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Abstract 8 

Soils are natural ecosystems that provide ecosystem services, whose provision depends on 9 

multiple soil properties, climate conditions and human management. Dependence among soil 10 

ecosystem services (SESs) must therefore be considered to reliably assess risks of improving 11 

SES, as a function of weather conditions or soil properties. The present study described 12 

dependence among regulating and provisioning SESs predicted by a biophysical soil and crop 13 

model, based on a dataset of soils in France. We applied vine copula modeling as a statistical 14 

method that can model joint distribution functions of three SESs and enabled us to estimate 15 

probabilities of exceeding a level of one SES as a function of another SES. Trade-offs may need 16 

to be made between them to manage soil and water resources and achieve a given yield. By 17 

highlighting the degree of dependence among multiple SESs, copula models thus provide 18 

information that may improve understanding or management of ESs. 19 

Keywords: dependence; soil ecosystem services; soil properties; weather conditions  20 

Highlights 21 

 Copulas modeled variable dependence between soil ecosystem services (SESs) 22 

 Vine copula models analyzed multiple dependence by using pair-decomposition of SESs 23 

 One SES could affect two other SESs separately, but not the dependence between them 24 

 25 

1. Introduction  26 

Soils are the focus of many studies since their multifunctional role is crucial as the central 27 

interface among the lithosphere, biosphere, hydrosphere and atmosphere (Dominati et al., 28 

2014). Soils contribute to human welfare through the ecosystem services (ESs) that they provide 29 
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(Ellili-Bargaoui et al., 2021). Soil ESs (SESs) can be assessed using multiple indicators 30 

obtained by modeling biophysical processes and measuring multiple soil properties. For 31 

instance, maximum rooting depth and soil available water capacity are the indicators frequently 32 

used for ESs such as groundwater storage, plant biomass provision and water-quality regulation. 33 

Because ESs depend on the same biophysical processes and soil properties, many studies focus 34 

on dependence among ES to help develop policy strategies and make decisions about natural-35 

resource management (Nelson et al., 2009). Describing dependence among ES highlights 36 

positive or negative correlations in which increasing one ES increases or decreases another one 37 

(i.e., a synergy or trade-off, respectively) (Lee and Lautenbach, 2016). Thus, there is practical 38 

interest in approaches that can investigate the distribution of ES of interest given the values of 39 

other ES, as a function of the environmental context (e.g., weather conditions, soil properties). 40 

A variety of methods have been used to analyze relationships among ESs, such as regression 41 

models (e.g., generalized linear, additive), statistical tests of categorical variables (e.g., chi-42 

square), principal component analysis (PCA) of quantitative variables and pairwise correlation 43 

coefficients, which is one of the most popular quantitative methods (Mouchet et al., 2014). PCA 44 

can help highlight contrasting relationships among SES and identify groups of soil sites as a 45 

function of given soil characteristics. Structural equation modeling, which is based on 46 

regression models that relate measured variables to “latent” (i.e., unmeasured) variables, can 47 

also help understand causal relationships between ES and explanatory variables (Grace, 2006; 48 

Leong et al., 2020). Relationships among ESs have been visualized using radial diagrams 49 

(Calzolari et al., 2016) and bagplots (Ellili-Bargaoui et al., 2021), and the latter have been used 50 

to map ESs in order to manage the ESs later (Egoh et al., 2008). In addition, optimal trade-offs 51 

between two SESs can be studied by plotting a curve (the “production possibility frontier” (Wu 52 

et al., 2021)) based on estimated responses of SESs to management practices in a variety of 53 

scenarios (see also Joly et al. (2021)). However, these approaches are generally limited by 54 

assumptions about input variables (e.g., independence), underlying data (e.g., normal 55 

distribution) or the shape (e.g., linear) of relationships between input variables and output 56 

variables used in models. 57 

Copula modeling is a statistical method useful for constructing joint distribution functions that 58 

describe dependence between random variables (Sklar, 1959; Joe, 1993). They do not require 59 

making any assumptions about variables (e.g., that they follow a normal distribution) (Ching et 60 

al., 2014), unlike other statistical methods, and are particularly useful for detecting dependence 61 

when variables have simultaneously high or low values (i.e., “upper” or “lower tail-62 
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dependence”, respectively) (Coles et al., 1999; Embrechts et al., 2002), which can occur during 63 

extreme events (e.g., droughts, market fluctuations). In particular, the class of “vine” copulas 64 

was developed to describe the dependence structure among multiple variables by building a 65 

model based on a variety of joint bivariate distribution functions (Czado and Nagler, 2022). 66 

Copula models have been applied to a wide range of topics, such as meteorological events and 67 

economics, for decades. For instance, copula models were used to describe how the dependence 68 

between rainfall and temperature influences agricultural production, to help study effects of 69 

climate change on crop yields (Cong and Brady, 2012). Likewise, copula models were recently 70 

used to describe the dependence structure among distributions of soil parameters that traditional 71 

multivariate normal distributions were unable to represent (Lü et al., 2020). 72 

The aim of the present study was to model the pairwise dependence between a regulating SES 73 

(groundwater recharge or soil carbon (C) sequestration) and a provisioning SES (plant biomass 74 

provision). We then investigated the potential to increase the level of each of the regulating 75 

SESs. The pairwise dependence for the two regulating SESs was also analyzed as a function of 76 

a weather condition (i.e., effective rainfall (ER), equal to rainfall minus potential 77 

evapotranspiration) or a soil property (i.e., soil organic C (SOC) content), respectively. Rather 78 

than being measured in the field, the levels of the three SESs were predicted over 31 years using 79 

the STICS soil-crop model based on a dataset of 64 cultivated soils in northwestern France. 80 

STICS is a one-dimensional mechanistic model that simulates crop development and soil 81 

processes that connect water, nitrogen (N) and C dynamics in the soil-plant-atmosphere 82 

continuum (Brisson et al., 2009). STICS has a daily time step and can simulate multiple 83 

consecutive years. Previous studies (e.g., Brisson et al. (2002); Schnebelen et al. (2004); 84 

