, the PAR diffuse 503 

fraction can be accurately estimated from the total PAR, sun zenith angle and a correction 504 

coefficient accounting for variations in sun-Earth distance, using the BP-ANN-DF neural 505 

network (R
2
 = 0.86, RMSE = 0.11). Our dataset mainly includes low diffuse fraction values 506 

(lower than 0.5), mostly corresponding to the Avignon site in Southern France characterized 507 

by frequent sunny illumination conditions and small aerosol concentration values, and very 508 

high diffuse fraction values (greater than 0.9), mostly corresponding to the Ouzouer site in 509 

Northern France which presents frequent overcast illumination conditions. Additional 510 

medium PAR diffuse fraction measurements might thus be required to ensure a similar 511 

accuracy over the intermediate range of values. 512 
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 513 

Fig. 5. Performances of PAR diffuse fraction estimation from neural networks (BP-ANN-DF) 514 

over the validation dataset (Avignon-Ouzouer measurements). Colors correspond to the 515 

number of data available for a given  
   

 value. 516 

 517 

4.1.2 Spectral diffuse fraction 518 

The relationship between     and    was evaluated both using 6S model simulations in 519 

IoTA and AIRPHEN spectral bands, and using AIRPHEN camera ground measurements. 520 

Results from the 6S model simulations show that the    is related to      through a 521 

polynomial relationship for IoTA (Fig. 6a) and the AIRPHEN camera (Fig. 6b). Under high to 522 

medium visibility conditions (e.g.,         ), the PAR diffuse fraction is systematically 523 

higher than    for the red to NIR domain and the difference increases with the wavelength due 524 

to the decreasing influence of aerosol effects. Accordingly, the PAR diffuse fraction is lower 525 

than         and is close to that at in the green wavelengths (530 nm and 570 nm). Under 526 

very low visibility sky conditions (e.g.,         ),   is almost equal to the PAR diffuse 527 

fraction for all the bands. We evaluated the fitted polynomial functions derived from 6S 528 

simulations using ground measurements acquired with the AIRPHEN camera (Fig. 6c). The 529 

spectral diffuse fractions were estimated with R
2
 = 0.71, RMSE = 0.08 and relative RMSE = 530 

29.57% (Fig. 6c) for all the six bands together, using the polynomial relationships presented 531 

in Table S3. The validation performance in each band was shown in Table 3. In general, all 532 

bands have good correlations with references (R
2
 ≥ 0.83 and RMSE ≤ 0.11). 533 

 534 
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 535 

Fig. 6. Comparison between PAR diffuse fraction (    ) and spectral diffuse fraction (  ) 536 

obtained from 6S model simulations for (a) the IoTA spectral bands and (b) the AIRPHEN 537 

camera bands. Different colors represent the visibility input to 6S model, while gray lines 538 

show the fitted polynomial relationships. (c) Spectral diffuse fractions estimated from 539 

polynomial relationships versus the ones measured by the AIRPHEN camera using PAR 540 

diffuse fraction of 0.9 as the threshold value to discriminate the cloudy conditions. R
2
, RMSE 541 

and RRMSE were computed over all bands. RRMSE is relative RMSE calculated as the ratio 542 

between RMSE and average value. 543 

 544 

Table 3. Statistics of comparison between simulated    and measured    of each wavelength 545 

of AIRPHEN camera. RRMSE is relative RMSE calculated as the ratio between RMSE and 546 

average of references.  547 

 450 nm 530 nm 570 nm 675 nm 730 nm 850 nm 

R
2
 0.99 0.83 0.97 0.96 0.95 0.97 

RMSE 0.08 0.11 0.08 0.08 0.06 0.08 

RRMSE (%) 19.63 33.73 27.87 38.52 28.64 31.70 

 548 

 549 

4.2 Suitability of kernel BRDF model parameters to be used as inputs to BP-ANN-V  550 

We first retrieved the kernel BRDF model parameters in each spectral band and then 551 

reconstructed the corresponding relative reflectances that were compared to the initial relative 552 

reflectances simulated with PROSAIL. Results were very consistent with R
2
 = 0.99 and an 553 

overall relative RMSE = 0.32% over all the wavelengths (Fig. S6). For each individual 554 

wavelength, a very good correspondence was also observed (Table 4). The performance was 555 

better on red-edge and NIR bands (relative RMSE < 1%), compared to the red bands (relative 556 
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RMSE > 1%). This indicates the kernel parameters can reconstructed the reflectance from 557 

PROSAIL model, thus can replace the reflectance from PROSAIL model in the inversion of 558 

biophysical variables. It also implies the good performance of the optimization methods 559 

applied on kernel-driven models. 560 

 561 

Table 4. Statistics between relative reflectances (  ) obtained from PROSAIL simulations and 562 

reconstructed after BRDF kernel model inversion for each IoTA spectral band. 563 

 610 nm 680 nm 730 nm 760 nm 810 nm 860 nm 

R
2
 0.999 0.999 0.999 0.999 0.999 0.999 

RMSE 0.004 0.005 0.003 0.003 0.004 0.005 

RRMSE (%) 1.87 1.11 0.35 0.21 0.23 0.32 

 564 

The same exercise was applied to the IoTA measurements: we estimated the kernel 565 

