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ABSTRACT

In a context of growing interest in breeding more 
resilient animals, a noninvasive indicator of resilience 
would be very valuable. We hypothesized that the 
time-course of concentrations of several milk metabo-
lites through a short-term underfeeding challenge could 
reflect the variation of resilience mechanisms to such a 
challenge. We submitted 138 one-year-old primiparous 
goats, selected for extreme functional longevity (i.e., 
productive longevity corrected for milk yield [60 low 
longevity line goats and 78 high longevity line goats]), to 
a 2-d underfeeding challenge during early lactation. We 
measured the concentration of 13 milk metabolites and 
the activity of 1 enzyme during prechallenge, challenge, 
and recovery periods. Functional principal component 
analysis summarized the trends of milk metabolite con-
centration over time efficiently without preliminary as-
sumptions concerning the shapes of the curves. We first 
ran a supervised prediction of the longevity line of the 
goats based on the milk metabolite curves. The partial 
least square analysis could not predict the longevity 
line accurately. We thus decided to explore the large 
overall variability of milk metabolite curves with an 
unsupervised clustering. The large year × facility effect 
on the metabolite concentrations was precorrected for. 
This resulted in 3 clusters of goats defined by different 
metabolic responses to underfeeding. The cluster that 
showed higher β-hydroxybutyrate, cholesterol, and tria-
cylglycerols increase during the underfeeding challenge 
was associated with poorer survival compared with the 
other 2 clusters. These results suggest that multivariate 
analysis of noninvasive milk measures show potential 
for deriving new resilience phenotypes.

Key words: resilience, milk metabolites, multivariate 
modeling, dairy goats

INTRODUCTION

Today, there is growing interest in selecting for re-
silience, as livestock are expected to face increasingly 
harsh environmental and climatic conditions. Animal 
resilience is defined as the ability to overcome short-
term environmental disturbances and quickly return 
to a predisturbance state (Colditz and Hine, 2016). In 
this context, resilience can be seen as an underlying 
component of longevity since it corresponds to the abil-
ity to cope with and recover from challenges to allow 
the animal to carry on its productive life (Friggens et 
al., 2017; Scheffer et al., 2018). Longevity corresponds 
to true longevity (all culling reasons) and functional 
longevity that includes all culling reasons, except 
productivity (Sasaki, 2013). Several studies estimated 
heritability of functional longevity to be around 10% 
in cattle and goats (Castañeda-Bustos et al., 2017; 
Nayeri et al., 2017; Palhière et al., 2018). Ithurbide et 
al. (2022) showed that selection on functional longevity 
in a commercial population of dairy goats translated 
into significant differences in longevity and resilience-
related traits such as better mammary health and lower 
body fat mobilization during the beginning of the first 
lactation for goats selected for longer functional longev-
ity. Selection seems to be possible; however, improve-
ments are expected to be slow due to low heritability. 
This low heritability could be explained by the fact 
that longevity is a multifactorial trait, that is, there are 
factors other than resilience contributing to longevity, 
and strong genetic × environmental interactions can be 
involved (Tsartsianidou et al., 2021). Thus, there is a 
need to find more direct resilience indicators. Being less 
multifactorial, more direct resilience indicators could 
have a higher heritability than functional longevity, 
and allow a more efficient selection and for instance 
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select animals for longevity at an early stage of produc-
tive life.

We hypothesized that the metabolic response to 
short-term feed restriction could provide information 
about some genetic characteristics of goat resilience. 
The objective of this study is to explore the existence 
of underlying resilience components within the time-
course of 13 milk metabolites and 1 enzyme activity 
during an underfeeding challenge imposed on 2 diver-
gent lines of goats for functional longevity. We propose 
a new statistical approach to model and explore multi-
variate longitudinal data.

MATERIALS AND METHODS

The experiment was carried out in agreement with 
French National Regulations for the humane care and 
use of animals for research purposes. Animals were bred 
at 2 experimental INRAE Farms: P3R Bourges (UE0332, 
La Sapinière, Osmoy, France, license to carry out animal 
experiments: C18–174–01) and Experimental Installa-
tion, UMR MoSAR (Route de la Ferme, Thiverval-Gri-
gnon, France) close to Paris (license to carry out animal 
experiments: A 78 615 1002). This article followed the 
STROBE-Vet guidelines (O’Connor et al., 2016). All 
procedures performed on animals were approved by the 
Ethics Committee on Animal Experimentation and the 
French Ministry of Higher Education, Research and 
Innovation (APAFIS#8613–2017012013585646 V4 and 
APAFIS#24314–2019120915403741).

Animals

Following the method developed by Palhière et al. 
(2018) and described by Ithurbide et al. (2022), we cre-
ated 2 functional longevity lines of Alpine goats. Since 
2017, we have run the genetic evaluation for functional 
longevity over 8,787 Alpine AI bucks based on the pro-
ductive longevity of their daughters (time difference be-
tween first kidding and culling) corrected for milk yield. 
We selected the 16 bucks who had the highest EBV 
and the 19 bucks who had the lowest EBV among the 

whole AI buck population to find the low longevity line 
(Low_LGV) and high longevity line (High_LGV), 
respectively. From 2019 to 2022, 138 goats were bred: 
60 Low_LGV goats and 78 High_LGV goats. Among 
them, 69 were bred in the INRAE P3R Bourges facility 
and 69 in the INRAE Paris facility (Table 1). Within 
each facility, Low_LGV and High_LGV goats were 
housed in common pens.