Constantin et al. (2012); Constantin et al. (2015)) have evaluated the accuracy with which 85 

STICS predicted some of these outputs (including atypical values) for a variety of field and 86 

cover crops. A review of studies that used STICS to simulate 15 field crops at a total of 76 sites 87 

in France (Coucheney et al., 2015) considered that its accuracy was “very good” for whole-88 

profile soil water content (mean relative root mean square error (rRMSE) = 10%) and “good” 89 

for plant fruit biomass at harvest (i.e., yield) (mean rRMSE = 33%). They concluded that STICS 90 

had sufficient accuracy and robustness for large-scale use under the soil and climate conditions 91 

in France. Similarly, predictions of changes in SOC content for seven long-term field 92 

experiments in Europe using the AMG model, on which STICS bases its simulation of SOC 93 

dynamics, were considered sufficiently accurate (rRMSE = 28%) (Levavasseur et al., 2020). 94 

We expected that by simulating the same crop rotation and weather for all 64 soil profiles, 95 
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STICS would be able to predict relative differences among the profiles with sufficient accuracy 96 

for each of the three SESs studied.  97 

 98 

2. Materials and Methods 99 

2.1. Data 100 

Soil dataset. The soil dataset contained data from 64 sites of cultivated land sampled in the 101 

department of Ille-et-Vilaine, in Brittany, northwestern France. Soil samples were collected at 102 

multiple depth intervals according to GlobalSoilMap specifications (Arrouays et al., 2014), and 103 

physico-chemical analyses of the samples were performed to measure properties such as SOC 104 

content (dry combustion) and pH (1:5 soil-to-water ratio, NF ISO 10390). See descriptive 105 

statistics of ER and SOC content (Table 1) and their scatterplots (Figure A1 in Supplementary 106 

material) of the soil profiles of the 64 sites from 1988-2018. See Ellili-Bargaoui et al. (2021) 107 

for more details. 108 

Weather data. The Ille-et-Vilaine department has a temperate oceanic climate. Weather 109 

conditions were assumed to be the same for all 64 sites in the study area, an assumption 110 

supported by climate data from Météo France for 1981-2010 (Bretagne Environnement, 2020), 111 

which showed that, for nearly all sites, annual rainfall varied by no more than 200 mm (i.e., 112 

700-900 mm), and mean annual temperature varied by no more than 1°C (i.e., 11-12°C). 113 

Weather data came from the weather station of Rennes-St Jacques, located near the center of 114 

the study area. Data such as daily rainfall (mm), mean air temperature (°C) and solar radiation 115 

(kW/m2) were collected. 116 

Crop-management data. Crop-management data reflected the main conventional crop rotation 117 

used by farmers in the study area: a 2-year rotation of grain maize (10 Apr-30 Oct), winter 118 

wheat (1 Nov-31 Jul) and a catch crop of white mustard (5 Sep-3 Mar). For grain maize and 119 

wheat, the soil was plowed to a depth of ca. 25 cm during the first five days of the period, and 120 

organic and inorganic fertilization was adjusted based on crop requirements, soil supplies and 121 

requirements of the European Union Nitrates Directive (EC, 1991) as specified in the French 122 

National Action Plan (OJFR, 2011). 123 
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2.2. Simulation modeling with STICS 124 

Input parameters for STICS (version 9.0) came from the soil, weather and crop-management 125 

data. During the simulated study period, all soil parameters remained fixed except SOC, N and 126 

water contents, since they were influenced by crop development and weather conditions. STICS 127 

was used to simulate sequentially the three crops in the rotations at the 64 sites for 31 128 

agricultural years (1988-2018) with the aid of a Java package developed to automate 129 

simulations. STICS provided more than 200 outputs, of which four daily outputs were selected 130 

to calculate indicators of the SESs: crop transpiration, crop yield, water drainage and SOC in 131 

humified organic matter. See Ellili-Bargaoui et al. (2021) for more details. 132 

2.3. Soil ecosystem services 133 

STICS outputs were used to estimate the level of the indicator of each SES (i.e., climate 134 

regulation, groundwater recharge, and plant biomass provision) for each calendar year 135 

simulated. 136 

a. Climate regulation was estimated though C sequestration (CS), which represented the 137 

amount of organic C that the soil stored or released (positive or negative value, 138 

respectively). CS was quantified as the annual change in the stock of SOC in the topsoil 139 

(the top 30 cm): 140 

𝐶𝑆𝑗 = 𝐶𝑆𝑡𝑜𝑐𝑘𝑗 − 𝐶𝑆𝑡𝑜𝑐𝑘𝑗−1 Equation 1 

where CStockj is the SOC stock in the topsoil in year 𝑗. 141 

b. Groundwater recharge (GW) is the amount of water that percolates into the 142 

groundwater. GW was quantified as the annual sum of the water drained daily through the 143 

soil, which was assumed to reach the groundwater: 144 

𝐺𝑊𝑗 =  ∑ 𝐷𝑖

365

𝑖=1

 

Equation 2 

where i is the day of year (1-365), and 𝐷𝑖 is the amount of water drained daily from the soil 145 

(mm). 146 

c. Plant biomass provision (YE) represents the soil’s ability to produce plant biomass by 147 

photosynthesis. YE equals the annual yields of cash crops expressed as a unit of energy (GJ 148 

ha-1 year-1): 149 
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𝑌𝐸𝑗 =  
1

𝑛
∑ 𝐵𝑖 × 𝑘

𝑛

𝑖=1

 
Equation 3 

where 𝐵𝑖 is the dry matter (t ha-1 year-1) of harvested biomass, and 𝑘 is the energy content of 150 

biomass: 14.905 and 13.984 GJt-1 fresh matter for maize and wheat grain, respectively (FAO, 151 

