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Estimation of gestating sows’ 
welfare status based on machine 
learning methods and behavioral 
data
Maëva Durand 1, Christine Largouët 2, Louis Bonneau de Beaufort 2, Jean‑Yves Dourmad 1 & 
Charlotte Gaillard 1*

Estimating the welfare status at an individual level on the farm is a current issue to improve livestock 
animal monitoring. New technologies showed opportunities to analyze livestock behavior with 
machine learning and sensors. The aim of the study was to estimate some components of the 
welfare status of gestating sows based on machine learning methods and behavioral data. The 
dataset used was a combination of individual and group measures of behavior (activity, social and 
feeding behaviors). A clustering method was used to estimate the welfare status of 69 sows (housed 
in four groups) during different periods (sum of 2 days per week) of gestation (between 6 and 10 
periods, depending on the group). Three clusters were identified and labelled (scapegoat, gentle and 
aggressive). Environmental conditions and the sows’ health influenced the proportion of sows in each 
cluster, contrary to the characteristics of the sow (age, body weight or body condition). The results 
also confirmed the importance of group behavior on the welfare of each individual. A decision tree was 
learned and used to classify the sows into the three categories of welfare issued from the clustering 
step. This classification relied on data obtained from an automatic feeder and automated video 
analysis, achieving an accuracy rate exceeding 72%. This study showed the potential of an automatic 
decision support system to categorize welfare based on the behavior of each gestating sow and the 
group of sows.

Animal welfare may be defined as “the positive mental and physical state linked to the satisfaction of its physi-
ological and behavioral needs, as well as its expectation. This state varies according to the animal’s perception 
of the situation”1,2. In the literature, many researchers have tried to evaluate the welfare of animals on farms. 
In Europe, one example is the Welfare Quality program, which was developed for the main species of farm 
 animals3. However, these protocols, as the animal needs  index4, the qualitative behavior  assessment5 and the 
semantic  modelling6, evaluated the welfare at group level for feasibility on commercial farm. Few studies have 
been dedicated to welfare at the individual scale with an evaluation of behavior (social interactions or physical 
activity level) as a reflection of animals’  emotions7,8. Different events may have an impact on animal behavior 
and physiology, such as in pigs thermal  variations9, sound  emission10,  enrichment11, and feeder  competition12. 
These events have an impact on the groups’ behavior. However, variability between animals should be taken more 
seriously into account, due to the individual perception of an animal confronted with a  stimulus2,7,8.

Data issued from sensors or automatons used for individual monitoring could be a way to study and auto-
matically evaluate the behavioral response of each animal to an event and its welfare  state13,14. These technologies 
are appearing on farms due to the development of precision livestock farming, defined as “the management of 
livestock production using the principles and technology of process engineering”15. The use of sensors or other 
connected objects (like electronic weight scale or ventilation regulatory system) allows individual monitoring 
of animals, often based on radio frequency identification (RFID) recognition of the  animals13. For example, 
electronic feeders could be used to feed pigs but also to predict disease  outbreaks16 and tail biting  outbreaks17,18 
at the group level; or to predict body weight at an individual  level19. To analyze the large amount of real-time 
data collected by sensors, machine learning methods could be used, involving algorithms learning from data to 
solve a specific  task20.
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Identifying farm animal welfare is a growing sustainability concern for society that may benefit from automated 
recording. The aim of this paper was to categorize the individual welfare status of gestating sows based on behavioral 
data (social behavior and physical activity), including days during which environmental perturbations were induced, 
employing machine learning techniques. As many welfare studies failed to estimate individual welfare, this study 
may show a new way to approach the ideal state of really assessing welfare in focusing on the behavioral components 
of welfare. First, three groups of behaviors (clusters) were defined using a clustering method on the behavioral data. 
Then, these clusters were interpreted using sow characteristics, health status and environmental conditions to relate 
to welfare status. Finally, the classification of the gestating sows was performed, using the labeling issued from the 
clustering, to predict the welfare status of each animal. This classification relied on continuous variables, linked to 
feeding behavior and postures, extracted from automaton and sensor (feeder and camera) collected during 2 days per 
week over 6–10 weeks, depending on the group of sows.