Farm management and animal monitoring in the 
P3R Bourges facility are described in Ithurbide et al. 
(2022). Briefly, goats were not culled for milk pro-
duction reasons, which allows a clean assessment of 
functional longevity. For farm management reasons, 
low-producing goats could not be kept on farm in the 
Paris facility. Thus, survival data were not available in 
the latter facility. Weight, chest size, and height were 
measured every month in both facilities during the first 
year of life. The milk yield (MY), milk fat content 
(MFC), milk protein content (MPC), and SCS were 
measured every month during lactation. Moreover, the 
EBV of the goats sires for functional longevity, MY, 
MFC, MPC, and SCS were estimated and provided 
from the national genetic evaluation procedure.

Underfeeding Challenge

A total of 138 one-year-old primiparous dairy goats 
were exposed to a 2-d underfeeding challenge during 
early lactation (35.5 DIM ± 5.6 SD). The design of the 
underfeeding challenge followed the protocol described 
in detail in Friggens et al. (2016); briefly, the challenge 
consisted of a 2-d, straw-only feeding. Milk samples 
were collected for 4 d prechallenge, throughout the 
challenge period, and for 4 d following the challenge. 
From parturition and for 2 wk postchallenge, animals 
received a standard lactation diet. At P3R Bourges, the 
goats received a ration based on Lucerne hay offered 
in collective troughs, complemented with concentrate 
that was dispensed by automatic concentrate feeders 
and in the milking parlor. At Paris, the lactation diet 
was offered as a TMR containing on a DM basis: 20% 
concentrate, 24% hay, 29% Lucerne, 27% beet pulp, 
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Table 1. Distribution of the 138 goats within the 2 divergent lines selected on high longevity (High_LGV) 
or low longevity (Low_LGV) bred at INRAE facilities of P3R Bourges and Mosar Paris that underwent the 
underfeeding challenge during early lactation (36.7 DIM ± 6.2 SD)

Item

Year of the underfeeding challenge/INRAE facility

Total
2020/ 

P3R Bourges
2021/ 

P3R Bourges 2021/Paris 2022/Paris

Low_LGV 15 14 17 14 60
High_LGV 18 22 17 21 78
Total 33 36 34 35 138
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and 1% mineral and vitamin supplement (as described 
by M. Gindri [Université Paris-Saclay, INRAE, Ag-
roParisTech, UMR Modélisation Systémique Appliquée 
aux Ruminants, Palaiseau, France], M. Ithurbide, J. 
Pires, R. Rupp, L. Puillet [Université Paris-Saclay, IN-
RAE, AgroParisTech, UMR Modélisation Systémique 
Appliquée aux Ruminants, Palaiseau, France], and N. 
C. Friggens; unpublished data). Forage and water were 
offered ad libitum. All goats were milked twice a day. 
During prechallenge, challenge, and recovery periods, 
respectively, 3, 2, and 4 milk samples were collected 
during morning milking. Fixed standard volume were 
taken after mixing the total production in the milking 
jar. The concentrations of 13 milk metabolites and 1 
enzyme were measured: glucose-6-phosphate (Glu6P), 
glucose (Glu), galactose (Gal), BHB, isocitrate, gluta-
mate, NH2 groups, lactate dehydrogenase (LDH), urea, 
choline, malate, urate, triacylglycerols (TAG), and 
cholesterol (Chol). Each goat had 13 milk metabolites 
and 1 enzyme curve with data points at d −7, −4, −1, 
0, 1, 2, 3, 4, 5, and 6 for Bourges and every day from 
d −4 to 12 in the Paris facility. Day 0 was the last 
morning milking before the underfeeding challenge that 
started the same day.

Milk urea was analyzed with a FIAstar 5000 Ana-
lyzer (Foss Tecator AB, Höganäs, Sweden) using flow 
injection analysis (Nielsen et al., 2005). Enzymatic-
fluorometric methods were used to analyze TAG and 
minor milk constituents: LDH activity (Larsen, 2005), 
BHB (Larsen and Nielsen, 2005), urate (Larsen and 
Moyes, 2010), TAG (Larsen et al., 2011), Chol (Larsen, 
2012), isocitrate (Larsen, 2014), Glu, and Glu6P (Lars-
en, 2015). The Gal in milk was analyzed by an analog 
procedure to Glu, using β-galactose dehydrogenase (EC 
1.1.1.48) to start the fluorometric determination. More-
over, weight, MY, milk composition (MFC, MPC), and 
udder health indicator (SCS) were measured the same 
days as the milk samples in both facilities.

Statistical Analysis

Milk Metabolite Curve Modeling with Func-
tional Principal Component Analysis.  All statisti-
cal analyses were done in the R statistical environment 
(https: / / www .r -project .org/ ). To model the individual 
metabolite concentration curves, we used the functional 
data analysis smoothing method described by Ramsay 
and Silverman (2005). We used a spline interpolation, 
that is, a piece-wise interpolation that joins several low 
degree polynomial functions at knots (predetermined 
time points along the time-series of data). We used 
natural cubic splines (i.e., a piece-wise cubic polyno-
mial that is a continuous when differentiated twice), 
fixing a minimum degree of the polynomial at 5. The 

degree of smoothing of the spline was controlled by a 
roughness penalty.

Three goats exhibited outlier metabolic trajectories 
with BHB concentrations in milk above 3 SD. The re-
cordings of these goats were excluded. In addition, 10 
implausible data points were excluded from the analy-
sis (10 out of 27,594 data points). None of these points 
belonged to the underfeeding period (d 0 to 2) and 
each belonged to different goats and metabolite curve. 
As such, removing these points did not distort the gen-
eral shape of the curves. Figure 1 shows the smoothed 
curves of the 13 milk metabolites and 1 enzyme from 
one randomly selected goat.