2001). 152 

After simulation modeling, the SES dataset contained 5952 variables for the SESs studied (3 153 

SESs × 64 sites × 31 years of simulation). Sources of variation when predicting SESs 154 

corresponded to differences in weather conditions among years and to soil properties among 155 

sites, as the succession of field interventions was simulated on the same dates each year over 156 

the study period and for each soil profile. See descriptive statistics (Table 1) and scatterplots 157 

(Figure A1) for the three SESs of the soil profiles of the 64 sites from 1988-2018. 158 
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Table 1. Descriptive statistics of effective rainfall (ER, rainfall minus potential 159 

evapotranspiration) and soil organic carbon (SOC) content and predicted soil ecosystem 160 

services (groundwater recharge and plant biomass provision) of the 64 cultivated soil profiles 161 

(Ellili-Bargaoui et al., 2021), and for samples of the lowest (10th percentile) or highest (90th 162 

percentile) of ER and SOC contents 163 

Variable Data Minimum Mean Maximum Standard deviation 

Effective 

rainfall (mm 

yr-1) 

Entire dataset -440 -256 -51 122 

Lowest ER -440 -428 -417 8 

Highest ER -97 -73 -51 15 

SOC content 

(g/kg) 

Entire dataset 10 20 45 7 

Lowest SOC contents 10 11 12 0.6 

Highest SOC contents 26 34 45 8 

Plant biomass 

provision (GJ 

ha-1 yr-1) 

Entire dataset 2 82 187 30 

Lowest ER 24 55 99 14 

Highest ER 39 87 179 28 

Lowest SOC contents 2 94 187 32 

Highest SOC contents 24 62 137 23 

Groundwater 

recharge (mm 

yr-1) 

Entire dataset 0 182 451 99 

Lowest ER 0 99 227 63 

Highest ER 76 288 441 74 

Lowest SOC contents 0 151 384 92 

Highest SOC contents 3 191 451 103 

Climate 

regulation  

(kg C ha-1 yr-1) 

Entire dataset -1828 126 1279 344 

Lowest ER -1454 199 1085 8 

Highest ER -896 180 1279 15 

Lowest SOC contents -602 189 950 263 

Highest SOC contents -1828 -275 448 442 

 164 

2.4. C-Vine Copula method 165 

This section provides an overview of the copula method for modeling the dependence structure 166 

among three variables. Unlike other statistical methods, the vine copula method provides many 167 

functions to represent how three variables vary simultaneously by decomposing them into 168 

multiple bivariate functions. For more details, many articles review copulas comprehensively 169 

(Aas et al., 2009; Nagler, 2014; Nadarajah et al., 2018). 170 
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2.4.1. Vine copula decomposition 171 

We consider continuous random variables 𝑋, 𝑌 and Z. Their marginal cumulative distribution 172 

functions (cdf) are denoted by 𝐹𝑋,  𝐹𝑌 and 𝐹𝑍 (i.e., probability of values falling below a 173 

threshold such that 𝐹𝑋(𝑥) = Pr (𝑋 ≤ 𝑥) (range: [0, 1])). Their probability density functions 174 

(pdf) are denoted by 𝑓𝑋,  𝑓𝑌 and  𝑓𝑍 (i.e., probability of falling within a particular range of values 175 

based on the shape of the distribution such that Pr(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 (range: [0, 1])). 176 

Then, the triplet of variables (𝑋, 𝑌, 𝑍) has a joint cdf 𝐹(𝑥, 𝑦, 𝑧) = Pr(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦, 𝑍 ≤ 𝑧) and 177 

a joint pdf denoted by 𝑓, which describes the simultaneous distribution of 𝑋, 𝑌 and 𝑍. The 178 

cdfs 𝐹𝑋, 𝐹𝑌,  𝐹𝑍 are unknown functions to estimate from data with the corresponding densities. 179 

We also denote the copula cdf as 𝐶 and the copula pdf as 𝑐. 180 

Given real variables 𝑋, 𝑌 and 𝑍, a copula is a function that associates the triplet 181 

(𝐹𝑋(𝑥),  𝐹𝑌(𝑦),  𝐹𝑍(𝑧)) in [0, 1]3 of marginal cdfs to the joint cdf 𝐹(𝑥, 𝑦, 𝑧) in [0, 1], as follows 182 

(Sklar, 1959): 183 

𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦),  𝐹𝑍(𝑧)) = 𝐹(𝑥, 𝑦, 𝑧) Equation 4 

By connecting 𝐹 to 𝐹𝑋,  𝐹𝑌 and 𝐹𝑧, the copula function 𝐶 describes the dependence among 𝑋, 𝑌 184 

and 𝑍, if it exists. “Canonical” vine (C-vine) copulas decompose the joint pdf 𝑓 using various 185 

pair-copulas, such as 186 

𝑓(𝑥, 𝑦, 𝑧) = 𝑓𝑋(𝑥) ∙  𝑓𝑌(𝑦) ∙  𝑓𝑍(𝑧) Equation 5 

 ∙ 𝑐𝑥𝑦(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) ∙ 𝑐𝑦𝑧(𝐹𝑌(𝑦),  𝐹𝑍(𝑧)) (T1) 

 ∙ 𝑐𝑥𝑧|𝑦(𝐹(𝑥|𝑦), 𝐹(𝑧|𝑦)), (T2) 

where copulas 𝑐𝑥𝑦, 𝑐𝑦𝑧 and 𝑐𝑥𝑧|𝑦 join 𝑋 and 𝑌, 𝑌 and 𝑍, (𝑋, 𝑌) and (𝑌, 𝑍), respectively, and 187 

𝐹(𝑥|𝑦) and 𝐹(𝑧|𝑦) are conditional cdf (Aas et al., 2009). A C-vine copula represents the 188 

multivariate relationship 𝑓among 𝑋, 𝑌 and 𝑍 as a set of trees (T), which consist of nodes (i.e., 189 

variables) related by edges (i.e., bivariate copulas). Multiple decompositions can be developed 190 

depending on how the nodes are organized. Pair-copula decompositions are flexible tools that 191 

are useful for modeling dependence among variables of a high-dimensional model.  192 
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2.4.2. Bivariate parametric copulas 193 

