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 43 

Abstract 44 

Neonicotinoids are the most widely used class of insecticides in the world but they have raised numerous concerns 45 

regarding their effects on biodiversity. Thus, the objective of this work was to do a critical review of the 46 

contamination of the environment (soil, water, air, biota) by neonicotinoids (acetamiprid, clothianidin, 47 

imidacloprid, thiacloprid, thiamethoxam) and of their impacts on terrestrial and aquatic biodiversity. 48 

Neonicotinoids are very frequently detected in soils and in freshwater, and they are also found in the air. They 49 

have only been recently monitored in coastal and marine environments, but some studies already reported the 50 

presence of imidacloprid and thiamethoxam in transitional or semi-enclosed ecosystems (lagoons, bays and 51 

estuaries). The contamination of the environment leads to the exposure and to the contamination of non-target 52 

organisms, and to negative effects on biodiversity. Direct impacts of neonicotinoids are mainly reported on 53 

terrestrial invertebrates (e.g., pollinators, natural enemies, earthworms) and vertebrates (e.g., birds), and on aquatic 54 

invertebrates (e.g., arthropods). Impacts on aquatic vertebrate populations and communities, as well as on 55 

microorganisms, are less documented. In addition to their toxicity to directly exposed organisms, neonicotinoid 56 

induce indirect effects via trophic cascades as demonstrated in several species (terrestrial and aquatic 57 
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invertebrates). However, more data are needed to reach firmer conclusions and to get a clearer picture of such 58 

indirect effects. Finally, we identified specific knowledge gaps that need to be filled to better understand the effects 59 

of neonicotinoids on terrestrial, freshwater and marine organisms, as well as on ecosystem services associated with 60 

these biotas. 61 

 62 

Graphical abstract  63 

 64 
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 68 

Introduction 69 

Neonicotinoids are systemic insecticides (i.e., they diffuse throughout the treated plants to protect them from pests) 70 

that act on the central nervous system of insects by targeting nicotinic acetylcholine receptors (nAChRs) in the 71 

brain (Simon-Delso et al. 2015; Thompson et al. 2020). They are the world’s fastest-growing and currently the 72 

most widely used class of insecticides against a broad spectrum of sucking and chewing insects (plant hoppers, 73 

thrips, micro-lepidopteras), and they are also involved in veterinary medicine (e.g., against fleas in pets) and in 74 

biocidal products such as those used for the treatment of livestock buildings or in pest baits for domestic use 75 

(Klingelhöfer et al. 2022; Thompson et al. 2020). In agriculture, neonicotinoids are mainly applied through seed 76 
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treatments, but they are also employed as granular application, spraying or soil treatment (Simon-Delso et al. 2015; 77 

Thompson et al. 2020). The five most used active substances are acetamiprid, clothianidin, imidacloprid, 78 

thiacloprid and thiamethoxam (clothianidin is also the main transformation product of thiamethoxam). Among 79 

these substances, only acetamiprid is still approved in the European Union (EU Pesticides database 2023). 80 

Clothianidin and thiamethoxam were withdrawn in 2019, while imidacloprid and thiacloprid were withdrawn in 81 

2020 (European Commission 2023). However, for example in France, derogations have been granted in 2021 and 82 

2022 for the use of coated seeds treated with imidacloprid or thiamethoxam in the context of the infestation of beet 83 

crops by aphids (JORF 2021; JORF 2022). Consequently, because of their wide use all over the world, and because 84 

of the high persistence of clothianidin, imidacloprid and thiamethoxam (average half-life in soils is 121 days for 85 

thiamethoxam (PPDB 2023), 187 days for imidacloprid (PPDB 2023) and 545 days for clothianidin (PPDB 2023) 86 

which could reach 20 years (Thompson et al. 2020)), neonicotinoids are likely to be ubiquitous in the environment, 87 

and present a potential environmental health concern (Bonmatin et al. 2015; Goulson 2013; Humann‐Guilleminot 88 

et al. 2019a; Morrissey et al. 2015).  89 

Neonicotinoids were first presented as having key attributes such as systemic nature, versatility in 90 

application (especially as seed treatments), selective toxicity to arthropods, lower binding efficiencies to vertebrate 91 

compared to invertebrate receptors, and assumed lower impacts on non-target aquatic and terrestrial organisms 92 

(Simon-Delso et al. 2015; Thompson et al. 2020). Neonicotinoids should also theoretically not target organisms 93 

lacking nAChRs and thus nervous systems, such as protists, fungi, prokaryotes and plants (Simon-Delso et al. 94 

2015). 95 

However, neonicotinoids appeared to have lethal and sublethal effects on non-target organisms, including 96 

pollinators, insect predators and vertebrates (especially birds) (Alsafran et al. 2022; Mineau and Kern 2023; 97 

Mineau and Palmer 2013; Simon-Deslo et al. 2015). Thus, for many years, the use of neonicotinoid-based products 98 

in agriculture has raised concerns in several countries, particularly because of their effects on pollinators 99 

(Demortain 2021; Suryanarayanan 2013), and EFSA (2018) concluded that most uses of neonicotinoid substances 100 

do represent a risk to wild bees and honeybees. In addition, as more than 80% of neonicotinoid seed treatments 101 

can remain in the soil (Alford and Krupke 2017; Sur and Stork 2003), soil invertebrates may be exposed to high 102 

doses of neonicotinoids, with recognized lethal and sublethal effects (Gunstone et al. 2021). Neonicotinoids also 103 

contaminate freshwater ecosystems worldwide and could impact aquatic invertebrates, over broad spatial scales 104 

(Cavallaro et al. 2019; Hallmann et al. 2014; Morrissey et al. 2015). Moreover, they were demonstrated to exert 105 
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negative effects on terrestrial and aquatic vertebrates (Gibbons et al. 2015; Thompson et al. 2020; Wood and 106 

Goulson 2017).  107 

In this context, the objective of this work was to do a critical review of (1) the contamination of the 108 

environment (soil, water, air, biota) by neonicotinoids and (2) their impacts on terrestrial and aquatic biodiversity. 109 

Although the literature focused on the ecotoxicological effects of neonicotinoids is abundant, to the best of our 110 

knowledge, no review has been published on the overall impacts of these substances on the whole biodiversity.  111 

 112 

Bibliographic corpus 113 

The review of the literature on the impacts of neonicotinoids on biodiversity was performed under the framework 114 

of a French collective scientific assessment focused on the impacts of plant protection products (PPPs) on 115 

biodiversity and ecosystem services (Pesce et al. 2023). Collective scientific assessment seeks to inform public 116 

policy and to foster public debate by analyzing the literature, but it is neither a meta-analysis nor a systematic 117 

review (Pesce et al. 2021). Though not quantitative, this review gives a detailed and complete overview of the 118 

impacts of neonicotinoids on the whole biodiversity. 119 

In this framework, the bibliographic corpus was adapted and constructed as follows: six queries (Q) 120 

focused on neonicotinoids (Q1), ecotoxicology (Q2), biodiversity (Q3), terrestrial ecosystems (Q4), freshwater 121 

ecosystems (Q5) and marine ecosystems (Q6) were defined with related keywords (Table SI1). The literature 122 

search was conducted on the Web of ScienceTM, from 2000 to 2020. 123 

The corpus of publications was then built by combining Q1 with Q2, Q3, Q4, Q5 or Q6. The combination 124 

of Q1*Q2 yielded 7349 references; that of Q1*Q3, 457 references; Q1*Q4, 3309 references; Q1*Q5, 841 125 

references; and Q1*Q6, 252 references. After removing duplicates, the total number of references was 7697.  126 

The time course of the 7697 references showed a strong increase in the number of publications related to 127 

the impacts of neonicotinoids from 2000 to 2020 (Fig. 1). Among the five neonicotinoids retained in this review, 128 

imidacloprid was the most studied one (4218 occurrences in titles and abstracts), well above thiamethoxam (1672), 129 

acetamiprid (1176), clothianidin (887) and thiacloprid (674) (Fig. 2). The bibliometric measurements also 130 

demonstrated that terrestrial invertebrates were the most studied organisms and especially honeybees (Fig. 3). 131 

Apart from terrestrial invertebrates, fish come at the thirty second place (Fig. 3). In the first 35 occurrences, there 132 

are no other taxonomic group. 133 

The categorization of references was based on titles and abstracts. The selected corpus was then divided 134 

according to the expertise of the different authors who proceeded to in-depth analysis of each reference. The 135 
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literature search was focused on the most integrative and ecologically realistic studies as possible. The results of 136 

single-species tests were not systematically reviewed, and were only used if they provided explanatory elements 137 

for processes observed under realistic environmental conditions. 138 

The corpus was finally manually completed by various documents, papers and books known to the authors and 139 

which were not present in the 7697 references, and over time until April 2023. At the end, a total of 308 140 

publications were retained and cited in this work. 141 

 142 

Terrestrial ecosystems 143 

Contamination of soils, plants and air 144 

Neonicotinoids are found in all environments: soil, water (see section “Contamination of freshwater and marine 145 

environments” below), plants and air.  146 

 147 

Contamination of soils 148 

Soil contamination by neonicotinoids has been studied under various climates, soil types, and agricultural practices 149 

(Table 1). A large study conducted on 74 French cultivated soils showed that imidacloprid (limit of quantification 150 

LOQ = 1 µg/kg) was present in 91% of the soil samples (excluding seven organically grown soils, with no 151 

detectable traces) although only 15% of the sites had been planted with treated seeds the year of the monitoring 152 

(Bonmatin et al. 2005a). In addition, imidacloprid was detected in 100% of the soils which received treated seeds 153 

(corn, wheat or barley) during the sampling year, and in 97% of the soils which received the same treatment one 154 

or two years before the study. Concentrations were higher in the soils which had been treated consecutively during 155 

two years before the monitoring than in those that received treated seeds only one year before, indicating that 156 

imidacloprid accumulates in soils over time. Silva et al. (2019) found that imidacloprid was present in 7% of the 157 

examined European topsoil samples (LOQ = 10 µg/kg, one order of magnitude higher than the above study) with 158 

a maximum content of 60 µg/kg, while Pelosi et al. (2021) found imidacloprid in 90 % of French sampled soils 159 

(n=180, 26 % when considering concentrations >10 µg/kg, LOQ = 0.4 µg/kg) and concentrations reaching 160 160 

µg/kg (Table 1). Thiamethoxam was present in 20% of the French soils at low concentrations (maximum of 2 161 

µg/kg, LOQ = 0.4 µg/kg) (Pelosi et al. 2021). In Switzerland, imidacloprid (LOQ = 0.9 10-3 µg/kg) was quantified 162 

in 94% of cultivated field soils (n=82) and in 71% of ecological focus area soils (annual, biennial and perennial 163 

herbaceous plant species; n=68) (Humann-Guilleminot et al. 2019a). Clothianidin (LOQ = 1.6 10-3 µg/kg) was 164 
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also frequently observed in the sampled soils (77% of cultivated fields and 46% of ecological focus areas); 165 

followed by thiacloprid (LOQ = 1.6 10-3 µg/kg; 28% and 13%), thiamethoxam (LOQ = 1.9 10-3 µg/kg; 27% and 166 

6%) and acetamiprid (LOQ = 2.0 10-3 µg/kg; 13% and 3%) (Humann-Guilleminot et al. 2019a). Similarly, Riedo 167 

et al. (2021) repeatedly observed imidacloprid (59% of soils, maximum concentration of 24 µg/kg, LOQ = 0.14 168 

µg/kg), clothianidin (55%, 57 µg/kg, LOQ = 0.15 µg/kg), thiamethoxam (21%, 24 µg/kg, LOQ =0.15 µg/kg) and 169 

thiacloprid (10%, 14 µg/kg, LOQ = 0.073 µg/kg) in various Swiss agricultural soils (Table 1). The highest 170 

concentration of imidacloprid in Switzerland was measured by Chiaia-Hernandez et al. (2017) and was found to 171 

be 138 µg/kg (LOQ = 3 µg/kg) (Table 1). Recently, Froger et al. (2023) monitored 111 PPP residues (48 fungicides, 172 

36 herbicides, 25 insecticides and/or acaricides, and two safeners) in 47 soils sampled across France under various 173 

land uses (arable lands, vineyards, orchards, forests, grasslands, brownfields). The most frequently quantified 174 

neonicotinoid was clothianidin (17% of the soil samples, maximum concentration of 2.7 µg/kg, LOQ = 0.5 µg/kg) 175 

followed by imidacloprid (9%, 13.8 µg/kg, LOQ = 2 µg/kg), thiacloprid (6%, 0.26 µg/kg, LOQ = 0.05 µg/kg) and 176 

acetamiprid (2%, 0.48 µg/kg, LOQ = 0.01 µg/kg) (Table 1). Thiamethoxam was not quantified (LOQ = 0.5 µg/kg). 177 

In English arable soils, where neonicotinoids have been used as seed treatments, the concentrations of clothianidin 178 

ranged from < 0.02 to 13.6 µg/kg (LOQ = 0.02 µg/kg), that of imidacloprid from <0.09 to 10.7 µg/kg (LOQ = 0.09 179 

µg/kg) and that of thiamethoxam from < 0.02 to 1.5 µg/kg (LOQ = 0.02 µg/kg) (Jones et al. 2014). Overall, most 180 

of the reviewed works focusing on the presence of neonicotinoids in soils is centered on imidacloprid, while the 181 

other substances are much less targeted. The environmental conditions, crops, agricultural practices, analytical 182 

methods and sampling time and strategies may explain the differences observed between the reviewed studies but, 183 

in general, they show the ubiquitous contamination of soils by neonicotinoids (Bonmatin et al. 2015; Froger et al. 184 

2023).  185 

 186 

Contamination of plants 187 

Neonicotinoids enter plants through the roots and/or leaves, and are transported into various organs, including 188 

foliage, flowers, pollen and nectar (Bonmatin et al. 2015). They are frequently detected in cultivated plants, as 189 

well as in wild plants. Bonmatin et al. (2005b) measured imidacloprid concentrations in corn whose seeds have 190 

been treated with this insecticide and observed that 76% of stem and leaf samples at flowering contained more 191 

than 1 μg/kg of the substance (LOQ = 0.1 µg/kg). They also quantified from 1 to 10 µg/kg of imidacloprid in 192 

sunflower flower heads, with notable variations depending on crop stage and seed variety. In the 29 analyzed 193 

samples of sunflower pollens, only two contained traces of imidacloprid. In parallel, imidacloprid was detected in 194 
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untreated sunflower heads grown on soil treated in previous years (from 0.1 to 2 µg/kg). In sugar beet crop treated 195 

with 90 g/ha of imidacloprid as seed coating, the concentration of imidacloprid in leaves initially reached 12.4 196 

mg/kg (fresh weight), then decreased but remained above 1 mg/kg 80 days after sowing, and was below the limit 197 

of detection (LOD = 10 µg/kg) at harvest (Rouchaud et al. 1994). Humann‐Guilleminot et al. (2019a) analyzed 198 

imidacloprid, clothianidin, thiamethoxam, thiacloprid and acetamiprid in plant samples taken from 79 cultivated 199 

fields (mainly from cereals and beetroots, but also from potatoes, rapeseed, maize, peas and flax) and 69 ecological 200 

focus areas over Switzerland. The neonicotinoids were detected in 97% of plant samples taken in cultivated fields, 201 

and in 93% of plant samples from ecological focus areas. The most frequently detected substance was imidacloprid 202 

(87% in cultivated fields and 84% in ecological focus areas), followed by thiacloprid (43% and 59%), clothianidin 203 

