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Toward an Operational Monitoring of Oak Dieback
With Multispectral Satellite Time Series: A Case
Study in Centre-Val De Loire Region of France

Florian Mouret*, David Morin

Abstract—This article studies the monitoring of oak dieback in
forests of the Centre-Val de Loire region (France), where drought-
induced dieback has become a major concern due to climate
change. The main objective of the study is to evaluate the applicabil-
ity of multispectral satellite time series for operational monitoring
of forest dieback. Using in situ data collected from 2017 to 2022 on
approximately 2700 oak plots, a multiyear mapping of the analyzed
region was performed using the random forest algorithm and
Sentinel-2 images. Our results show that it is possible to detect oak
dieback accurately (average overall accuracy = 80% and average
balanced accuracy = 79%). A spatial cross-validation analysis
also evaluates the performance of the model on regions that were
never encountered during training, across all years, resulting in a
slight decrease in accuracy (~5%). The study also highlights the
importance of measuring the stability and performance of the clas-
sification model over time, in addition to standard cross-validation
metrics. A feature analysis shows that the shortwave infrared
part of the spectrum is the most important for mapping forest
dieback, while the red-edge portion of the spectrum can increase
the stability of the model over time. Overall, both in situ data and
model predictions showed evidence of forest decline in many areas
of the study region. Our results suggest that large areas of forest
can decline over short periods of time, highlighting the interest of
satellite data to provide timely and accurate information on forest
status.

Index Terms—Climate change, dieback detection, forest
monitoring, machine learning (ML), random forest, remote
sensing, sentinel-2.

1. INTRODUCTION

LIMATE change is expected to increase the severity and
frequency of forest disturbances, whether abiotic (e.g.,
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fire, drought) and biotic (e.g., insects, pathogens) [1], [2], [3].
Assessment and monitoring of such disturbances is essential due
to the central role of forests in the hydrological cycle [4], carbon
sequestration and biodiversity conservation [5]. Forests are also
of great economic importance, for example, by providing wood
and timber [6]. As aresult, their disturbance can cause significant
economic losses [7]. Finally, forests are often important in
national low carbon strategies (i.e., [8]). Management measures
(e.g., by reducing competition for water or promoting the es-
tablishment of species better adapted to future conditions) are
needed to facilitate and mitigate the impacts of this transition on
society [9].

In temperate forests, prolonged, repeated or exceptional
droughts combined with hotter temperatures (also called “hotter
droughts™ [10]) can push forests beyond their sustainability
threshold [9]. The effects of hotter droughts, exacerbated by
climate change, range from forest dieback to increased tree
mortality to broad-scale forest die-off. While extreme climate
conditions can impact extensive forest regions, they can intensify
the vulnerability of specific trees or areas, leading to localized
instances of dieback. These specific areas may become more
vulnerable due to a combination of factors, including altered
microclimates, variations in soil composition and quality, in-
creased competition, and heightened susceptibility to pests and
diseases [10]. Forest dieback is a complex and evolving phe-
nomenon with multifactorial causes that results in a progressive
weakening of trees and stands vigor [11]. The symptoms of
dieback are essentially visible as a reduction in leaf area and
crown and has been identified as a factor reducing the resilience
of ecosystems [12]. France, like most of the European continent,
has been affected by severe droughts in recent years [13], [14],
resulting in a generalized weakening of forest health. In partic-
ular, the French Department of Forest Health has observed an
accentuation of oak dieback on the national territory since 2018,
which motivates a timely and accurate mapping of oak dieback
to help forest managers. This article focuses on the monitoring
of forest dieback using remote sensing satellite data, which is
evaluated through a case study conducted in the Centre-Val de
Loire region of France, an area known for its oak forests, which
are a key component of the local economy and culture.

Remote sensing has been widely recognized as a valuable
tool for monitoring forest status [15], [16], [17], [18]. The
obvious advantage of remote sensing satellite data is its ability
to cover large areas in a consistent manner. For forest health
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assessment, multispectral sensors have been most commonly
used because they can efficiently capture different types of
information about vegetation behavior, i.e., visible, near infrared
(NIR), red-edge (RE), and shortwave infrared (SWIR) parts of
the spectrum provide complementary information on vegetation
status [17]. In recent years, access to consistent and freely
available multispectral satellite data has been facilitated by the
opening of the Landsat archive in 2008 [19] and the launch of
the two Sentinel-2 (S2) satellites in 2015 and 2017 [20]. The
arrival of S2 data has opened up unprecedented opportunities:
S2 data have a shorter revisit time (~ 5 days with S2-A and
S2-B) and a finer spatial resolution (up to 10 m) compared to
Landsat data (revisit time ~ 7—16 days, spatial resolution up to
30 m). The interest of these improvements has been identified
in various cases, e.g., for forest species mapping [21] or early
detection of bark beetle attacks [22]. These considerations, as
well as operational reasons, motivated the use of S2 data in this
study.

In the remote sensing literature related to the monitoring of
the forest health, many studies have focused on the detection of
forest disturbances by looking at anomalies in the remote sensing
signal [18], [23], [24], [25], [26], [27], [28]. As pointed out
in [23], in that case disturbances are characterized by monitoring
the magnitude and duration of the remote sensing signal changes.
More formally, these approaches can be seen as prediction-based
anomaly detection techniques [29]: They aim to model the
normal behavior of the signal based on historical data and define
anomalies (or disturbances) as values that significantly deviate
from this modeling. Among the benchmark methods based on
this idea, one can mention the Break detection For Additive
Seasonal Trends (BFAST) [30] and the Landsat-based Detec-
tion of Trends in Disturbance and Recovery (LandTrendr) [31]
approaches. More recently, the FORDEAD package [32] has
been developed to detect bark beetle outbreaks in spruce trees.
One drawback of such approaches is that they require historical
data to properly define what is normal behavior. Moreover, Stahl
et al. [18] has pointed out that such an approach can struggle
to detect “diffuse” disturbances (i.e., subtle changes in spectral
reflectance), which is typically the case with drought-induced
dieback of oak trees.

Supervised classification approaches can be preferred when
the phenomenon under study is subtle and difficult to model [17].
In recent years, methods based on machine learning (ML) have
been increasingly used because they can model complex behav-
iors and can be easily deployed on a large scale. For example,
in the systematic review made by Torres et al. [17], most of
the techniques used to monitor forest health are classification
or regression techniques. Among them, the randomforest (RF)
algorithm [33] was the most used, as it is generally more flexible
and provides a relatively more transparent interpretation than
most other ML algorithms. The same observation was made
by Torres et al. [18] in their review related to the attribution (or
classification) of forest disturbance types, where it was found
that the RF algorithm was used in most cases. In addition, tree-
based algorithms are known to be easier to interpret, which can
be useful to better understand the problems being modeled [34].
Note that we also assessed other classification algorithms in
our analysis, including the support vector machine (SVM)

algorithm [35] and deep learning methods. A brief discussion
on this topic is included in this document.