BRDF model parameters using each set of measurements determined by the size of the 566 

moving window used (1, 3, 5, or 7 days). Like the regression in Fig. S6, the kernel model 567 

simulations also correspond very well with the measurements from IoTA relative 568 

measurements (R
2
 > 0.98). The regression figure was therefore not shown for the sake of 569 

brevity. In order to further evaluate the performance of the optimization algorithm, we 570 

calculated the RMSE and used it to set a strict criterion to remove some outliers and select the 571 

best moving window size. The RMSE between kernel model simulated relative values and 572 

IoTA relative measurements over all bands ranges from 0 to 0.17 depending on the window 573 

size (Fig. 7). The median RMSE (0.009 – 0.014 in Fig. S7) was obviously larger than the 574 

0.005 RMSE from PROSAIL model simulations because of the noise associated to the ground 575 

measurements. Although one white noise was added in the PROSAIL absolute reflectance, 576 

there are no quantitative results demonstrating the propagated uncertainties that includes all 577 

potential noises in the field, e.g., the diffuse fraction estimation, spectrometer intra-calibration 578 

among bands and noise co-distributions between bands.  579 

The choice of the size of the moving windows is a compromise between the number of 580 

acquisitions used to retrieve the BRDF kernel parameters and the length of the window during 581 

which the canopy biophysical variable is assumed constant. When the window size increases 582 

from 1-day to 7-day, the number of acquisitions that could be used in the estimations almost 583 

doubles (Fig. 7a). The performance of kernel BRDF model inversion also varies with the 584 

number of acquisitions (Fig. 7b). When using a single day of acquisition, the RMSE 585 

fluctuates with a median RMSE of 0.014 (Fig. S7). Adding more measurements as inputs to 586 



22 
 

the optimization algorithm is helpful to find the local minimum.  These results are improved 587 

when increasing the length of the moving window with very similar RMSE of 0.009 between 588 

3-, 5- or 7-day window size. We therefore selected the 3-day window as the best compromise 589 

between accuracy and the assumption that GAI, CCC and LCC remain constant during that 590 

period. 591 

 592 

Fig. 7. (a) Number of IoTA acquisitions for each moving window size of 1, 3, 5, and 7 days; 593 

(b) Relationship between number of acquisitions with the RMSE calculated between the 594 

measured relative signal and kernel model reconstructed relative signal using moving window 595 

size of 1, 3, 5, and 7 days for the IoTA systems during the experiment campaign. 596 

4.3 Validation against ground measurements 597 

The retrieved biophysical variables were compared with the corresponding ground 598 

measurements at the same dates. The GAI estimated from IoTA systems has a very good 599 

consistency with the field data taken by RGB cameras (R
2
 = 0.86, RMSE = 0.54, relative 600 

RMSE = 26.95%, Fig. 8a).  601 

The LCC retrieval from IoTA has very similar correspondences with reference LCC 602 

converted using various equations (R
2
 = 0.51 – 0.53) but quite different scattering and biases 603 

(RMSE = 5.59 µg/cm
2
 – 18.94 µg/cm

2
, relative RMSE = 12.08% - 65.51%) (Fig. S8). The 604 

best correlation and minimum RMSE was obtained using calibration equation No. 4 and 12, 605 

while the largest RMSE was found using equation No. 6. Using proposed ensemble method 606 

which took the median of all equations as the reference, IoTA LCC exhibits a good 607 

correlation but a systematic overestimation (R
2
 = 0.52, RMSE = 12.06 µg/cm

2
, relative RMSE 608 

= 33.34%) (Fig. 8b). The uncertainty of reference LCC ranges from 4.21 µg/cm
2 

to 11.78 609 

µg/cm
2
, and the overall uncertainty is 7.44 µg/cm

2
. 610 
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Conversely to LCC, the chlorophyll content at canopy level presents a good 611 

correspondence between ground reference datasets and estimations from IoTA systems (R
2
 = 612 

0.93, RMSE = 0.25 g/m
2
, relative RMSE = 26.12%, Fig. 8c). Since the RGB images and 613 

SPAD measurements were taken on different dates and sites, only few measurements can be 614 

used to calculate the ground CCC values. In this study, we used the SPAD LCC and RGB 615 

GAI values measured within 3 days to compute CCC, assuming wheat status was stable 616 

during this period. This assumption is consistent with 3-day moving in the proposed algorithm 617 

(section 3.3).  618 

 619 

 620 

Fig. 8. Direct validation of (a) GAI, (b) leaf chlorophyll content and (c) canopy chlorophyll 621 

content derived from IoTA with the ground validation dataset. The dark line is the 1:1 line. In 622 