(39% and 12%), acetamiprid (34% and 45%) and thiamethoxam (19% and 7%).  204 

Neonicotinoid residues were also detected in various wildflowers present in non-treated area surrounding 205 

crops grown from treated seeds, with residues in foliage ranging from 0.06 to 106 µg/kg (LOQ ranged from 0.06 206 

to 0.60 µg/kg) (Botias et al. 2015; Botias et al. 2016). The authors pointed that these residues may overlap with 207 

lethal toxicity levels for some insect species (e.g., Aphis glycines). In addition, the widespread contamination of 208 

wild plants in agricultural landscape likely increases the exposure duration of pollinators though it is often 209 

supposed to be restricted to the crop flowering time (Botias et al. 2015). 210 

Finally, in guttation droplets, potentially consumed by non-target species, works conducted in various 211 

European countries showed neonicotinoid concentrations of hundreds of mg/L at the emergence of plant, but only 212 

of a few µg/L one month after its emergence (Bonmatin et al. 2015; Tapparo et al. 2011).  213 

 214 

Contamination of air 215 

Neonicotinoids may also reach the atmosphere. The measurement of their concentrations relies on active air 216 

sampling systems and by trapping compounds on a sorbent from which the compounds are extracted and analyzed. 217 

Most of the time, the measured concentrations represent the sum of the compounds present in the atmosphere in 218 

both particulate and gaseous forms. Désert et al. (2018) monitored PPP concentrations in ambient air samples 219 

collected from February 2012 to December 2017 at one rural and six urban sites in the French Provence-Alpes-220 

Côte d’Azur region. Imidacloprid was quantified in four locations, with concentrations higher than 1 ng/m3 (LOD 221 

= 0.081 ng/m3), but with a low frequency of quantification (1 to 2% depending on the site). As it was detected both 222 

in the rural and urban sampling sites, the authors suggested an atmospheric transport from agricultural areas to 223 

cities given the air mass retro-trajectories. In the French Phytatmo database (2023), which synthetizes the data 224 
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obtained by the French Approved Air Quality Monitoring Associations (AASQAs) from 2002 up to now, the 225 

average imidacloprid concentration, calculated from 18 quantifications, was equal to 0.39 ng/m3, with a maximum 226 

of 2.3 ng/m3 (Table 1), which was higher than the range of concentrations reported by Coscollà and Yusà (2016) 227 

(from 0.012 to 0.014 ng/m3) or by Raina-Fulton (2015) (from 0.01 to 0.36 ng/m3 in the particulate phase, LOD = 228 

0.0039 ng/m3) in Canada. The analysis of the Phytatmo database (2023) also showed that acetamiprid and 229 

thiamethoxam were only detected once, while thiacloprid was found at an average concentration of 0.17 ng/m3 out 230 

of 17 quantifications, and at a maximum concentration of 0.47 ng/m3. In Canada, for the particulate phase, Raina-231 

Fulton (2015) and Coscollà and Yusà (2016) reported acetamiprid concentrations of 0.006 ng/m3 and 0.018 ng/m3, 232 

respectively, and Raina-Fulton (2015) observed clothianidin concentrations ranging from 0.01 to 0.09 ng/m3.  233 

 234 

Impacts on terrestrial biodiversity 235 

Terrestrial heterotrophic microorganisms 236 

Most studies devoted to the effects of neonicotinoids on functional activities and biodiversity of terrestrial 237 

heterotrophic microorganisms concerned imidacloprid. Acetamiprid, clothianidin and thiamethoxam were scarcely 238 

addressed, while there was no data for thiacloprid.  239 

In laboratory experiments, Cycoń and Piotrowska-Seget (2015a) evaluated the impact of imidacloprid on 240 

soil microbial activities in soils spiked at the agricultural dose and at ten times this dose (1 and 10 mg/kg, 241 

respectively). At the agricultural dose, imidacloprid decreased microbial respiration, total bacterial count, and 242 

dehydrogenase, phosphatase and urease activities after 14 days. However, these effects were transient and the 243 

measured microbial functions recovered after 56 days of exposure. At ten times the agricultural dose, imidacloprid 244 

decreased the microbial parameters but no recovery was observed after 56 days suggesting irremediable impacts 245 

on communities. Consistently, nitrate concentration decreased while ammonium concentration increased, in 246 

agreement with the high sensitivity of nitrifying and nitrogen-fixing bacteria to imidacloprid. Under the same 247 

experimental conditions, the effect of imidacloprid on the structure of ammonia-oxidizing archea (AOA) and 248 

bacteria (AOB) communities was analyzed using Denaturing Gradient Gel Electrophoresis (DGGE) (Cycoń and 249 

Piotrowska-Seget, 2015b). At the agricultural dose, imidacloprid did not affect the α diversity of the bacterial 250 

communities. However, at ten times the dose, imidacloprid decreased the α diversity of the AOA community in a 251 

durable way, and temporarily that of the AOB community. In addition, at the highest dose, imidacloprid decreased 252 

nitrification and increased ammonification. To determine the role of the microbial community diversity in the fate 253 

and impact of imidacloprid and acetamiprid, Zhang et al. (2017) used soil microcosms cropped with Brassica 254 
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chinensis L. They showed that the diversity of the microbial community did not affect the amount of imidacloprid 255 

or acetamiprid remaining in the soil but, when microbial diversity decreased, the amount of insecticide exported 256 

from the soil to the plant increased. Finally, a study conducted on microbial strains isolated from soil and exposed 257 

to imidacloprid or thiamethoxam in Petri dishes showed that both neonicotinoids altered the functions of Klebsellia 258 

sp. strain 19, a phosphate-solubilizing rhizobacterium exhibiting Plant Growth Promoting Rhizobacteria (PGPR) 259 

properties (Ahemad and Khan 2011). Thus, these two insecticides could compromise the PGPR activity of 260 

microbial inoculant used to decrease crop dependence on chemically derived fertilizers. 261 

In field conditions, soybean imidacloprid treated seeds decreased the number of Rhizobia by a factor of 262 

three, while the number of Rhizobia was not affected after foliar application (Sarnaik et al. 2006). In contrast, 263 

regardless of the mode of application, the insecticide had no effect on phosphate solubilizing bacteria (Sarnaik et 264 

al. 2006). Li et al. (2018) studied the impact of imidacloprid or clothianidin treated seeds on the wheat rhizosphere 265 

microbial communities over nine months. The analysis of 16S rRNA and ITS amplicons generated from soil-266 

extracted DNA revealed changes in the α and β diversities of bacterial and fungal communities during plant 267 

development, but did not reveal any change due to seed treatment with each of the two insecticides. Furthermore, 268 

under these conditions, no effect of imidacloprid or clothianidin on some biocontrol agents (Bacillus, 269 

Pseudomonas, Streptomyces…) was observed in the wheat rhizosphere. 270 

Two studies examined the impact of thiamethoxam on the taxonomic and metabolic diversity of soil 271 

bacterial communities using a laboratory setting. In forest land soils spiked with different amounts of 272 

thiamethoxam, an altered composition of the community was observed (Yu et al. 2020): the relative abundance of 273 

Gemmatimonadetes and OD1 decreased when compared to the control while the relative abundance of Chloroflexi 274 

and Nitrospirae increased. On the other hand, the catabolic diversity of the microbial community in soils treated 275 

with the lowest dose (0.02 mg/kg) of thiamethoxam was higher than that of the control while it was lower at the 276 

highest doses (0.2 mg/kg and 2 mg/kg). Analyzing soil samples from experimental plots where thiamethoxam was 277 

applied in field conditions, Filimon et al. (2015) showed that the insecticide only slightly reduced the phosphatase 278 

activity but reduced the number of nitrifying bacteria by about 60%. 279 

In general, studies concerning the effects of neonicotinoids on terrestrial heterotrophic microorganisms 280 

revealed contradictory results depending on whether they were conducted in the laboratory (often under unrealistic 281 

agricultural conditions), showing impacts on the structure and on different microbial activities, or in the field (in 282 

more realistic conditions), showing no or very little effect of these substances.  283 

 284 
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Terrestrial invertebrates 285 

Neonicotinoids have negative impacts on terrestrial invertebrates (pollinators, natural enemies, earthworms...) in 286 

agricultural environments despite variable responses depending on the traits and groups considered, as summarized 287 

below. 288 

 289 

Pollinators 290 

Neonicotinoids are likely to have greater effects on insect pollinators than other insecticides because they are 291 

systemic insecticides regularly found in pollen, nectar, and other vegetative parts of plants throughout their 292 

flowering period (Krupke et al. 2012; Krupke and Long 2015), leading to risks of pollinators exposure via the oral 293 

route as well as through contact for a longer period of time. In addition, during their application, neonicotinoids 294 

can also contaminate the surrounding environments (Krupke et al. 2012; Krupke and Long 2015). Comparative 295 

toxicity studies among the different categories of neonicotinoids are scarce, but Arena and Sgolastra (2014) 296 

provided some insights. They showed that nitro-substituted neonicotinoids (“N-nitroguanidines”; including 297 

imidacloprid, thiamethoxam or clothianidin) were generally more toxic to pollinators than cyano-substituted 298 

neonicotinoids (“N-cyanoamidines”; including acetamiprid or thiacloprid). 299 

Honeybees. Exposure of honeybees (Apis mellifera) to neonicotinoids has been repeatedly demonstrated (e.g., 300 

Bonmatin et al. 2015; Hladik et al. 2016; Mitchell et al. 2017; Zhang et al. 2023). In pollens sampled in 2002-2003 301 

before spring, summer, autumn and winter, in apiaries located in five French departments, imidacloprid and/or its 302 

6-chloronicotinic acid transformation product were detected in 69% of the 81 samples, and quantified in 13.5% 303 

and 34.6% of the samples, respectively (Chauzat et al., 2006). The frequency of detection did not vary much 304 

according to the sampling period. This study was then continued until the end of 2005 (Chauzat et al. 2011): 305 

imidacloprid was detected in 11.2% of the bees (average concentration of 1.2 µg/kg) and in 40.5% of the pollen 306 

samples (0.9 µk/kg), and 6-chloronicotinic acid was detected in 18.7% of the bees (1.0 µg/kg) and in 33% of the 307 

pollen (1.2 µg/kg). In different sites cultivated with a corn/rapeseed rotation whose seeds were treated with 308 

thiamethoxam (or not), residues of thiamethoxam and clothianidin in pollens were close to the LOQ (1 µg/kg) in 309 

both corn and oilseed rape (from 1 to 2 µg/kg), and the amounts in oilseed rape nectar were lower than 1 µg/kg 310 

(LOQ = 0.5 µg/kg) (no corn nectar was analyzed) (Pilling et al. 2013). Wiest et al. (2011) detected imidacloprid 311 

in 1% of pollen and 2% of honey but nothing in bees sampled from hives located in the French Pays de la Loire 312 

region. Thiamethoxam and clothianidin were not detected in any of these samples. The multiple potential exposure 313 
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pathways and the size of the pollinator activity zone make it challenging to fully identify and quantify the exposure 314 

of pollinators to neonicotinoids (van der Sluijs et al. 2013).  315 

 In parallel of the awareness raised by exposure data on the possible role of neonicotinoids in the massive 316 

decline of insects, honeybees have been the subject of extensive research focused on the toxicological effects of 317 

neonicotinoids. Particular concern resulted from studies focused on honeybee behavior which revealed 318 

neonicotinoid-induced impairment of memory and learning abilities (Tison et al. 2019; Willemsen and Hailey 319 

2001) because such impairment is likely to affect navigation parameters and the ability to return to the hive (Henry 320 

et al. 2012; Henry et al. 2014). With regard to interaction with other factors or stressors, neonicotinoids were found 321 

to increase the susceptibility of honeybees to pathogens (Nosema) (Grassl et al. 2018; Müller 2018; Pettis et al. 322 

2013; Uhl and Brühl 2019). Furthermore, the effects of neonicotinoids were demonstrated to increase with 323 

decrease in temperature: the ability of bees to return to the hive following exposure to thiamethoxam decreased at 324 

lower temperatures (< 28°C) (Henry et al. 2014; Monchanin et al. 2019). Finally, neonicotinoids can interact with 325 

other PPPs as observed for clothianidin and propiconazole (fungicide) which impact honeybee survival via 326 

synergistic effects (Sgolastra et al. 2017).  327 

However, the issue of the effects of neonicotinoids on honeybees has been the subject of much 328 

controversy. In their large-scale monitoring study, Rolke et al. (2016) showed that honeybee colonies placed in 329 

clothianidin-treated oilseed rape crops exhibited developmental and reproduction performances similar to those of 330 

non-exposed colonies. Under the same crop treatment, clothianidin was not found to pose a risk to colonies in 331 

terms of health, development, and overwintering success of honeybee colonies (Belsky and Joshi 2020). This result 332 

was also found by Rundlöf et al. (2015) for clothianidin-rapeseed treated seed in combination with non-systemic 333 

pyrethroid (beta-cyfluthrin) treatments. Conversely, Samson-Robert et al. (2017) observed an increased mortality 334 

of honeybee colonies located in environments dominated by clothianidin-treated grain corn. More recently, Schott 335 

et al. (2021) demonstrated lethal effects of clothianidin on honeybee larvae, but found short-term resilience of 336 

colonies to treatments, which may result from compensation mechanisms (increased brood size). As to adults, seed 337 

treatments with clothianidin, thiamethoxam or imidacloprid resulted in increased worker bees mortality, but effects 338 

on colony growth were not observed thereafter (Lin et al. 2021). Actually, the effects of neonicotinoids on colony 339 

size vary across study areas (Woodcock et al. 2017). Spatial features, such as landscape characteristics and 340 

especially landmarks density (landscape elements that are used as visual cues for the orientation of bees), as well 341 

as the bee experience in the studied area (e.g., homing experiments carried out with foragers familiar or not with 342 
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the release point), influence the performance of individuals and therefore of colonies, which in turn can either limit 343 

or exacerbate the neonicotinoid-induced effects (Henry et al. 2014). 344 

To go further into toxicity mechanisms and their consequences for bee colony survival, LaLone et al. 345 

(2017) built a network of six Adverse Outcome Pathways (AOPs) and used weight of evidence (WoE) evaluation 346 

to describe plausible causal relationships between neonicotinoid mechanisms of action (activation of nicotinic 347 

acetylcholine receptor as molecular initiating event and downstream molecular, cellular, or organism-level key 348 

events) and colony death, as adverse outcome of regulatory concern. However, WoE assessment identified 349 

uncertainty, and thereby need for further research, in some upstream-to-downstream key-event relationships (e.g., 350 

between mitochrondrial dysfunction and learning/memory, or between role change in the colony and further larval 351 

development).   352 

Wild bees. Beside works on the emblematic species Apis mellifera, some studies have focused on wild bees. In 353 

ground nesting species (Eucera pruinosa), soil treatment with imidacloprid was found to affect reproduction 354 

(decreased number of nests and larvae) and pollen consumption whereas no effect was observed with 355 

thiamethoxam used as seed treatment (Cucurbita pepo) (Chan and Raine 2021). However, seed treatments may 356 

lead to soil contamination, even in fields adjacent to crops and in non-cropped borders, and affect native bee 357 

nesting and richness (Main et al. 2020; Rundlöf et al. 2015). In the field, exposure to various neonicotinoids and/or 358 

other PPPs have lethal and sublethal effects, as shown for the solitary bee Osmia bicornis: clothianidin or 359 

thiamethoxam, used in combination with other insecticides (beta-cyfluthrin) or fungicides (fludioxonil and 360 

metalaxyl-M) impaired the reproduction (Woodcock et al. 2017), as did the mixture of thiacloprid and prochloraz 361 