Based on this literature, we decided to tackle the problem of
oak dieback detection (Quercus robur and Quercus petraea) in
the Centre-Val de Loire region using the RF algorithm with S2
data. Our main goal is to establish a new approach to oak dieback
monitoring that is able to: 1) separate healthy and declining areas
as accurately as possible and 2) produce maps on a large scale
and for several years in an operational monitoring system.

The rest of this article is organized as follows. Section II
presents the study area as well as the data used for the analysis
(i.e., the reference data and the remote sensing data used to
produce the maps). In Section III, the method used to map the
forest dieback is provided, including details on how to handle
reference data coming from different years. In Section IV,
classification results are provided. In addition, we also study
the temporal stability of the classification model and show that
such an analysis is crucial in our case since we aim to map
forest dieback over different years. An analysis of the features
used (importance, temporal range, etc.) is finally performed.
Section V discusses these results and provides some additional
insights related to the problem at hand. Finally, Section VI
summarizes and concludes this work.

II. STUDY AREA AND DATA
A. Study Area

Our study area is the Centre-Val de Loire region of France and
its surroundings. It was decided to analyze all forests included
in the S2 tiles covering the region (the tiles are the one provided
by the Theia platform, (https://theia.cnes.fr , accessed on 17
July 2023). As shown in Fig. 1, the study area is centered
approximately at 47°7°N latitude and 1°8’E longitude (Northern
France), and covers 11 S2 tiles (110000 km?), with 23% of
deciduous forest according to the OSO land cover map [36].
Centre-Val de Loire Region corresponds to a plateau surrounded
by shallow valleys (max. altitude 500 m above sea mean level
(ASML), avg. 140 m ASML). It is crossed by France’s largest
river, the Loire, and its main tributaries (Allier, Cher, Indre,
Vienne). Moreover, the climate is temperate with an average
annual temperatures of 11 °C and less than 800 mm of precip-
itation per year. The few hilly areas (located in the northwest,
east, and south) have lower temperatures and higher levels of
precipitation [37]. The two major sets of soils of the region
(base-rich or acidic) affects forest cover distribution (dry or
waterlogged variants). Acidic and dry soils support oak forests
(Quercus petraea, Quercus robur), accompanied by Hornbeam
(Carpinus betulus), Birch (Betula pendula), Chestnut (Castanea
sativa), and resinous (mainly planted) forests. Waterlogged soils
have forests dominated by aspen (Populus tremula), alder (Alnus
glutinosa), and willows (Salix sp.) [37]. This study focuses on
oaks (Quercus robur and Quercus petraea), which are a key
species in the region.

B. Reference Data

1) Labeling Protocol: The health status of the reference data
is assessed using the DEPERIS protocol [38]. This protocol is
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Fig. 1. Extent of the studied area is delimited by the gray area (the boundaries
between the 11 tiles is highlighted in lighter gray). The frontier of the region
Centre-Val de Loire and its departments is in white. Finally, the colored dots
locate the reference data, with each color representing a labeling year (for
reference data labeled multiple times, the last labeling year is highlighted). The
background uses cloudless S2 images.

used by the French Forest Health Service and is currently the
official protocol for forest dieback monitoring in France [39].
The DEPERIS protocol assesses the health status of individual
trees by combining the percentages of dead branches and missing
ramifications. Each tree is assigned a score from “A” (very
healthy) to “F” (very declining or dead), with scores of “D”
or higher corresponding to declining trees with more than 50%
of canopy loss (see examples in [38]). Forest decline is then
characterized at the plot-level (a plot consists of 20 trees) by
considering the percentage of declining trees. As defined by the
French Forest Health Service, a plot is declining if more than
20% of its trees are declining, i.e., have a grade equal to or
higher than “D.” While the main objective of the analysis is to
separate healthy from declining plots, for convenience we can
add another (optional) category: A plot is very declining if more
than 50% of its trees are declining. The labeling procedure is
illustrated in Fig. 2(a) with an example, where 25% of the trees
in the plot have scores equal to or higher than “D” (declining
plot), while Fig. 2(b) gives concrete examples in the forest of
Montargis, illustrating that plots that are very close to each other
can have a different health statuses.

2) Distribution of the Reference Data: The distribution of
the reference data with respect to the labeling year is given in
Table I and shown in Fig. 1. More than half of the plots were
labeled in 2020, 71% of which were labeled healthy. This year,
a campaign was conducted in France to assess the health status
of oak forest through a random road sampling [40], following
the successive droughts of 2018/2019/2020. This campaign is
of crucial importance since it is a systematic sampling of the

LABEL

[ %D+ < 20% : Healthy }

Forest Dieback

%D+=25%

A

[ 20% < %D < 50% : Declining }

[ %D+ > 50% : Very Declining }

@

(b

Fig. 2. (a) Labeling procedure used to asses plot-level health status. Each
tree has a grade from A to F, which is given by combining percentages of
missing branches and ramifications. (b) Plots in Montargis forest labeled in 2020
(cyan/orange/red colors correspond to healthy, declining, and very declining
plots, respectively). A S2 image acquired in 2020 is used as background.

TABLE I
REFERENCE DATA PER YEAR AND DIEBACK CATEGORY

Year # Plots Healthy  Declining  Very declining

2022 300 111 97 92

2021 433 81 131 221

2020 1685 1202 338 145

2019 135 46 40 49

2018 120 50 52 18

2017 65 37 25 3
TOTAL # 2738 1527 683 528
TOTAL %  100.00%  55.77% 24.95% 19.28%

analyzed area [see for example Fig. 2(b)]. Using the same
protocol, the plots labeled the other years come from different
research campaigns carried out by private or public foresters
(see Acknowledgments at the end of this document), with the
proportion of healthy plots varying from 17% (2021) to 57%
(2017). Their spatial distribution is not uniform throughout the
study area, but they are located in different massifs and regions,
allowing us to monitor the temporal evolution and diversity of
dieback in different characteristic sites. Based on the distribution
of the reference data, two factors have been carefully considered
for our analysis and the results presented in Section IV. First,
since the study area is not completely covered by reference data,
except for 2020, it is necessary to estimate the accuracy of the
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Fig. 3. (a) Percentage of healthy plots and (b) percentage of very declining
plots with respect to the labeling year in the Orléans (blue), Fontainebleau (red),
Vierzon (yellow), and Marcénat (black) massifs. Note that for Marcénat, no data
was labeled in 2021.

maps in areas that are partially or never observed over time.
Second, changes in plot locations from one year to the next partly
cause variations in the proportions of healthy and declining
plots over time (the natural progression of forest dieback is
obviously another source of variation), which motivates the
use of validation metrics adapted to deal with imbalanced data.
Finally, considering the entire dataset, the proportions of healthy,
declining and very declining plots are 55.77%, 24.95%, and
19.28%, respectively.