Methods
General approach
The objective of the study was to estimate the welfare status of each animal on a farm (Fig. 1) in an automatic 
manner for convenience and cost. Automatons and sensors automatically produce data at an individual scale, 
linked with the animal’s behavior, which could be used for its welfare estimation. Behavioral data like social 
 behavior21, postures and occupation (lying, standing, walking, eating, drinking, exploring behavior) can indeed 
be used to evaluate some components of the welfare  status22,23 of an animal or its emotional  state24,25 and were 
therefore considered in this study as the true field truth (also called ground truth).

During the offline learning process, a clustering algorithm was applied on behavioral data collected from 
manual video analysis (Fig. 1). The clustering results suggest grouping the gestating sows with similar behaviors 
into 3 subgroups (called clusters). This clustering task was performed on a dataset with a total of 388 individual 
observations from 69 sows, i.e., one sow per period (sum of 2 days per week: Tuesday and Wednesday) on a total 
of 6 to 10 periods per sows (depending on the group, Fig. 1). These periods corresponded to control periods (i.e., 
baseline behavior) or event periods with induced perturbations of the environment during a few days (3–5 days) 
in the week to induce changes in behaviors and welfare status. The idea of these perturbations was to increase 
the behavior variability between sows.

The method is also composed, during the offline learning process, of the exploration of the behavioral dataset, 
which aims to produce an interpretable model, i.e., a decision tree. For online forecasting, given some new data 
on a sow (feeder and automatic video analysis data), the already learned decision tree classifies the sow into one 
of the welfare groups.

For the offline learning process, the relation of the clustering results with welfare status was interpreted using 
individual characteristics of the sows (age, body weight, back fat thickness, health status) and the experimental 
setup (control vs. events). This clustering step enables data annotation, paving the way for the application of 
a supervised and interpretable machine learning algorithm. Once the data were annotated with the cluster 
labels, a decision tree was learned on sensor data, feeder and automatic video analysis. The performance of this 

Figure 1.  General approach of the current study (offline learning part) and practical perspectives (online 
forecasting). The number (first box, upper left) corresponds to the week of gestation.
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classification was evaluated using the labels obtained by the clustering step. It’s a way of classifying sows into 
different clusters using other data, i.e. automatically recorded data (feeder and cameras).

For the online forecasting process, the decision tree is used for inference on new live data from the sows 
(feeder and automatic video analysis data) and provides the predicted welfare class label of the sow. One of the 
major interests of the decision tree is its interpretability, which makes it a valuable tool for understanding the 
algorithm decision rules behind predictions.

Animals and management
This study was carried out from July 2020 to April 2021 at the Pig Physiology and Phenotyping Experimental 
facility (UE3P, Saint Gilles, France; https:// doi. org/ 10. 15454/1. 55739 32732 03992 7E12) of the French National 
Research Institute for Agriculture, Food and Environment (INRAE). The experimental protocol was approved by 
the local Ethics Committee in Animal Experimentation in Rennes (France) and the French Ministry of Higher 
Education, Research and Innovation (authorization on living animals No. APAFIS 25883-2020070711528084) 
in accordance with the French legislation on experimental animal care. All methods used on the experimental 
protocol were carried out in accordance with relevant French and European guidelines and regulations and with 
ARRIVE guidelines.

A total of 69 crossbred sows (Landrace × Large White), housed in four gestating rooms with one pen inside 
(groups A, B, C and D), were studied throughout their gestation. The parity of the sows ranged from 1 to 10, 
included 16 primiparous (4 per group). All sows were confirmed to be pregnant (by ultrasound) 30 days after 
insemination. After pregnancy confirmation, the number of sows kept per group was between 17 (for group A, 
B and D) and 18 (for group C). Sows were group-housed from a few days after artificial insemination to almost 
the end of their gestation at 104 days. The gestating room had a concrete floor enriched with straw and two 
chains. The space allowance was 3.1  m2/sows. Two cameras (RS-CCPOE280IR4-DH, Ro-main Inc., Canada) 
per room continuously recorded the sows. Ad libitum access to clean water was provided by two electronic 
drinkers (Asserva, France). Each sow received an individualized ration from two self-locking electronic feeders 
(Gestal, JYGA Technologies Inc., Canada) able to identify the sows’ RFID ear tag. The quantity of feed supply was 
calculated individually but fixed for all gestation periods (despite a general increase of 500 g/day from 86 days), 
while the ration composition was adjusted daily with an individual blend of two diets (a low and a high nutrient 
content: with a standard ileal digestible lysine of 3.30 and 8.50 g/kg of feed, respectively). Nutrient requirements 
were calculated using the nutritional model  InraPorc26,27.