Correction for the Year Facility Effect With 
Functional Regression. To minimize the impact of 
nongenetic factors, such as the global environment, on 
the metabolic response to the underfeeding challenge, 
we accounted for the facility × year effect by running a 
functional regression analysis:

Xi(t) = β0(t) + β1(t) × Year_i + ξi(t), 

where Xi(t) was the milk metabolite curve for the ith 
goat, β0(t) was the intercept function, β1(t) was a func-
tion of time corresponding to the regression coefficient 
associated with the year-facility effect, Year_i was a 
dummy variable corresponding to the year-facility of 
study of the ith goat, and ξi(t) was the residual term. 
Using a functional regression coefficient allows a correc-
tion of the year-facility effect. The corrected individual 
curves were then estimated as

Xi_correct(t) = β0(t) + ξi(t). 

Figure 2 sets out a summary of the milk metabolite 
curves modeling steps and shows smoothed curves of 
isocitrate milk concentration before and after correc-
tion for year-facility effect. Note that, at Paris, ani-
mals were reared from weaning until mid-gestation on 
2 different diets, but these were balanced and equally 
distributed between years and were also equally dis-
tributed between clusters in the present analyses, and 
consequently were ignored.

Functional Principal Component Analysis. We 
characterized milk metabolite curves upon challenge 
using a functional PCA (FPCA) for each year-facility-
corrected milk metabolite (Yao et al., 2005) using the R 
package “FDA.” Functional PCA is a statistical method 
for investigating the dominant modes of variation of a 
functional data set. It allows the time-related variation 
to be captured in a small number of principal compo-
nents (see Figure 2). In other words, FPCA decomposes 
a set of random function Xj(t) from the jth metabolite 
in the following representation:

Ithurbide et al.: MILK METABOLITE PROFILES AS A RESILIENCE INDICATOR
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where ωjk are orthogonal functions across k knots, that 
is, the functional principal components (FPC) that are 
common to all goats, and γjk are the FPC scores that 
characterize individual curves.

The first step to this decomposition was to estimate 
the functional principal components ωjk. Let Cj(s,t) be 
the covariance function of Xj(t), and it corresponds 
to a self-adjoint and positive semi-definite operator 
Cj: L2(τ)→L2(τ), where L2 is a Hilbert space. Spe-
cifically, L2(τ) denotes the space of square-integrable 
functions defined on a compact interval τ, equipped 
with the inner product and norm that make it a Hil-
bert space. The FPC ωjk(t) satisfy the following eigen 
equation:

Cjωjk = ρjkωjk,

where ρjk are the eigenvalues of Cj and Cj gives the 
following integral transform:

C C s t s dsj jk j jkω ω= ( ) ( )∫ , .
Ä

To obtain the FPC, we could solve the eigen equations 
for k = 1, ..., K for a fixed K. Equivalently, the solution 
fits the maximization problem of

maxQ0(ωjk) = max⟨ωjk,Cj ωjk⟩,

subject to the constraints of ||ωjk|| = 1 and ⟨ωjk,ωjk′⟩ = 
0 for k′ < k. Given a set of observed trajectories x1, ..., 
xn we have the observed covariance function:

Ithurbide et al.: MILK METABOLITE PROFILES AS A RESILIENCE INDICATOR

Figure 1. The smoothed curves of 13 milk metabolites and 1 enzyme from one randomly selected goat. Day 0 corresponds to the beginning 
of the 2-d underfeeding challenge. Points correspond to observed values. The 13 milk metabolites and 1 enzyme are glucose-6-phosphate (Glu6P, 
µM), glucose (Glu, µM), galactose (Gal, µM), BHB (µM), isocitrate (µM), glutamate (µM), NH2 (glutamate micro equivalent), lactate dehy-
drogenase (LDH, IU), urea (mM), choline (mM), malate (µM), urate (µM), triacylglycerols (TAG, mM), cholesterol (Chol, µM). The 138 goats 
belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris.
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with its associated operator ˆ .Cj  For obtaining estimates 
ω̂jk , we solve the maximization or eigen equation prob-
lem by replacing C(s,t) with its empirical version ˆ .C st( )

The second step was the calculation of the individual 
FPC scores as the projections of Xj(t) onto the FPC 
through the inner product:

γ ω ω
τ

jk j jk j jkX X t t dt= = ( ) ( )∫,   .
 

We chose the minimum number of components that ex-
plained at least 90% of the variability. A small number 
of FPC scores thus characterized each individual milk 
metabolite curve. The Figure 2.4. represents the 3 FPC 
for isocitrate and the corresponding scores for one given 
goat. Note that by construction, the mean values of the 
FPC equal 0. The first FPC plot was positive across 
the whole period of time, increasing slightly during 
challenge. The chosen goat has a negative first score 
for isocitrate (1isocitrate), indicating that this goat has 
a low overall isocitrate concentration. The individual 
curve plotted in Figure 2.3. confirms that. Likewise, we 
can interpret the negative second isocitrate score value 
as a high isocitrate concentration compared with pre-

Ithurbide et al.: MILK METABOLITE PROFILES AS A RESILIENCE INDICATOR

Figure 2. Schematic diagram showing the different stages of analysis of one milk metabolite curves data set (here isocitrate is shown as 
example). In the raw curves plot (1), smoothed curves plot (2), and curves corrected for year × facility effect (3), each red line corresponds to 
one goat. The bold blue line corresponds to one randomly chosen goat. The functional principal components (PC) of the functional principal 
component analysis (PCA) for isocitrate are plotted in 4.1. and the corresponding scores for the randomly chosen goat are shown in 4.2. The 
functional PC (FPC) scores of the 13 milk metabolites and 1 enzyme are then used to predict the longevity line of the goats with a sparse 
partial least square discriminant analysis (sPLS-DA; 5A.) and classify the goats within clusters with the same overall metabolic response to 
underfeeding challenge (5B.).
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challenge and recovery concentrations, and the negative 
third score for isocitrate as a low postchallenge/prechal-
lenge concentration ratio compared with other goats.