(fungicide) (Alkassab et al. 2020), while clothianidin and propiconazole (fungicide) induced mortality (Sgolastra 362 

et al. 2017). In a multistress context, the effects of neonicotinoids on wild bees can be exacerbated by food resource 363 

limitation (Stuligross and Williams, 2020). Indeed, the diversification of non-crop floral resources can provide 364 

complementary resources, counteracting the negative effects of neonicotinoids as shown on O. bicornis 365 

reproduction and larval development (Klaus et al. 2021). With regard to other physiological mechanisms 366 

underlying population-level responses under field conditions, the negative effects of neonicotinoids observed on 367 

Osmia cornuta reproduction (Stuligross and Williams 2020) or at population level (fitness, density; Sandrock et 368 

al. 2014) may have a male component (thiamethoxam-altered male fertility; Strobl et al. 2021a ) or not 369 

(clothianidin unaffected male survival, emergence and reproductive physiology; Strobl et al. 2021b). Using simple 370 

generalized and linear mixed models (GLMM), Stuligross and Willams (2021) demonstrated how past and current 371 
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exposure to neonicotinoids profoundly impact both individual reproduction and population growth rate of orchard 372 

blue bees (Osmia lignaria). 373 

The impact of neonicotinoids on wild social bees of the Melipona group is very little studied. However, 374 

the meta-analysis of Botina et al. (2020) highlighted lethal effects on both larvae and adults, especially marked for 375 

imidacloprid.  376 

In bumblebees, the effects of neonicotinoids were found to be expressed at the organism level (molecular, 377 

cellular, and physiological responses; lethal and sublethal effects) as well as at the population level (mortality, 378 

altered colony structure and turnover) (Camp and Lehmann 2021). Colonies of Bombus terrestris and Bombus 379 

impatiens exposed to acetamiprid, clothianidin or imidacloprid exhibited lower growth rates and decreased 380 

production of new queens (Camp et al. 2020; Rundlöf et al. 2015; Whitehorn et al. 2012). In addition, a suite of 381 

effects was observed, including increased mortality of new queens, delayed nest foundation (Wu-Smart and Spivak 382 

2018), acute and chronic effects on worker foraging activity (Gill and Raine 2014), reduced fecundity and brood 383 

production (imidacloprid; Laycock et al. 2012), disruption of their flight activity and endurance (imidacloprid; 384 

Kenna et al. 2019), and altered queen condition upon overwintering (thiamethoxam and clothianidin; Fauser et al. 385 

2017). Some works also showed that seed treatments affect Bombus spp. densities in adjacent fields and in non-386 

cropped borders (Main et al. 2020; Rundlöf et al. 2015). With respect to interactions with other stressors, no 387 

synergistic nor additive effects could be detected between neonicotinoids (mixture of thiamethoxam and 388 

clothianidin) and the trypanosome parasite Crithidia bombi on post hibernation performances (queen survival and 389 

body mass) of B. terrestris (Fauser et al. 2017).  390 

With a multi-species dynamic Bayesian occupancy model, Woodcock et al. (2016) highlighted the high 391 

impact of neonicotinoid seed treatments as use in oilseed rape on the extinction of 62 species of wild bee 392 

populations. Their model was spatially and temporally explicit and related population persistence to exposure over 393 

a wide time period of 18 years. This paper identifies the need of developing national scale management strategies 394 

to support wild bee populations persistence over the long-term.  395 

Butterflies. The impacts of neonicotinoids on lepidopterans are very little investigated, but the few studies 396 

addressing this issue underline a critical role of the timing and mode of exposure. In the monarch butterfly (Danaus 397 

plexippus), exposure of young adults to realistic doses of imidacloprid did not affect oocyte production, but 398 

significantly decreased insect longevity, with likely consequences for population development, migration, and 399 

overwintering (James 2019). On the contrary, under exposure to clothianidin-treated plants in the larval stage, 400 

there was no significant effect on parameters characterizing monarch migration (flight orientation, movement 401 
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speed; Wilcox et al. 2021). Using a linear mixed effect random slope model, Gilburn et al. (2015) demonstrated 402 

that the populations of 15 butterfly species commonly occurring at farmland sites in England declined due to the 403 

use of neonicotinoids. 404 

Overview of the effects of neonicotinoids on pollinators. In 2018, EFSA (2018) confirmed that the use of 405 

neonicotinoids causes a risk to wild bees and honeybees. Although results appeared sometimes contradictory, 406 

many studies highlighted negative effects of neonicotinoids on pollinators. The contradictions occasionally 407 

observed can be explained by several methodological biases (Walters 2016): (1) laboratory experiments consider 408 

exposure conditions (in particular doses and durations) to neonicotinoids that are not really representative of those 409 

observed in natura in relation to agricultural practices; (2) most of the studies focus on honeybees or bumblebees, 410 

whereas susceptibility to insecticides varies greatly among the different groups of pollinators (Lundin et al. 2015; 411 

Rundlöf et al. 2015); (3) studies are most often focused on one type of neonicotinoid which makes generalization 412 

difficult. Furthermore, there is a need to combine laboratory and field approaches, and to address the effects of 413 

neonicotinoids at the sub-individual and individual levels, as well as the consequences for colonies and populations 414 

(see LaLone et al. 2017). For example, Henry et al. (2015) showed that the mortality in honeybee colonies near 415 

neonicotinoid (thiamethoxam and imidacloprid)-treated oilseed rape fields was higher than in colonies surrounded 416 

by less treated fields. However, this effect was not observable at the colony level during and after the flowering 417 

period of oilseed rape, because the impact of this loss was buffered by the colonies’ demographic regulation 418 

response. While very few models exist that are devoted to the effects of neonicotinoids at the bee colony/population 419 

levels, this research area appears promising given the difficulty of actually detecting unintended effects of 420 

neonicotinoids in the field using conventional risk assessment methods (Lundin et al. 2015). In particular, Henry 421 

et al. (2017) advocated the potentialities of mechanistic models in a multiple stressor context. Since then, the 422 

honeybee colony model (BEEHAVE, Becher et al. 2014) has been extended to the colony development of 423 

bumblebees in a realistic landscape (Becher et al. 2018), and to translate results from standard laboratory studies 424 

to relevant parameters and processes for simulating bee colony dynamics (Preuss et al. 2022). On a regulatory 425 

point of view, significant efforts have been undertaken at the EU level to improve risk assessment of the effects of 426 

neonicotinoid on bees with, among others, the development of the ApisRAM population model (Adriaanse et al. 427 

2023; EFSA PPR Panel 2015; EFSA Scientific Committee et al. 2021).  428 

 429 

 430 

 431 
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Natural enemies 432 

Overall, neonicotinoids have negative impacts on natural enemies such as predators (mites, ladybugs) and 433 

parasitoids, especially in field crops (Douglas and Tooker 2016). By disrupting prey-predatory and host-parasitoid 434 

interactions, neonicotinoid-treated seeds also alter arthropod communities as a whole (Chen et al. 2016; Disque et 435 

al. 2019; Dubey et al., 2020). 436 

Ants. In Tetramorium caespitum, increased mortality and disruption of locomotion without loss of hunting 437 

behavior was observed after exposure to imidacloprid (Penn and Dale 2017). In other ant species (Pogonomyrmex 438 

occidentalis, Lasius niger, Lasius flavus), imidacloprid was also found to alter socio-behavioral traits (e.g., 439 

foraging, nest building, competition behavior) at environmentally relevant concentrations under experimental 440 

exposure (Sappington 2018; Thiel and Kohler 2016). 441 

Bugs. Prey consumption was reduced in predatory bugs (Pentatomidae) feeding on herbivorous preys previously 442 

exposed to imidacloprid-treated plants, even when prey density increased (lack of a type II functional response) 443 

(Resende-Silva et al. 2019). Studies with Orius insidiosus concluded that imidacloprid was moderately to highly 444 

toxic when applied as seed treatment, while foliar toxicity showed conflicting results (Naranjo 2001). In Podisus 445 

nigrispinus predatory bugs, sublethal effects of thiamethoxam treatments resulted in longer larval development, 446 

decreased adult body weight and delayed oviposition (Torres et al. 2003). Imidacloprid may also alter the predatory 447 

behavior of spined soldier bugs (Podisus maculiventris), with negative consequences in terms of weight gain 448 

(Resende-Silva et al. 2019). However, some of these effects were only seen at certain treatment doses (> 0.5 449 

mg/plant) (Torres et al. 2003), and were sometimes transient (Pekar and Kocourek 2004). 450 

Carabids. When fed with slugs contaminated with thiamethoxam, Chlaenius tricolor carabid beetles displayed 451 

altered mobility twitching and mild motor difficulties, up to partial to extensive paralysis (Douglas et al. 2015). 452 

Forficulidae. As dominant earwig species in temperate orchards, Forficula auricularia is the most studied 453 

forficulidae species in the laboratory. Shaw and Wallis (2010) demonstrated impaired mobility and movement 454 

coordination in 70 % of earwigs exposed to thiacloprid, and that more than 80 % of them died after 10 days 455 

exposure. Thiacloprid was also shown to reduce larval growth and to decrease adult foraging behavior (Fountain 456 

and Harris 2015). Acetamiprid significantly decreased the predation behavior of adult males by 28 % but not of 457 

females nor nymphs when applied in apple orchards at the agricultural rate (Malagnoux et al. 2015).   458 

Lacewings. Survival of the green lacewings Chrysoperla carnea reduced when adults feed on imidacloprid-treated 459 

plants (Rogers et al. 2007). In addition, imidacloprid was found to disrupt the mobility of individuals (appearance 460 
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of tremors; Rogers et al. 2007). It has to be underlined that, upon multigeneration exposure, this species was able 461 

to develop strong resistance to acetamiprid (Mansoor and Shad 2020).  462 

Ladybugs. Ladybugs are impacted by neonicotinoids via prey ingestion, especially at early larval stage in 463 

Coleomegilla maculata feeding on cereal aphids exposed to thiamethoxam (Bredeson et al. 2015). Thiamethoxam 464 

reduces the mobility of ladybugs (the time to turn around when placed on their backs increases with the 465 

concentration of ingested insecticide) but not the number of eggs, while a negative correlation between the increase 466 

in the concentration of the insecticide and the number of developing eggs has been shown (Bredeson and Lundgren 467 

2018). Wang et al. (2018a) evaluated the toxicity of thiamethoxam to Harmonia axyridis, a predator of the Myzus 468 

persicae aphid, and its effect in term of functional response, by three exposure routes: direct contact of H. axyridis 469 

with thiamethoxam residues; cabbage leaves infested with M. persicae treated systematically with thiamethoxam 470 

which exposed H. axyridis to the insecticide indirectly (referred as systemic application, mimicking direct soil 471 

drench or seed treatments); and cabbage leaves infested with M. persicae treated with thiamethoxam by leaf-dip 472 

which exposed H. axyridis to thiamethoxam residues on both cabbage leaves and thiamethoxam-treated M. 473 

persicae (referred as leaf dip treatment, mimicking foliar spray application). Predation was negatively affected 474 

under the three conditions, but particularly when ladybugs were exposed following leaf dipping. For all exposure 475 

routes, H. axyridis rapidly recovered predatory ability, however, sublethal effects of thiamethoxam may reduce 476 

the population growth of H. axyridis and, therefore, impair the biological control of M. persicae, especially after 477 

leaf or contact exposure. 478 

Parasitoid hymenoptera. Acetamiprid was demonstrated to cause significant reductions in the abundances of 479 

various groups of parasitoids (Aphelinidae, Braconidae, Encytidae, Eulophidae, Eupelmidae, Ichneumonidae, 480 

Mymaridae, Platygastridae, Proctotrupidae, Pteromalidae, Scelionidae, Trichogrammatidae) (Khans and 481 

Alhewairini 2019), and these losses were generally accompanied by an increase in pest infestation levels (Saito et 482 

al. 2008). In various parasitoid species, systemic applications of imidacloprid were often minimally detrimental, 483 

whereas foliar applications could be highly toxic (Naranjo 2001). 484 

Predatory mites. In the presence of neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid or 485 

thiamethoxam), disruption of mite behavior (Panonychus ulmi, Tetranychus urticae), without loss of abundance, 486 

resulted in loss of biological control activity (Beers et al. 2005). Predatory mites (Phytoseiidae) are affected by 487 

acetamiprid, but studies have shown that they can develop resistance (Fountain and Medd 2015) which led to a 488 

growing interest in their use in sustainable agriculture (Duso et al. 2014; Fountain and Medd 2015). 489 
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Spiders. For several spider families (Araneidae, Lycosidae), contact exposure to neonicotinoids (acetamiprid, 490 

imidacloprid) appeared to be the most toxic pathway (compared to consumption of treated prey) inducing lethal 491 

and sublethal effects such as disruption of web construction (Pekar 2012). Furthermore, neonicotinoids 492 

(acetamiprid, thiacloprid) were demonstrated to affect the richness of spider communities (Rosas-Ramos et al. 493 

2020).  494 

 495 

Detritivorous arthropods 496 

In a three-year field experiment, Pearsons and Tooker (2021) showed that seed treatments (corn, soybean) with 497 

neonicotinoids (clothianidin, imidacloprid) reduced saprophagous arthropod (millipede, springtails, oribatid mites) 498 

density and activity (litter decomposition) by more than 10%. 499 

 500 

Earthworms 501 

Earthworms are likely to be exposed to neonicotinoids in soils. For example, in a French arable landscape, Pelosi 502 

et al. (2021) observed residues of imidacloprid in 79% of the sampled earthworms (Allolobophora chlorotica, 503 

n=155; maximum concentration of 777 µg/kg; 43 % of the earthworms contained imidacloprid concentrations 504 

>100 µg/kg, LOQ = 0.4 µg/kg), while thiacloprid was found in 34% of the earthworms (maximum concentration 505 

of 42.1 µg/kg, LOQ = 0.1 µg/kg).  506 

Neonicotinoids (e.g., acetamiprid, clothianidin, imidacloprid, thiamethoxam) have negative effects on 507 

several endpoints of various earthworm species (e.g., Eisenia fetida, Lumbricus terrestris, Aporrectodea 508 

caliginosa), from sub-individual to community levels: tissue integrity, physiological activity, behavior, growth, 509 

reproduction, and survival (Dittbrenner et al. 2010; Dittbrenner et al. 2011a; Dittbrenner et al. 2011b; Qi et al. 510 

2018; Tu et al. 2011; Wang et al. 2015). They are also known to be toxic to compost worms (E. fetida) in laboratory 511 

conditions: they affect reproduction, cellulase activity and tissues, among others (Wang et al. 2015).  512 

 513 

Nematodes 514 

Compared to arthropods, nematodes tend to be less sensitive to neonicotinoids (Kudelska et al. 2017; Neury-515 

Ormanni et al. 2019; Bradford et al. 2020). In entomopathogenic species (Steinernema glaseri, Steinernema 516 

carpocapsae, Steinernema feltiae, Heterorhabditis bacteriophora, Heterorhabditis megidis), a positive effect of 517 

imidacloprid was observed at low dose on reproduction (Koppenhöfer et al. 2003).  518 

 519 
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Terrestrial vertebrates 520 

Birds (excluding raptors) 521 

Numerous studies demonstrated that bird decline in agroecosystems is related to the use of neonicotinoids (Ertl et 522 

al. 2018; Lennon et al. 2019; Li et al. 2020; Mineau and Palmer 2013; Mineau and Kern 2023). 523 