During the gestation period, different events were induced for a few days (starting on Mondays at noon) in 
the gestation room: a competitive situation for feed (occurring twice), a sound event (occurring once), cold and 
hot thermal variations (occurring once each), enrichment (occurring twice) and impoverishment (occurring 
once) of the environment. Each “event week” followed a “control week” (a week without any induced event). 
The competitive situation for feed was created by closing one of the two available feeders in the gestation room 
for 5 days and  nights28. The sound event was induced by the random emission of 40 sounds of 30 s, under 85 
decibels, every 10 min, twice a day (from 23:00 h to 04:00 h and from 13:30 h to 18:30 h) for 3  days29. These two 
moments were chosen to correspond to a moment of high activity level (the night, as new feeding day started 
at midnight) and a moment of low activity level (the afternoon with a resting period). The cold and hot thermal 
events consisted of setting the thermostatic control at 12 ± 2 °C and 32 ± 2 °C, respectively, using ventilation fans 
or heaters, for 3 days and  nights30. The impoverishment was induced by removing the straw bedding on the room. 
Finally, the enrichments were composed of the addition of straw during the first session and by the supply of jute 
bags, brush and ropes during the second session.

Data collection
Every Monday, animal-based measures (number of skin lesions, cleanliness of the sow, and identification of 
potential health problems) were evaluated based on the Welfare  Quality®  assessment3 with the same trained 
observer. A sow was categorized as “unhealthy” if, during the measure, a health problem was detected (bursitis, 
lameness, tail biting, vulvar lesion or abscesses); otherwise, the sow was categorized as “healthy”. The electronic 
feeders automatically recorded every visit of each sow (time of the day, duration of the visit, feed intake). 
Extracted data were preprocessed to filter the outliers (i.e., visit duration over 6 h, 0.007% of all the dataset) and 
aggregated at an individual scale for the 7 variables described in Table 1. The feeder order, i.e. the order in which 
the sows had access to the feeder, was also recorded and represented a proxy of the hierarchical  order31 (i.e., rank 
1 for the most dominant sows). Manual analysis of videos was carried out in continuous by trained observers 
to monitor individual behavior (social and activity) for two moments (23:00 h–04:00 h and 13:30 h–18:30 h) of 
2 days per period. The detailed ethogram is available in Durand et al.28, and raw data are available in a  datapaper32. 
From the video analysis, 3 indexes were calculated to obtain a limited number of variables gathering the intensity 
and the valence of the level of activity and social interactions (Table 1). For example, when the “Index_activity” 
has a negative value, the sow spent more time passive than active, and when the “Index_giving” has a negative 
value, the sow gave more negative interactions than positive ones. An automatic analysis of videos was also 
achieved at a group level using a convolutional neural network algorithm (Dilepix, France)33. In that case, data 
were aggregated on 6 variables as the percentage of sows detected in 6 postures (Table 1).

The behavioral data (from the manual and automatic video analysis and from the feeder), recorded on the 
same time windows, were aggregated in sums over a period of 2 days (Tuesday, Wednesday) per week to exclude 
days with animal manipulation.

https://doi.org/10.15454/1.5573932732039927E12
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Clustering, nonsupervised data mining method
Clustering algorithms group similar data together based on their intrinsic characteristics without any prior 
knowledge of the class labels. For this study, the unsupervised algorithm used for clustering was K-medoids. 
Instead of using the mean value as the center of a cluster, K-medoids clustering uses the actual data point that 
minimizes the total dissimilarity to all other points within the cluster. The medoid is then less affected by noise 
and outliers (abnormal values). K-medoid clustering helps create more accurate and robust clusters and is a 
suitable choice when dealing with real-data applications where noise and outliers are a  concern34. The principle 
of the clustering algorithm is first to initialize the cluster centers randomly or according to some criteria. Then, 
the algorithm iteratively assigns data points to one of the clusters based on a similarity or distance measure and 
updates the cluster centers until convergence. When applying a clustering algorithm, the parametrization requires 
selecting appropriate values for various parameters that affect the clustering approach. These parameters may 
include the number of clusters to generate, the distance metric used and the convergence criteria for stopping 
the iterative process. Choosing optimal values for these parameters is crucial because it impacts the quality of 
the clustering  results34.