Prediction of the Longevity Lines of Goats 
Based on the Metabolite Curve Model. For the 
supervised clustering we used sparse partial least 
square discriminant analysis (sPLS-DA) to evaluate 
the ability of milk metabolite curves to distinguish the 
longevity lines of the 138 goats. This is a linear multi-
variate model which performs classification tasks and 
is able to predict the class of new samples (R package 
“MixOmics”; Lê Cao et al., 2011). The method inte-
grated a continuous data matrix comprising the indi-
vidual FPC of the 13 milk metabolites and 1 enzyme 
and enzyme and a categorical outcome variable: the line 
of the goat (High_LGV vs. Low_LGV). The sPLS-DA 
seeks the components that best separate the sample 
groups, and also selects variables that best discriminate 
between groups using lasso penalization. We chose the 
number of components using cross validation on a non-
sparse model (comprising all variables) and then tuned 
the number of variables to select on each component 
using lasso selection. We assessed the final performance 
of the model using a 5-fold cross-validation.

Unsupervised Clustering of the Milk  
Metabolite Curves

Hierarchical Clustering. We ran an unsupervised 
hierarchical clustering on all the FPC (Dash et al., 
2003, R package “FactoMineR”), to define the different 
types of metabolic responses to the underfeeding chal-
lenge for each goat, and independently of the longevity 
line. First, a 5-dimensions PCA was run on the FPC. 
The PCA hierarchical clustering starts by treating each 
goat as a separate cluster. Then, it recursively executes 
the following steps: (1) identify the 2 closest clusters; 
(2) merge the 2 closest clusters. This process continues 
until all the clusters are merged together. The final 
number of clusters was automatically chosen based on 
the inertia gain (i.e., finding a minimum number of 
clusters allowing a low intracluster variability and a 
high intercluster variability).

To easily understand the differences between clus-
ters we compared the milk metabolite curves between 
clusters using a permutation test (Ramsay and Silver-
man, 2005; Sirski, 2012). The test begins by taking the 
absolute value of a t-test-type statistic at each point 
along the curve:

F t
X t X t

Xi t X t Xi t X t
i i

( ) =
( )− ( )





( )− ( ) + ( )− ( )
∑ ∑

1 1

1 1 2 2

²

[ ² [ 
 ²
.

Then it uses a permutation test to assess significance, 
by randomly reordering the curves and recalculating 
the test statistic with the new groups of curves. We 
used the default setting of 200 random reorderings. One 
main advantage of the permutation test is that, unlike 
parametric tests, it does not assume theoretical prob-
ability distributions.

Data Used to Compare Clusters. The R pack-
age ‘survival’ was used to compare lifespan between 
the clusters of goats resulting from the unsupervised 
clustering. Survival analysis was performed using a Cox 
model (Cox, 1972). Because of the lack of survival data 
in Paris data set, the survival analysis was thus run 
over a sub data set of the 3 clusters, excluding the Paris 
data.

Analysis of variance tests were used to compare the 
following data. Weight, chest size, and height at the 
withers were measured at 6 mo old. The EBVs of the 
sires of the goats for functional longevity and milk per-
formances were also compared between clusters. The 
weight and milk performance curves (MY, MFC, MPC, 
ratio of fat content to protein content [F:P ratio], and 
SCS) during the underfeeding challenge were compared 
between clusters following the exact same methodol-
ogy as the milk metabolite curves: spline interpolation, 
correction for year × site effect, and permutation test.

RESULTS

Modeling of the Individual Milk Metabolite Curves 
with Functional PCA

The smoothed curves of the 13 milk metabolites and 
1 enzyme of one randomly selected goat are presented 
in the Figure 1, and Table 2 shows the distribution of 
the milk metabolite concentrations during the whole 
period of sampling among the 138 goats. After smooth-
ing, the general shape of the curve was preserved and 
the bounce that occurred during the challenge was cor-
rectly fitted. Linear regression correctly corrected for 
the year-facility effect, leading to similar mean curves 
per year-facility for each metabolite. Between 2 and 4 
functional components were necessary to explain 90% 
of variation for each metabolite. The interpretation of 
those principal components should be made as follows 
(Figure 2): using the isocitrate components as an ex-
ample, the first component (PC1) of isocitrate roughly 
corresponds to a flat line over the whole period, a goat 
with a higher than average milk isocitrate concentration 
over the whole period will have a proportionally high 
score FPC on this component. The second component 
(PC2) shows a positive flat line before challenge and 
a shift to negative value during the challenge: a goat 
with higher than average concentration of isocitrate be-

Ithurbide et al.: MILK METABOLITE PROFILES AS A RESILIENCE INDICATOR
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fore challenge and a lower than average concentration 
postchallenge will get a high score on this component. 
In total 48 FPC were attributed to each goat to char-
acterize the variation of the 13 milk metabolites and 1 
enzyme through the underfeeding challenge. The FPC 
were then used to compare the milk metabolite varia-
tions between lines.

Supervised Clustering to Compare the Milk 
Metabolite Curves Between the 2 Longevity Lines  
of Goats

The optimal number of components in the sPLS-DA 
to discriminate the 2 longevity lines of goats was 1. The 
lasso penalization selected 13 variables for this com-
ponent (Figure 3). Chief among these were Gal (third 
FPCA component), glutamate and urea (respectively 
first and second FPCA component). The balanced er-
ror rate (i.e., the percentage of misclassifications) esti-
mated overall for the model was 49.5%. It was 61.3% 
and 37.7%, respectively, for Low_LGV and High_LGV 
lines. Thus, the milk metabolite curves during an un-
derfeeding challenge could not predict the longevity line 
of the goats coming from the 4 year-sites of the experi-
ment. However, if the analysis was run on P3R Bourges 
and Paris separately, the balanced error (BER) rate 
was respectively 44 and 37%. Figure 3 shows the contri-
butions of the selected FPC scores to the prediction of 

the longevity line within Paris and P3R Bourges data 
sets. When the analysis was made on each of the 4 year-
facilities separately, the BER ranged from 30% (Paris 
2022) to 39% (P3R Bourges 2021).