In agricultural areas and other environments across Europe and North America, the analyses of 524 

neonicotinoid residues in various biological components (eggs, feathers, livers, plasmas) of several avian trophic 525 

groups such as nectarivores, granivores, insectivores and carnivores showed ubiquitous exposure of birds 526 

(gamebirds, house sparrows, hummingbirds, songbirds…) (Bishop et al. 2020; Bro et al. 2016; Fuentes et al. 2023; 527 

Humann-Guilleminot et al. 2019b; Humann-Guilleminot et al. 2021; Lennon et al. 2020a; Lennon et al. 2020b; 528 

Poisson et al. 2021; Prouteau 2021; Roy et al. 2020). The prevalence of exposure greatly varies from one study to 529 

another and among species, but, even if some studies detected neonicotinoids only in a few individuals (e.g., 530 

Graves et al. 2022), the vast majority of works underlined pervasive exposure of numerous species and pointed 531 

out high frequencies of detection.  532 

Granivorous birds are directly exposed to neonicotinoids following the consumption of neonicotinoid 533 

treated seeds (Lopez-Antia et al. 2016; Prosser and Hart 2005; Roy et al. 2019). For example, Lennon et al. (2020b) 534 

demonstrated that the detection of clothianidin in the plasma of several farmland bird species increased from 11% 535 

before sowing to 51% after sowing. In French cereal dominated landscape, where neonicotinoid treated seeds were 536 

widely used, the eggs or livers of grey partridge (Perdix perdix) and of some Columba species were found to be 537 

contaminated by neonicotinoids (Bro et al. 2016; Millot et al. 2017). In Ontario fields (Canada), the analysis of 538 

carcasses of wild turkey (Meleagris gallopavo silvestris), which consumes neonicotinoid-coated seeds, showed 539 

detectable levels of clothianidin and/or thiamethoxam in 22.5% of individuals (detection of both substances in 5%) 540 

(MacDonald et al. 2018). These studies underlined that the crop sowing periods are the most at risk (especially in 541 

autumn compared to early spring, Millot et al. 2017) for bird exposure through neonicotinoid treated seeds, because 542 

it also corresponds to a period of low food availability and of migration stopover for some species. Along 543 

agricultural gradients in Minnesota (USA), at least one neonicotinoid among the seven compounds screened 544 

(acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiamethoxam) was detected in 93 545 

% and 80 % of fecal pellets of sharp-tailed grouse (Tympanuchus phasianellus) and greater prairie-chickens (T. 546 

cupido), respectively, and in 90 % and 76 % of their livers, respectively (Roy and Chen 2023). Imidacloprid and 547 

clothianidin were the most detected substances. To document the exposure of wild bird communities, Anderson et 548 

al. (2023) analyzed seven neonicotinoids (acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, 549 
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thiacloprid, thiamethoxam) in plasma samples from 55 species across 17 avian families, in four counties in Texas 550 

(USA). Imidacloprid was detected in 36 % of samples (n=294), and two birds contained imidacloprid, acetamiprid 551 

and thiacloprid. Clothianidin, and thiamethoxam were not detected but their LOD (0.3 µg/L, 0.05 µg/L, 552 

respectively) were higher than that of imidacloprid (0.005 µg/L). Temporal variations have been evidenced, with 553 

lower frequencies of detection in summer and winter than in spring and fall which correspond to the usual planting 554 

days for the most common crops across the state. Some species showed higher prevalence of exposure such as the 555 

American robin (Turdus migratorius) and the red-winged blackbird (Agelaius phoeniceus). Importantly, the study 556 

evidenced a chronic or repeated exposure of wildlife since six birds out of seven re-sampled over time exhibited 557 

at least one detection of neonicotinoid, and three exhibited multiple exposure at different time points (Anderson et 558 

al. 2023). In Europe, several measurements of neonicotinoid residues in bird carcasses (livers or gizzards) revealed 559 

very large numbers of accidental direct bird poisonings (passerine, Columba and game species) following the 560 

ingestion of neonicotinoid-treated seeds, especially with imidacloprid (Berny et al. 1999; Bro et al. 2010; 561 

Buchweitz et al. 2019; Millot et al. 2017; Mineau and Kern 2023; Mineau and Palmer 2013). Despite biases in the 562 

detection of carcasses in the field survey (de Snoo et al. 1999; Vyas 1999), a significant number of birds have been 563 

categorically identified as victims of acute and lethal poisoning induced by neonicotinoids used in seed treatments. 564 

Nevertheless, these lightning mortality events would likely not be the primary cause of the significant decline of 565 

some bird species (gray partridge) in agricultural environments, but they are undeniably an aggravating factor 566 

(Millot et al. 2017). This is all the more since many other direct sublethal (physiological and behavioral) and 567 

indirect effects of neonicotinoids have been demonstrated, for many more species than just granivores (Gibbons 568 

et al. 2015; Wood and Goulson 2017). Improved seeding techniques can limit the risk of direct poisoning by 569 

ensuring that treated seeds are effectively buried so that the proportion of seeds on the surface after planting is low 570 

(McGee et al. 2018). However, the effectiveness of these methods depends on planting techniques and on seed 571 

type and are not generalizable to all coated seed situations (McGee et al. 2018). Coatings have been suggested to 572 

induce an aversion which limits ingestion to a few coated seeds, representing only a small fraction of the 573 

neonicotinoid LD50 (Lethal Dose causing the death of 50% of exposed organisms) (Avery et al. 1994), but these 574 

results have been shown to depend on the experimental context, including the availability of alternative food 575 

resources or the state of food stress (Millot et al. 2017; Mineau and Kern 2023; Mineau and Palmer 2013). 576 

Furthermore, the repellent effect results from the induction of a physiological disorder following initial ingestions 577 

of treated seeds, involving that significant sublethal effects can occur well before ingestion of a lethal dose (Lopez-578 

Antia et al. 2014; Lopez-Antia et al. 2015; Mineau 2017). It has to be underlined that some passerine species, 579 
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especially Fringillidae, can de-husk seeds which lowers their direct exposure by ingestion (Prosser and Hart 2005). 580 

Other contexts of neonicotinoid poisoning of passerines (American goldfinches Spinus tristis) have also been 581 

identified in public spaces in California (Rogers et al. 2019): the mortality of birds was due to the ingestion of 582 

natural elm seeds remaining on the ground which were contaminated with imidacloprid during the drench 583 

application. 584 

While neonicotinoids were initially thought to be less harmful to birds than insects due to their lower 585 

affinity for vertebrate nicotinic receptors, mounting evidence now challenges this view and birds appear to be more 586 

sensitive to neonicotinoids than other vertebrates (Mineau and Kern 2023; Mineau and Palmer 2013). The acute 587 

toxicity of neonicotinoids was reported to be underestimated by a factor of ten for some wild bird species compared 588 

to the one determined on model species of mallard or bobwhite quail (Colinus virginianus) (Mineau and Kern 589 

2023; Mineau and Palmer 2013). Chronic toxicity is poorly taken into account, as well as sublethal effects which 590 

are scarcely investigated.  591 

Several reviews of the individual and sub-individual effects of neonicotinoids on birds have been 592 

published (Gibbons et al. 2015; Moreau et al. 2022; Pisa et al. 2015; Wood and Goulson 2017). The literature 593 

shows that imidacloprid induces weight loss or reduces energy reserves (fat mass) in the white-crowned sparrow 594 

(Zonotrichia leucophrys) (Eng et al. 2017; 2019). In hummingbirds (Selasphorus rufus), the consumption of 595 

imidacloprid in flower nectar induces underactivity and decreased energy expenditure (-25%), with no other effect 596 

detected on feeding activity or immune response (Bishop et al. 2018; English et al. 2021). On the contrary, some 597 

studies showed an impact of imidacloprid on the immune status of adult (Lopez-Antia et al. 2013) and juvenile 598 

(Lopez-Antia et al. 2015) red-legged partridges (Alectoris rufa). These contrasting results could be explained by 599 

interspecific variability and various exposure conditions (dose x species x biomarkers x duration) (English et al. 600 

2021; Gibbons et al. 2015; Lopez-Antia et al. 2015). Behavioral alterations were also observed (Eng et al. 2019), 601 

and disruption of flight and/or navigation efficiency emerged as a sensitive and relevant endpoint of imidacloprid 602 

exposure and sublethal effect on the white-crowned sparrow (Eng et al. 2017). These effects have been associated 603 

with loss of energy reserves. Thus, even if transient under the tested conditions, these sublethal effects can likely 604 

lead to impaired migration success of white-crowned sparrows using agricultural environments as staging areas 605 

(Eng et al. 2017; 2019). Furthermore, reductions in feeding and activity most often resulting in weight loss and 606 

risk to survival have been demonstrated in migratory birds exposed to sublethal doses of imidacloprid (Eng et al. 607 

2017; 2019). Finally, exposure to sublethal dose of acetamiprid has been associated to reduced sperm density in 608 

the house sparrow (Passer domesticus) (Humann-Guilleminot et al. 2019c).  609 



22 
 

In controlled experiments on red-legged partridges (Alectoris rufa) fed with control seeds or seeds treated 610 

with imidacloprid at 20%, 100% or 200% of the recommended dose, analyses in livers showed an increase in the 611 

accumulation of imidacloprid with exposure time, and mortality of 50% of the females within five days even at 612 

agricultural or lower doses (Lopez-Antia et al. 2013; Lopez-Antia et al. 2015). Moreover, breeding investment was 613 

lowered with reduced clutch size, eggs size and fertilization rate, and chick survival was diminished when birds 614 

were exposed to imidacloprid. 615 

Sabin and Mora (2022) performed an ecological risk assessment to evaluate the potential effects of 616 

neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiamethoxam) on populations of the northern bobwhite 617 

(C. virginianus) in the South Texas Plains Ecoregion (USA). The assessment of the exposure of both juveniles and 618 

adults showed levels which can induce adverse effects on growth, reproduction success, and long‐term survival.  619 

The analysis of the literature thus demonstrated that neonicotinoids are one of the factors responsible of 620 

the decline in the abundance and diversity of birds. Depending on the bird species and their diet, this impact results 621 

mainly either from a direct effect (e.g., ingestion of treated seeds), or from an indirect effect (e.g., reduction in 622 

food resources following the decline of prey). Such indirect effects are addressed hereafter in the “Food webs” 623 

section. 624 

 625 

Raptors 626 

Several works showed the presence of neonicotinoids in raptors. Imidacloprid was detected in the blood of 627 

Eurasian eagle owl (Bubo bubo) in Spain (Taliansky-Chamudis et al. 2017), imidacloprid and thiacloprid in the 628 

blood of honey buzzards (Pernis apivorus) in Finland (Byholm et al. 2018), and acetamiprid, clothianidin, 629 

thiacloprid, and thiamethoxam in the feathers of barn owls (Tyto alba) in Switzerland (Humann-Guilleminot et al. 630 

2021). The detection frequencies were contrasted: 3% of the analyzed samples were positive in the Eurasian eagle 631 

owl, whereas in the insectivorous honey buzzard, imidacloprid and thiacloprid were detected in 40 and 70% of the 632 

samples, respectively. In the barn owl, more than 80% of the individuals were positive, notably for thiacloprid, the 633 

frequent detection in chicks suggesting a trophic exposure. The feeding specialization of the barn owl on insects 634 

would not be sufficient to explain the high detection frequency of neonicotinoids. In northern Germany, Badry et 635 

al. (2021) investigated the impregnation of the livers of three raptor species (red kite Milvus milvus, common 636 

buzzard Buteo buteo, Montagu’s harrier Circus pygargus; n=186). Among the neonicotinoids, only thiacloprid 637 

was detected in two red kites. Recently, no neonicotinoid was detected in the blood of chicks of the same three 638 
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raptor species in Germany (Badry et al. 2022). No study examining the toxicity of neonicotinoids on raptors has 639 

been identified.  640 

 641 

Mammals (excluding chiropterans) 642 

One of the largest mammalian studies conducted to date resulted in the simultaneous analysis of 480 substances 643 

in muscle of 42 wild boars (Sus scrofa), 79 roe deer (Capreolus capreolus) and 15 deer (Cervus elaphus) in Poland 644 

(Kaczynski et al. 2021). The five neonicotinoids were among the most frequently detected compounds 645 

(imidacloprid and thiacloprid showing mean concentrations in the top five values). They were detected in 100% 646 

of the wild boar samples, while acetamiprid was detected in three deer, and thiacloprid and clothianidin were 647 

detected in two deer. Acetamiprid, clothianidin and thiacloprid were detected in 13 roe deer (16.5%). The mean 648 

residue concentrations ranged from 0.6 µg/kg (thiamethoxam) to 4.3 µg/kg (imidacloprid) in the liver. In France, 649 

multi-residues analyses targeting 140 PPPs (67 withdrawn and 73 currently used PPPs) and transformation 650 

products were performed in hair samples of small omnivorous rodents (wood mouse Apodemus sylvaticus) and 651 

insectivorous shrews (greater white-toothed shrew Crocidura russula) sampled in arable landscapes (Fritsch et al. 652 

2022). Again, acetamiprid, imidacloprid and thiacloprid were among the most frequently detected substances 653 

(more than 80% of individuals) and/or quantified at high concentrations (up to 70.7 µg/kg) (Fritsch et al. 2022). 654 

The ubiquity of exposure to neonicotinoids was demonstrated as residues were detected in all animals regardless 655 

of the type of habitat (hedgerows, cereal crops, grasslands) or of the agricultural practices (conventional or organic 656 

farming) (Fritsch et al. 2022). Assessing the exposure of wild raccoons (Procyon lotor) captured in Hokkaido 657 

(Japan) to neonicotinoids (acetamiprid, imidacloprid, clothianidin, dinotefuran, thiacloprid, thiamethoxam, and 658 

desmethyl‐acetamiprid), Shinya et al. (2022) showed that either one of the six screened neonicotinoids or one 659 

transformation product was detected in the urine of 90% of the raccoons. Neonicotinoids were also found in the 660 

hair of red fox (Vulpes vulpes) in Italia; acetamiprid, clothianidin, and imidacloprid being detected in 100% of the 661 

analyzed individuals (n=11), and thiacloprid in 91% of them (Picone et al. 2023). 662 

The toxicity of neonicotinoids to mammals have been reviewed by Tomizawa (2004) and Gibbons et al. 663 

(2015), showing the potential for various deleterious effects on growth, development and reproduction as well as 664 

other sub-lethal effects such as genotoxic and cytotoxic effects, immunotoxicity, neuro-behavioral disorders and 665 

changes in behaviors related to anxiety and fear, impairments of the thyroid and retina, and reduced movement. 666 

The study of the effects of imidacloprid (112 and 225 mg/kg, daily gavage for 60 days, which is above realistic 667 

environmental exposure concentrations) on rat reproduction, a mammal model organism, showed a decrease in 668 
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sperm vitality and number, a reduction in sex organ mass, and a decrease in the production of sex hormones FSH 669 

and LH in males (Nafaji et al. 2010; Tetsatsi et al. 2019). A significant impact of imidacloprid on the rat body 670 

weight was also reported but no published evidence of reproductive disorders in relation to neonicotinoid exposure 671 

in wild mammals was found. However, most of the research on mammals have been performed on rats or mice, 672 

and under laboratory conditions, hampering the assessment of direct toxicity to wild mammals which may exhibit 673 

different sensitivity and may be exposed to other chemical or biological stressors. As for birds, Gibbons et al. 674 