K-medoid clustering was performed on the dataset composed of three variables extracted from the manual 
analysis video (‘ratio_activity’, ‘ratio_receiving’, ‘ratio_giving’) and normalized before clustering (values between 
− 1 and 1). The appropriate number of clusters (from 1 to 10) was 3 for the clustering task, as it gave the highest 
performances with the following metrics: inertia, silhouette coefficient and graph, elbow graph, Calinski‒
Harabasz index and Davies‒Bouldin  index34. The distance metric used was Euclidean. The algorithm initialized 
the centroids using the k-means++ method, which resulted in better initialization and potentially improved the 
clustering  performance35.

Decision tree, supervised classification method based on clustering label
The supervised classification method chosen was a decision tree applied to the data labeled by the classes issued 
from the previous clustering step. A decision tree is a popular machine learning algorithm that learns from 
input data and uses a tree-like structure to make decisions or predictions. In a decision tree, each internal node 
represents a combination of feature values, and each branch corresponds to a possible value or outcome. Decision 
trees are commonly used for classification tasks and provide interpretability and ease of understanding due to 
their graphical  representation36. The dataset composed of feeder data and automatic video analysis data was 
randomly split into a training dataset (70% of the original dataset) and a test dataset (30%), with care taken to 
ensure that there were a sufficient number of observations for each cluster. The hyperparameter chosen for the 
maximum depth was 3 (1 to 5) due to their optimal performance on the training  dataset35. The decision tree was 
created with the feeder data (7 variables at the individual scale) and automatic video analysis data (6 variables 
at the group scale).

Statistical analyses and implementation of algorithms
The effect of factors (week, group, event) on the clusters was evaluated using Cochran’s Q test, which was designed 
for paired data with more than two groups for comparison. Friedman tests and post hoc tests were used to 
assess the effects of continuous data (body weight, age, backfat thickness) on the clusters. The threshold for 
statistical significance was set at P < 0.05 and trend-level significance between 0.05 < P < 0.10. The implementation 
was realized in Python using the scikit-learn  library35 (version 1.2.1.) for the clustering (K-medoid) and the 
classification (decision tree) tasks. Statistical analyses were performed using the Python ‘statsmodels’, ‘scipy’ 
and ‘scikit_posthocs’ libraries.

Results
Behavioral patterns identified by clustering
The inertia of 3 clusters was 189.07 (better than with 5 clusters = 157.95), and the silhouette score was 0.33 (better 
than with 5 clusters at 0.30). The three clusters (0, 1, and 2) gathered 95, 131, and 162 observations of sows 
per period, respectively (Table 2). The medoid of cluster 0 was characterized by a passive activity level (ratio_
activity = − 0.14), a balanced number of given interactions between positive and negative (ratio_giving = 0.08), 
and more negative interactions received (ratio_receiving = − 0.75). Sows of cluster 0 were therefore called 
‘scapegoats’. The medoid of cluster 1 was characterized by a high activity level (ratio_activity = 0.07) and giving 
and receiving more negative interactions (ratio_giving = − 0.80; ratio_receiving = − 0.67). Sows of cluster 1 were 
called ‘aggressive’. The medoid of cluster 2 was characterized by a passive activity level (ratio_activity = − 0.18), 
giving more positive interactions (ratio_giving = 0.5) and receiving a balanced amount of positive and negative 
interactions (ratio_receiving = 0). Sows of cluster 2 were called ‘gentle’.

The evolution of sows’ cluster attribution in group A during the 6 periods showed differences between periods 
and sows (Fig. 2). For example, one sow (the bottom line) was always classified as a ‘gentle’, while a majority of 
sows changed between ‘gentle’ and ‘scapegoat’ clusters due to the alternation of control (1, 3 and 5) and event (2, 
4, and 6) periods. The evolution graph also showed that sows did not stay ‘aggressive’ for more than two periods.