 194 

2.4.2.1. Examples 195 

A variety of parametric copula classes (e.g., Archimedean, elliptical, extreme-value) have been 196 

developed to model various dependence structures between variables, such as positive or 197 

negative dependence (Nadarajah et al., 2018). Here, among the various copulas tested to fit the 198 

dependence structure between SESs, we illustrate bivariate parametric copulas used in the vine 199 

copula decomposition: the Archimedean copula “Frank” (Nagler, 2014) and the Gaussian 200 

copula. We first denote the copula by 𝐶𝜃(𝑢, 𝑣), with a parameter 𝜃, 𝑢 = 𝐹𝑋(𝑥) and 𝑣 = 𝐹𝑌(𝑦) 201 

in [0, 1].  202 

Example 1. The Frank copula 𝐶𝜃
𝐹𝑟𝑎𝑛𝑘

, with its real parameter 𝜃 ≠ 0, is defined by 203 

𝐶𝜃
𝐹𝑟𝑎𝑛𝑘(𝑢, 𝑣) =

1

ln𝜃
ln (1 +

(𝜃𝑢 − 1)(𝜃−𝑣 − 1)

𝜃 − 1
)   

Equation 6 

The value of parameter 𝜃 provides information about the structure of copula 𝐶𝜃
𝐹𝑟𝑎𝑛𝑘

: 𝜃 > 1 204 

corresponds to negative dependence, 𝜃 around 1 corresponds to independence, and 𝜃 in ]0, 1[ 205 

corresponds to positive dependence. 206 

Example 2. The Gaussian copula, with its parameter 𝜃 in [-1, 1], is defined by 207 

𝐶𝜃
𝐺𝑎𝑢𝑠𝑠(𝑢, 𝑣) =

1

2𝜋√1 − 𝜃2
∫ ∫ 𝑒

(
𝑥2−2𝜃𝑥𝑦+𝑦2

2(1−𝜃2)
)

𝜙−1(𝑣)

−∞

𝜙−1(𝑢)

−∞

𝑑𝑥𝑑𝑦  
Equation 7 

where 𝜙−1 is the inverse of the univariate standard normal cdf. The value of parameter 𝜃 in 208 

[-1, 0[ corresponds to negative dependence, 𝜃 around 0 corresponds to independence, and 𝜃 in 209 

]0, 1] corresponds to positive dependence. 210 

2.4.2.2. Copula selection and goodness-of-fit tests 211 

We considered independent realizations (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑛, from the pair (𝑋, 𝑌) of continuous 212 

random variables with their marginal cdf 𝐹𝑋 and 𝐹𝑌. The selection procedure first consisted of 213 

fitting several copulas from the main copula classes. For each copula 𝐶𝜃 considered, an estimate 214 

𝜃𝑛 of parameter 𝜃 was first calculated using the method of maximum likelihood such that 215 
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 𝜃𝑛 = argmax
𝜃

∑ ln 𝑐𝜃(𝑢𝑖, 𝑣𝑖)

𝑛

𝑖=1

 
Equation 8 

where 𝑐𝜃 is the copula pdf and (𝑢𝑖 , 𝑣𝑖) are the pairs obtained by transforming realizations 216 

(𝑥𝑖 , 𝑦𝑖) to uniform margins on [0, 1]2, which must be done before applying Equation 8. We then 217 

selected the copula that minimized the Akaike Information Criterion (AIC), given by 218 

𝐴𝐼𝐶𝑛 = −2 ∑ ln (𝑐𝜃̂𝑛
(𝑢𝑖, 𝑣𝑖)) + 2𝑝

𝑛

𝑖=1

 
Equation 9 

where 𝑝 is the dimension of parameter 𝜃 in the copula (= 1 for the Frank and Gaussian copulas). 219 

Once one copula 𝐶𝜃̂𝑛
with the estimate 𝜃𝑛 of its parameter was selected, the scatterplot of pairs 220 

of observations was compared to 𝑁 = 1000 random pairs simulated using the Monte Carlo 221 

(MC) method from copula 𝐶𝜃̂𝑛
. The MC method is well adapted for simulating relationships 222 

among multiple dependent variables (Li et al., 2013), such as copulas, thus extrapolating a 223 

relatively small sample to a much larger one and increasing the robustness of the results 224 

obtained. Simulating random pairs from selected copula required finding the estimates 𝐹̂𝑋 and 225 

𝐹̂𝑌 of cdf 𝐹𝑋 and 𝐹𝑌. All analyses were performed in R software (R Core Team, 2020) using 226 

packages that applied the copula method, such as VineCopula (Schepsmeier et al., 2015).  227 

2.5. Application of the copula method 228 

We used results of copula models to estimate the probability of exceeding a level of a regulating 229 

SES as a function of the provisioning SES, by considering given weather conditions or soil 230 

properties. The C-vine copula was first applied to model joint cdfs of the three SESs (GW, CS 231 

and YE) calculated from STICS predictions, and classes of bivariate copulas that joined pairs 232 

of SESs were identified. Using maximum likelihood estimation, we tested lognormal, gamma, 233 

Weibull and normal pdfs to fit marginal distributions of each SES based on the Kolmogorov-234 

