

Using a long-term experiment with a wide range of management practices to challenge N2O emission modelling with the STICS model

Paul Belleville, Fabien Ferchaud, Frédéric Bornet, Benjamin Dumont, Jérôme Duval, Eric Gréhan, Bernard Heinesch, Frida Keuper, Bruno Mary, Guillaume

Vitte, et al.

▶ To cite this version:

Paul Belleville, Fabien Ferchaud, Frédéric Bornet, Benjamin Dumont, Jérôme Duval, et al.. Using a long-term experiment with a wide range of management practices to challenge N2O emission modelling with the STICS model. XIII STICS Seminar, Nov 2023, Latresne, France. hal-04326978

HAL Id: hal-04326978 https://hal.inrae.fr/hal-04326978

Submitted on 6 Dec 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

XIII STICS user seminar 13-16 November 2023

Using a long-term experiment with a wide range of management practices to challenge N₂O emission modelling with the STICS model

P. Belleville¹, F. Ferchaud¹², F. Bornet¹, B. Dumont^{1,3}, J. Duval¹, E. Gréhan, B. Heinesch^{1,4}, F. Keuper¹, B. Mary¹, G. Vitte¹, J. Léonard¹

¹ INRAE, UMR Transfrontalière BioEcoAgro

² INRAE, UMR Eco&Sols

³Liege University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Biosystems Dynamics and Exchanges (BIODYNE)

⁴Liege University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Crop Science Unit

Fraterni

> Introduction

- N₂O is a problematic gas when released into the atmosphere because of its global warming potential
 - Agriculture is one of the main sources of N₂O emissions worldwide
 - Cropping systems have different N₂O emission levels
- Modelling has great potential to synthetize existing knowledge and identify best cropping systems to mitigate N₂O emissions
- N₂O emissions are challenging to predict due to high spatiotemporal variability and complex interconnected drivers
- Our aim is to assess STICS ability to simulate long-term N₂O emissions for contrasted cropping systems and to describe and analyse the error

Method - N₂O modelling withing STICS

STICS models two processes which set-up the order of magnitude of the nitrogen possibly available for N_2O emissions:

- nitrification of NH₄⁺ driven by [NH₄⁺], pH, T^oC, water content and
- denitrification of NO_3^{-1} driven by $[NO_3^{-1}]$, T°C, water filled pore space

N₂O-N emissions are described as a proportion of nitrification and denitrification rates:

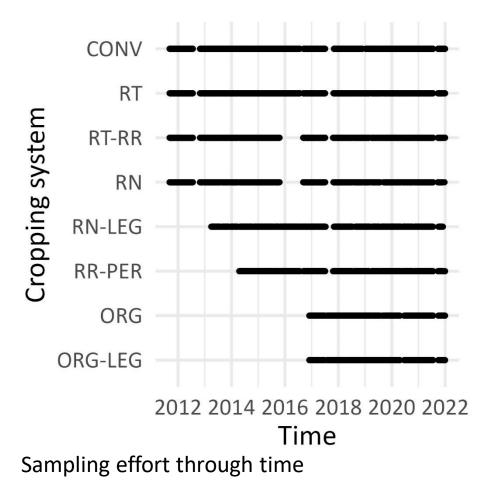
- The share of N-nitrified emited as N_2O is driven by WFPS
- The share of N-denitrified emited as N₂O is driven by pH, water filled pore space, [NO₃⁻]

Known limits:

- Carbon availability is not involved in the N₂O-module
- Instant, no-loss diffusion of N₂O from soil to the atmosphere

> Method - Experimental site and treatments

- Estrées-Mons deep silt loam oceanic with continental influence
- 6 treatments in a randomized complete 4-blocks design (11 ha) + 2 treatments in another randomized complete 3-blocks design (3 ha).


Treatment	CONV	RT	RT-RR	RN	RN- LEG	RR- PER	ORG	ORG- LEG
Plowing	\checkmark	×	×	\checkmark	\checkmark	×	\checkmark	\checkmark
Exportation of cash crop residues	×	×	\checkmark	×	×	\checkmark	×	×
Mineral N (% of ref. dose)	100%	100%	100%	35%	35%	100%	0%	0%
Legumes' frequency	low	low	low	low	high	low	low	high
Perennial crops within succession	×	×	×	×	×	\checkmark	×	×
Chemical protection	\checkmark	\checkmark	\checkmark	\checkmark	low	\checkmark	×	×