Interpretation of the clusters and link with welfare
There was a significant dependence between the weeks (control vs. event) and the clusters (P < 0.01). During 
the event weeks, the proportion of ‘gentle’ sows tended to be lower compared to control weeks (53% vs. 35%, 
P = 0.07), while the proportion of ‘scapegoats’ (22% vs. 26%, P > 0.10) and ‘aggressive’ sows tended to increase 
(25% vs. 39%, P = 0.07, Fig. 3).

Groups A and B had a higher proportion of ‘gentle’ sows than groups C and D (96% and 50%, respectively, 
P < 0.001) and a lower proportion of ‘aggressive’ sows (49% and 75%, respectively, P < 0.001). While there were no 
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differences between C and D (P > 0.10), there were significant differences between A and B (P < 0.01). Compared 
to group B, group A had more ‘scapegoats’ (4% vs. 43%) and more ‘aggressive’ (0% vs. 6%) and fewer ‘gentle’ 
(98% vs. 50%) sows.

There was a significant dependence between the type of event (feed competition, sound event, thermic 
variation, enrichment and impoverishment) and the clusters (P = 0.02, Fig. 3). A higher proportion of ‘gentle’ sows 
were found during the feed competition and sound events (66% and 63%) than during the other events, heat, cold 
and enrichment/impoverishment events (P = 0.06). A higher proportion of ‘aggressive’ sows was found during 
the thermic events and impoverishment (67% and 78%, P = 0.01) than during the other events (average 4%).

There were no effects of body weight, backfat thickness, age of the sow or hierarchical rank (P > 0.10, Table 2) 
on the clusters. The health of the sows tended to be different between the clusters. Indeed, the unhealthy sows 
(bursitis, tail biting, vulvar lesions, lameness) were more aggressive than healthy sows (28 vs. 12%, respectively, 
P = 0.05). This difference was particularly linked to the fact that more unhealthy sows suffered from tail biting 
and vulvar lesions. Therefore, the behavioral clusters could be representative of the different states of welfare and 
be used for the automatic classification task.

Automatic classification of welfare status
The decision tree classification results with the feeder and the automatic video analysis data had accuracies of 80% 
and 72% (for the training and testing datasets respectively, using the labels from the clustering step) and F1-scores 
of 0.80 and 0.72. The performance results by clusters showed better results to predict ‘gentle’ and ‘aggressive’ sows 
(F1-score = 0.86 and 0.80, respectively) than ‘scapegoat’ (F1-score = 0.70). The decision tree with the feeder data 
only had accuracies of 67% and 64% for the training and testing datasets, respectively, and F1-scores of 0.61 and 
0.56. The performances to predict ‘scapegoat’ were better with feeder data only than with feeder and automatic 
video analysis data together, while this combination of measurements gave higher performances for ‘aggressive’ 
and ‘gentle’ sows (Table 3).

The decision tree (Fig. 4) showed the paths in the tree, through the various possible values of group and 
individual variables, to reach the class of the sow. For instance, a sow was classified as ‘aggressive’ by starting 
from the root node through the right branch of the tree to the leaf node “aggressive”. It means that if the sows 
of the group spend more than 3.39% of their daily time eating, and if the sow did more than 3.5 non-nutritive 

Table 1.  Ethogram and description of the features used in the study (NV nutritive visit, NNV nonnutritive 
visit, cat categories, Avg average, Nb number).

Features Description

Features from manual video analysis (used for clustering)

 Active Total time spent by a sow in active occupation, such as standing, walking, drinking, eating, exploring, or manipulating the enrichment objects

 Passive Total time spent by a sow in passive occupation, such as sitting, lying, or observing

 Index_activity Time spent ‘Active’ minus spent ‘Passive’ divided by the total time spent ‘Active’ and ‘Passive’

 Giving positive interactions Number of times a sow gives positive social interactions, such as huddling (lying with body contact with another sow), achieving “snout to 
snout” or sniffing

 Receiving positive interactions Number of times a sow receives positive social interactions, such as huddling (lying with body contact with another sow), achieving “snout to 
snout” or sniffing

 Giving agonistic interactions Number of times a sow gives agonistic social interactions, such as head knocking, pushing, biting, threatening, fleeing or attacking

 Receiving agonistic interactions Number of times a sow receives agonistic social interactions, such as head knocking, pushing, biting, threatening, fleeing or attacking

 Index_giving Number of ‘Giving positive interactions’ minus number of ‘Giving negative interactions’ divided by the total number ‘Giving positive interac-
tions’ and ‘Giving negative interactions’