(b), error bars represent the standard deviation of LCC converted from all equations shown in 623 

Table S2. In (c), ground CCC was calculated from chlorophyll meter derived LCC and RGB 624 

camera derived GAI within 3 days assuming wheat status was stable during this short period. 625 

 626 

When calculating relative values of IoTA measurements or PROSAIL simulations ( 627 

                           ), we used the average of all bands as denominator (Eq. (4)), as Verger et al. 628 

(2014) using multispectral camera onboard a drone. However, Jay et al. (2019) used 850 nm 629 

band of AIRPHEN camera as the denominator to compute relative values. Regarding to IoTA 630 

systems, we compared the inverted GAI, LCC and CCC from different relative values using 631 

average or single band as reference with ground measurements (Table 5). Results show that 632 

the performances are similar for GAI, R
2
 ranging from 0.83 to 0.86. The differences are 633 

slightly larger for LCC, that using 810 nm and 860 nm as reference has the lowest 634 

correspondence (R
2
 is around 0.4 to 0.42). For CCC, using average of all bands or 610 nm or 635 

680 nm has similar better accuracy. Overall, using average of all bands as reference has best 636 

performance for the three variables in this study. 637 
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Table 5. Comparison of direct validation accuracy of GAI, LCC and CCC, estimated from 638 

relative measurements using reference of mean of all bands and each single band. 639 

Reference to compute 

relative values (nm) 

GAI  LCC  CCC 

R
2
 RMSE  R

2
 RMSE  R

2
 RMSE 

Average 0.86 0.51  0.52 8.44  0.93 0.25 

610 0.85 0.56  0.47 9.52  0.91 0.26 

680 0.83 0.58  0.47 8.74  0.91 0.26 

730 0.83 0.56  0.48 9.02  0.79 0.32 

760 0.85 0.55  0.52 9.72  0.8 0.31 

810 0.83 0.55  0.4 9.73  0.8 0.33 

860 0.83 0.59  0.42 10.53  0.78 0.34 

 640 

4.4 Continuous monitoring of GAI, LCC and CCC with IoTA systems 641 

Temporal profiles of GAI, LCC and CCC over four sample sites are shown in Fig. 9. 642 

Results show that the profiles capture well the expected seasonal variation of each variable. 643 

Differences of GAI trends are observed among sites on the maximum values and the peak 644 

growth period, for example, maximum GAI around 5 of AC-2 arrives on mid of May, while 645 

the GAI of Fourques-1 and FS-3 sites increases from the beginning of April to a peak value of 646 

4 in beginning of May. These differences among sites are mainly due to wheat variety, 647 

climate, management practices and available measurement periods (Table S1). LCC also 648 

presents seasonal variations although the data intervals are narrow, ranging from 40 to 80 649 

µg/cm
2 

over four sample sites. CCC which is the combination of GAI and LCC, presents 650 

similar seasonal trends as GAI. Some fluctuations can be found over the three variables and 651 

four sample sites, and the other sites which are not shown for brevity. They mainly result 652 

from the availability of measurements during a day and inevitable error propagation of all 653 

processing procedures. This is particularly obvious for CCC, because fluctuations of GAI and 654 

LCC will be amplified in CCC after multiplication. 655 

 656 
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 657 

Fig. 9. Seasonal variations of GAI, LCC and CCC estimations on four selected IoTA systems, 658 

including AC-2 from Muizon, 41_1 DS from Boigneville, Fourques-1 from Nimes, FS-3 from 659 

Gréoux, C-B3 from Chalons and SI-3 FS52 from St-Hilaire. Red circles represent ground 660 

measurements. The measurements of IoTA didn’t cover the whole growth circle as shown in 661 

Table S1. 662 

5 Discussion 663 

5.1 Estimation of diffuse fraction in each spectral band 664 

Near-surface sensor measurements are affected by varying illumination conditions in 665 

natural environments. Indeed, the targeted surface receives the combination of both the direct 666 

and diffuse components of the solar irradiance, which impacts the signal measured by the 667 

sensor (Schaepman-Strub et al., 2006). Diffuse solar irradiance has important impacts on 668 

canopy photosynthesis in the context of global change (Durand et al., 2021). Accurate 669 

assessment of diffuse irradiance or diffuse fraction is essential for simulating its contribution 670 

to canopy. Previous studies have demonstrated that diffuse irradiance in each spectral band is 671 

different because the main contributors driving the proportion of diffuse radiation (e.g., 672 

clouds and aerosol) are wavelength-dependent (Kirchstetter et al., 2004). And the spectral 673 

diffuse fraction is also required by canopy radiative transfer models, such as PROSAIL. It is 674 

therefore mandatory to evaluate the diffuse fraction of irradiance during the acquisition. 675 