Unsupervised Clustering on the Milk  
Metabolite Curves

Description of the Clusters. The correlation 
circle of the PCA applied on the 48 FPC of the 138 
goats is shown in Figure 4A. Three clusters were iden-
tified: cluster 1, 2, and 3, respectively, gathered 36, 53, 
and 49 goats (Figure 4B). Distribution of goats from 
the 4 year-facility combinations did not differ along 
clusters nor between longevity lines and the number of 
kids per kidding (P > 0.70). The mean milk metabo-
lite curves per cluster and permutation test result are 
shown in Figure 5. The permutation test over the milk 
metabolites curves between clusters indicates which 
milk metabolites were significantly different between 
clusters. The metabolite curves that were significantly 
different between clusters are BHB, Chol, choline, 
Glu, Glu6P, glutamate, LDH, malate, NH2, and TAG 
(permutation test, 5% critical value). Except for TAG 
and Chol, the differences were significant only after 
the beginning of the feed restriction. For Chol and 
TAG the values were significantly higher for cluster 2 
before d −2.

Ithurbide et al.: MILK METABOLITE PROFILES AS A RESILIENCE INDICATOR

Table 2. Concentrations of 13 milk metabolites and 1 enzyme collected during 10 morning milkings among 138 goats that underwent an 
underfeeding challenge during early lactation; 2 samples were taken during underfeeding challenge of 2 d, 4 d before and 4 d after1

Item2

Prechallenge 
(n = 552 samples)

 

Challenge 
(n = 276 samples)

 

Postchallenge 
(n = 552 samples)

Mean (SD) Mean (SD) Mean (SD)

BHB (µM) 27.3 (±8.8) 39.8 (±25.1) 25.0 (±7.5)
Chol (µM) 192.0 (±74.4) 480.9 (±192.7) 258.6 (±144.3)
Choline (mM) 1.5 (±0.9) 3.3 (±1.3) 1.5 (±1.0)
Gal (µM) 65.9 (±22.4) 86.5 (±36.2) 66.3 (±29.9)
Glu (µM) 226.8 (±120.6) 117.2 (±57.2) 269.8 (±161.1)
Glu6P (µM) 60.8 (±19.0) 40.9 (±20.9) 55.6 (±20.7)
Glutamate (µM) 250.0 (±95.3) 103.3 (±43.3) 283.2 (±157.8)
Isocitrate (µM) 162.2 (±45.5) 239.3 (±76.5) 118.7 (±42.2)
LDH (IU) 10.2 (±4.7) 45.5 (±27.8) 13.9 (±14.0)
Malate (µM) 98.0 (±51.2) 38.0 (±20.5) 78.6 (±34.1)
NH2 (µEq) 1,687.1 (±377.1) 1,356.5 (±300.6) 1,893.5 (±414.9)
TAG (mM) 44.7 (±15.5) 83.6 (±31.3) 44.4 (±20.6)
Urate (µM) 58.9 (±31.7) 116.5 (±70.7) 76.2 (±57.7)
Urea (mM) 6.7 (±3.7) 6.5 (±2.1) 4.8 (±3.1)
MY (kg) 3.1 (±0.5) 1.7 (±0.6) 2.5 (±0.6)
MFC (g/kg) 40.5 (±6.2) 65.9 (±15.5) 38.7 (±10.7)
MPC (g/kg) 33.2 (±2.5) 34.8 (±3.9) 32.8 (±2.8)
F:P ratio 1.3 (±0.2) 1.9 (±0.4) 1.2 (±0.3)
SCS 4.9 (±1.8) 5.6 (±3.0) 6.1 (±1.8)
1The 138 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar 
Paris. 
2Glucose-6-phosphate (Glu6P), glucose (Glu), galactose (Gal), triacylglycerols (TAG), cholesterol (Chol), and lactate dehydrogenase (LDH). 
Milk performance: daily milk yield (MY), ratio of fat content to protein content (F:P ratio), fat content (MFC), protein content (MPC).
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Cluster 1 was mainly characterized by lower Glu, 
malate, and glutamate during the recovery period; 
higher Gal and Chol during the recovery period; higher 
BHB, TAG, and choline during challenge; and lower 
NH2 and Glu6P during challenge and early recovery. 
The cluster 2 was mainly characterized by lower TAG, 
choline, BHB, LDH, and Chol during challenge. The 
cluster 3 was mainly intermediate between clusters 1 
and 2 with the exception of a higher LDH during chal-
lenge.

Comparison of Resilience-Related Features 
Between Clusters. The Kaplan–Meier survival curves 
of the 3 clusters are displayed in Figure 6. The Cox 
analysis shows poorer survival of goats belonging to 
the cluster 1 relative to both clusters 2 and 3 (P = 
0.04, hazard ratio = 2.63 and P = 0.02, hazard ratio = 
3.70, respectively, Table 3). Note that a Cox analysis 
comparing cluster 1 relative to the rest of the goats 
(i.e., cluster 2 and 3 merged) shows a more significant 
effect (hazard ratio = 2.97, P = 0.009). Table 4 pres-
ents ANOVA results between clusters. No significant 
difference could be seen in sire’s EBV (longevity, MY, 
milk components, and SCS), morphology at 6 mo old, 
and DIM at the beginning of the challenge (P > 0.05). 
Figure 7 shows the mean curves of the milk perfor-
mance and weight within the 3 clusters through a 2-d 
underfeeding challenge. Cluster 1 showed higher F:P 
ratio and MFC, during and after challenge, as well as 

higher MPC during challenge and higher SCS after 
challenge (permutation test, 5% critical value).