(2015) emphasized that neonicotinoids can also impact terrestrial mammals via indirect effects which are reviewed 675 

in the “Food webs” section. 676 

 677 

Chiropterans 678 

The exposure of wild bats to clothianidin, imidacloprid and thiamethoxam was demonstrated through the detection 679 

of the three substances in the hair of big brown bats (Eptesicus fuscus) sampled in Missouri (USA) (Hooper et al. 680 

2022). Imidacloprid showed the highest frequency of detection and was found in all samples (Hooper et al. 2022). 681 

In Turkey, in a large screening targeting 322 PPPs and organic contaminants in adult bat carcasses of Pipistrellus 682 

pipistrellus and Myotis myotis, 87 compounds were detected but they didn’t include neonicotinoids (Kuzukiran et 683 

al. 2021). Habitat preferences of these bats (urban and forest species) may limit their exposure to neonicotinoids. 684 

Several studies mention a risk of exposure of chiropterans to neonicotinoids by the trophic route, based on the 685 

monitoring of chiropteran activities and dosages in their prey present in the foraging sites (Stahlschmidt and Brühl 686 

2012; Stahlschmidt et al. 2017). 687 

In rare experimental studies, Hsiao et al. (2016) and Wu et al. (2020) reported the neurotoxic effects of 688 

imidacloprid (at 20 mg/kg/day) on the echolocation ability of insectivorous bats (Hipposideros terasensis). 689 

Memory loss in bats has been associated with apoptosis lesions in certain areas of the hippocampus (Hsiao et al. 690 

2016). Another study supports these behavioral data and suggests that altered echolocation movements likely 691 

affects bat movement and hunting activities (Wu-Smart and Spivak 2018). In addition, neonicotinoid use appears 692 

to be associated with an increased frequency of white-nose syndrome, caused in chiropterans by a fungal infection, 693 

in both the USA and Europe (Bayat et al. 2014; Oliveira et al. 2021). Upon awakening, bats experience a massive 694 

inflammatory response phase with destruction of part of the immune tissue before reconstruction making them 695 

particularly vulnerable to infection (Mineau and Callaghan 2018). Neonicotinoids can thus come as an aggravating 696 

factor during this critical period.  In their review, Mineau and Callaghan (2018) concluded that there is sufficient 697 

evidence to support the assert that bats are being negatively affected by neonicotinoids, directly through functional 698 
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impairment, and indirectly through reduction in insect abundance (trophic cascades are detailed in the “Food webs” 699 

section): the levels of neonicotinoid residues in the environment are high enough to put bats at risk of motor 700 

impairment and death. Knowledge remains currently too incomplete to be able to thoroughly characterize the 701 

impacts of neonicotinoids on chiropterans. 702 

 703 

Reptiles 704 

Neonicotinoids (imidacloprid and thiamethoxam) have been detected in several Mongolian racerunner (Eremias 705 

argus) organs and tissues (blood, brain, heart, lungs, stomach, intestine, liver, kidney, skin, fat, and gonads), 706 

showing different internal distributions and post-exposure temporal variations depending on the substance 707 

considered. However, the limited number of individuals which were analyzed prevents any attempt at 708 

generalization (Wang et al. 2018b; Wang et al. 2019).  709 

The exposure of E. argus to thiamethoxam and imidacloprid under controlled conditions led to variations 710 

in thyroid, stress or sex hormone levels, endocrine gland damage, or changes in expression of genes involved in 711 

endocrine functions (Wang et al. 2019; Wang et al. 2020). Yang et al. (2020) also reported the endocrine disrupting 712 

effect of imidacloprid to E. argus with decreased levels of testosterone and estradiol in plasma. Further research 713 

is required to better characterize the impacts of neonicotinoids on reptiles. 714 

 715 

Amphibians  716 

Amphibians are one of the biological groups most affected by the collapse of biodiversity on a planetary scale, in 717 

particular because of the use of PPPs (Hayes et al. 2010). However, the number of studies of the effects of 718 

neonicotinoids on the terrestrial stages of amphibians is low. Comparing dermal exposure of Hyla gratiosa and 719 

Hyla cinerea to imidacloprid via direct exposure of the frog present on the soil at the time of insecticide spraying, 720 

and via indirect exposure following soil contact after application, van Meter et al. (2015) showed that cumulative 721 

concentrations and bioconcentration factors were significantly higher for the direct exposure. In the Pampa region 722 

of Argentina, imidacloprid was detected in the terrestrial Leptodactylus latinasus frog living in close association 723 

with row crops (soybean, corn, wheat) (Brodeur et al. 2022). 724 

Thompson et al. (2022) used both aquatic mesocosms, and terrestrial locomotor and behavior trials to 725 

study the effects of sublethal exposure of the wood frog (Rana sylvatica or Lithobates sylvaticus) to imidacloprid. 726 

The results showed a decrease in larval survival to metamorphosis under imidacloprid exposure in interaction with 727 

shorter hydroperiod. However, the effect of imidacloprid depends on the frog stage: terrestrial locomotor 728 
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performances were improved following aquatic exposure of the larvae, while an important loss in these 729 

performances was observed after terrestrial exposure to imidacloprid. In addition, high effects on population sex 730 

structure and sexual development were observed: a skewed juvenile sex ratio was evidenced in imidacloprid 731 

treatments with about 10% fewer males than in controls, and 15.7% of individuals exposed to imidacloprid could 732 

not be assigned to either sex (ambiguous reproductive organ morphology) (Thompson et al. 2022). A great deal of 733 

research remains to be done. 734 

 735 

Aquatic ecosystems 736 

Contamination of freshwater and marine environments 737 

Freshwater environment 738 

Neonicotinoids used in agricultural fields can enter surface waters (from rivers to lakes) through spray drift, dust 739 

from coated seeds, runoff, subsurface flow (for example, subsurface tile drainage), input of treated leaves, and/or 740 

plant decomposition in water (Alford and Krupke 2019; Stehle et al. 2018; Wang et al. 2023). The primary routes 741 

of transfer are direct contamination due to spray drift or to dust abrasion of coated seeds, and re-distribution from 742 

surface runoff or subsurface drainage (Schaafsma et al. 2019; Wettstein et al. 2016). Neonicotinoids are stable in 743 

water, and because of their high mobility, they are mainly transported in the dissolved phase (Bonmatin et al. 2015; 744 

Morrissey et al. 2015; PPDB 2023).  745 

After neonicotinoid applications, the delivery ratio to surface water was estimated to be less than 2% for 746 

thiamethoxam and clothianidin together, and 0.48% for imidacloprid (Frame et al. 2021; Wettstein et al. 2016). 747 

The detection rates in surface water are higher after seed treatment than after spraying (Wettstein et al. 2016). In 748 

North America, clothianidin was found before, during and after planting (i.e., in 98% of the samples), while the 749 

detection of thiamethoxam mainly occurred in the post-plant season (54% of the samples), and that of imidacloprid 750 

during the planting season (48% of the samples) (Evelsizer and Skopec 2018). Clothianidin is both a PPP and a 751 

transformation product of thiamethoxam which could explain its higher frequency of detection (Wang et al. 2023).  752 

Neonicotinoids have been quantified in various types of surface waters including wetlands, ditches, ponds 753 

and rivers (Table 1). Acetamiprid, imidacloprid, and thiamethoxam are the most frequently detected substances 754 

(Pietrzak et al. 2019). Overall, maximum concentrations of neonicotinoids in surface waters were found to be 9.14 755 

µg/L for imidacloprid, 6.90 µg/L for thiamethoxam, 4.00 µg/L for acetamiprid, 3.50 µg/L for clothianidin, and 756 

1.37 µg/L for thiacloprid (Alford and Krupke 2019; de Araújo et al. 2022; Criquet et al. 2017; Evelsizer and Skopec 757 
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2018; Kuechle et al. 2019; Nélieu et al. 2021; Pietrzak et al. 2019; Schaafma et al. 2019; Wang et al. 2023) (Table 758 

1). Most of these reported maximum concentrations exceed the ecological thresholds for neonicotinoid water 759 

concentrations (0.2 μg/L for short-term acute exposure and 0.035 μg/L for long-term chronic exposure) which 760 

were defined to avoid lasting effects on aquatic invertebrate communities (Morrissey et al. 2015). A recent review 761 

provided a meta-analysis of neonicotinoid concentrations in water, based on more than 40 papers published in ten 762 

countries (Wang et al. 2023). It reported mean concentrations of 0.222 µg/L (n=1056) for clothianidin, 0.120 µg/L 763 

(n=879) for imidacloprid, 0.059 µg/L (n=863) for thiamethoxam, 0.023 µg/L (n=428) for acetamiprid, and 0.011 764 

µg/L (n=295) for thiacloprid. 765 

Some mitigation measures could consist in improving the application material to prevent dust during 766 

planting of treated seeds, and to improve water interception of surface and subsurface flow thanks to buffer zones 767 

such as wetlands. For example, in constructed wetlands, removal of neonicotinoids due to direct accumulation in 768 

macrophytes and to enhanced biodegradation was estimated to range from 10 to 100% in 28 days (Liu et al. 2021; 769 

Main et al. 2017). 770 

 771 

Marine environment 772 

Neonicotinoids have only been recently monitored in coastal and marine environments. Consequently, data are 773 

just available for imidacloprid and thiamethoxam, which are generally searched for using passive integrative 774 

POCIS samplers or directly in water. In mainland France, these substances were not found in the Channel/North 775 

Sea coast (Menet-Nedelec et al. 2018). On the contrary, on the other two maritime facades (Bay of Biscay and 776 

Mediterranean), imidacloprid and thiamethoxam were quantified quite frequently (with maximum frequencies of 777 

detection of 20%) in the coastal waters of the Arcachon Basin (maximum of 0.14 µg/L and 0.0039 µg/L for 778 

imidacloprid and thiamethoxam, respectively, in spot samples) (Auby et al. 2011; Tapie and Budzinski 2018) 779 

(Table 1), in transitional waters of the Gironde estuary (maximum imidacloprid concentration of 0.0053 µg/L with 780 

integrative sampling) (Levesque et al. 2018), in Marennes-Oléron bay (maximum of 0.0238 µg/L and 0.0004 µg/L 781 

for imidacloprid and thiamethoxam, respectively, with integrative sampling) (Pepin et al. 2017), and in 782 

Mediterranean lagoons (maximum of 0.028 µg/L and 0.0025 µg/L, for imidacloprid and thiamethoxam, 783 

respectively with integrative sampling) (Munaron et al. 2020; Munaron et al. 2023). Imidacloprid has also been 784 

detected in the Charente estuary and in the Loire estuary since 2006 (GIP Loire Bretagne 2013). According to 785 

ecotoxicological data collected in the OBSLAG (Observatory of the Mediterranean Lagoons) study, only 786 

imidacloprid would cause a chronic risk for the biota of lagoon ecosystems (exceeding its chronic marine predicted 787 
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no effect concentration PNEC in several lagoons since the beginning of the monitoring in 2017) (Munaron et al. 788 

2022). This risk can be extended to the Arcachon basin and Marennes-Oléron bay given the reported data. No 789 

neonicotinoid was found in French marine sediments and no reference from the French overseas territories 790 

mentions their research in the water of the marine environment. 791 

 Only scarce information is available evidencing the contamination of marine waters worldwide. In the 792 

Queensland region of Australia, streams flowing into the marine waters of the Great Barrier Reef were found to 793 

be contaminated with imidacloprid at levels ranging from 0.0005 to 1.3 µg/L (Warne et al. 2022). The 794 

contamination concerned observation sites located in downstream sectors near the mouths of large rivers (Warne 795 

et al. 2022). This pattern appeared similar in the Bohai Sea (China), where Naumann et al. (2022) observed the 796 

seasonal variation in neonicotinoid concentrations in rivers and marine water. In their study, the detection 797 

frequency of acetamiprid was 100% in both river (n=72) and marine (n=81) waters in summer and fall. Despite 798 

dilution in the coastal environment, the risk quotient associated with the contamination levels were reported as 799 

high risk for marine organisms regarding imidacloprid, thiamethoxam and acetamiprid (Naumann et al. 2022). 800 

Due to their slow degradation rates in the environment and binding properties to particulate organic matter (PPDB 801 

2023), neonicotinoids are likely to accumulate in sediments: Chen et al. (2022) reported contamination of marine 802 

sediments in East China Sea, due to the Yangtze River inputs, several tenths of kilometer from the river mouth. 803 

The mean concentration of total neonicotinoids was 11.9 µg/kg (dry weight). The authors concluded that marine 804 

sediments were a major sink for neonicotinoids, highly used in continental China as PPPs (Chen et al. 2022). 805 

 806 

Impacts on aquatic biodiversity 807 

Aquatic microorganisms 808 

Few studies have been published on the effects of neonicotinoids on aquatic microorganisms. They suggest that 809 

imidacloprid does not affect the activity and respiration of aquatic microbial decomposers (Kreutzweiser et al. 810 

2007; Kreutzweiser et al. 2008). With the exception of the study of Neury-Ormanni et al. (2020a), who observed 811 

that an exposure of the freshwater diatoms Planothidium lanceolatum and Gomphonema gracile to 5 µg/L 812 

imidacloprid resulted in indirect effects via competition and predation, effects of neonicotinoids on different 813 

microalgae (e.g., Desmodesmus subspicatus; Malev et al., 2012) and cyanobacteria (e.g., Synechocystis sp.; Li et 814 

al., 2010) were only observed at very high concentrations (i.e., several mg/L), irrelevant to environmental 815 

contamination levels. Using a quantitative structure activity-toxicity modeling approach, Gökçe and Saçan (2019) 816 

also predicted an absence of effects of acetamiprid on microalgae exposed to up to 100 mg/L. Neonicotinoids are 817 
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therefore unlikely to be toxic to aquatic microbes, including primary producers, except under extreme events of 818 

contamination.  819 

 820 

Aquatic invertebrates 821 

Works focused on the effects of neonicotinoids on aquatic invertebrates are increasingly investigated (as compared 822 

to other insecticide classes, such as carbamates and organophosphates) due to the relative recentness of their use 823 

(first homologations date back from the 1990s), and to the risk specifically posed to aquatic invertebrates because 824 

of the levels of water contamination reported (see above). Morrissey et al. (2015) highlighted strong evidence that 825 

water-borne neonicotinoid exposure is frequent, long-term and at concentrations which commonly exceed several 826 

existing water quality guidelines. In addition, several monitoring studies of watercourses in either agricultural or 827 

urban landscapes demonstrated a significant contamination of freshwater amphipods (Gammarus pulex) by 828 

neonicotinoids (e.g., Shahid et al. 2018a; Švara et al. 2021). 829 

Despite awareness of these contamination levels, works devoted to the effects of neonicotinoids on 830 

aquatic invertebrate biodiversity are still limited. A first review published in 2015 noted the weak level of 831 

knowledge available on the effect of neonicotinoids on the invertebrate fauna of freshwater and marine 832 

environments (Pisa et al. 2015). Since then, various field case studies have provided data and 833 

documented/predicted effects of neonicotinoids on aquatic invertebrate communities. For example, in Canadian 834 

wetlands near treated rapeseed crops, a correlation was established between neonicotinoids (acetamiprid, 835 

clothianidin, imidacloprid, thiamethoxam) transfer during rainfall events and changes in emergent insect (Diptera) 836 

diversity (Cavallaro et al. 2019). Through an experimental rice mesocosm study, imidacloprid was found to 837 

significantly reduce populations of various insects (dragonfly, bug, beetle) (Kobashi et al. 2017). A drastic decline 838 

in zooplankton biomass in Japanese brackish lakes also coincided with the introduction of neonicotinoids 839 