The most accurate method to measure spectral diffuse irradiance is to measure normal 676 

direct irradiance and global irradiance, and then calculate diffuse irradiance or diffuse fraction 677 

from the measurements (López et al., 2004). The global irradiance is widely measured, yet the 678 

pyrheliometer instrument to measure direct normal irradiance is very expensive. Many 679 

researchers thus used alternate methods, such as pyranometer with a shadowband, or a 680 

rotating shadowband and a tracking solar disk, to measure spectral diffuse irradiance by 681 
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blocking direct irradiance from total irradiance (de Simón-Martín et al., 2015; Harrison et al., 682 

1999; Michalsky and Kiedron, 2022). Although the feasibility of these instruments or models 683 

have been greatly improved, their cost and use do not correspond to the constraints of the 684 

IoTA systems (affordable and installed without requiring RS expertise) and thus not 685 

applicable in this study. 686 

Alternatively, Spitters et al. (1986) indicated that the diffuse fraction in each spectral 687 

band can be approximated from the PAR diffuse fraction. However, although the total PAR is 688 

widely monitored in meteorological ground stations, diffuse PAR is not routinely measured. 689 

Diffuse PAR is usually obtained through various semi-empirical relationships, either with the 690 

diffuse fraction of the global incoming radiation (Ezhova et al., 2018; Gu et al., 2002; Spitters 691 

et al., 1986), or with the ratio of total PAR to extraterrestrial PAR (Hassika and Berbigier, 692 

1998; Jacovides et al., 2010, 2007). Nevertheless, the calibration of these semi-empirical 693 

functions are site dependent and show poor extrapolation capacities (Gueymard and Ruiz-694 

Arias, 2016; Jacovides et al., 2007; Spitters et al., 1986; Yang and Gueymard, 2020). In this 695 

study, we propose to use a fully empirical, data driven approach that does not require a priori 696 

knowledge of the relationship as it consists in training some machine learning algorithm (e.g., 697 

neural networks). We trained it over a limited number of sites in this study, but its 698 

applicability could be extended by adding ancillary data as inputs (meteorology, site location), 699 

and collecting and gathering data under different illumination conditions and locations to 700 

improve the representativeness and robustness of this method. 701 

Thanks to atmospheric radiative transfer model, e.g., 6S simulations, we showed that the 702 

spectral diffuse fraction present polynomial relationships with PAR diffuse fraction through 703 

6S model simulations for a variety of low to high visibility conditions (Fig. 6). They are in 704 

line with those reported in Spitters et al. (1986), who showed that PAR diffuse fraction can be 705 

almost twice as great as that in the red part since the degree of aerosol scattering decreases as 706 

the wavelength increases. This method was evaluated by setting up a simple experiment using 707 

a multispectral camera. The spectral diffuse fraction in the validation experiments was 708 

approximated by the ratio of the total radiance over small shaded and illuminated areas of the 709 

grey carpet. Results might be affected by the distance between two measurements (around 710 

500 m), a small dyssynchronization between the acquisition systems, or differences in 711 

integration time, since the illumination conditions were highly variable. Note also, that 712 

although the two areas were close and the radiance was extracted from the same image, the 713 

grey carpet is not perfectly homogeneous and flat as compared to a spectralon, which also 714 

might impact the results (Eq. S1). Promising results were obtained (Fig. 6c, Table 3) even if 715 
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some scattering occurs especially in the blue and green bands that are the most affected by 716 

aerosols. Nevertheless, these two bands do not correspond to IoTA specifications. Further 717 

experiments specifically designed for such objective should be conducted, similarly to the one 718 

developed by Michalsky and Kiedron (2022) for example. Another uncertainty might result 719 

from the 6S atmospheric correction model which does not incorporate the cloud component. 720 

To solve this, we isolated fully cloudy conditions and other conditions by setting a threshold 721 

on PAR diffuse fraction, i.e., > 0.9 represents cloudy conditions. Spectral diffuse fraction 722 

equals to PAR diffuse fraction under cloudy conditions, otherwise, they were simulated by 723 

setting large range of visibility in 6S model. More evaluations are necessary to study this 724 

isolation in multiple locations and illumination conditions.  725 

5.2 Relative values of spectrometer measurements as inputs to inversion 726 

This study takes advantage of previous approaches applied to satellite observation to 727 

develop an original close-range sensing method by exploiting the angular and spectral 728 

variations of the signal for GAI, LCC and CCC retrieval through kernel-driven model and 729 