Smirnov test (Figures A2 and A3). Conditional probabilities of one regulating SES (GW or CS) 235 

exceeding a threshold given that the provisioning SES (YE) exceeded another threshold were 236 

calculated (Box 1, Supplementary material). To this end, thresholds of GW, CS and YE were 237 

defined according to the range in which each SES varied in the soil dataset. Thresholds y of YE 238 

were varied from 20-100 GJ ha-1 yr-1, with a step of 20 GJ ha-1 yr-1, to consider a range of YE 239 

when considering the lowest or highest ER among all sites. For reference, mean (2000-2020) 240 

yields of maize grain and soft winter wheat in the study area (8.52 and 7.31 t ha-1 of fresh matter, 241 
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respectively) (Agreste, 2021) would provide a mean of 114.6 GJ ha-1 yr-1 over the 2-year 242 

rotation. Thresholds g of GW were varied from 0-250 and 75-500 mm yr-1, with a step of 25 243 

mm yr-1, when considering the lowest or highest ER among all sites, respectively. Thresholds 244 

c of CS were varied from -600 to 1000 kg C ha-1 yr-1 when considering the lowest or highest 245 

ER among all sites, and from -1200 to 600 kg C ha-1 yr-1 or -600 to 600 kg C ha-1 yr-1 when 246 

considering the lowest or highest SOC contents among all sites, respectively (with a step of 100 247 

kg C ha-1 yr-1 for both). We focused in particular on the CS threshold of 0, at which soils began 248 

to sequester SOC instead of releasing it. 249 

Dependence among the three SESs was modeled for the lowest (10th percentile) or highest (90th 250 

percentile) of ER and for the lowest (10th percentile) or highest (90th percentile) SOC contents 251 

among all sites (Table 1). The percentiles of ER contained 199 values each (i.e. 10% of the total 252 

sample of 64 sites × 31 years = 1984). In comparison, the percentiles of SOC content contained 253 

217 values each because the observed SOC content, used as the initial SOC content in the 254 

simulations, remained the same for each site for all 31 simulated years (i.e., the total sample 255 

contained 64 sets of 31 identical SOC contents; thus, no part of any set could be excluded from 256 

a percentile). Conditional probabilities were calculated from the 𝑁 = 1000 points simulated 257 

from the selected copula using the MC method for the pairs of SESs considered (Equation A2). 258 

 259 

3. Results 260 

3.1. 10th and 90th percentiles 261 

Because the same weather data were used for all 64 sites, estimates of ER for a given year 262 

varied little among sites, due to small differences in predicted potential evapotranspiration 263 

caused by differences in soil depth and predicted water-holding capacity. Thus, the 10th 264 

percentile of ER contained all 64 sites for the three driest years (i.e., 1989, 2005 and 2010) and 265 

7 sites for the next driest year (i.e. 1990). The 90th percentile of ER contained all 64 sites for 266 

the three wettest years (i.e., 1998, 1999 and 2000) and 7 sites for the next wettest year (i.e., 267 

2014). In comparison, because SOC content is site-specific, and the observed SOC content was 268 

used only to initialize the simulations, the 10th and 90th percentiles of SOC content each 269 

contained 7 sites for all 31 simulated years. The soils with the lowest SOC contents among all 270 

sites developed from recent marine alluvium (sandy to silty-loam deposits) or Aeolian loam. 271 

Both parent materials provide conditions for low SOC content: nearly neutral or high pH and 272 

great depth, fine texture and absence of coarse fragments, which allows for relatively intense 273 



12 

 

and deep plowing that may have led to relatively low SOC content. In contrast, most of the soils 274 

with the highest SOC contents among all sites were in the Dol-de-Bretagne marsh and 275 

developed from alternating continental and marine alluvia, which have naturally high clay and 276 

SOC contents. 277 

3.2. Dependence among GW, CS and YE as a function of effective rainfall 278 

When fitting a C-vine copula to data of the three SESs studied, Frank copulas best fit the 279 

dependence structure between GW and YE and CS and YE (Figure 1), but with different 280 

estimated values 𝜃𝑛 of the copula parameter for the lowest and highest ER. GW was negatively 281 

correlated with YE (Kendall correlation coefficients 𝜏̂𝑛 < 0) when considering the lowest or 282 

highest ER among all sites (Table 2) and the entire dataset (Figure A1). Conversely, CS was 283 

positively (𝜏̂𝑛 > 0) and negatively (𝜏̂𝑛 < 0) correlated with YE when considering the lowest or 284 

highest ER, respectively, compared to a positive correlation when considering the entire dataset. 285 

Differing orientations and shapes of contour plots illustrated the sign (positive or negative) and 286 

strength (high or low), respectively, of correlations between CS and YE as a function of ER 287 

(Figure 1). 288 

No tail dependences were identified between each pair of SESs due to the lack of soil profiles 289 

that had simultaneously low or high values of GW or CS and YE (Figure 1). Conversely, 290 

copulas modeled soil profiles in which GW or CS was lower when YE was higher, and vice-291 

versa. C-vine copulas also modeled an independence structure (i.e., a more circular contour) 292 

between the pairs (GW, YE) and (CS, YE) when considering either the lowest or highest ER 293 

(Figure 1). Thus, YE influenced GW and CS separately, but did not influence the dependence 294 

between GW and CS. 295 

 296 
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Table 2. Kendall correlation coefficients 𝝉̂𝒏 between pairs of soil ecosystem services (SESs) 297 

(climate regulation (CS), groundwater recharge (GW), and plant biomass provision (YE)) 298 

and/or weather condition (effective rainfall (ER)) and soil property (organic carbon (SOC) 299 

content) of soil profiles associated with the lowest or highest ER and lowest or highest SOC 300 

contents among all sites. Bold values indicate significant correlations (p < 0.05). 301 

 Lowest ER Highest ER 

SES CS GW YE ER CS GW YE ER 

CS 1.00 -0.03 0.13 -0.30 1.00 0.07 -0.19 -0.31 

GW  1.00 -0.37 0.17  1.00 -0.44 0.05 

YE   1.00 -0.06   1.00 0.19 

 Lowest SOC content  Highest SOC content 

SES CS GW YE SOC CS GW YE SOC 

CS 1.00 0.06 -0.10 0.20 1.00 0.25 -0.07 -0.49 

GW  1.00 0.01 0.08  1.00 -0.05 -0.14 

YE   1.00 -0.22   1.00 -0.08 

 302 
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(a) Lowest ER  

 