Among the reference data, four forest massifs were labeled
several years in a row (the number of labeled plots may vary
slightly depending on the year and the forestry interventions).
The Fontainebleau massif (~55 plots) was labeled between
2017 and 2021. Orléans (~25 plots), Vierzon (~27 plots), and
Marcénat (9 plots) forests were labeled between 2019 and 2022.
Fig. 3 gives the percentage of healthy plots [see Fig. 3(a)] and
very declining plots [see Fig. 3(b)] for each massif over time.
Looking at this figure, there is evidence of a general increase in
dieback. Moreover, the proportion of plots in severe decline is
also increasing over time for all these massifs.

C. Satellite Data

This study used data from the Sentinel-2 satellites (S2-A and
S2-B), which are operated by the European Space Agency (ESA)
as part of the Copernicus mission, the European Union’s Earth
observation program. S2 satellites are multispectral imaging
satellites with 13 spectral bands covering the visible, the near

TABLE II
SENTINEL-2 MULTISPECTRAL BANDS USED FOR THE ANALYSIS

Central Bandwith  Resolution
Spectral bands wavelength

(nm) (nm) (m)
B2: Blue 490 65 10
B3: Green 560 35 10
B4: Red 665 30 10
B5: Vegetation Red Edge (RE) 705 15 20
B6: Vegetation Red Edge(RE) 740 15 20
B7: Vegetation Red Edge(RE) 783 20 20
B8: Near Infrared (NIR) 842 115 10
B8A: Narrow Near Infrared (NIR) 865 20 20
B11: Shortwave Infrared (SWIR) 1610 90 20
B12: Shortwave Infrared (SWIR) 2190 180 20

Learning: multi-year and multi-tile classification model
Time series | | Multi-year | | Reference Data P\e/rilri:‘ja"’:i‘l?d
extraction slicing expansion balancing temporal stability
Complete 2-year o el'xaabn?g?:s
time series i slices Urmaia Btéri;?r:ﬁzd || Classification
2olopeetaz)) | (NG |\ examples dataset model
(~2700 plots) Y, = label year angtar?:r";gar) I
Prediction
Mapping forest dieback
green, orange, red colors —
healthy, declining, very declining pixels
Fig. 4. Diagram summarizing the proposed methodological steps for the

classification of forest dieback.

infra-red (NIR), and the shortwave-infrared (SWIR) spectral
region. The ten spectral bands considered in this study have
a spatial resolution of 10 to 20 m [20], as depicted in Table II.
The MAJA processing chain [41] was used to produce level 2 A
images, which are orthorectified products expressed in surface
reflectance with cloud and shadow masks. MAJA implements a
multitemporal methodology, utilizing the temporal resolution
of Sentinel-2 imagery, to identify clouds and their shadows.
In addition, MAJA calculates the aerosol optical thickness and
water vapor to adjust a specific image for atmospheric effects
such as absorption and scattering.

III. METHODS

The proposed approach for multiyear forest dieback mapping
is summarized in Fig. 4. The remainder of this section details
each of the methodological steps of this diagram. Note that the
algorithm operates at the pixel level. Therefore, when the model
is trained, all pixels in a plot receive the plot label. This increase
the variability of the training set, see Section V for a discussion
and perspectives on this point.
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Fig. 5. S2 band values grouped by dieback class (a) in natural scale and (b)
after robust scaling (obtained by removing the median and scaling the data by
the interquartile range). The acquisition date is August 30th of the labeling year.
The colors cyan/orange/red correspond respectively to healthy, declining, and
very declining plots.

A. Time Series Extraction

1) S2 Bands: In the time series extraction step, time series
of each S2 band coming from each pixel within the reference
plots are extracted [see Fig. 2(b) for examples of circular plots].
This extraction is done using the iota? software [42], which is
a processing chain for the operational production of land cover
maps from remote sensing image time series. A linear inter-
polation (i.e., gapfilling) is performed to reconstruct missing
data caused by clouds. Such approach is commonly used in
remote sensing and have been applied with success in many
application [43], [44], [45]. The main advantage of gapfilling is
that it can be applied on a large scale due to its low computational
cost, which is well suited from an operational point of view.
Further analysis on that point is left to future work, see Section V.
During the gapfilling step, the time series from different tiles are
also interpolated on the same temporal grid with one acquisition
every 10 days for a total of 35 acquisitions per year, illustrating
the high temporal resolution of the S2 data. Finally, a road mask
is applied to remove learning pixels that were too close to the
roads.

As a preliminary analysis, Fig. 5 provides the spectral re-
sponse of the S2 data (the acquisition date is August 30 of the
label year) with respect to the declining classes. It can be seen
that forest dieback affects the entire S2 spectrum. Looking at the
scaled version in Fig. 5(b), we can see that pixels of declining
plots have on average higher visible reflectances (B2, B3, B4)
compared to the healthy pixel. A similar observation can be made
for the SWIR bands (B11 and B12). Finally, for the red-edge (B6,
B7) and NIR parts (B8, B8a) of the spectrum, declining pixels
generally have a lower reflectance compared to healthy pixels.

2) Vegetation Indices: In addition to the raw bands, it is clas-
sical to also compute vegetation indices (VIs), which can be used
more efficiently by the classification algorithm since they con-
tain richer information. A classical example in remote sensing
for vegetation analysis is the Normalized Difference Vegetation
Indice (NDVI), which is mainly related to the plant vigor [46],
[47] and is used to detect anomalies in the BFAST [30] or
LandTrendr [31] algorithms mentioned in the introduction of
this article.

In the course of our experiments, we have tested different
VIs from the literature, among which two novel indices have
been found particularly effective for the classification of forest
dieback. These two indices are continuum removal (CR) of the
S2 spectrum and are referred to as CRswir and CRre because
they focus on the SWIR and RE portions of the spectrum,
respectively. For the sake of brevity, the many tests conducted
with other indices are not fully detailed in the manuscript, but
a discussion is provided in Section V. The CRswir and CRre
formulas can be expressed as follows:

B11
Cstir = (1)
BR&a + ()\.1311 — )‘-821) X (%)
B
CR. — ° @
B4 + (Aps — Aa) X (?Bi:]ii)

where Bn and Agp, are the reflectance and the wavelength
in nanometers of the band n, respectively (see Table II for
the corresponding values). The CRswir was successfully used
for the mapping of bark beetle outbreaks in the FORDEAD
package [32], [48]. CR aims at isolating individual absorption
of interest [49], and has been mainly used with hyperspectral
remote sensing image [50]. Based on this idea, we propose
a similar indicator (CRre) that focuses on the RE part of the
S2 spectrum. Potential interests of such an indicator compared
to normalized indices such as NDVI are 1) the fact that they
combine more than two spectral bands and 2) they are not
normalized and therefore not subject to saturation effects. They
are also very easy and fast to compute when compared to more
complex indices. A graphical illustration of CRre and CRswir
is given in Fig. 6. It can be seen that both indices measure the
absorbance of a specific band (B5 for CRre and B11 for CRswir)
with respect to its local “convex hull” (B4 and B6 for CRre and
B8A and B12 for CRswir). These two indices have the advantage
of being complementary in the sense that they are sensitive to two
important physical properties of the canopy. The SWIR part of
the spectrum is known to be sensitive to leaf water content [51],
[52], while the red-edge part has been found to be sensitive to
canopy chlorophyll content [53], [54], [55], [56].