PROSAIL radiative transfer model (Weiss and Baret, 1999). Due to the difficulties of 730 

absolute radiometric calibration of continuous multi-band spectrometer measurements from 731 

near-surface systems under varying illumination conditions, we used an algorithm that relies 732 

on relative values. Raw measurements from multi-band spectrometers were converted into 733 

irradiance and used to calculate the relative values. The relative values present seasonal 734 

variation of wheat during the whole growth stage and diurnal variations under different 735 

illumination conditions (Fig. S4 and Fig. S5 in Supplementary Materials Part D). Accordingly, 736 

the kernel-driven and PROSAIL model simulations were also converted into relative values to 737 

keep the consistency between simulations and measurements. Relative values were already 738 

applied to images acquired by multispectral cameras on board UAV (Jay et al., 2019; Verger 739 

et al., 2014). However, in those studies, it was designed to remove possible effects of the 740 

spatial variability of the incoming light (especially in case of clouds passing during the flight) 741 

between the reference panel used for the calibration and the image acquired by the UAV. We 742 

applied here the same principle and extended it successfully for the first time to continuous 743 

spectrometer measurements without any calibration reference measurements. The relative 744 

values can be calculated in different ways, using average of all bands as denominator (Verger 745 

et al., 2014) or using one single band as denominator (Jay et al., 2019). Our results showed 746 

that the former present overall better performance when comparing with ground 747 

measurements for GAI, LCC and CCC. This might be because the average values neutralize 748 
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the uncertainties among bands and thus improve the inversion accuracy. This could be further 749 

checked by setting up experiments based on calibrated reflectance measurements under 750 

different illumination conditions.  751 

Conversely to traditional ground measurements methods based on the gap fraction theory, 752 

we were able to exploit both the spectral and the angular variations of the signal with the sun 753 

positions thanks to continuous acquisitions during the day. These multi-spectral and multi-754 

angle measurements are an efficient way to constrain the ill-posed inversion problem (Baret 755 

and Buis, 2008) and improve the retrieval accuracy of GAI, LCC and CCC as already 756 

demonstrated in UAV or satellite experiment contexts (Deng et al., 2006; Dorigo, 2012; Duan 757 

et al., 2014; Roosjen et al., 2018; Roujean and Lacaze, 2002). Dorigo (2012), Duan et al. 758 

(2014) and Roosjen et al. (2018) applied Look-up tables in the inversion, while Deng et al. 759 

(2006) and Roujean and Lacaze (2002) normalized multi-angle reflectance into specific view 760 

angles using kernel-driven models and estimated biophysical variable using normalized 761 

values. However, simple application of above methods is not feasible in the continuous 762 

spectrometer measurements. In this study, some invalid measurements (e.g., sun zenith angle 763 

larger than 60° or negative measurements) were removed before the inversion and the sun 764 

position vary every day, resulting in different number of valid measurements and 765 

corresponding geometry per day. This will increase the dimension of training database for 766 

look-up table and impact the efficiency in the inversion. Alternatively, we combined the 767 

kernel-driven model and PROSAIL model and estimated biophysical variables from an BP-768 

ANN algorithm. BP-ANN inversion technique has proven to be successful on an operational 769 

basis thanks to its accuracy and efficiency (Verrelst et al., 2015). A fixed number of inputs is 770 

required to use BP-ANN. Nevertheless, the number of valid measurements from multi-band 771 

spectrometer during a day varies, putting obstacles on the use of BP-ANN. A kernel-driven 772 

model (Roujean et al., 1992) was thus introduced to reduce the dimension in training and 773 

inversion. Kernel parameters of each band were calculated from diurnal measurements, 774 

leading to 18 kernel parameters for six bands (three per band) in total. These kernel 775 

parameters were used as inputs of BP-ANN to invert daily GAI, LCC and CCC. The quite 776 

good estimation accuracy of canopy biophysical variables reveals the feasibility of this 777 

method.  778 

At least 18 measurements are required to compute daily BRDF kernel parameters (6 779 

bands × 3 kernels) using optimization algorithms. In fact, more than 90% of days satisfy this 780 

requirement because the IoTA measurements were taken every 15 minutes. However, the GAI 781 

estimation using data from one day measurement may present some shaky profiles as shown 782 



29 
 

in Fig. 10. A moving-window strategy was therefore applied, thus filling gaps and minimizing 783 

the impact of outliers on the inversion process. After investigating the optimal window size, 784 

we decided to use 3 days moving window to capture the rapid changes of crops while keeping 785 

good accuracy of kernel parameter estimation. This is in agreement with Hufkens et al. (2019) 786 

who kept the sites that have up to 2.9 images per week during the peak of growing seasonal. 787 

As a matter for fact, in the fast growing stages (e.g., tillering and stem extension) and ripening 788 

stages (Magney et al., 2016), the assumption that wheat status is stable in 3 days remains 789 

reasonable but  not acceptable for 5 or 7 days. Even during the heading period when the wheat 790 