DISCUSSION

Context

This study presents an innovative design using lon-
gevity lines exposed to a short-term challenge with 
repeated measures of multiple milk metabolites. We 
hypothesized that the metabolic responses to a short-
term feeding restriction would characterize a resilience 
mechanism that has an impact on goat survival within 
herd. Repeated measurements over time were of great 
value in understanding the temporal aspect of resilience 
(Döring et al., 2015). Moreover, animal resilience is a 
complex trait as it involves many interconnected physi-
ological regulations and metabolic pathways. Novel 
data analysis methods of 13 milk metabolites and 1 
enzyme concentration over time allowed us to both 
grasp the time varying aspect of the process and some 
of its complexity. Several studies report the modeling 
of a physiological response to short-term perturbation 
(Sadoul et al., 2015; Friggens et al., 2016). Those mod-
els made strong assumptions concerning the shape of 
the curves to decipher the different components of the 
reaction (prechallenge baseline, response, recovery). To 
deal with the complexity of the metabolic pathways 
that we explored, and reduce the number of assump-
tions made a priori, we used spline interpolations as 
they were flexible and do not make a priori assump-
tions regarding curve shapes. Both the sparsity of the 
time points and the heterogeneity of variance between 
days (a sharp difference occurred during the 2 d of 
underfeeding challenge) made it difficult to settle on a 
proper roughness penalty that would be strong enough 
to prevent boundary effects and flexible enough to 
capture the bounce during challenge. That is why we 
used natural cubic splines, fixing a minimum degree of 
the polynomial at 5. The natural cubic spline is con-
siderably “stiffer” than a polynomial in the sense that 
it has less tendency to oscillate between data points. 
Imposing a minimum complexity via the natural cu-
bic spline allowed both a small boundary effect and a 
good fitting of the sharp increases and decreases during 
the underfeeding challenge. Moreover, Friggens et al. 
(2016) showed an interesting variability in the reaction 
to the challenge but also a strong correlation between 
the presupposed components of the reaction, suggesting 
redundancy among them. This is why we decided to 
use FPCA, which allowed an efficient dimension reduc-
tion because each principal component is orthogonal to 
the others, avoiding any redundancy. In a sense, one 
can see FPCA as an alternative piece-wise modeling 
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Figure 3. Loading plot from the sparse partial least square dis-
criminant analysis (sPLS-DA) to discriminate the 2 lines selected on 
functional longevity, based on 13 milk metabolites and 1 enzyme curve 
through a 2-d underfeeding challenge run separately on goats from the 
P3R Bourges facility (left, n = 69) and Paris facility (right, n = 69). 
Colors indicate the longevity line in which the median is maximum 
for each functional principal component score: red = low longevity 
(Low_LGV), blue = high longevity (High_LGV). Variable names in-
dicate the functional principal component score of the metabolite that 
was selected. Glu6P = glucose-6-phosphate; Glu = glucose; Gal = 
galactose; TAG = triacylglycerols; Chol = cholesterol; LDH = lactate 
dehydrogenase.



Journal of Dairy Science Vol. 106 No. 11, 2023

8080

because the individual curves can be estimated as the 
linear combination of the functional principal com-
ponents weighted by the FPC scores (Figure 2), but 
with automatically optimized components rather than 
presupposed components.

Findings of Supervised Clustering

The prediction of the longevity line of goats by the 
sPLS-DA was associated with a 49.5% error rate, show-
ing that no discrimination of the genetic line was pos-
sible by this approach. There may be several explana-
tions for this high error rate. First, as previously stated, 
the selection for functional longevity might lead to a 
large intra-line variability (i.e., many factors affecting 
the longevity could be selected). Ithurbide et al. (2022) 
showed that the high longevity line of goats had higher 
BW and lower F:P ratio in milk at the beginning of 
the first lactation, suggesting that the better survival 
of the High_LGV line was linked with lower body fat 
mobilization. However, the nature of the 2-d underfeed-
ing challenge we imposed in the present study does 
not exactly mimic the challenges that can be naturally 
undergone during the beginning of the first lactation. 
The differences in the metabolic reaction to the early 
lactation-related energy deficit and a negative energy 
balance induced by feed restriction have been investi-
gated in dairy cows (Gross and Bruckmaier, 2015).

Moreover, functional longevity is a complex trait, 
and selection for better longevity can result in animals 
with different kind of resilience or robustness mecha-

nism (resilience or resistance to diseases for example). 
The present study only explored one aspect of the resil-
ience: the energy metabolism. This diversity of the pos-
sible underlying components of longevity reduces the 
statistical power of the analysis (some goats could be 
considered High_LGV because they have good genetic 
value for disease resilience despite low energy metabo-
lism resilience).