B. Multiyear Slicing and Creation of the Feature Matrix

Standard classification algorithms assume that each sample
to be classified is characterized by a fixed number of features.
Thus, in our case, each pixel must be described by time series of
fixed length, ending with the year of labeling. The length of the
temporal slice, denoted Nyear, can cover for example two years
before labeling, as illustrated in Fig. 7. These slices, with the



648 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

3500

Continuum SWIR
3000 A

2500 4 N
CRswir = c/d

Reflectance
~
(=3
(=]
o

-
%3
=3
S

Continuum RE

1000 -
CRre = a/b

B2 B3 B4 B5 B6 B7 B8 B8A B11 B12
S2 band

Fig. 6. Reflectance of a healthy plot (Orléans forest) in summer (29/06/2020)
and its continuum RE and SWIR (inspired by the figure in [48]).
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Fig. 7. Tllustration of the multiyear slicing used to create the feature matrix
when using two indices (CRre and CRswir). The left part of the image shows
the CRswir (top blue line) and CRre (bottom orange line) time series of two
different plots over time. Each plot is characterized by time series slices of fixed
length (colored areas), the end of which depends on the different labeling years
of the plots (Yup). The different time series slices (left part) are used to create
the feature matrix (right part). In the right part, median and interquartile range
(shaded area) of the whole dataset are displayed. For this example, the length of
the slices is fixed to Nyears = 2.

same dates (days/months) but different years, are used to train
a multiyear classification model. The multiyear mix makes the
resulting classification model more robust to seasonal changes
between years (e.g., phenological differences).

To analyze the potential interest of CR indices, Fig. 8 pro-
vides time series of the median and interquartile range of the
CRswir and CRre indices acquired over 2 years before labeling
(Nyears = 2) and grouped by declining classes. The different
years are mixed according to the year of labeling Y, (here,
Year 2 is Y, and Year 1 is Yjp — 1), as shown in Fig. 7. It can
be observed that, despite having data from different years, clear
trends are visible, with a gradation between healthy, declining,
and very declining plots. For both CRswir and CRre, summer
(June/September) is the period with the most marked differences
between classes. Interestingly, the budding period of the trees
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Fig. 8. Time series of (a) CRswir and (b) CRre indices of the learning dataset

acquired over 2 years prior to labeling (Year 1 is the year before labeling and Year
2 is the year of labeling). The colors cyan/orange/red correspond respectively to
healthy, declining and very declining plots based on the percentage of trees with
grades lower than D (see detailed examples in Fig. 2). The solid line corresponds
to the median value of the class and the shaded area to its interquartile range.

also seems to be informative (April/May), with declining tree
generally being delayed when compared to the other tree. How-
ever, this last observation should be treated with caution due
to the possible large phenological variability during this period
(see the discussion on this point in Section V).

C. Expanded Training References From Unlabeled Time
Series Slices

Accessing more training data, when possible, is a common
practice to improve the accuracy of ML models [57]. In our
case, it seems intuitive that a broader and more consistent
characterization of oak dieback patterns over time would be
possible with a greater number of examples across years and
massifs, especially in areas that are not consistently marked each
year. We propose to expand our training dataset with unlabeled
time series slices from plots that are only labeled for a specific
year (denoted Yia), such as plots labeled in 2020 but without
labels for the other years. To avoid adding noisy or misleading
examples, a two-condition procedure is used to select the time
series slices for which we have high confidence in the label to
be assigned:

1) A very healthy plot (percentage of declining trees lower
than 10%) labeled year Yj,, was likely to be also healthy
the years Y}, — 1 and Yj,, — 2 and is added to the training
set with its corresponding time slice (Yiap — Nyears> Yiab —1)
and (Yiab - Nyears - 1, Yiab - 2)
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2) A declining plot (percentage of declining trees higher than
20%) labeled year Y}, was likely to be declining the years
Yiab + 1 and Y}, + 2 and is added to the dataset with its
correspond time slice (Yiap + 1, Yiab + Nyears) and (Yiap +
27 }/lab + Nyears + 1)

These two rules are based on the reasonable assumption that
forest recovery from dieback is relatively slow, i.e., a declining
plot cannot become healthy within 2 years (which is consistent
with our reference data labeled several years in a row, as well
as other studies, see for example, [58]). It is also assumed that
there was no silvicultural intervention during this period, or at
least that it concerns a limited amount of pixels. In Section IV,
the interest of this data expansion step is evaluated w.r.t. using
only the raw reference data. In Section V, we discuss on possible
improvement of this procedure.

Finally, note that this additional examples are never used to
validate the performances of the models, they are only used
as additional examples to train the model. Moreover, the plots
already labeled the years Yiap, — 2, Yiap — 1, Yian, Yiab + 1, and
Yiab + 2 are obviously not duplicated in the dataset to avoid data
leakage.

D. Data Balancing

Depending on the year, the different classes to be classified are
not evenly distributed, which is typically known as an imbalance
problem [59]. We propose to balance the dataset each year
independently ( i.e., for each labeling year, we have the same
number of samples coming from the three different classes) us-
ing the Synthetic Minority Oversampling Technique (SMOTE),
which has been used successfully in many applications [60].
In short, the SMOTE technique generates synthetic data based
on the similarity in feature space between existing minority
instances. The main advantage of oversampling techniques over
undersampling techniques is that all available examples are kept
in the training set. Other variants of the SMOTE algorithm were
tested without improvement in our results (see Section V). The
SMOTE implementation used in this study is the one provided
in the Python library imbalance-learn (version 0.10.1) [61].

E. Classification

For the operational classification step, we used the RF algo-
rithm [33], which has shown very successful results when ap-
plied to remote sensing data and is therefore widely used in this
community [17], [62]. As presented in Appendix A-B, we also
tested other state-of-the-art algorithms, such as XGBoost [63]
or deep learning approaches adapted to time series [64] and all
of these algorithms provided comparable classification results
(further research on this part is left to future work). From an
operational point of view, it was decided to focus on the RF
algorithm since a fast C++ implementation is available in the
iota2 processing chain based on the shark ML library [65].
The RF algorithm has also the advantage of natively providing
feature importance, which is computed as the (normalized) total
reduction in Gini impurity introduced by a feature. Feature
importance can be used to help us understand how our samples
are classified. For our validation experiments, we have used the

TABLE III
EXPERIMENTS CONDUCTED TO EVALUATE THE PERFORMANCES OF THE
CLASSIFICATION MODEL

Experiment Evaluated factor Sec.