NDVI changes slowly, Velumani et al. (2020) found that there are around 3 days from the 791 

emergence of the spikes from the stem to the end of heading. 792 

5.3 Accuracy of daily GAI, LCC and CCC estimations  793 

The good accuracy of GAI, LCC and CCC demonstrated the feasibility of this method 794 

despite the absence of absolute radiometric calibration of the multi-band spectrometer. GAI 795 

was well estimated with acceptable RMSE and relative RMSE, consistent with previous 796 

studies using close-range monitoring systems (Chen et al., 2022; Kim et al., 2019; Rogers et 797 

al., 2021). For leaf chlorophyll content of wheat, similar results by PROSAIL inversion based 798 

on close-range measurements were also reported in other studies. The RMSE obtained in this 799 

study (15.49 µg/cm
2
) is lower than that reported by Botha et al. (2010) (15.61 – 23.31 800 

µg/cm
2
) that was estimated by hyperspectral reflectance over wheat canopy in different 801 

stages. Using a field goniometer multi-angle hyperspectral reflectance, Lunagaria and Patel 802 

(2019) obtained a RMSE of 15.62 µg/cm
2
 over wheat based on all angles and reached a lower 803 

RMSE of 10.5 µg/cm
2 

when reducing the angular sampling around the hotspot direction. 804 

Other studies have shown better performances on LCC estimation by calibrating relationships 805 

with vegetation indices, like for example Li et al., (2022) (RMSE of 6.22 – 6.87 µg/cm
2
) 806 

using soil-removed semi-empirical model or Jay et al. (2019) 
 
(RMSE less than 5 µg/cm

2
) 807 

who computed vegetation indices only on pixels corresponding to vegetation elements from 808 

hyperspectral images acquired by a drone. However, these empirical relationships may not be 809 

transferable to other contexts (wheat cultivars, soil background, acquisition conditions). The 810 

systematic bias of IoTA LCC is mainly resulted from the reference LCC which is discussed 811 

below. Note that CCC is less affected by calibration as it is an integrated value at the canopy 812 

level. Our results are similar to Jay et al. (2017b) who also obtained better results of CCC 813 

estimation (R
2
 = 0.76) than LCC (R

2
 = 0.26) over sugarbeet from both radiative transfer 814 

models inversion and empirical relationships with vegetation indices. Conversely to 815 
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vegetation indices, our method does not require absolute calibration of the signal or ground 816 

measurements to fit an empirical relationship. 817 

Although the overall accuracy of GAI, LCC and CCC is acceptable and comparable with 818 

previous studies, uncertainties still exist and influence the validation results. GAI was 819 

retrieved from the inversion of the PROSAIL 1-D radiative transfer model (Jacquemoud et 820 

al., 2009; Verrelst et al., 2019; Weiss et al., 2002), which does not consider either the 821 

vegetation clumping or row effect at early wheat stages. Therefore, the proposed approach 822 

allows to assess the effective value GAI (Yan et al., 2019), which is consistent with our 823 

reference effective GAI calculated from RGB gap fraction. Indeed, Jiang et al., (2022) 824 

showed that for wheat and maize, effective GAI is better estimated from reflectance 825 

measurements as compared to the true GAI even when considering the clumping effect 826 

through the use of a 3D radiative transfer model. They also showed that, even with a 1D-RTM 827 

model inversion, effective GAI is better estimated than effective LAI for non-reproductive 828 

stages, which was the case of this study. Note also that effective GAI is better suited than true 829 

LAI to describe the light interception within the canopy, which is a key component of crop 830 

growth models. Considering LCC, calibration issues may impact the actual location of the 831 

inflection point in the red-edge domain which is very sensitive to LCC content (Gitelson et 832 

al., 1996). More efforts are required in the future to deeply study the influences of radiometric 833 

calibration on LCC estimations using data at canopy level. The early version PROSPECT 834 

model (Jacquemoud and Baret, 1990) was used in this study, while several improved 835 

PROSPECT models were proposed, such as PROSPECT-D (Féret et al., 2017) and FASPECT 836 

(Jiang et al., 2021) which have been proved to have better LCC retrieval accuracy (Berger et 837 

al., 2018; Jiang et al., 2021; Li et al., 2020). Further, the range of input parameters for 838 

generating the training database also has direct impacts on the retrieval accuracy. For 839 

example, chlorophyll a+b content for wheat varies within 0 - 90 ug/cm
2
, e.g., 10 - 80 ug/cm

2
 840 

in Li et al., (2022), 0 - 80 ug/cm
2
 in Berger et al., (2018) and 20 - 90 ug/cm

2
 in Delloye et al., 841 

(2018). We finally set the range to 20-80 ug/cm
2
 based on prior knowledge of the wheat in 842 

our study area. The ALA of wheat was demonstrated to be erectophile (from 70° to 80°), 843 

therefore, the ALA for PROSAIL model was set to 60° – 80° with mean of 70°. This is 844 

consistent with Dong et al., (2019) which characterized wheat by erectophile leaf angle 845 

distribution with mean ALA of 62.49° and standard deviation of 11.08°.  846 

The accuracy of estimated GAI, LCC and CCC relies on the ground reference dataset. In 847 

this study, reference GAI was estimated from gap fraction based on segmentation of green 848 

pixels on RGB images. We used a robust deep learning method trained on a comprehensive 849 
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dataset composed of a variety of species, instruments, and environmental conditions (Madec 850 

et al., 2023; Serouart et al., 2022) to guarantee the accuracy of segmentation.  It is worth 851 

noting the segmentation might be difficult when GAI is larger than 4 or 5. The derivation of 852 

the GAI reference dataset assumes a constant G-function for a 45° viewing direction. This is 853 

actually very similar to the approach validated by Campos-Taberner et al., (2016) and 854 