 

(b) Highest ER 

Figure 1. Trees (T1 and T2) of canonical vine copulas and contours of bivariate copulas selected 303 

to model dependence among groundwater recharge (GW), carbon sequestration (CS) and plant 304 

biomass provision (YE) calculated from predictions of the STICS model for sites with the (a) 305 

lowest effective rainfall (ER) or (b) highest ER. 𝝉̂𝒏 is the Kendall correlation coefficient. 306 

 307 

3.2.1. Groundwater recharge as a function of plant biomass provision 308 

The dependence between GW and YE modeled by Frank copulas was investigated first. The 309 

two scatterplots of 199 points calculated from STICS predictions for sites with the lowest or 310 

highest ER and of 1000 points extrapolated from the fitted copulas overlapped almost 311 

completely, which indicated that these copulas represented the predictions satisfactorily (Figure 312 

2b, d). 313 

 314 
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(a) (b) 

 

(c) (d) 

Figure 2. (a, c) Density functions of Frank copulas selected to model the dependence between 315 

univariate marginal cumulative distribution functions of groundwater recharge (GW, mm yr-1) 316 

and plant biomass provision (YE, GJ ha-1 yr-1) calculated from predictions of the STICS model 317 

for sites with the (a, b) lowest effective rainfall (ER) or (c, d) highest ER extrapolated from a 318 

random sample (gray circles) of N = 1000 from the fitted copula. Black crosses represent 199 319 

points from STICS predictions. 320 

 321 

Based on values extrapolated from the chosen copula, the probability of GW exceeding a given 322 

threshold logically decreased as this threshold increased from 0 to 250 mm yr-1 for the lowest 323 

ER or from 75 to 500 mm yr-1 for the highest ER, for a given threshold of YE (Figure 3, Tables 324 

A1 and A2). In addition, as the threshold of YE increased from 20 to 100 GJ ha-1 yr-1, the 325 
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probability of GW exceeding a given threshold decreased. For instance, as the threshold of YE 326 

increased from 20 to 60 GJ ha-1 yr-1, the probability of exceeding 100 mm yr-1 for the lowest 327 

ER decreased from 0.42 to 0.16 and that of exceeding 300 mm yr-1 during the highest ER 328 

decreased from 0.43 to 0.24. 329 

When varying thresholds of YE, the probability of exceeding a given threshold of GW varied 330 

more when considering the lowest ER than the highest ER. The threshold of YE had little 331 

influence on the probability of GW exceeding a minimum or maximum threshold, but it had a 332 

strong influence on the probability of GW exceeding intermediate thresholds. The variability 333 

in probability was particularly high for certain thresholds of GW for the lowest or highest ER. 334 

For instance, the probability of exceeding GW thresholds of 50 or 100 mm yr-1 for the lowest 335 

ER (the latter close to the mean for these ER (Table 1)) was 0.25-0.77 and 0-0.42, respectively, 336 

as the threshold of YE varied. Likewise, the probability of exceeding a GW threshold of 200 or 337 

300 mm yr-1 during the highest ER (the latter close to the mean for these ER (Table 1)) was 338 

0.78-0.89 and 0.17-0.43, respectively, as the threshold of YE varied. 339 

 340 

Figure 3. Conditional probabilities of groundwater recharge (GW) (mm yr-1) exceeding given 341 

thresholds (“g”) as a function of plant biomass provision (YE, GJ ha-1 yr-1) exceeding given 342 

thresholds (“y”) from extrapolation of STICS predictions for sites with the lowest effective 343 

rainfall (ER) (gray lines) or highest ER (black lines) 344 

 345 
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3.2.2. Carbon sequestration as a function of plant biomass provision 346 

The conditional probability of CS exceeding a given threshold logically decreased as this 347 

threshold increased from -600 to 1000 kg C ha-1 yr-1 for the lowest and highest ER, for a given 348 

threshold of YE. As the threshold of YE increased from 20 to 100 GJ ha-1 yr-1, the probability 349 

of CS exceeding a given threshold increased for the lowest ER (Figure 4a) but decreased for 350 

the highest ER (Figure 4b). In addition, for the same thresholds of CS and YE, the probability 351 

of CS exceeding a given threshold was generally higher for the lowest ER than for the highest 352 

ER. For instance, the probability of exceeding the CS threshold of 0 was 0.70-1.00 for the 353 

lowest ER and 0.50-0.70 for the highest ER. 354 

 355 
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(a) 

  
(b) 

Figure 4. Conditional probabilities of carbon sequestration (CS) (kg C ha-1 yr-1) exceeding 356 

given thresholds (“c”) as a function of plant biomass provision (YE, GJ ha-1 yr-1) exceeding 357 

given thresholds (“y”) from extrapolation of STICS predictions for sites with the (a) lowest 358 

effective rainfall (ER) or (b) highest ER  359 

 360 

3.3. Dependence among GW, CS and YE as a function of soil organic carbon 361 

content 362 

When considering sites with the lowest SOC contents, the correlation between CS and YE was 363 

weak (-0.10) but significant (Table 1), and a Gaussian copula with 𝜃𝑛 equal to -0.15 (i.e., 364 

negative dependence) best fit the dependence between them (Figure 5). The correlation between 365 
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CS and GW was also weak (0.06) but not significant, and an independence copula fit the 366 

relationship between these two SES. Likewise, an independence copula fit the relationship 367 

between (GW, CS) and (YE, CS), which indicated that CS did not influence the relationship 368 

between GW and YE. When considering sites with the highest SOC contents, the correlation 369 

between CS and GW was significant (0.25), and a Gaussian copula with 𝜃𝑛 equal to 0.39 fit the 370 

dependence between them. An independence copula fit the relationship between CS and YE, 371 

as well as that between (GW, CS) and (YE, CS) (Figure 5). 372 

 373 

 

 

(a) Lowest SOC contents 

 

 