> Method - Experimental site and treatments

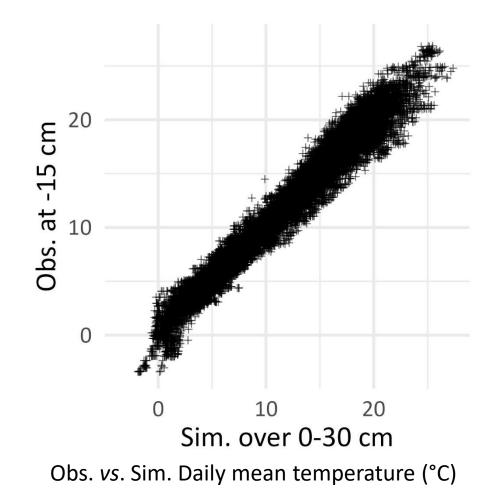
Automatic chamber monitoring N₂O fluxes

INRA

Method – STICS parameters

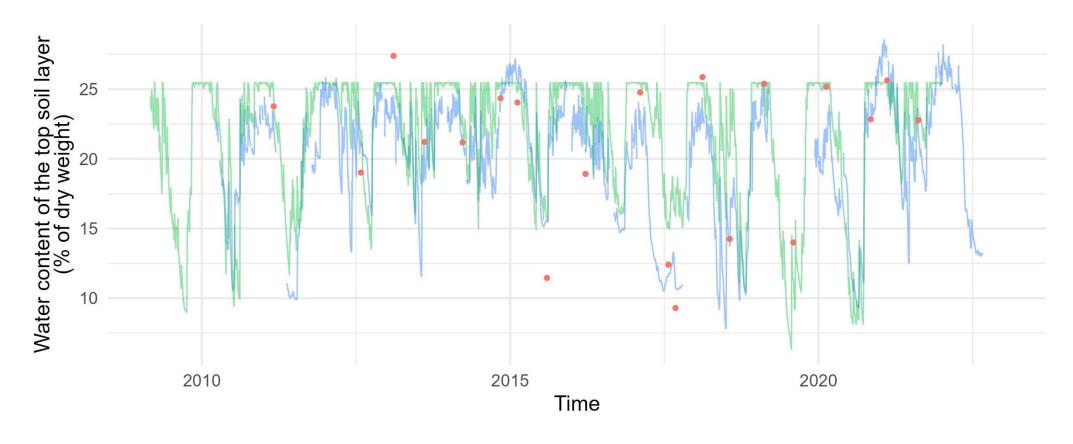
- Default parameters
- Gap in the order of magnitude of N₂O emissions → find a value for vpotdenit (kg_N.ha⁻¹.day⁻¹ over 0-20 cm) yielding in close cumulative emissions for CONV

 $vdenit = vpotdenit \times f(NO_3^-) \times f(Td) \times f(WFPS)$



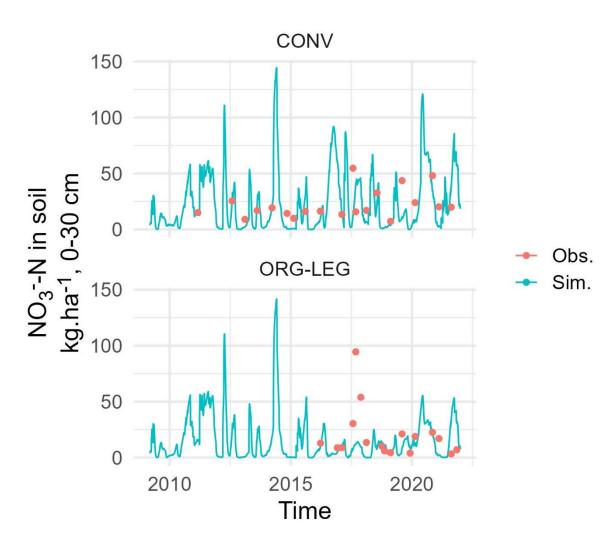
> Method - Simulation assessment and errors

- Variables of interest
 - Soil moisture, temperature, $[NH_4^+]$ and $[NO_3^-] + N_2O$ emissions
- Simulations assessment
 - Simulations vs Observations: scatterplot, temporal dynamic, cumulatives, standard indicators (R², RMSE)
- Describe prediction error
 - Is the difference between observed and simulated values explained by other variables? Is it possible to « predict » the error from other simulated values, and better understand the limits of the model?