Standard CV Accuracy for areas covered by references Section IV-Al
SLOO CV Accuracy for unseen areas (time/space) Section IV-B
Pred. over time Temporal stability of the mapping Section IV-C

Temporal CV Forecasting Appendix A-C

CV stands for cross-validation and sloo for spatial leave one out.

scikit-learn implementation of RF (version 1.2) since it provides
feature importance [66]. Regarding the hyperparameters chosen
for the RF algorithm, which have the advantage of being easy to
tune, the number of trees was set (by gridsearch) to nyees = 1000
and the minimum number of samples in a node was set to
nodesize = 30 samples (i.e., if the number of samples in a node
is less than this parameter, then the node is not split). During our
experiment, we found that the RF was robust in the choice of its
parameters, which confirms its ability to perform well without
intensive tuning.

Finally, regarding the number of classes to be classified, our
main goal is to classify as accurately as possible forest dieback,
i.e., optimize the binary classification between healthy forest
and forest dieback. However, from the users’ point of view, the
feedback we received have highlighted the potential benefit of
having three classes (as defined in Fig. 2) for a more intuitive
appropriation of the generated maps. In the 2-class problem, the
model is first learned with three classes and the predictions of
the declining classes are merged (using directly two classes lead
to very close results).

E. Validation Procedure

The performance of our classification framework was vali-
dated by looking at different factors that could influence the
mapping accuracy within the study area. The main experiments
conducted to evaluate these factors are summarized in Table IIT
and detailed in what follows, CV stands for cross-validation and
SLOO for spatial leave one out. In all experiments, the training
and test sets are separated at the plot-level to avoid data leakage
and autocorrelation [67], i.e., pixels of the same plot are grouped
in the same set. The plot’s labels are predicted by selecting the
majority class among the pixels of the plots (using the average
probability gives similar results), allowing some heterogeneity
in the prediction of the pixels of a given plot.

1) Accuracy Metrics: Standard accuracy metrics are used,
namely overall accuracy (OA), F1 scores, and balanced accuracy
(BA). OA provides the percentage of correctly classified items,
while F1 score is the harmonic mean of precision (percentage
of samples correctly labeled in class 7) and recall (percentage of
samples of class j that were correctly labeled). BA is defined as
the average of the recalls obtained for each class ([66]). Unlike
OA, BA is not affected by imbalanced datasets, since the recall
is expressed as a percentage for each class. Therefore, OA can
be biased toward the majority class and thus be a misleading
performance measure for imbalanced datasets [68], which is
typically the case in our study. In this respect, our analysis
emphasize the results expressed in BA.
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2) Standard CV: To evaluate the accuracy of the model on
random subsets of the reference plots, classification results are
first validated by repeated cross-validation (CV): fivefold CV
are repeated ten times, with stratification done to account for the
proportion of each class by year.

3) Sloocv: Spatial dependence between training and test sets
has been identified as a potential problem in the evaluation of
mapping accuracy in remote sensing. Spatial leave one out cross
validation (SLOOCYV) can mitigate this problem by removing
from the training set all the samples too close from the tested
plot[67]. Intuitively, while a standard CV can provide interesting
information on areas covered by reference data, it can be overly
optimistic on areas without reference data. Conversely, spatial
CV has been identified as potentially overly pessimistic on
areas covered by reference data since important information
is removed from the covariate space [69]. Therefore, we have
performed both standard and SLOO CV, the former providing
information on areas well covered by reference data and the latter
estimating the performance of the model on areas poorly covered
by reference data. In the results presented in Section IV-B,
we use a spatial buffer of 10 km, which is generally largely
sufficient to exclude an entire massif and ensure a good spatial
independence of the S2 pixels (see [67]). Similar accuracy results
were obtained with a spatial buffer of 20 km but are not presented
here for brevity. Since all samples within the spatial buffer are
removed, even if they were labeled in a different year, this means
that the test areas were never covered by reference data, which is
a challenging scenario. The (S)LOOCYV was repeated 300 times
for each labeling year.

4) Prediction Over Time: To measure the temporal stability
of the different classification frameworks, we have analyzed the
prediction of reference pixels over time. Using the standard CV
procedure, test pixels are classified over the years (2017 to 2022),
even if we do not know the exact label of the pixels each year.
Then, we have computed the percentage of declining pixels that
are classified as healthy the next year.

Changes from class “healthy” to “declining” are acceptable,
since an increase in the number of declining pixels is expected
over time due. However, changes from “declining” to “healthy”
are suspicious, since the recovery of oak dieback is expected
to be slow. It is especially true if the change from declining to
healthy concern a large part of the study area (e.g., pessimistic
mapping in 2019 and optimistic mapping in 2020). In our ex-
periments, we measure the percentage of pixels changing from
“declining” to “healthy” over time to evaluate the stability of
the classification models, which is calculated as the number of
declining pixels year Y — 1 that become healthy year Y divided
by the number of pixels in the test set.

G. Feature Importance Analysis With Random Forest

The RF algorithm has the advantage of natively providing
feature importance, which is computed as the (normalized) total
reduction in Gini impurity introduced by a feature. Note that as
a complement, we also used the Python library SHAP (version
0.41.0) with the Tree Explainer method proposed by Lundberg
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Fig.9. Balanced accuracy obtained after cross validation with 95% confidence
interval (CI). The features used as input are the CRswir and CRre acquired over
two years (N years = 2). Plain error bars are obtained for a binary classification
(healthy/declining) and dashed error bars for three classes.

et al. [70], which leads to similar conclusions. For the sake
of simplicity, we do not present detailed results here, but it is
interesting to note that both analyses agree.

IV. RESULTS

This section presents experimental results that have been
conducted to validate the proposed method. First, classification
performances and temporal stability of the proposed framework
are evaluated. Second, we focus on explaining these results and
provide some insights into the multispectral response of forest
dieback.

A. Classification Results

For the sake of brevity, this section will focus on the results
obtained using the RF algorithm with the CRswir and CRre
acquired over two years (N years = 2). Two main framework are
compared, namely raw reference data and expanded reference
data. The former is a baseline approach, which trains a model
without data expansion and yearly balancing. The latter is the
framework proposed in Fig. 4. Additional classification results
obtained with other sets of feature or classification algorithms
are discussed in Section V, some of them being reported in
Appendix A.