(b) Highest SOC contents 

Figure 5. Trees (T1 and T2) of canonical vine copulas and contours of bivariate copulas selected 374 

to model the dependence among groundwater recharge (GW), carbon sequestration (CS) and 375 

plant biomass provision (YE) calculated from predictions of the STICS model for sites with the 376 

(a) lowest or (b) highest organic carbon (SOC) contents. 𝝉̂𝒏 is the Kendall correlation 377 

coefficient. 378 

 379 
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3.3.1. Carbon sequestration as a function of plant biomass provision 380 

The modeled dependence between CS and YE was then investigated. The two scatterplots of 381 

217 points calculated from STICS predictions for sites with the lowest or highest SOC contents 382 

and of 1000 points extrapolated from the chosen copulas overlapped almost completely (Figure 383 

A6). Like the dependence between GW and YE, the conditional probability of CS exceeding a 384 

given threshold logically decreased as this threshold increased from -600 to 600 kg C ha-1 yr-1 385 

for the lowest SOC contents or from -1200 to 600 kg C ha-1 yr-1 for the highest SOC contents, 386 

for a given threshold of YE (Figure 6, Tables A3 and A4). The conditional probability of CS 387 

exceeding a given threshold was influenced slightly or not all by the YE threshold, which 388 

reflected the weak correlation or independence between CS and YE for the lowest or highest 389 

SOC contents, respectively. For instance, the probabilities of exceeding CS thresholds of 0 and 390 

300 kg C ha-1 yr-1 for the lowest SOC contents were 0.71-0.75 and 0.28-0.33, respectively, as 391 

the threshold of YE varied. Likewise, the probabilities of exceeding the same two thresholds 392 

for the highest SOC contents were 0.21-0.27 and 0.07-0.09, respectively, as the threshold of 393 

YE varied. Thus, for the same thresholds of CS and YE, the conditional probability of CS 394 

exceeding a given threshold was higher for sites with the lowest SOC contents than for those 395 

with the highest SOC contents. 396 

 397 

Figure 6. Conditional probabilities of carbon sequestration (CS) exceeding given thresholds 398 

(“c”) (kg C ha-1 yr-1) as a function of plant biomass provision (YE, GJ ha-1 yr-1) exceeding given 399 

thresholds (“y”) from extrapolation of STICS predictions for sites with the (a) lowest (gray 400 

lines) or (b) highest (black lines) soil organic carbon (SOC) contents. 401 
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 402 

4. Discussion 403 

4.1. Probabilities of exceeding ecosystem service thresholds 404 

4.1.1. Groundwater recharge as a function of plant biomass provision 405 

Results of copula modeling helped analyze the potential to achieve certain target levels of 406 

regulating SESs (GW and CS) as a function of variations in a provisioning SES (YE), weather 407 

conditions and a soil property (i.e., SOC content). The dependence that we observed between 408 

YE and GW is well documented in the literature and can be explained by considering the soil 409 

water balance (Radcliffe and Simunek, 2012). Higher crop yields increase the flow of water to 410 

the atmosphere via transpiration, which decreases soil water content and the amount of water 411 

likely to drain below the root system. Thus, most studies that analyzed the relationship between 412 

YE and GW identified a significantly negative correlation between them (e.g., -0.71 in southern 413 

France (Demestihas et al., 2018), -0.86 for the mean annual data considered in the present study 414 

(Figure A5) (Ellili-Bargaoui et al., 2021)). Their magnitude, however, depends on annual 415 

weather conditions, as shown by applying the copula method. The relationship between YE and 416 

GW also depended on their ranges of variation, with lower conditional probabilities of 417 

exceeding a given level of GW during the wettest years (i.e., less variation) than the driest years 418 

(i.e., more variation) (Figure 3). Placing these conditional probabilities in a decision tree, GW 419 

was more likely to exceed thresholds close to its mean value (i.e., 100 and 250 mm yr-1 in the 420 

wettest and driest years, respectively (Table 1)) during the wettest years than the driest years, 421 

when considering YE exceeding thresholds of 40, 60 and 80 GJ ha-1 yr-1 (Figure 7). Thus, when 422 

GW becomes an issue for the supply of drinking water or preservation of aquatic environments, 423 

such as after a dry winter, certain management practices (e.g., decreasing fertilization) could be 424 

used as a mechanism to limit YE in order to ensure sufficient levels of GW. The decision tree 425 

based on copula models provides indications of the yield that could be targeted depending on 426 

the level of GW desired, and the associated conditional probability. 427 

 428 
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 429 

Figure 7. A decision tree of conditional probabilities of groundwater recharge (GW) exceeding 430 

a given threshold ‘g’ (mm yr-1) as a function of plant biomass provision (YE) exceeding a given 431 

threshold ‘y’ (GJ ha-1 yr-1) from extrapolation of STICS predictions for sites with the lowest or 432 

highest effective rainfall (i.e., driest or wettest years, respectively). For reference, mean yields 433 

of maize grain and wheat (8.52 and 7.31 t ha-1, respectively) in the study area would provide a 434 

mean of 114.6 GJ ha-1 yr-1 over the 2-year rotation. 435 

 436 

4.1.2. Carbon sequestration as a function of plant biomass provision 437 

The dependence that we observed between yield YE and CS is more complex, since CS depends 438 

on the initial SOC and the type of crop considered, but also on management practices such as 439 

fertilization and the removal or incorporation crop residues (Lemke et al., 2010; Paustian, 440 

2014). The predictions used in our study assumed that all crop residues were removed. The 441 

threshold of YE influenced the probability of CS exceeding a given threshold when ER varied 442 

(i.e., driest vs. wettest years) (Figure 4). The CS may have been higher during the driest years 443 

in part because dry conditions decrease mineralization of organic matter by microorganisms 444 

(Thapa et al., 2021). Mineralization may also explain why, as YE increased, CS increased 445 

during the driest years but decreased during the wettest years. Temperature was not considered 446 

as a variable in the copula models, but it also influences mineralization in the field and the 447 