 Index_receiving Number of ‘Receiving positive interactions’ minus number of ‘Receiving negative interactions’) divided by the total number ‘Receiving posi-
tive interactions’ and ‘Receiving negative interactions’

Features from feeder data (used for decision tree)

 Nb_NV Total number of nutritive visits (with feed consumption) at the feeder per period

 Nb_NNV Total number of nonnutritive visits (without feed consumption) at the feeder per period

 Time_NV (in min) Total duration of nutritive visits at the feeder per period

 Time_NNV (in min) Total duration of nonnutritive visits at the feeder per period

 Avg_NNV (in min/visit) Duration of nonnutritive visits divided by the number of nonnutritive visits

 Avg_NV (in min/visit) Duration of nutritive visits divided by the number of nutritive visits

 Rank_cat Sow order of visit to the feeder (indicator of hierarchical status)

Postures features from automatic video analysis (used for decision tree)

 Side_lying (%) % of sows in lateral lying position (4 legs on the same side, flank fully on the ground)

 Ventral_lying (%) % of sows in ventral lying position (1 or more legs not visible or on the same side, flank not fully touching the ground)

 Standing (%) % of sows on the 4 legs (still or moving) only on contact with the floor

 Sitting (%) % of sows with the chest off the ground, the front legs straight and the back legs on the ground

 Eating (%) % of sows in the feeder (door closed and head in the trough)

 Drinking (%) % of sows in the drinker (head and two forelegs in the trough)
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visits per day to the feeder, and if the sows of the group spent more than 15.28% of their daily time standing, 
then it is classified as “aggressive”.

Discussion
The results showed that estimating the welfare status of gestating sows during a specific period may soon be pos-
sible. Using clustering in conjunction with classification on automatically recorded on-farm data opens the door 
to innovative research  opportunities37. The behavior features used to build clustering (level of physical activity 
and social interactions) were found in the literature to be linked to some components of  welfare13,21–24,38. The 
principal concern regarding this welfare evaluation was the variability in threshold definitions, which can differ 
based on farm conditions or groups of sows. An advantage of data mining methods (such as clustering) is that 
they can be readily applied to farm data owing to their unsupervised learning nature, which does not require any 
prior knowledge or data annotation. However, one of the drawbacks of data mining for cluster interpretation is 
that the clusters generated may not always have straightforward and easily interpretable meanings. To validate 
this new and upgradeable first approach, its application on additional datasets will be necessary to improve the 
studied link between welfare and behavior. To establish a more robust method, it should be testing with respect 
to other identified welfare indicators in the literature, such as stereotypies (abnormal behaviors linked to bore-
dom)21, which can also be measured through video analysis.

The three clusters identified in this study demonstrated a correlation with health status, particularly for 
‘aggressive’ behavior. Animals’ health status was considered a part of welfare  status39, and behavioral changes 
could be potential signs of  illness40. The characteristics of the sow did not significantly influence the clustering: 
as a result, a sow could belong to one of the three behavioral clusters depending on the studied period. This is in 
accordance with one welfare  definition41 and showed that the clustering method may be an estimation of some 
components of the welfare status of an individual at a given time. However, this outcome is unexpected, consider-
ing that numerous studies have demonstrated the impact of parity on physical activity or agonistic interactions, 
which are variables used for the clustering 42–44. However, the experimental design does not reveal any causal 
links but only potential correlations.

With these different proportions of sows in clusters, discrimination may be achievable not only between 
controls and events but also among different types of events. The effect of the event on the sow’s behavior was 
reported in other studies. For example, the increased competition for feed resources could increase agonistic 
social relations and the level of physical activity, inducing degradation of welfare  status45. In contrast, the enrich-
ment of the pen decreases agonistic social relations and improves welfare  status11. If these results also suggest 
this approach could be a method to estimate the welfare status of farms, validation on farms with varying envi-
ronmental conditions must be conducted to rule out any bias in this experimental design.

The group effect on individual behaviors is also of major interest. Group behavior could have an impact on 
the behavior of all animals and may depend on the composition or size of the  group42. The difference in the 
proportion of ‘aggressive’ sows between groups A and B vs. groups C and D, during event or control periods, 

Table 2.  Differences in features between the three clusters. The letters a, b, and c show a significant difference 
for post hoc tests (NV nutritive visit, NNV nonnutritive visit, cat categories, Avg average, Nb number).