Francone et al., (2014), who used the 57.5° angle for which the G-function is constant 855 

regardless of the leaf inclination angle value. We preferred using a 45° which show less 856 

saturation for dense canopies and eases the RGB image segmentation. At 45°, G can still be 857 

assumed constant for wheat canopies that were shown erectophile (mean inclination angle 858 

between 70° and 74° as estimated by Barillot et al., (2019) for different wheat types). 859 

Additionally, this allows to be consistent with the inclination angle of the multi-band 860 

spectrometer. When using a single camera, the choice of the viewing angle to get a constant 861 

G-function over other crop types need further investigations. This can be overcome by using 862 

at least two cameras looking in different view angles to concurrently assess GAI and 863 

inclination angle (Weiss et al., 2004). 864 

SPAD meters are routinely used to measure chlorophyll content in the field. Calibration 865 

of raw SPAD readings to LCC is a critical step before using them in validation. The strictest 866 

calibration procedure is composed of three steps: cutting several leaves samples in regular 867 

shapes and recording multiple SPAD readings per sample, measuring absolute LCC of these 868 

samples in laboratory through standard wet chemistry procedures (Lichtenthaler and 869 

Wellburn, 1983), and establishing empirical relationships between the absolute LCC and 870 

SPAD values for each variety of wheat. However, this procedure is time-consuming and 871 

impractical for large number of samples. One alternative solution is to apply existing 872 

equations from literatures to our SPAD readings to obtain the LCC values. Previous studies 873 

showed that the calibration equations are various in the format (linear, polynomial, 874 

exponential or homographic)(Cerovic et al., 2012; Zhang et al., 2022). For a single format, the 875 

coefficients are also different depending on the species and measurement periods, although 876 

the differences of might be very small as reported by Uddling et al., (2007) and Zhang et al., 877 

(2022). Since there was no absolute reference LCC in this study, choosing which calibration 878 

equation has direct impacts on the validation results. Applying available twelve equations 879 

built for wheat or with wheat, we found a very similar correlation between IoTA LCC and 880 

reference LCC (R² between 0.51 and 0.53, Fig. S8) with some bias depending on relationship 881 

(RMSE between 5.59 µg/cm
2
 – 18.94 µg/cm

2
, Fig. S8), which actually questions the 882 

reliability of the SPAD to actually assess the LCC without any specific calibration. A generic 883 
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approach for this calibration remains lack. To solve this, we proposed an ensemble method to 884 

compute the median of LCC converted from all available equations as the reference, which 885 

could evaluate IoTA LCC to some extent. Nevertheless, the reference itself has an overall 886 

uncertainty of 7.44 µg/cm
2
, and it greatly relies on selected calibration equations. Further 887 

studies are urgently required to investigate a reliable and generic calibration method to 888 

convert SPAD readings into absolute LCC. Furthermore, this uncertainty may be also related 889 

to the SPAD sampling protocol. We measured only the top leaves as suggested by many other 890 

research teams (De Grave et al., 2021; Zhou et al., 2020) while the vertical chlorophyll 891 

distribution within the wheat canopy may have some influence, also depending on the 892 

phenological stage. Indeed, few studies investigated this aspect and we found contradictory 893 

results about this distribution with higher chlorophyll content measured at the upper layer (T. 894 

Wang et al., 2022; Wu et al., 2021) using destructive measurements, while Li et al., (2019) 895 

found that the highest chlorophyll content in the middle of the canopy (SPAD). Besides the 896 

measurement method, more investigations are needed regarding the sampling protocol. 897 

Regarding the canopy chlorophyll content, we assumed it constant during a three-day 898 

period which corresponds to the size of the moving window selected for our algorithm. 899 

Additionally, the PROSAIL model assumes a turbid medium only composed of leaves, 900 

therefore CCC was computed as the product of the leaf chlorophyll content by effective LAI. 901 

This is consistent with the SPAD reference measurements acquired over top leaves during our 902 

measurement period that does not include reproductive stage (e.g., presence of ears). Indeed, 903 

from the top of canopy, the signal captured from the multi-band spectrometers comes mainly 904 

from the leaves, reducing the possible impact of differences in chlorophyll content between 905 

stems and leaves. However, the chlorophyll content and its contribution to CCC and canopy 906 

reflectance of other elements than green leaves (e.g., stems, ears, mix of green and yellow 907 

leaves between the senescent phase) should be better investigated following the studies of Li 908 

et al., (2021) who showed experimentally a significant impact of ears on the measured NDVI 909 