1) Standard CV: The results obtained after the standard CV
experiment are reported in Fig. 9. These results show the accurate
separation between healthy and declining classes (two class
scenario), with an average BA equal to 78.4% when using
the proposed framework (the average OA obtained is equal to
79%). One can notice that using data expansion w.r.t. using the
raw reference data significantly increase the BA in almost all
configurations. The results are also given for three classes and
highlight the difficulty in separating declining from very declin-
ing plots, hence the lower accuracy in the three class scenario.
Looking at the F1 values of each class (see Appendix A-A), we
can see that the middle class (declining) is the most difficult
to classify, while the very declining class is more accurately
detected.
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B. SLOOCV

To evaluate the robustness of the mapping in areas without ref-
erence data, Fig. 10 reports the results obtained after SLOOCV
with and without data expansion. For comparison, the results
obtained without spatial buffer using the raw reference data are
shown in black. Overall, the dieback mapping frameworks are
robust in areas without reference data, with a decrease in BA
of about 5% compared to the standard CV (for three classes,
the decrease in BA is slightly higher, almost 7%). Similarly,
the decrease in OA is about 5%. Finally, the use of expanded
references leads again to better BA overall, especially with
results more consistent over the different years.

C. Temporal Stability

To evaluate the temporal stability of the oak dieback predic-
tions over time, Fig. 11(a) measures the percentage of classified
declining pixel that are classified healthy the next year (see def-
inition in Section ITI-F4) and Fig. 11(b) provides the percentage
of classified declining pixels. We compare the classification
obtained using the raw and expanded reference frameworks
with the CRswir and CRre indices acquired over 2 years before
labeling.

The results displayed in Fig. 11(a) show that using only
the raw reference data leads to potentially very large oscilla-
tions, e.g., 40% of the reference pixels change from declining
to healthy between 2019 and 2020, indicating that the map
generated in 2019 was very pessimistic compared to the one
generated in 2020. On the other hand, using data expansion and
balancing leads to much more stable results, with a percentage
of changes in the range 10-15%. Looking at Fig. 11(b), we
can see that the percentage of declining pixels oscillates when
using only the raw reference data. In addition, before 2020, these
percentages are higher or close to the one obtained in 2020,
which does not correspond to the observations and feedback
we received regarding the evolution of the study area. Using
the full proposed framework, the percentage of declining pixels
constantly increases over time, which is more consistent with
the successive droughts that began in 2018. These results (which
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Fig. 11.  (a) Percentage of declining pixels classified healthy next year and (b)
percentage of pixels classified as declining. Results are averaged using threefold
CV repeated ten times. The features used are the CRswir and CRre acquired over
2 years prior to labeling.

can also be appreciated visually, see Section V) show that using
data expansion and balancing leads to a model with significantly
better temporal stability. Moreover, they also show that the use of
standard classifications metrics obtained via standard CV may
not be sufficient to have a complete overview of the model’s
behavior.

Finally, note that in Fig. 11(b), the number of pixels in decline
(close to 50% in 2022) is not representative of the whole Centre-
Val de Loire region, since some areas have more reference points.
Looking only at the pixels coming from the systematic road
sampling done in 2020 (see Section II-B2), the percentage of
pixels classified as declining in 2022 is close to 25%.

D. Feature Analysis

The feature importance obtained using the CR indices (CR-
swir + CRre) or S2 bands are shown in Fig. 12(a) and (b), respec-
tively (yellow color indicates higher importance). The features
are displayed in chronological order, where Y7 is the year before
labeling and Y5 the year of labeling (i.e., first and second year
of acquisition). It can be seen that the SWIR information (B11
and B12 or CRswir) is largely used by the RF algorithm. It also
appears that the most important dates are in the summer, between
June and August (using the S2 bands, April and May also appear
to be important). Finally, the two years of acquisition are used,
with great importance given to features of year Y7, indicating
that the decline is visible long before labeling.
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E. Mapping of the Study Area

Fig. 13 provides a map example for the year 2020. The OSO
land cover map [36]) is used to select deciduous trees (from
an operational point of view, since no accurate oak mask was
available, it was decided to use a deciduous tree to avoid masking
too much area). It can be seen that the southernmost forests are
more affected by forest dieback. In the center of the map, the
Sologne region is also largely affected (this region mostly consist
in small forest patches combined with management objective
based on hunting rather than production).

V. DISCUSSION
A. Visual Map Comparison and Interest of Data Expansion

Fig. 14 provides a visual comparison of mapping obtained
using raw and expanded references. Without data expansion and
balancing, it can be observed that some areas in the produced
maps can vary significantly between years (especially those
circled in pink). On the other hand, proper balancing of the
training data can mitigate these variations and lead to much
more stable maps. We observed that using only the raw reference
data, mapping of the years 2019 and 2021 were very pessimistic
when compared to 2020, i.e., as seen in Fig. 14(c) but extended
to the entire maps. This is not in agreement with feedbacks from
foresters and the maps from 2020, e.g., it is very unlikely that
an area in decline in 2019 become healthy again in 2020 and
so on. Finally, looking at these maps, some well delimited red
patches are clearly visible. Theses patches correspond to areas,
where trees have been cut down due to forestry management (or
in some cases roads).

To the best of our knowledge, the influence of the budding pe-
riod (April/May) explains most of the differences in the temporal
variability of the model predictions obtained with and without
data expansion. To highlight this point, Fig. 15 shows the feature
importance (in natural scale) obtained using the raw references
[see Fig. 15(a)] and expanded and balanced training data [see
Fig. 15(b)]. One can clearly see the importance of the April/May
period before labeling (Y2) when using the raw references. On
the other hand, the model trained with balanced expanded data
relies less on this period and focuses more on dates between
June and September.

To illustrate this point, Fig. 16 provides the median CR-
swir and CRre time series of the healthy pixels labeled in the
Fontainebleau forest grouped by labeling year (we chose this
forest because we have the same area visited over time, allowing
us to mitigate variations due to spatial location). We can clearly
see that the inflexion point in April/May can vary over the
years, e.g., the year 2020 was advanced while the year 2021
was delayed. Without a well-balanced dataset, such year-specific
differences can be used by the model to “learn” that a given
year is (on average) declining (e.g., 2021 with many declining
references) or healthy (e.g., 2020 with a majority of healthy
plots). However, we also found that adding dates other than
summer (June/September) improve the classification results,
which means that there is interesting information outside the
summer period that can be used to detect forest dieback, but
that this information can be misleading if not used correctly.
Finally, note that the sharp decrease affecting the CRswir time
series in February 2018 is caused by undetected clouds (or snow)
affecting most of the region, illustrating that the input data may
be subject to noise or disturbances.

B. Spectro-Temporal Response of S2 Data to Forest Dieback

Our study highlights the crucial importance of the SWIR part
of the spectrum to map forest dieback. This is in agreement with
the literature, which had already identified this spectral zone. For
example, the interest of SWIR for mapping bark beetle attacks
was found in [32], [71], and [72], while Sapes et al. [73] found
that adding SWIR information increased the accuracy for oak
wilt detection. Since drought-induced dieback is associated with
increased plant water stress [10], the importance of SWIR was
also expected in our case [74].