(clothianidin, imidacloprid, thiamethoxam) in rice agriculture since the 1990s, followed by collapse of predator 840 

fish populations (Yamamuro et al. 2019). In the Netherlands, where imidacloprid residues in water are particularly 841 

high, correlations between these residues and decline in arthropod taxa such as mayflies, odonates, diptera, and 842 

some crustaceans were revealed on a national scale (van Dijk et al. 2013). This was also observed in a study 843 

adopting a PAF (Potentially Affected Fraction) approach, but with much lower proportions of species potentially 844 

affected by neonicotinoids taking into account the co-occurrence of other PPPs in the studied environments (Vijver 845 

and van den Brink 2014).  846 
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Comparing recorded or predicted concentrations of neonicotinoids in the aquatic environment to 847 

ecotoxicity thresholds has raised some concerns for the potential effects of these insecticides in freshwater 848 

environments. The review by Sánchez-Bayo et al. (2016) reported widespread effects of neonicotinoids on aquatic 849 

species in the USA, and the major risk for aquatic invertebrates was reaffirmed in 2017 (Wood and Goulson 2017). 850 

More recently, a study based on an agricultural region located in an ecologically important wetland (Nebraska’s 851 

Rainwater Basin, USA), showed negative correlations between neonicotinoid concentrations and 852 

macroinvertebrate biomass (which represents potential resources for various migratory birds) despite 853 

concentrations below the acute toxicity risk thresholds proposed by the USEPA (Schepker et al. 2020). 854 

Long-term ecological impact of neonicotinoids is a particularly salient issue for aquatic invertebrates. The 855 

chronic risk mainly results from the ability of neonicotinoids to reach aquatic environments (high solubility in 856 

water) and to persist there when they are adsorbed on particles (Armbrust and Peeler 2002). However, this risk is 857 

poorly assessed because most often based on toxicity tests on Daphnia, an organism more tolerant than insects and 858 

other arthropods to neonicotinoids (Beketov and Liess 2008; Wood and Goulson 2017). Neonicotinoids can have 859 

chronic effects on abundance and community structure of freshwater arthropods and other macroinvertebrates at 860 

doses in the µg/L range and below (Beketov and Liess 2008; Kattwinkel et al. 2016). After cessation of treatments, 861 

the onset of delayed effects was also demonstrated in situ (limnocorrals) for much lower concentrations of 862 

imidacloprid and clothianidin (< 0.05 µg/L) resulting in a significant advancement of the emergence date of 863 

chironomids and zygopteran odonates (Cavallaro et al. 2018; Williams and Sweetman 2019). From a functional 864 

point of view, the desynchronization of phenology of these organisms could have important consequences on 865 

ecosystems, especially in terms of biomass input to the terrestrial environment (trophic resource for terrestrial 866 

predators such as birds). Lethal and sublethal effects of thiacloprid have been demonstrated in various aquatic 867 

invertebrates, several days after exposure, for moderate acute toxicity concentrations (Beketov and Liess 2008). 868 

Neury-Ormanni et al. (2020b) documented altered feeding behavior in chironomids exposed to environmental 869 

doses of imidacloprid. The insecticide induced changes in motility, feeding selectivity, and browsing ability. The 870 

reduced abundance and altered emergent aquatic insect assemblages in wetlands exposed to neonicotinoids could 871 

explain the reduction in densities of insectivorous birds in such environments (Cavallaro et al. 2019). 872 

Investigating the idea of long-term impact of neonicotinoids beyond the lifespan of exposed individuals, 873 

recent works with the model amphipod crustacean, G. pulex, suggested the development of tolerance towards 874 

clothianidin within populations from watercourses in agricultural landscapes (Becker and Liess 2017; Becker et 875 

al. 2020; Shahid et al. 2018b). According to the authors, in these populations, the evolution of resistance by natural 876 
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selection could be facilitated by factors acting at the population and/or community levels: distance from non-877 

tolerant populations, which would favor selection locally by limiting gene flow and the influx of non-adapted 878 

genes into populations (Hoffmann and Willi 2008), and low community diversity which would intensify intra-879 

specific competition in gammarids. Nevertheless, the shift in sensitivity of this non-target species to the 880 

neonicotinoid appeared very moderate (less than three-fold change in LC50 for example) in comparison to the 881 

genetic resistance reported for other neurotoxic insecticides (pyrethroids and organophosphates) in the amphipod 882 

Hyalella azteca (Gamble et al. 2023; Weston et al. 2013). In addition, an inverse pattern with increased sensitivities 883 

of long-term exposed G. pulex populations towards imidacloprid was found in non-agricultural context presenting 884 

complex mixture of organic contaminants (Švara et al. 2021). Overall, these results demonstrate the unsuspected 885 

importance of evolutionary adaptative processes underway in natural populations unintentionally exposed to 886 

neonicotinoids, and the urgency to develop assessment tools specifically focused on long-term effects (Oziolor et 887 

al. 2016). Such processes should be anticipated, at least in insects and probably in other arthropods, from the 888 

current knowledge on the selective evolution of resistance to neonicotinoids in pests, based either on target-site 889 

mutation or on metabolic resistance (Bass et al. 2015). 890 

Although environmentally less realistic than field approaches, experimental studies performed in 891 

mesocosms and in the laboratory (e.g., common garden), offer the statistical power required to test patterns 892 

observed in natura (Barmentlo et al. 2021), as well as interactions with other environmental factors susceptible to 893 

alleviate or aggravate the effects of neonicotinoids, such as PPP mixtures (Sanchez-Bayo and Goka 2012; Rico et 894 

al. 2018; Sol Dourdin et al. 2023), temperature/climate (Mohr et al. 2012; Sumon et al. 2018; Rico et al. 2018), 895 

nutrients/fertilizers (Barmentlo et al. 2019; Chara-Serna et al. 2019), vegetation disturbance (Cavallaro et al. 2019), 896 

and indirect effects between species representative of different functional groups in the community (e.g., such as 897 

predator-prey relationships; Miles et al. 2017). In this regard, Alexander et al. (2013) used artificial streams to 898 

examine the impact of mixing three insecticides expected to act additively, i.e., imidacloprid (which acts on the 899 

acetylcholine receptor) and two organophosphates which act on the acetylcholine esterase enzyme, chlorpyrifos 900 

and dimethoate, and under oligotrophic vs mesotrophic (nitrate input), along a Toxic Unit (TU) gradient 901 

established for concentrations consistent with environmental data. The study showed a significant interaction 902 

between insecticides and nutrients on macroinvertebrate communities, with notably, under mesotrophic condition 903 

and low insecticides pressure, an increase in the total abundance and species richness of ephemeropteran, 904 

plecopteran and trichopteran insects. At higher insecticides pressure, the overall density of these groups and the 905 

entire community was the most reduced in mesotrophic streams. In contrast, for other species groups such as 906 
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chironomids, detritus feeders, and the odonate predator Gomphus spp., no significant interaction between 907 

insecticides and nitrate was detected. In oligotrophic environments, increasing PPP doses decreased predation 908 

intensity, which in turn affected abundance patterns while, in mesotrophic environments, a bottom-up effect of 909 

nutrients on the periphyton explained the variation in macroinvertebrates abundance and richness. Such cause-910 

and-effect relationships were also analyzed with Structural Equation Modeling (SEM) approaches which describe 911 

effect pathways among different variables of interest (Miller et al. 2020; Schmidt et al. 2022). At low doses, the 912 

toxicity of PPPs appeared hidden by nutrients because of increased compensatory consumption, expression of 913 

adaptive plasticity at the intraspecific level, or differential responsiveness across taxa, processes which are not 914 

captured by traditional community study methods (taxonomic determination and records of relative abundances). 915 

Interactions between nutrients and PPP can thus result in a redirection of energy within food webs towards non-916 

productive pathways (Davis et al. 2010) or in a shift in communities towards more tolerant groups (Vinebrooke et 917 

al. 2004). This type of interactions was also studied in terms of convergence/divergence of invertebrate community 918 

structure in open artificial ditches (naturally assembled communities), by combining NPK elements with 919 

thiacloprid (Barmentlo et al. 2019). Following thiacloprid treatments designed to maintain concentrations for one 920 

month (two spikes separated by two weeks), no effect of treatments, other than an increase in total abundance after 921 

four months due to nutrient input, was found in terms of taxon richness, overall abundance, or within-treatment 922 

community divergence/convergence through time (β dispersion). However, significant changes were observed in 923 

community composition under the effect of thiacloprid, nutrients and combination thereof. This effect persisted 924 

several months after the disappearance of thiacloprid from the medium. The main compositional changes were a 925 

reduction in the abundance of insects and large predators, and an increase in multivoltine species. Some results, 926 

such as the particularly strong increase in Helophorus beetles under nutrients and thiacloprid, may reflect a PPP-927 

induced rippling effect on the community amplified by nutrient supply. This study shows that thiacloprid, in 928 

addition to its short-term toxicity, induces indirect longer-term ecological effects. 929 

Overall, the corpus analyzed pointed to a marked impact of neonicotinoids on aquatic arthropods at low 930 

doses, as demonstrated once again in a recent study which reports the decline in emerging aquatic insects during 931 

a three-month semi-field experiment considering environmentally realistic contamination scenarios of thiacloprid 932 

(Barmentlo et al. 2021). However, more studies remain to be performed to determine the relationship between the 933 

impacts of neonicotinoids and fitness of organisms, in relation to the ecological functions to which they contribute, 934 

as well as on the relationship between the impacts of neonicotinoids on the nervous system and the behavior of 935 

aquatic invertebrates. 936 
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Aquatic vertebrates 937 

Amphibian larvae and tadpoles 938 

The sensitivity of amphibian species to neonicotinoids through water contamination has been rarely studied. Green 939 

frog (Rana clamitans) tadpoles were found to be relatively insensitive to imidacloprid with mortality observed 940 

after 96h of exposure to high concentrations only (150 mg/L) (Puglis and Boone 2011). This lack of sensitivity is 941 

likely due to differences in the vertebrate nicotinic acetylcholine receptor relative to their invertebrate homologs 942 

(Li et al. 2016). On the contrary, spotted marsh frog tadpoles (Limnodynastes tasmaniensis) suffered high mortality 943 

rates (up to 17%) when they were exposed to imidacloprid concentrations as low as 0.50 µg/L (Sievers et al. 2018). 944 

This exposure level reduced swimming speed and distance, and escape responses which then made the tadpoles 945 

more susceptible to predation, while increasing erratic swimming (Sievers et al. 2018). The toxicity of imidacloprid 946 

has also been demonstrated in the tadpoles of Leptodactylus luctator and Physalaemus cuvieri (Samojeden et al. 947 

2022). The consequences of exposure to environmental concentrations (3-300 µg/L) led to a decrease in size, to 948 

morphological malformations (for the two species), and to changes in tadpole swimming activity (only for L. 949 

luctator).  950 

In the current literature, there is limited evidence of the effects of neonicotinoids on amphibians under 951 

chronic exposure to aquatic environmental concentrations. However, neurotoxic responses can be observed. 952 

Campbell et al. (2022; 2023) demonstrated the ability of imidacloprid to cross the blood-brain barrier and to 953 

concentrate over 300-fold in the brain of juvenile northern leopard frogs (Rana pipiens) with some consequences 954 

on foraging behavior (e.g., a decrease in reaction times to a food stimulus by 1.5 to 3.2 times for organisms exposed 955 

to concentrations up to 10 µg/L). At concentrations ranging from 0.1 to 10 µg/L and over a 21 day exposure period, 956 

bioaccumulation of imidacloprid in frog brains is accompanied by a decreased reactivity in individuals subjected 957 

to feeding stimuli. Beyond the active substance, the transformation product imidacloprid-olefin was detected in 958 

the brains of amphibians at much lower concentrations, which does not mean that this compound cannot be 959 

responsible for any toxic action. Surprisingly, exposure of leopard frogs to imidacloprid led to increased growth 960 

primarily affecting body length (Campbell et al. 2022). Recent research has further demonstrated that wood frogs 961 

(R. sylvatica or L. sylvaticus) exposed to imidacloprid (10 or 100 μg/L) at the tadpole stage were less likely to 962 

escape simulated predator attacks in the laboratory, suggesting that exposure to this insecticide may negatively 963 

impact tadpole perception and cognitive function (Lee-Jenkins and Robinson 2018; Sweeney et al. 2021). 964 

However, at a lower concentration of 0.1 µg/L, imidacloprid did not induce any modulation of acetylcholinesterase 965 

activity in bullfrog (Lithobates catesbeiana) tadpoles after three weeks of exposure (Rios et al. 2017). For other 966 
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less studied neonicotinoids as chlothianidin, frog tadpoles are among the least sensitive species in case of 967 

laboratory exposure at sublethal concentrations (Miles et al. 2017). The tadpoles are tolerant to clothianidin, 968 

confirming the low toxicity of neonicotinoids in vertebrates (Miles et al. 2017). As stated in the section focused 969 

on the impacts of neonicotinoids on amphibians during their terrestrial life, numerous research remain to be done 970 

to characterize their impacts on amphibians in aquatic media. 971 

 972 

Fish 973 

In general, neonicotinoids exhibit low acute toxicity to fish. The 96h LC50 of clothianidin ranges from 93.6 mg/L 974 

for sheepshead minnow (Cyprinodon variegatus) to 117 mg/L for bluegill sunfish (Lepomis macrochirus) 975 

(Anderson et al. 2015). A similar trend is observed for imidacloprid, with 96h LC50 ranging from 211 mg/L for 976 

rainbow trout (Oncorhynchus mykiss) to 280 mg/L for common carp (Cyprinus carpio) (Anderson et al. 2015). 977 

Two formulations of thiamethoxam have 96h LC50 above 100 mg/L (Anderson et al. 2015). These results indicate 978 

that fish are insensitive to neonicotinoids, probably because of the properties of the vertebrate nicotinic 979 

acetylcholine receptor (Li et al. 2016).  980 

 Nevertheless, the available data indicate that exposure of aquatic vertebrates to sublethal concentrations 981 

of neonicotinoids results in pro-oxidative responses from which genotoxic perturbations arise. A short 48h 982 

exposure of the freshwater cichlid fish (Australoheros facetus) to imidacloprid concentrations of 100 and 1000 983 

µg/L affected the integrity of fish erythrocyte DNA (COMET assay and micro-nuclei test) (Iturburu et al. 2018). 984 

Under short-term exposure to a much lower concentration of thiamethoxam (3.75 µg/L), the siluriform catfish 985 

(Rhamdia quelen) showed activity inhibition of two liver enzymes, adenylate kinase and pyruvate kinase, as early 986 

as 24h of exposure (Baldissera et al. 2018). These inhibitions were associated with a decrease in ATP levels in the 987 

liver. The energetic deregulation appeared to persist after the fish were no longer contaminated (Baldissera et al. 988 

2018). Beyond these non-specific effects, neonicotinoids can act on the nervous function of non-target organisms, 989 

given their mode of action (binding to nicotinic acetylcholine receptors at neuromuscular junctions leading to 990 

insect paralysis) (Kimura-Kuroda et al. 2012). Imidacloprid was found to be neurotoxic to adult rainbow trout (O. 991 

mykiss) exposed for 21 days to high concentrations (10 and 20 mg/L) (Topal et al. 2017). This neurotoxicity 992 

resulted in inhibition of acetylcholinesterase activity, oxidative stress, and a concomitant increase in DNA damage 993 

in the fish brains (Topal et al. 2017). 994 

Neurotoxicity of neonicotinoids may also impact the behavior of fish. A laboratory test developed to 995 

investigate two key responses of fish anti-predator behaviors revealed that zebrafish (Danio rerio) larvae exposed 996 
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for 24 hours to acetamiprid exhibited increased fear reflex and faster habituation compared to unexposed larvae 997 