STICS model. Conversely, the threshold of YE had almost no influence on the probability of 448 

CS exceeding a given threshold when the SOC content in the topsoil varied (i.e., lowest vs. 449 

highest) (Figure 6). In this context, modifying YE may or may not be used as a mechanism to 450 

increase the probability of CS exceeding a given threshold (Figure A4). 451 
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YE was weakly negatively correlated with SOC (-0.22) (Figure A1). A soil’s capacity to 452 

sequester C (i.e., positive CS) depends on its physicochemical properties, especially clay 453 

content (Churchman et al., 2020), and negative CS (i.e., loss of SOC) is considered a 454 

“disservice” (Olson et al., 2017). The probabilities that CS exceeded high thresholds (e.g., 300 455 

kg C ha-1 yr-1) were low, since soils tend towards saturation in SOC content. Consequently, soils 456 

were more likely to sequester C when considering the lowest SOC contents (0.71-0.75) than 457 

the highest SOC contents (0.21-0.27), regardless of the threshold of YE (Figure 8). 458 

 459 

 460 

Figure 8. A decision tree of conditional probabilities of carbon sequestration (CS) exceeding a 461 

given threshold ‘c’ (kg C ha-1 yr-1) as a function of plant biomass provision (YE) exceeding a 462 

given threshold ‘y’ (GJ ha-1 yr-1) from extrapolation of STICS predictions for sites with the 463 

lowest or highest soil organic carbon (SOC) contents. For reference, mean yields of maize grain 464 

(7.66 t DM ha-1) and wheat (6.48 t DM ha-1) in the study area would provide a mean of 96.8 GJ 465 

ha-1 yr-1 over the 2-year rotation. 466 

 467 

Trade-offs may need to be made between the threshold of a regulating SES (GW or CS) and 468 

the certainty that it can be achieved: more certainty that a lower threshold can be achieved or, 469 

conversely, less certainty that a higher threshold can be achieved. The influence of weather 470 

conditions and soil properties must also be considered when estimating probabilities that 471 

alternative options can achieve target levels of SES. 472 
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4.2. The utility of vine copulas compared to those of other statistical methods 473 

Using the same dataset, Ellili-Bargaoui et al. (2021) developed a correlation network chart to 474 

visualize relationships among the mean annual provision of YE, GW and CS and other SESs 475 

for all 64 sites over the 31-year simulation (Figure A5). It illustrated a strong negative 476 

correlation between YE and GW (Pearson correlation coefficient 𝑟 = −0.86) and no significant 477 

correlation between YE and CS (𝑟 = 0.13). When considering soil properties (e.g., SOC 478 

content), the correlation network chart illustrated that SOC had a significantly negative 479 

correlation with YE (𝑟 = −0.45) and CS (𝑟 = −0.66) but no significant correlation with GW 480 

(𝑟 = 0.16). While Ellili-Bargaoui et al. (2021) used PCA to identify relations among groups of 481 

SES, our use of vine copulas specifically enabled us to model degrees of dependence among 482 

SESs, such as simple dependence between two SESs and more complex dependence among 483 

three or more SESs. In addition, copula models can be used to extrapolate the original sample 484 

to a larger one by combining it with the MC method, unlike the correlation network chart and 485 

PCA. Copulas enable one to model dependence, if it exists, between the highest or lowest values 486 

of pairs of variables (Embrechts et al., 2002). Variables that have non-normal distributions and 487 

the potential to have threshold effects on other variables at unusually high or low values (i.e., 488 

tail dependence) are particularly suited for analysis by the copula method. 489 

4.3. Limitations and perspectives of the study  490 

The representativeness of this study’s results required assuming that STICS accurately 491 

predicted the SESs studied. Because biophysical indicators of SESs are often difficult to 492 

measure, soil processes are usually simulated to estimate them based on weather data and soil 493 

properties. The lack of tail dependence for either pair of SESs studied and the weak correlation 494 

between YE and CS or GW limited the added value of the copula method. The study could be 495 

extended to investigate the dependence structure among additional SESs studied by Ellili-496 

Bargaoui et al. (2021) (e.g., water-to-plant provision, water quality regulation, N-to-plant 497 

provision) as a function of other soil properties (e.g., pH and clay contents of the topsoil, 498 

maximum rooting depth), after first identifying significant and strong correlations among these 499 

variables to avoid redundant information. Furthermore, the probability of two SESs 500 

simultaneously exceeding respective thresholds, and not only one SES doing so, as in the 501 

present study, can be investigated given another SES exceeding a given threshold. We did not 502 

analyze these probabilities, since the relationships of the two regulating SES as a function of 503 
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the provisioning SES best fit an independence copula. In addition, dynamic dependence among 504 

SESs could also be studied by applying copula modeling to time series of SESs. 505 

 506 

5. Conclusion 507 

We investigated how dependence between regulating and provisioning SESs can vary as a 508 

function of their ranges of variation by applying vine copula models as a function of a weather 509 

condition (i.e., ER) or soil property (i.e., SOC content in the topsoil). Although correlation 510 

coefficients can quantify the strength and direction of linear relationships between SESs, they 511 

are too simple to describe the complexity of this dependence. The vine copula models used 512 

enabled us to formalize the dependence structure, if it existed, among the SESs studied and then 513 

to extrapolate their joint variation from the original samples using the MC method. This 514 

approach estimated the potential to achieve certain target levels of regulating SESs – 515 

groundwater recharge and C sequestration – as a function of variations in a provisioning SES – 516 

plant biomass provision. We found that contrasting weather conditions and a soil property could 517 

influence the potential to improve one SES as a function of another SES. More complex 518 

dependence among a bundle of ESs (i.e., four or more) could be studied using appropriate 519 

multivariate copula models. Dynamic relationships among SESs could also be studied by 520 

applying copula modeling to time series of SESs. 521 
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