In addition, our analysis shows that other parts of the spectrum
(particularly RE) are also affected by forest dieback. This seems
also coherent with the literature, since losses in chlorophyll
content have been related to oak decline (e.g., Hornero et al.
[75] for Phytophthora-induced symptoms in oak decline). In
the case of bark beetle attacks, Zabihi et al. [76] highlighted
the potential interest of using RE instead of SWIR, but in our
case this was not confirmed. The fact that bark beetle attacks
are much aggressive than drought-induced dieback could be an
explanation to the reduced importance of RE in our case. Even
similar classification scores are obtained when using CRswir
only and CRswir with CRre, better stability is obtained when
using both indices. This is interesting and could indicate that the
RE part of the spectrum can be used to “confirm” oak dieback in
certain cases. Other benchmark indices such as the NDVI or the
normalized difference water index (NDWI) [77], which com-
bine bands 8 A (red-edge) and 12 (SWIR) were tested without
improving the detection results (e.g., the results obtained using
NDWTI instead of CRswir are very close but slightly worse).

Finally, using 2 years of data instead of only 1 year leads to
better classification and stability (see Appendix A-B), which
is consistent with the fact that oak dieback is influenced by
previous consecutive years of drought [78]. Nevertheless, the
fact that acceptable results can be obtained with only 1 year of
dataisinteresting. Furthermore, no significant gain was observed
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Fig. 13.

Final map production for the year 2020. Healthy, declining and very declining pixels are in cyan, orange, and red, respectively. The deciduous trees OSO

land cover map is used. A dezoomed version of the map is shown at the top right. Below is a zoomed version of the pink area, in Orléans forest.

when adding another year of data. One explanation could be that
adding one year of data leads to having too many features (curse
of dimensionality) or that this new information is too correlated
with the other features.

C. Classification and Preprocessing Methods

Regarding the classification method to be used, we found
that the RF algorithm is well suited and provides good results

without requiring intensive parameter tuning (note that during
our preliminary analysis, the SVM algorithm performed sim-
ilarly than RF, but its scalability to large datasets limits its
usefulness for operational services). The fact that all models
tested so far converged to similar results is encouraging (see
Appendix A-B). Since interesting results have been obtained
using standard deep learning approaches, further research on that
point will be an interesting perspective. Indeed, an advantage
of using deep learning approach could also be the potential
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(d)

Fig. 14.

Maps produces in the Orléans forest with raw reference data (a), (b), (c) and with data expansion and yearly balancing (d), (e), (f) using the RF algorithm

and CRswir and CRre indices (acquired over 2 years). Interesting areas are circled in pink. Healthy, declining, and very declining pixels are in cyan, orange, and red,
respectively. (a) Raw references—2019. (b) Raw references—2020. (c) Raw references—2021. (d) Expanded references—2019. (e) Expanded references—2020.

(f) Expanded references—2021.
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Fig. 16.  For the different labeling years, median of the CRre and CRswir for
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application to other types of trees via transfer learning [79],
e.g., Pinus sylvestris is another key essence of the studied area.
Other state-of-the-art models could be tested, such as sparse
Gaussian processes [80] or deep learning models based on

transformers such as lightweight temporal self-attention [81].
The study of unsupervised methods such as FORDEAD [48] is
another perspective, which is encouraged by the good results
obtained using only the CRswir index. Such methods have the
advantage of being usable without reference data. However, their
implementation will be challenging given the problem at hand
and the very subtle changes observed for declining pixels (for
bark beetle attacks, the changes in CRswir are much faster and
of higher magnitude).

As discussed in the previous section, our results highlight the
interest in having data expansion to increase the accuracy and
stability of the mapping over time. While our data expansion
procedure has proven to be efficient, it is based on simple rules
that may not be correct for some specific plots. Moreover, our
rules do not cover the case where a plot healthy year Y is still
healthy year Y + 1 and, conversely, a plot declining year Y was
already declining year Y — 1. Improvement may be possible by
using other techniques, such as label spreading [82] or semisu-
pervised approaches [83], to automatically add new unlabeled
examples. However, our preliminary tests are inconclusive; a
major drawback of such an approach is the potential addition of
noisy or misleading new examples. This highlights the interest
of the relatively simple but robust data expansion procedure
presented in our study, which uses field knowledge to confidently
select additional training samples.

Regarding the oversampling technique, it was observed that
using the standard SMOTE algorithm lead to the best results.
Using variants (e.g., Borderline SMOTE [84] or ADASYN [59])
lead to a deterioration of the results. One explanation for
this deterioration could be related to potentially blurred class
boundaries: While SMOTE oversamples the entire minority
class, the variants such as ADASYN focus more on the
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boundaries. Further investigations on that point could be interest-
ing, since our results highlight the importance of class balancing.

For the imputation of missing values, other methods than
gapfilling have been tested, e.g., multiple imputation by chained
equations (MICE) [85] or k-nearest neighbors (KNN) [86], but
they did not significantly improve the classification results and
were much more time consuming. Further work on that part
is also an interesting perspective, since possible improvements
had been reported in various applications related to remote
sensing [45], [87], [88].

Finally, the greater confusion between declining and very
declining plots may be explained by the fact that both classes
share the same type of trees, i.e., trees with grades equal to or
higher than “D” (see Section II-B1). The difference lies in the
proportion of those trees in the plot. Nevertheless, the possible
separation between declining and very declining plots (even if
not perfect) is interesting from a user’s point of view. Moreover,
the good results obtained in the 2-class scenario (healthy forest
versus forest dieback) indicate that forest dieback generally
affects the majority of the S2 pixels in the plot (conversely, the
majority of pixels in healthy plots are healthy). Working at the
plot level (e.g., using the plot mean or median) was tested and
resulted in a degradation of the classification results, indicating
that using all pixels of the plot leads to better generalization. An
interesting perspective is then to work on noisy labels to mitigate
the fact that some pixels of a plot do not necessarily share the
label of the plot, e.g., healthy pixels in a declining plot.

VI. CONCLUSION

This article investigates the applicability of satellite imagery
for monitoring oak dieback through a case study conducted in
the Centre-Val region of France. Our findings are relevant to a
range of stakeholders, including forest management authorities,
environmental policy makers, and forest health researchers. In
particular, our results provide insights into the feasibility of
using remote sensing techniques to detect oak dieback, thereby
facilitating proactive interventions with a timely mapping of
the forest health status. Our work could also facilitate a deeper
exploration of the links between environmental factors and forest
dieback, for example, by combining the high-resolution maps
produced with geolocated environmental data.