(Faria et al. 2020). The concentrations tested in this study were considered to be realistic (0.04 and 0.40 µg/L) in 998 

relation to measured concentrations of acetamiprid in surface water (0.008 to 44 µg/L) (Faria et al. 2020). The 999 

modulations of fish larvae anti-predator behavior observed in the laboratory raise questions about the 1000 

environmental reality of such effects and about their hypothetical consequences in terms of survival capacity in 1001 

the environment. Könemann et al. (2021) observed that zebrafish larvae were able to avoid imidacloprid 1002 

contamination, but did not react to other neonicotinoids such as thiacloprid. In addition, the experimental ablation 1003 

of olfaction abolished aversive responses of individuals, indicating that fish may sense insecticides. In this species, 1004 

the assessment of neural activity in 289 different brain regions revealed a particular modulation of hypothalamic 1005 

areas involved in the fish stress response, indicating that the observed behavioral patterns are close to those 1006 

observed for other stress responses (Könemann et al. 2021). Juvenile medaka (Oryzias latipes), exposed to 1007 

imidacloprid under rice cultivation field conditions, were consecutively infected by a Trichodina parasite 1008 

(Sánchez-Bayo and Goka, 2005). Such pathology was linked to the chemical stress induced by imidacloprid. If 1009 

toxicity of imidacloprid to vertebrates was extensively studied, the toxicity related to imidacloprid transformation 1010 

products (5-hydroxy-imidacloprid, imidacloprid-urea and 6-chloronicotinic acid) was not taken into account until 1011 

now, despite their presence in various tissues as observed, for example, in muscle, gonads, brain and gills in 1012 

Goldfish (Carassius auratus) (Xu et al. 2023). 1013 

 A few studies deal with the combined effects of neonicotinoids with other PPPs but sometimes with 1014 

experimental approaches that are more or less relevant in the context of ecological risk assessment. Thus, adult 1015 

zebrafish exposed by immersion during 24 hours to high concentrations of imidacloprid (13.75 mg/L) associated 1016 

with the organophosphate insecticide dichlorvos (7.5 mg/L) and the herbicide atrazine (1.5 mg/L) showed high 1017 

levels of lipid peroxidation, particularly in the liver, compared to fish exposed to the same active substances tested 1018 

in isolation (Shukla et al. 2017). Although this type of study is useful to test the hypothesis of expected synergistic 1019 

effects, it does not allow estimation of the actual environmental risk, particularly in view of the contamination of 1020 

surface waters reported by the authors (in the Ebro River in Spain: minimum concentration of imidacloprid of 1021 

0.0016 µg/L and maximum concentration of 0.015 µg/L) (Shukla et al. 2017). It is therefore important to consider 1022 

such data with caution when assessing the ecotoxicity of neonicotinoids. Similarly, mixture of the order of mg/L 1023 

imidacloprid and organophosphate insecticide triazophos used to assess embryotoxicity to zebrafish early larvae  1024 

(blastula stage: 2h post-fertilization) exposed during 96h revealed a strong synergistic effect in terms of acute 1025 

toxicity (Wu et al. 2018). Although relevant in terms of mixture toxicity assessment, such high concentrations still 1026 
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lack environmental relevance. It is worth noting that, though concentrations were still high, synergistic effects 1027 

were also demonstrated on zebrafish larvae (72h post-hatching) for various combinations of imidacloprid with 1028 

atrazine, butachlor, chlorpyrifos or lambda-cyhalothrin (mixtures containing from two to five substances) (Wang 1029 

et al. 2017).  1030 

 No study has been devoted to the effects of neonicotinoid mixtures on aquatic vertebrates (Anderson et 1031 

al., 2015). In addition, there is a lack of ecosystem-scale studies (mesocosm approaches and/or field studies) to 1032 

investigate the effects of these insecticides. Work is also needed on sub-lethal or chronic effects to reflect 1033 

environmental concentration levels. Finally, most of the studies focus on imidacloprid, with very little attention 1034 

paid to the effects of other neonicotinoids. 1035 

 1036 

Aquatic birds 1037 

Aquatic birds include waterbirds, which live in freshwater environments, and seabirds, which feed on the resources 1038 

of seas and oceans.  1039 

The exposure of seabirds to neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid, 1040 

thiamethoxam) was characterized by analyzing residues in feathers sampled from the piscivorous Sandwich tern 1041 

(Thalasseus sandvicensis) and the mixotrophic Mediterranean gull (Ichthyaetus melanocephalus) in fledglings 1042 

from the Lagoon of Venice (Distefano et al. 2022). Neonicotinoids were detected in both species, and imidacloprid 1043 

and clothianidin were the most often quantified ones (100% in Mediterranean gulls and 58% in Sandwich terns, 1044 

and 100% in Mediterranean gulls and 61% in Sandwich terns, respectively). The detection of thiacloprid was lower 1045 

(<20% of samples in both species) (Distefano et al. 2022). On the contrary, no residue of neonicotinoids was found 1046 

in the liver or blood of white-tailed sea eagles (Haliaeetus albicilla) and ospreys (Pandion haliaetus) (Badry et al. 1047 

2021; Badry et al. 2022). 1048 

For waterbirds, data are even more scarce. In some rice-growing regions, aquaponic practices involve 1049 

ducks for the control of weed and pest in rice fields (Mburia, 2016). In this very particular context, ducks may be 1050 

contaminated with neonicotinoid residues (Khidkhan et al., 2022).  1051 

To date, no result on the direct effects of neonicotinoids on seabirds and waterbirds were available in the 1052 

literature. Thus, even if the toxicity of neonicotinoids to aquatic vertebrates is presumed to be limited, there are 1053 

still many areas of knowledge that need to be clarified and completed such as toxicity of transformation products, 1054 

and levels of impregnation of agricultural wetland-living organisms by native substances and their transformation 1055 

products (Frank and Tooker, 2020). 1056 
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Food webs 1057 

Neonicotinoids can affect terrestrial and aquatic biodiversity by spreading through food webs, by the propagation 1058 

of adverse biological effects in food webs and disturbance of trophic interactions (e.g., reduced predation rate, 1059 

increased mortality of predators), and/or by reducing food resources (Alsafran et al. 2022). However, the number 1060 

of results which have been published in the literature remains limited.  1061 

 1062 

Terrestrial ecosystems 1063 

Focusing on insects, Tooker and Pearsons (2021) reviewed the mechanisms underlying the effects of insecticides 1064 

on food webs. They highlighted how neonicotinoids influence trophic interactions and food webs, and contribute 1065 

to insect declines. Neonicotinoids spread across trophic levels, primary and secondary consumers being exposed 1066 

through several routes (including dietary and trophic routes), and they may also bioaccumulate in some organisms 1067 

(Tooker and Pearsons 2021). Neonicotinoids distort food webs by significantly decreasing insect abundance and 1068 

diversity of both preys and consumers, as evidenced in various ecosystems (e.g., croplands, woodlands, 1069 

watercourses). Depopulated and less diversified insect communities lead to food scarcity for their predators, 1070 

thereby adversely impacting their local population dynamics. Importantly, food web disruption can occur even 1071 

when neonicotinoids do not bioaccumulate or biomagnify in food webs, depending on the sensitivity of the taxa 1072 

constituting the lower trophic levels (i.e., toxic effects on prey inducing adverse effects on higher levels via trophic 1073 

cascades) and/or the sensitivity of higher trophic levels (i.e., relatively low concentrations but high enough to 1074 

induce toxic effects on sensitive predators) (Tooker and Pearsons 2021).  1075 

In terrestrial invertebrates, thiamethoxam has been reported to have no effect on the predation rates of 1076 

two predators, Orius insidious insidious flower bug and Hippodamia convergens ladybug, after consuming aphids 1077 

reared on thiamethoxam-treated plants (Esquivel et al. 2020). On the contrary, insidious flower bug survival, unlike 1078 

that of ladybugs, was reduced following aphid consumption. However, the reduction in bug survival was only 1079 

observed in the first few weeks after thiamethoxam application, and no reduction was noted one month after 1080 

treatment or beyond. In an urban context (Central Park, New York City, USA) where trees were treated with 1081 

imidacloprid against an alien beetle (Anoplophora glabripennis), unexpected outbreaks of a formerly innocuous 1082 

herbivore, Tetranychus schoenei (Tetranychidae), followed insecticide applications to elms (Szczepaniec et al. 1083 

2011). Changes in the structure of arthropod communities sampled in elm canopies after imidacloprid treatments 1084 

were evidenced, mainly related to an increase in the abundance of T. schoenei. Laboratory tests showed that 1085 
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exposure to imidacloprid through consumption of imidacloprid-treated elm foliage enhanced the fecundity of T. 1086 

schoenei by 40%: adult T. schoenei fed leaves from treated elms laid more eggs than when fed with leaves from 1087 

untreated elms (Szczepaniec et al. 2011). However, no effect of imidacloprid on T. schoenei fecundity was detected 1088 

when mites were directly sprayed with the insecticide. The longevity of mites was also not affected by exposure 1089 

to imidacloprid via food. Two model predators of spider mites, the Coccinellidae Stethorus punctillum (adult) and 1090 

the Chrysopidae Chrysoperla rufilabris (larva), showed significant decrease in feeding rates when offered mites 1091 

from imidacloprid-treated elms as preys. Moreover, the predators exhibited signs of intoxication (partial or 1092 

complete lack of response to touch, tremors, regurgitation, excessive grooming, and inability to right themselves 1093 

when placed on their back) and deleterious effects when exposed to imidacloprid by consuming prey from leaves 1094 

of treated trees such as impaired mobility and reduced longevity (about one-two days when mites fed from treated 1095 

trees versus 9-13 days when T. schoenei fed from untreated trees) (Szczepaniec et al. 2011). By stimulating 1096 

reproduction of mites while poisoning insect predators of spider mites which may reduce top-down regulation, 1097 

imidacloprid tree treatments finally led a non-target innocuous herbivore to reach a pest status (Szczepaniec et al. 1098 

2011). This study underlined how neonicotinoids may disrupt ecosystem functioning and impair ecological balance 1099 

that ultimately can favor pest outbreaks. Studying the effect of thiamethoxam on the spider mite (Tetranychus 1100 

urticae, considered as a pest in various agricultural systems) and its predator Phytoseiulus persimilis, Pozzebon et 1101 

al. (2011) showed that the neonicotinoid was toxic to both T. urticae and P. persimilis, but that the impact of 1102 

thiamethoxam varied according to the routes of exposure. The authors demonstrated that topical exposure led to 1103 

sublethal effects in predators and preys while residual and contaminated food exposures led to both lethal and 1104 

sublethal effects. In addition, toxicity increased when several exposure routes were involved. By limiting exposure 1105 

to thiamethoxam to ingestion of contaminated food only, the impact of the insecticide was more favorable to P. 1106 

persimilis than to its prey (Pozzebon et al. 2011). 1107 

The propagation of sublethal effects of neonicotinoids via trophic interactions was evidenced in a three-1108 

level food chain gathering wild strawberry (Fragaria vesca), wood cricket (Nemobius sylvestris) and nursery web 1109 

spider (Pisaura mirabili): strawberries were treated with imidacloprid at different doses and crickets were allowed 1110 

to feed on them (Uhl et al. 2015). In this tritrophic system, feeding, mass gain, thorax growth and mobility of wood 1111 

crickets was reduced, and herbivory and predation diminished at sublethal imidacloprid doses in the non-target 1112 

organisms (Uhl et al. 2015). The effects of thiamethoxam, applied as a soybean seed treatment, on interactions 1113 

between soybeans, non-target herbivorous mollusks (pests), and predatory insects was studied in the laboratory 1114 

and in the field (Douglas et al. 2015). In the laboratory, the slug Deroceras reticulatum was not affected by 1115 
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thiamethoxam, but predatory ground beetles (Chlaenius tricolor) which ate these slugs were affected or died in 1116 

over 60% of cases. In the field, thiamethoxam seed treatments decreased the activity and density of predatory 1117 

arthropods, thereby releasing slug predation and reducing soybean densities by 19% and yield by 5%. The analyses 1118 

of thiamethoxam residues revealed a transfer in food webs: they showed that insecticide concentrations decreased 1119 

throughout the food chain, but that levels in slugs collected in the field were still high enough to adversely affect 1120 

predatory insects. According to Douglas et al. (2015), this work on the trophic transfer of thiamethoxam challenges 1121 

the idea that seed treatments with neonicotinoids specifically target herbivore pests, and underscores the need to 1122 

consider predatory arthropods and soil organism communities in neonicotinoid risk assessment and management. 1123 

If neonicotinoids can affect vertebrates through direct effects, as reviewed above, they can also affect 1124 

wildlife through a reduction in food resources (Gibbons et al. 2015). Further, the trophic transfer of neonicotinoids 1125 

has been recently evidenced, especially in birds. The presence of 54 residues of PPPs or transformation products 1126 

was investigated in the food bolus (insects) provided by the parents of the tree swallow (Tachycineta bicolor) to 1127 

their chicks, in 40 Canadian farms (Poisson et al. 2021). This multi-residue analysis included seven neonicotinoids 1128 

(acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiamethoxam). The results attested 1129 

to the ubiquitous trophic exposure, with nearly half of the food boluses showing contamination by at least one 1130 

substance, clothianidin being among the most frequently detected PPPs (9%). Mixtures of 2 to 16 PPPs, among 1131 

which five (clothianidin, dinotefuran, imidacloprid, thiacloprid, thiamethoxam) of the seven neonicotinoids, were 1132 

also detected in 21% of the food boluses (and 45% of the contaminated boluses). A study conducted in Switzerland 1133 

reported that at least one neonicotinoid was detected in 100% of food boluses collected from Alpine swift 1134 

(Tachymarptis melba) provisioning their nestlings, 75% of the food boluses exhibiting measurable concentrations 1135 

(Humann-Guilleminot et al. 2021). Both acetamiprid and thiacloprid were found, and thiacloprid showed the 1136 

highest occurrence (up to 66.7%) and the highest concentrations (up to 0.6 µg/kg). Surveys on birds in the USA 1137 

and Europe revealed exposure/accumulation of neonicotinoids in all trophic groups such as nectarivores and 1138 

granivores, insectivores and predators including top-predators (raptors), and piscivores, strongly suggesting the 1139 

occurrence of trophic transfer in food webs (Badry et al. 2021; Bishop et al. 2020; Bro et al. 2016; Byholm et al. 1140 

2018; Distefano et al. 2022; Humann-Guilleminot et al. 2021; Taliansky-Chamudis et al. 2017). In 60 sites over a 1141 

wide cereal plain in France, the bioaccumulation of several neonicotinoids has been evidenced in both 1142 

granivorous/omnivorous rodents, and insectivorous shrews as well as in earthworms and carabid beetles, which 1143 

were their potential preys (Pelosi et al. 2021; Fritsch et al. 2022). Finally, residues in tissues have also been detected 1144 
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in terrestrial invertebrates and vertebrates, including wildlife species other than granivores (which can be exposed 1145 

directly via ingestion of treated seeds) as detailed in previous sections (e.g., chiropterans). 1146 