Despite the finding that the 2-d underfeeding chal-
lenge we used was shown to induce acute metabolic 
and production deviations (Friggens et al., 2016), 
resilience and longevity may reflect a broader range 
of (short- and long-term) coping mechanisms to a 
diversity of challenges such as heat waves, behavioral 
stress, and infectious diseases (Friggens et al., 2022). 
We found a large batch effect between the 4 year × 
facility combinations of the study. That finding is cor-
roborated by several studies that showed large farm 
to farm variability in either the proportion of vari-
ance explained or in the panel of dynamic features 
that best predicted resilience (Adriaens et al., 2020; 
Krogh et al., 2020; Poppe et al., 2020). We chose to 
apply a linear functional regression to deal with this 
batch effect. This functional linear regression relied on 
the hypothesis that the difference we observe between 
years was not due to resilience-related differences. 
This correction was necessary to run an unsupervised 
clustering, but not for the sPLS-DA. We decided to 
present the result of the sPLS-DA based on FPCA 
over the milk metabolite curves corrected for year-
facility effect to compare the conclusions of the 2 
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Figure 4. Hierarchical clustering on the principal component (PC) analysis of 138 goats described with 48 functional principal component 
scores (FPC) of 13 milk metabolites and 1 enzyme curve through a 2-d underfeeding challenge. The 138 goats belonged to 2 divergent lines 
selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris. (A) Correlation circle of the principal 
component analysis applied on the 48 FPC of the 138 goats. (B) Individual plot of the principal component analysis. The colors correspond to 
the 3 clusters determined by the hierarchical clustering.



8081

Journal of Dairy Science Vol. 106 No. 11, 2023

Ithurbide et al.: MILK METABOLITE PROFILES AS A RESILIENCE INDICATOR

Figure 5. Mean curves of the milk 13 milk metabolites and 1 enzyme within the 3 clusters identified by unsupervised clustering in 138 goats 
through a 2-d underfeeding challenge. These curves are corrected for the year × facility effect with a functional linear regression. The red area 
indicates the time period during which the variables are significantly different between clusters (permutation test,  P < 0.05). Chol = cholesterol; 
Gal = galactose; Glu = glucose; Glu6P = glucose-6-phosphate; LDH = lactate dehydrogenase; TAG = triacylglycerols.
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approaches based on the same FPC scores. However, 
the sPLS-DA based on the noncorrected curves did 
not result in better prediction (results not shown). 
The prediction run separately on the 2 years of ex-
periments in Paris and the 2 years in Bourges showed 
better results (respectively 37% and 44% BER). This 
suggests a possible interaction between the longevity 
line and the environment, as well as the importance 
to further study those effects. The housing and the 
staff differed between the 2 facilities. As explained 
in the Materials and Methods section, the diets were 
different between facilities. Feed quality can also vary 
between years due to the prevailing weather and other 
factors. The 2 farms had performance levels similar 
to commercial farms, as described in Ithurbide et al. 
(2022).

The previous points highlighted that, even if the 
selection for functional longevity implied differences 
for several resilience traits (Ithurbide et al., 2022), 
it did not result in 2 strictly different metabolic re-
sponses to the underfeeding challenge but rather to a 
large variability of response that overlapped between 
the 2 longevity lines of goats. This led us to explore 
the diversity of responses to the challenge without any 
preliminary hypothesis on the level of resilience of the 
goats (i.e., without taking into account line through the 
unsupervised clustering of the metabolic responses to 
the underfeeding challenge).

Findings of Unsupervised Clustering

The unsupervised clustering based on the FPC scores 
of all the 13 metabolites and the activity of 1 enzyme 
was a powerful method to explore the diversity of 
metabolism responses to underfeeding. This analysis 
defined 3 clusters of metabolic response to the under-
feeding challenge. The survival of goats of cluster 1 was 
lower than cluster 2 and 3, with an estimated hazard 
ratio equal to 2.97 (P = 0.009); that is, at any age of 
life, a goat from the cluster 1 had 2.97 times more risk 
of being culled than other goats (Cox model analysis). 
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Figure 6. Plot of Kaplan–Meier curve showing survival against 
time in 69 goats of the 3 clusters identified by unsupervised clustering. 
The unsupervised clustering defined 3 overall metabolic responses to 
a 2-d underfeeding challenge based on milk metabolite curves. The 69 
goats belonged to 2 divergent lines selected on high longevity or low 
longevity bred at INRAE facilities of P3R Bourges. The Cox model 
analysis showed significantly poorer survival of the cluster 1 over clus-
ter 2 and 3 (*P < 0.05).

Table 3. Hazard ratios (HR) with 95% lower and upper CI from Cox 
hazard model for culling data in 69 goats of the 3 clusters identified by 
unsupervised clustering1

Risk factor HR CI P-value

Cluster 1 vs. 2 2.63 1.07 6.25 0.04
Cluster 1 vs. 3 3.70 1.25 11.11 0.02
Cluster 2 vs. 3 0.70 0.24 2.06 —
1The unsupervised clustering defined 3 overall metabolic responses to 
a 2-d underfeeding challenge based on milk metabolite curves. The 69 
goats belonged to 2 divergent lines selected on high longevity or low 
longevity bred at INRAE facilities of P3R Bourges.

Table 4. The ANOVA testing (LSM) for the difference between the 3 clusters identified by unsupervised 
clustering in 138 goats through a 2-d underfeeding challenge1

Item2 Number of records Cluster 1 Cluster 2 Cluster 3 P-value

EBVsire for functional longevity (d) 124 −1.82 23.59 6.30 —
EBVsire_MPC (g/L) 124 0.50 0.02 0.39 —
EBVsire_MFC (g/L) 124 −0.04 0.00 0.13 —
EBVsire_SCS 124 100.7 100.6 98.4 —
EBVsire_MY (kg) 124 15.06 14.43 4.75 —
Weight_6mo (kg) 137 34.0 33.0 33.8 —
Chest_6mo (cm) 136 71.4 71.2 71.0 —
Height_6mo (cm) 137 66.2 66.7 66.7 —
DIM 138 34.7 35.8 35.9 —
1The ANOVA included the year × site effect. The 138 goats belonged to 2 divergent lines selected on high 
longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris. 
2Estimated breeding values of the goats’ fathers for functional longevity (EBVsire for functional longevity), 
milk protein content (EBVsire_MPC), milk fat content (EBVsire_MFC), SCS (EBVsire_SCS), and milk yield 
(EBVsire_MY). Morphology at 6 mo of age: weight (Weight_6mo), chest size (Chest_6mo), height at the with-
ers (Height_6mo). Days in milk at the beginning of the challenge (DIM).
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It should be noted that survival records were only 
available for goats in the Bourges facility.