Our analysis shows that the use of multispectral data (here
Sentinel-2 images) is adapted to accurately detect forest dieback.
In the 3-class scenario (healthy, declining, very declining), the
separation of declining and very declining classes remains chal-
lenging. The proposed approach involves training of a random
forest algorithm on S2 time series slices acquired over two
years prior to labeling. We propose to use time series from
two vegetation indices based on CR of the spectrum, namely
CRre, which focuses on the red edge response of the spectrum,
and CRswir, which focuses on the shortwave infrared part of
the spectrum. Furthermore, we have shown that it is important
to perform stability analysis, especially in areas that are not
always covered by reference data every year. Our results also
show that two additional steps can improve the performance and
temporal stability of the prediction model across the different

TABLE IV
OA AND BA AVERAGED OVER THE DIFFERENT LABELING YEARS FOR A
CLASSIFICATION WITH THREE CLASSES (3 CL.) AND TWO CLASSES (2 CL.)
USING THE RF ALGORITHM

Fram. Feat. N OA 3 cl. BA 3 cl. OA 2 cl. BA 2 cl.
Raw CRswir, CRre 2 0.64 0.59 0.79 0.75
Raw S2 bands 2 0.62 0.58 0.77 0.72
Raw CRswir 2 0.62 0.57 0.78 0.74
Exp. CRswir, CRre 2 0.65 0.61 0.79 0.78
Exp. CRswir, CRre 1 0.64 0.60 0.78 0.77
Exp. S2 bands 2 0.65 0.61 0.78 0.77
Exp. CRswir 2 0.65 0.61 0.79 0.78

Frameworks (Fram.) using raw or expanded (Exp.) references are compared with
various features (Feat.) and years of data in input (N = Nycar). All confidence intervals
are lower than 0.010.

Best results in bold.

TABLE V
F1 SCORES AVERAGED OVER THE DIFFERENT LABELING YEARS USING THE
RF ALGORITHM FOR THE 3 CLASSES, HEALTHY (HEALTH.), DECLINING
(DECL.) AND VERY DECLINING (V. DECL.)

Fram.  Feat. N | F1-h. Fl-d. Fl-vd
Raw CRswir, CRre 2 0.70 0.50 0.56
Raw S2 bands 2 0.66 0.49 0.58
Raw Crswir 2 0.68 0.49 0.55
Exp. CRswir, CRre 2 0.74 0.50 0.57
Exp. CRswir, CRre 1 0.73 0.47 0.58
Exp. S2 bands 2 0.74 0.46 0.58
Exp. CRswir 2 0.74 0.51 0.58

Frameworks using raw and expanded references are compared with different
feature sets. All confidence intervals are lower than 0.015.
The bold values are the best results.

years. First, data expansion can be performed using time slices of
unlabeled time series, exploiting the fact that healthy pixels were
likely healthy in the years prior to labeling, and declining pixels
are likely to continue declining in the coming years. Second,
the minority class(es) can be oversampled to balance the final
dataset. This highlights the importance of collecting samples
over multiple years to capture the diversity in phenology.

These results open up interesting perspectives, some of which
are discussed in Section V. First of all, specific work on the
classification model could improve dieback detection, especially
using deep learning models. Since the reference expansion and
balancing steps were found to be important for better general-
ization, further work on this part could increase model stability
and performance. Unsupervised detection is another interesting
perspective, especially since such approaches do not rely on
labeled data. Given the relatively subtle response of oak trees to
drought-induced decline, a combination of both approaches may
be preferable. Finally, additional data coming from synthetic
aperture radar using Sentinel-1 satellites could increase the
classification performances and is encouraged by the interest
found in combining both type of data in various remote sensing
applications [89], [90].

APPENDIX
ADDITIONAL RESULTS

A. OA, BA, and FI Scores

To complement the results provided in the main document,
Tables IV and V provides the OA, BA, and F1 scores for each
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TABLE VI
OA AND BA AVERAGED OVER THE DIFFERENT LABELING YEARS FOR A
CLASSIFICATION WITH THREE CLASSES (3 CL.) AND TWO CLASSES (2 CL.)

Classifier OA3cl. BA3cl | OA2cl. BA2cl
RF 0.653 0.610 0.792 0.779
XGBoost 0.623 0.597 0.777 0.760
FCN 0.660 0.610 0.783 0.757

Features are the CRswir acquired over 2 years before labeling. All confidence
intervals are lower than 0.011 (0.010 for RF).
The bold values are the best results.
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Fig. 17. Balanced accuracy obtained when using two classes of forest dieback
with and without expanded references. The features used as input are the CRswir
and CRre acquired over two years (Nyears = 2).

class and for different sets of features. We can see that using data
expansion is better overall, with a significant improvement for
the healthy class. Furthermore, the use of all S2 bands leads to a
decrease in the F1 score of the middle class. The lower F1 score
for the declining classes indicates a confusion between these two
classes and not between healthy and declining classes.

B. Results Obtained With Other Classifiers

Table VI provides the average OA and BA obtained with
other classifiers than the RF algorithm, when using the CRswir
acquired over 2 years before labeling. The RF algorithm is
compared to the XGBoost algorithm [63] and a fully convo-
lutional network (FCN) [64], which are adapted to time series.
A minimal tuning was conducted by grid-search, i.e., for XG-
Boost we set the learning rate, the tree depth and number of
estimator to 0.1, 7, and 100, respectively. For the FCN, we
used the baseline parameters provided in [64], i.e., a multi-
channel convolutional network of size (128, 256, 128) with
learning rate 0.001 and 30 epochs [64, Fig. 1]. Overall, RF
algorithm provides the best results without a need for inten-
sive tuning. The results obtained with standard value for the
FCN are encouraging and could motivate future work on that
point.

C. Forecasting Study

To analyze the potential interest of the proposed model for
forecasting (i.e., predicting dieback in future years) and to test
its robustness to lack of data, an experiment was conducted by
testing the model on a given year after training on the other
years. Subset of reference data (for a given year) were selected by
repeating ten times a stratified 5-fold CV. Average BA (2 classes)
are reported in Fig. 17 with and without expanded references.

25

—— CRswir
~—— CRswir + CRre
—— S2 bands

Declining pixels
healthy next

2019/2020 2020/2021 2021/2022

(a)

0 T T
2017/2018 2018/2019

—— CRswir
~—— CRswir + CRre
—— S2 bands

Declining pixels [%]

2017 2018 2019 2020 2021 2022

(b)

Fig. 18.  Percentage of (a) declining pixels classified healthy next year and (b)
pixels classified as declining (average after fivefold CV repeated ten times). The
proposed framework is used with different set of features (CRswir, CRswir, and
CRre and all S2 bands) acquired over 2 years prior to labeling.

One can see a decrease in the accuracy, i.e., average BA over
years is equal to 0.721 instead of 0.792 (see Table IV). This
decrease was expected because the model is not calibrated to
the year to be predicted and because a large number of samples
are removed from the training dataset (this is especially true
for 2020, where the number of training samples is divided
by two).

D. Temporal Stability Using Other Features

Fig. 18 is similar to Fig. 11 but focuses only on the framework
with expanded references using either CRswir, CRswir, and
CRre or all S2 bands as features. Fig. 18(a) shows that using
CRswir and CRre together leads to higher overall temporal
stability. Moreover, Fig. 18(b) also shows that when using only
CRswir, the percentage of declining pixels oscillates slightly
after 2020 without increasing, which is not consistent with our
knowledge of the study area.
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