(around 9%), and Jiang et al., (2022) who used a 3D radiative transfer model to evaluate the 910 

impact of yellow stems and leaves on the reflectance signal or Amin et al., (2021) who trained 911 

a machine learning algorithm to estimate Green and Brown GAI from Sentinel-2 using 912 

experimental data.  913 
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5.4 Limitations and implications  914 

Constrained by the low-cost instrument design, this algorithm uses several 915 

approximations that may impact the retrieval accuracy. Although we made some attempts to 916 

evaluate each step, further investigations are needed to strengthen these results: (i) additional 917 

measurements should be used to allow good generalization capacities of PAR diffuse fraction 918 

estimation. This could be achieved by making use of site networks such as FLUXNET (ii) the 919 

relationships between the diffuse fraction in the PAR and in other wavebands derived from 920 

the 6S model should be better investigated by setting up a proper experiment (iii) the 921 

uncertainties associated to the use of relative reflectance should be better investigated by 922 

comparing with an approach based on absolute and calibrated reflectance using experimental 923 

setups like the one developed by Michalsky and Kiedron (2022) (iv) completing the 924 

validation campaign with more reference points and simultaneous LCC laboratory and SPAD 925 

measurements to strengthen the SPAD/LCC relationships.  926 

Based on this common feature, we developed a practical and computationally efficient 927 

approach that allows inverting a radiative transfer model in situations where measuring 928 

incoming radiance is not feasible, and/or acquisitions are acquired with a variable geometry 929 

by normalizing the data (e.g., relative radiance value, use of kernel BRDF models). This 930 

could be particularly useful when using UAV data during unstable cloud conditions or 931 

monitoring closed canopies where installing sensors to measure incoming might not be 932 

feasible. We also proposed a simple mean to characterize the incoming diffuse fraction from 933 

incident PAR measurements, although the relationship to estimate diffuse PAR from 934 

incoming radiation should be strengthen by using additional meteorological measurements. 935 

Deploying networks of IoTA systems would allow to better assess the within and between 936 

fields heterogeneity and provide valuable information to decision support systems and 937 

farmers. 938 

6 Conclusions 939 

Non-destructive measurements of daily GAI, LCC and CCC offer insightful information 940 

to monitor crop status. Whilst substantial efforts have been devoted to monitor continuous 941 

GAI through near-surface platforms, concurrent and autonomous monitoring GAI, LCC and 942 

CCC is scarce. In this study, we developed a comprehensive approach to estimate canopy 943 

GAI, LCC and CCC from a near-surface monitoring system with a low-cost multi-band 944 

spectrometer multispectral spectrometers and a PAR. This approach overcomes several 945 
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challenges related to the use of multi-band spectrometer from near-surface system in natural 946 

environment, through estimation of various diffuse fraction in each spectral band and 947 

consideration of multi-angle observations. We validated the accuracy of this approach using 948 

43 IoTA systems in wheat fields. Our results indicate that this algorithm works well for the 949 

multi-band spectrometer installed on the near-surface platforms, to track wheat GAI, CCC, 950 

and in a lesser extent LCC simultaneously at a daily temporal resolution. We demonstrated 951 

that multi-angle information can be properly used to retrieve variables using ANN inversion 952 

strategy, based on the combined use of kernel-driven BRDF and PROSAIL models. In 953 

addition, we provide a practical method to derive the spectral diffuse fraction from PAR 954 

sensor measurements, based on empirical relationships for PAR diffuse/direct partitioning and 955 

model simulations to relate spectral to PAR diffuse fractions. Compared with reference data, 956 

our method achieved satisfactory performances with GAI (RMSE = 0.51), LCC (RMSE = 957 

8.44 µg/cm
2
), CCC (RMSE = 0.25 g/m

2
) and. Given the advantages of this algorithm and 958 

comparable low cost of multi-band spectrometers and PAR sensors, we recommend it to be 959 

applied over other crops or other near-surface platforms for simultaneous estimations of GAI, 960 

LCC and CCC. More measurements on multiple crops and under different climate conditions 961 

are needed to further investigate the robustness of the algorithm. For next generations of such 962 

IoT observation system, sensors able to measure spectral and diffuse irradiance directly such 963 

as those developed for the purpose of observing solar-induced fluorescence should be 964 

evaluated (e.g., the accuracy, price and possibility for large deployment in a field). 965 

Furthermore, as demonstrated by numerous previous studies, adding sensors with a band 966 

located in the green domain could be added to improve GAI, LCC and CCC inversion 967 

(Daughtry, 2000; Gitelson et al., 2003; Weiss et al., 2000). More efforts will also be put to 968 

explore the combination of RGB camera and the multi-band spectrometer to retrieve GAI, 969 

LCC and CCC.  970 
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