Some studies highlighted the potential for neonicotinoids to negatively impact terrestrial insectivorous 1147 

vertebrate abundance and diversity through indirect effects related to the reduction in quantity and quality of food 1148 

resources. Such indirect effects have rarely been studied on vertebrates but Gibbons et al. (2015) showed that 1149 

systemic insecticides can induce effects on wildlife via trophic cascades: the reduction in food supply related to 1150 

the use of imidacloprid led to impairments in fish species. 1151 

Long before major publications based on large-scale correlative analyses between PPP use and 1152 

population, Tennekes and Zillweger (2010) argued that neonicotinoid contamination of surface waters in Europe 1153 

was one of the factors responsible for the continental-scale decline in insect biomass, which in turn led to many of 1154 

the widespread declines in birds (golden oriole Oriolus oriolus, northern wheatear Oenanthe oenanthe, starling 1155 

Stumus vulgaris…). This was studied by Hallmann et al. (2014) who observed that insectivorous bird populations 1156 

in the Netherlans declined in areas with surface water concentrations of imidacloprid higher than 0.02 µg/L. Spatial 1157 

differences in land-use changes related to agricultural intensification (urban area, natural area, cropped area, 1158 

fertilizers) have been considered but they did not alter the significance of the observed effects. In the USA, Li et 1159 

al. (2020) found that the increase in neonicotinoid use was related to reductions of 4% and 3% in grassland and 1160 

insectivorous bird biodiversity, respectively, over 2008-2014. Such a trend was also found for non-grassland and 1161 

non-insectivorous birds, with an average annual rate of reduction of 2%. Recently, Kraus et al. (2021) conducted 1162 

surveys in wetlands of cropland and grassland landscapes which allowed to characterize cross-ecosystem fluxes 1163 

of PPPs mediated by aquatic insect emergence, and discussed their implications for terrestrial insectivores. Aquatic 1164 

insects were estimated to transfer fluxes ranging from 2 to180 µg of total insecticides per wetland per day to the 1165 

terrestrial ecosystem. Seven PPPs were detected in newly emerged insects, among which clothianidin and 1166 

imidacloprid, and biomass of emerging aquatic insects was reduced up to 73% in cropland wetlands. The authors 1167 

suggested that the availability of emerging adult aquatic insect prey for insectivores was reduced by insecticides, 1168 

and that accumulated insecticide could be responsible for insectivore exposure to insect-borne PPPs. Along the 1169 

observed gradient in PPP levels among the different wetlands, a decrease of 43% in insect emergence but an 1170 

increase of 50% in insect-mediated PPP flux with increasing insecticide concentrations were reported (from 3 to 1171 

577 ng of insecticide per gram of insect) (Kraus et al. 2021). In addition, the presence of these neonicotinoids also 1172 

led to a reduction in insect resources for consumer invertebrates (Kraus et al. 2021). Although bioaccumulation in 1173 

organisms and transfer in food webs have been demonstrated together with sublethal and lethal effeccts propagated 1174 
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along food chains, the major process involved in shaping the impact of neonicotinoids in food webs is considered 1175 

as being food web simplification (Tooker and Pearsons 2021). Such indirect effect of neonicotinoids affects both 1176 

prey and predator populations through trophic cascade mechanisms and feedbacks. The initial decrease in 1177 

resources when lower trophic levels are directly impacted by the use of the insecticides affect the dynamics of 1178 

consumer populations at higher trophic levels through food scarcity (bottom-up control). When consumers are 1179 

adversely impacted either directly (toxicity) or indirectly (lack of food supply), a subsequent decrease in predation 1180 

occurs, affecting the dynamics of prey populations (top-down control). Compensatory mechanisms for consumers 1181 

to overcome the decrease of one or a few food resources, such as switching to other food items, hardly occur when 1182 

the predator of concern are specialist species, and seemed currently hampered in the case of neonicotinoids because 1183 

of their widespread use (huge spatial extent worldwide, perennial and frequent use), the ubiquity of their 1184 

environmental contamination, their broad toxicity to non-target fauna, and time-cumulative toxicity (Tooker and 1185 

Pearsons 2021). 1186 

 1187 

Aquatic ecosystems 1188 

Adverse effects of neonicotinoids can propagate through aquatic food webs via contaminated primary producers 1189 

(Lima-Fernandes et al. 2019). Lima-Fernandes et al. (2019) used imidacloprid-contaminated and uncontaminated 1190 

black alder tree (Alnus glutinosa) leaves to feed the stonefly shredder Protonemura sp., which were later given as 1191 

prey to Isoperla sp. They showed that survival, body length and biomass of the shredders as well as leaf 1192 

decomposition were 20% to 50% greater in the uncontaminated treatment in comparison to imidacloprid exposure. 1193 

The biomass and length of predators were 11% and 4.3% higher, respectively, when fed with uncontaminated prey 1194 

than when fed with imidacloprid exposed prey (Lima-Fernandes et al. 2019).Bioaccumulation of imidacloprid has 1195 

been evidenced in both Desmognathus salamanders (D. monticola and D. fuscus) and benthic macroinvertebrates 1196 

sampled from water streams adjacent to treated hemlock stands in the USA (Crayton et al. 2020), which represents 1197 

a potential source of exposure for consumers at higher trophic levels. If exposure via the trophic route was likely 1198 

for salamanders, several non-exclusive routes of exposure might be involved in the subsequent bioaccumulation, 1199 

including dermal and dietary uptake (Crayton et al. 2020). 1200 

Hayasaka et al. (2012) showed that successive applications of imidacloprid and the phenylpyrazole 1201 

insecticide fipronil (also a systemic insecticide) in experimental rice fields resulted in reduced growth of medaka 1202 

fish, Oryzias latipes, adults and fry, most likely through reduced medaka prey abundance. Indeed, the 1203 

concentrations (approximately 1 to 50 µg/L) were too low to have a direct effect on fish. As indicated above, the 1204 
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decline of emerging insects from aquatic ecosystems towards riparian and surrounded terrestrial landscapes 1205 

strongly decrease the prey availability for numerous consumers, and overall minor energy transfer across 1206 

ecosystems (Kraus et al. 2021). 1207 

In a Japanese lacustrine ecosystem, Yamamuro et al. (2019) demonstrated the existing relationship 1208 

between decline in fishery yields and neonicotinoids. The use of neonicotinoids on watersheds since 1993 1209 

coincided with an 83% decrease in average zooplankton biomass in spring, causing the smelt (H. nipponensis) 1210 

harvest to collapse from 240 to 22 tons. Young smelts consume zooplankton crustaceans, and their decreased 1211 

abundance was linked to the reduction of zooplankton biomass caused by the introduction of neonicotinoids. This 1212 

study demonstrates the indirect effects of neonicotinoids along an aquatic food web through cascading effects. 1213 

Waterbirds living and feeding in lakes and ponds (ducks, waders, cormorants...) may depend on aquatic 1214 

invertebrates as their food source. Consequently, the depletion of this food source must necessarily affect them 1215 

(Sánchez-Bayo et al. 2016). Duckling abundance is thus related to aquatic macroinvertebrate abundance, which is 1216 

consistent with other studies, and collectively suggests that neonicotinoids contamination could influence duckling 1217 

abundance indirectly by impacting aquatic macroinvertebrate communities (Tyler 2022). The available data 1218 

indicate that the effects of neonicotinoids on aquatic bird life are indirect, as for other bird families, and are 1219 

associated with the direct toxic impacts of these contaminants on invertebrates (Sánchez-Bayo et al. 2016). 1220 

 1221 

Conclusion 1222 

Neonicotinoids, in particular imidacloprid, and to a lesser extent thiamethoxam and clothianidin, are very 1223 

frequently detected in soils and freshwaters, even several years after their use. In addition, the presence of 1224 

acetamiprid, imidacloprid, thiacloprid and thiamethoxam was observed in the air. Neonicotinoids have only been 1225 

recently monitored in coastal and marine environments (since 2010s), but many studies report the presence of 1226 

imidacloprid and thiamethoxam in different transitional ecosystems such as Mediterranean lagoons.  1227 

This contamination of the environment leads to the exposure of non-target organisms and impacts 1228 

biodiversity. The ecotoxicological effects of neonicotinoids depend on the studied organisms, but this review 1229 

showed that these substances have particularly high direct and indirect impacts on terrestrial invertebrates and 1230 

vertebrates, and on aquatic invertebrates. The impacts on aquatic vertebrates are less documented.  1231 

The effects of neonicotinoids on terrestrial heterotrophic microorganisms vary according to the 1232 

conditions: in field studies, these substances have little or no effect, while in the laboratory, impacts on the structure 1233 

and on different microbial activities were observed (however, the tested concentrations are sometimes unrealistic). 1234 



43 
 

Laboratory studies are not always environmentally relevant, but they are complementary to field approaches as 1235 

they can help to understand the effects at lower levels of biological organization (sub-individual, individual) that 1236 

have consequences on higher levels (populations, community) observed in the field. Although contradictory results 1237 

have been noted in the literature, neonicotinoids have negative effects (mortality, mobility disturbance) at the 1238 

individual level on pollinators (honeybees in particular). In addition, exposure to neonicotinoids increases the 1239 

susceptibility of honeybees to diseases and pests. Despite the importance of wild pollinators and their crucial role 1240 

in pollination, the number of studies focused on the impacts of neonicotinoids on this highly diverse group of 1241 

organisms is very limited. Furthermore, neonicotinoids have been shown to have effects on other terrestrial 1242 

invertebrates such as natural enemies, earthworms or nematodes. Neonicotinoids are also largely involved in the 1243 

decline of birds. Consumption of treated seeds is mainly responsible for neonicotinoid direct poisoning, but birds 1244 

could be exposed to these insecticides especially by trophic route after consumption of contaminated insects. 1245 

Neonicotinoids have negative effects on bats, amphibians, and on reptiles (though available data are still scarce 1246 

for this group). For aquatic invertebrates and vertebrates, the data on the effects of neonicotinoids remain limited. 1247 

The available results indicate correlations between neonicotinoid concentrations and declines in arthropod taxa. 1248 

Neonicotinoids seem to be not very toxic to aquatic vertebrates such as fish, but recent studies provide worrying 1249 

results for amphibians. However, the number of studies remains low and few studies focused on marine organisms. 1250 

In addition to their toxicity to directly exposed organisms, neonicotinoid-induced indirect effects via trophic 1251 

cascades have been demonstrated to affect some species (terrestrial and aquatic invertebrates) but data are still too 1252 

few to get a clear picture.  1253 

This critical review highlighted numerous knowledge gaps. First, there was a lack of data regarding the 1254 

effects of neonicotinoids on primary producers (although the mode of action of neonicotinoids is unlikely to result 1255 

in effects; Anderson et al. 2015), aquatic heterotrophic microorganisms, wild pollinators, raptors, mammals, 1256 

reptiles, amphibians, aquatic vertebrates, and on organisms in the marine environment in general. In addition: (1) 1257 

the majority of studies focused on only one neonicotinoid making generalization difficult; (2) while imidacloprid 1258 

is the most commonly studied neonicotinoid, data are limited for the other substances; (3) most laboratory studies 1259 

do not reflect realistic and representative uses under in field application conditions; (4) very few studies consider 1260 

transformation products and mixtures with other PPPs; (5) the number of studies considering the impact of 1261 

neonicotinoids on high levels of biological organization (i.e., beyond individual and population) is low; (6) the 1262 

effects of neonicotinoids on maintenance of pest regulation and soil functions are hardly reported; (7) there is a 1263 

lack of time series to survey mid- or long-term effects as well as post-exposure effects; (8) there is a lack of data 1264 
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regarding the effects of neonicotinoids on ecosystem functioning and services, yet the few existing studies suggest 1265 

that they might significantly alter important provision and regulation ecosystem services (Pesce et al. 2023). More 1266 

research remains to be done to better characterize the impacts of neonicotinoids to protect biodiversity.  1267 
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Figures 2221 

 2222 

 2223 

Fig. 1 Time course of references focused on the impacts of neonicotinoids on biodiversity. 2224 
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 2226 

 2227 

 2228 

Fig. 2 Occurrences of imidacloprid, thiamethoxam, acetamiprid, clothianidin and thiacloprid in title and abstract 2229 

of the references constituting the bibliographic corpus on the impacts of neonicotinoids on biodiversity, from 2000 2230 

to 2020.  2231 

 2232 
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 2233 

Fig. 3 Occurrences of the first 35 organisms studied in the bibliographic corpus on the impacts of neonicotinoids 2234 

on biodiversity, from 2000 to 2020. Occurrences are counted from titles and abstracts. When occurring, alternative 2235 

spellings were gathered into one category, for example “honeybee”, “honey bee”, “honeybees” and “honey bees”. 2236 
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Table 2252 

 2253 

Table 1 Maximum concentration levels of acetamiprid, clothianidin, imidacloprid, thiacloprid and thiamethoxam in soil, air and water observed in France, 2254 

Europe and in the world. nd: not determined, *particulate phase. 2255 

Neonicotinoid Geographic 

zone 

Soil  Air  Water 

Concentration 

(µg/kg) 

Reference  Concentration 

(ng/m3) 

Reference  Concentration 

(µg/L) 

Reference 

Acetamiprid France 0.48 Froger et al. (2023)  0.26 Phytatmo database (2023)  nd nd 

Europe nd nd  0.031 (Spain) Coscollà and Yusà (2016)  4.00 (Spain, freshwater) de Araújo et al. (2022) 

World nd nd  0.036* (Canada) Raina-Fulton (2015)  2.86 (Turkey, freshwater) de Araújo et al. (2022) 

Clothianidin France 2.7 Froger et al. (2023)  nd nd  nd nd 

Europe  57 (Switzerland) Riedo et al. (2021)  nd nd  nd nd 

World 

 

nd 

 

nd 

 

 0.09* (Canada) 

 

Raina-Fulton (2015) 

 

 3.50 (USA, drained wetlands) 

0.132 (USA, freshwater) 

Evelsizer and Skopec (2018) 

de Araújo et al. (2022) 

Imidacloprid France 

 

160 Pelosi et al. (2021)  2.3 Phytatmo database (2023)  2.22 (peri-urban ponds) 

0.905 (agricultural/urban rivers) 

0.14 (marine waters) 

Nélieu et al. (2021) 

Criquet et al. (2017) 

Auby et al. (2011) 

Europe  138 (Switzerland) Chiaia-Hernandez et al. (2017)  0.014 (Spain) Coscollà and Yusà (2016)  0.342 (Spain, freshwater) de Araújo et al. 2022 

World nd nd  0.36* (Canada) Raina-Fulton (2015)  9.14 (USA, freshwater) Wang et al. (2023) 

Thiacloprid France 1.4 Pelosi et al. (2021)  0.47 Phytatmo database (2023)  nd nd 

Europe 14 (Switzerland) Riedo et al. (2021)  nd nd  0.159 (Portugal, freshwater) de Araújo et al. (2022) 

World nd nd  nd nd  1.37 (Australia, lagoon) Wang et al. (2023) 

Thiamethoxam France 2.0 Pelosi et al. (2021)  0.06 Phytatmo database (2023)  0.0039 (bay) Tapie and Budzinski (2018) 

Europe 24 (Switzerland) Riedo et al. (2021)  nd nd  0.215 (Portugal, freshwater) de Araújo et al. (2022) 

World 

 

nd nd  nd nd  6.90 (USA, drained wetlands) 

3.82 (Canada, freshwater) 

Evelsizer and Skopec (2018) 

Wang et al. (2023) 
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