Cluster 0 (scapegoat) Cluster 1 (aggressive) Cluster 2 (gentle) All clusters SEM P value

Number of observations 95 131 162 388

Features from manual video analysis (used for clustering)

 Index_activity − 0.14 0.13 − 0.17 − 0.06 0.02 0.84

 Index_giving 0.08a − 0.73b 0.51c − 0.02 0.03 < 0.001

 Index_receiving − 0.72a − 0.62b 0.04c − 0.37 0.02 < 0.001

Features from feeder data (used for decision tree)

 Nb_NV 2.48a 3.11b 2.39a 2.66 0.05 0.02

 Nb_NNV 10.40a 15.40b 11.10a 12.40 0.51 0.008

 Time_NV (in min) 90.40a 105.00b 80.60a 91.50 3.78 0.004

 Time_NNV (in min) 61.40 88.20 63.50 71.30 4.80 0.94

 Avg_NNV (in min/visit) 4.94 5.90 5.35 5.44 0.30 0.79

 Avg_NV (in min/visit) 37.70a 34.00a 33.50b 34.00 1.15 0.08

 Rank_cat 10.60 9.00 9.60 9.60 0.21 0.99

Features from automatic video analysis (used for decision tree)

 Side_lying (%) 51.00 50.10 50.20 50.40 0.21 0.29

 Ventral_lying (%) 21.30a 22.00b 21.20a 21.50 0.13 0.06

 Standing (%) 19.20 18.60 20.40 19.50 0.12 0.49

 Sitting (%) 1.13 0.93 0.93 0.98 0.02 0.10

 Eating (%) 3.20a 3.93b 2.97a 3.31 0.04 0.03

 Drinking (%) 0.58 0.66 0.60 0.61 0.01 0.23
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may suggest an important effect of the group of sows on the individual welfare status. The effect of group may be 
explained to the difference in events induced between groups A and B vs. groups C and D.

Predictions made using a learned decision tree on combined feeder and automatic video analysis data yielded 
satisfactory results (with an accuracy of over 80%). The importance of feeding behavior and activities to deter-
mine health or welfare was also confirmed by Matthews et al.46. Due to the restricted feeding of sows, the number 
of nonnutritive visits and the time of eating (duration of nutritive visits) were key features to classify components 
of welfare. The introduction of group behavioral features (from automatic video analysis) in the decision tree 
model decreased the prediction performance of the ‘scapegoat’ compared to the feeder data only (F1 score = 0.60 
vs. 0.80). One hypothesis could be that the ‘aggressive’ and ‘gentle’ classes are mainly linked to group behavior, 

Figure 2.  Evolution of the sows from group A between the three clusters during the six periods followed. One 
line between periods corresponds to one sow evolution.

Figure 3.  Proportions of sows in the three clusters (gentle, aggressive, scapegoat) for each week (control or 
events).
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and the ‘scapegoat’ class is mainly linked to individual features. This ‘scapegoat’ behavior was also not significantly 
linked to the type of week (control/event) or health status. It would be the most difficult class to characterize and 
to predict due to the lack of link with environmental conditions. On the decision tree, the importance of group 
behavior on individual behavior was also shown with the importance of group level features. Therefore, as pig is 
a social animal, group behavior may have an impact on the welfare of each  sow21 and is required to take it into 
account to predict the individual welfare status.

Conclusions
This study represents a significant step toward estimating the welfare status of gestating sows, particularly with 
the rapid advancements in the field of artificial intelligence within the realm of animal science. The approach 
of employing machine learning techniques, which combines an unsupervised method like clustering for data 
labeling with a supervised method for sensor data to learn an interpretable decision tree, yields meaningful 
results. However, further efforts are needed to fully interpret these clusters as “welfare estimators” and utilize 
them for distinguishing environmental conditions or health issues. In practice, this method could be integrated 
into a decision support system (DSS) to comprehensively monitor the living conditions of animals. Furthermore, 
the DSS can predict potential issues and alert farmers to welfare concerns, thus contributing to proactive and 
preventive animal welfare management.

Data availability
The data used in this study are available for public access and described in the data paper from Durand et al.23.
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