Interestingly, the cluster that was associated with the 
lowest survival (cluster 1) had the highest milk TAG, 
choline, Chol, and BHB concentrations during challenge 
and recovery periods (Figure 6). Milk Chol and choline 
are shown to be associated with milk TAG (Billa et 
al., 2020). Increased MFC and BHB during the under-
feeding challenge suggests higher body fat mobilization 
in cluster 1 (Bjerre-Harpøth et al., 2012; Pires et al., 
2022). A possible interpretation is that a high body fat 
mobilization during short-term feed restriction is linked 
with lower resilience mechanism. This was confirmed 
by the higher F:P ratio and higher MFC of the cluster 1 
during challenge (Figure 7). Interestingly, Ithurbide et 
al. (2022) showed that Low_LGV goats had higher F:P 

ratio during early lactation, indicating a link between 
resilience and body fat mobilization.

Cluster 1 was also defined by lower Glu and Glu6P 
during the recovery period and from the beginning 
of challenge, respectively. Milk G6P is synthetized 
in the mammary gland from Glu and is a precursor 
for NADPH via the pentose phosphate pathway that 
provides reduction equivalents for preventing oxidative 
stress and also for reductive biosynthesis (Garnsworthy 
et al., 2006). Several studies report an increased G6P 
milk concentration during feed restriction (Chaiyabutr 
et al., 1981; Faulkner and Peaker, 1982; Larsen et al., 
2016; Billa et al., 2020). Zachut et al. (2016) suggested 
that the increase in milk Glu6P concentrations observed 
at the onset of lactation may be due to activation of 
the pentose phosphate pathway in mammary epithelial 
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Figure 7. Mean curves of the milk performance and weight within the 3 clusters identified by unsupervised clustering in 138 goats through 
a 2-d underfeeding challenge: daily milk yield (MY), ratio of fat content to protein content (F:P ratio), fat content (MFC), protein content 
(MPC), SCS, and weight. These curves are corrected for the year × facility effect with a functional linear regression. The red area indicates the 
time period during which the variables are significantly different between clusters (permutation test, P < 0.05). The 138 goats belonged to 2 
divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris.
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cells. The Glu6P increase would meet the NADPH 
requirements for the attenuation of cellular oxidative 
stress during periods of increased fatty acid oxidation. 
The lower Glu6P among cluster 1 goats might indicate 
a lower ability to mitigate oxidative stress. Surprisingly, 
cluster 1 also presented higher Gal concentration dur-
ing the recovery period. Similarly to Glu6P, Gal is syn-
thetized in the mammary gland from Glu. That might 
indicate that Glu is preferably used for Gal synthesis 
rather than Glu6P among cluster 1 animals, which 
might increase oxidative stress. Interestingly, Ben Ab-
delkrim et al. (2023) found that Glu and BHB milk 
concentrations were part of the most informative milk 
components for determining membership of clusters 
of milk metabolite curves through a 2-d underfeeding 
challenge in late-lactating dairy goats.

The glutamate, malate, and NH2 decrease during 
challenge tended to be greater in cluster 1 with a slower 
increase during recovery. Overall, cluster 1 corresponds 
to goats that have stronger modifications of milk me-
tabolite concentrations during challenge. The idea that 
a better resilience is associated with smaller metabolic 
variations is explored in several articles, for example, 
lower variation and autocorrelation of the daily MY 
(Poppe et al., 2020) or the relative height of the MY 
maximum compared with the MY in late lactation (Ar-
nal et al., 2019). The comparison of the milk composi-
tion and SCS between clusters showed that cluster 1 
had significantly higher SCS during the recovery period. 
Milk SCS in goats is an indicator of inflammation and 
bacterial mastitis (Paape et al., 2001; Luengo et al., 
2004; Moroni et al., 2005). Interestingly, cluster 1 also 
showed higher LDH concentration around d 4 after the 
beginning of the challenge. Endogenous LDH in milk 
originates mainly from somatic cells, leucocytes, and 
invading microorganisms (Larsen, 2005) and is an in-
dicator of inflammation (Krogh et al., 2020). Increased 
LDH during feed restriction could be partly explained 
by cell damage of mammary tissue during the chal-
lenge period and was also reported in Ben Abdelkrim 
et al. (2023). Inflammation imposes a metabolic burden 
because it requires glucose and other limiting nutrients 
in ruminants, and may explain decreased concentra-
tions of glucogenic milk metabolites concomitant with 
increased SCS in cluster 1 (Bouvier-Muller et al., 2018; 
Kvidera et al., 2017). Our study suggests that the goats 
of the cluster 1 were characterized by lower resilience 
mechanisms, related both to energy metabolism and 
the inflammatory system.

CONCLUSIONS

This study presented the curves of 13 milk metabo-
lites and 1 enzyme through an underfeeding challenge 

among 138 early lactating primiparous goats selected 
for extreme functional longevity. A novel functional 
PCA approach was used to model the milk metabolite 
curves, allowing us to address the dynamic and multi-
factorial patterns of the responses. The approach did 
not discriminate the 2 longevity lines, highlighting a 
large variability within lines. Unsupervised clustering 
of such profiling, however, showed distinct metabolite 
curves associated with length of productive life in the 
flock. Moreover, we found that cholesterol, Glu6P, 
Glu, TAG, and BHB were the most discriminating 
metabolites for the cluster. These results confirm that 
multivariate analysis of noninvasive milk measures 
shows potential for deriving new resilience pheno-
types.
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