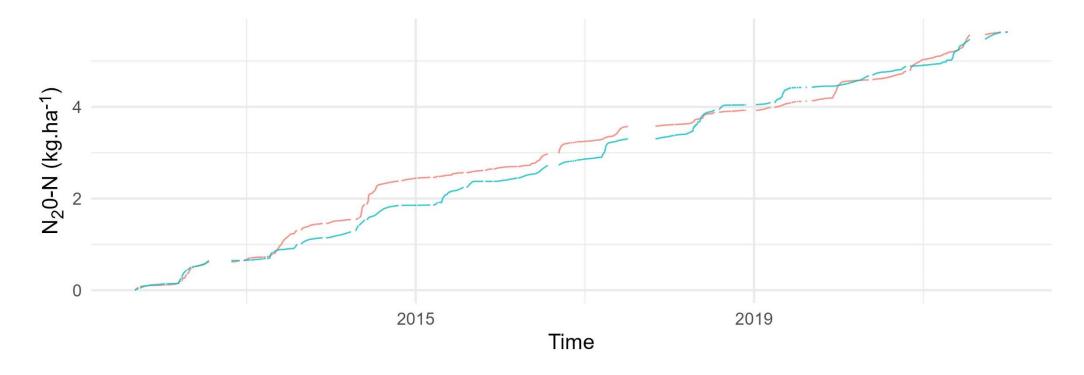
> Results – Simulation of N_2O drivers

> Results – Simulation of N_2O drivers


- Pvt. - Sim. - Water content reflectometer

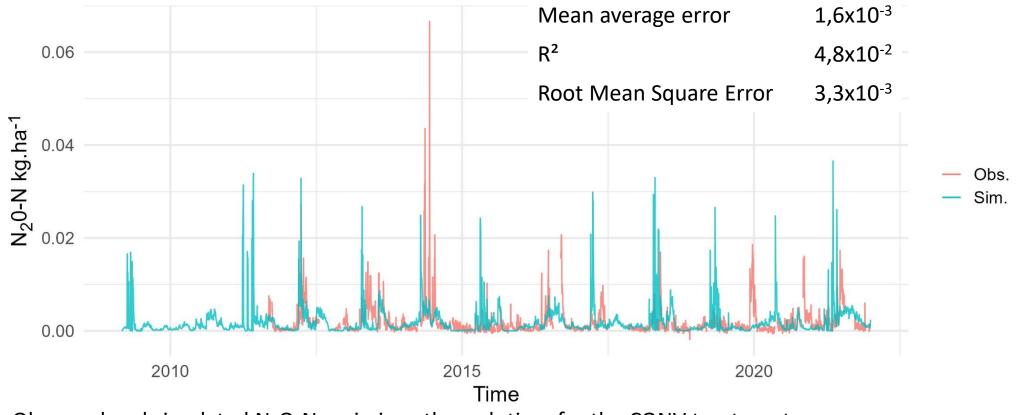
Comparison of three data sources for the estimation of the topsoil water content of the CONV treatment

> Results – Simulation of N_2O drivers


Ammonium-nitrogen in soil through time for the CONV treatment

Nitrate-nitrogen in soil through time for the CONV and the ORG-LEG treatments

Results – Adjusting the value of vpotdenit vpotdenit_s = 0.07 kg_N.ha⁻¹.day⁻¹ over 0-20 cm (default is 2)

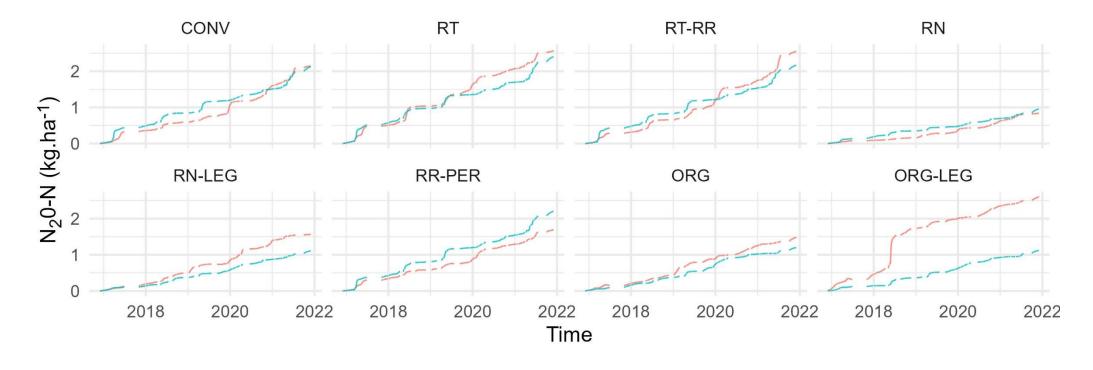


— Obs. — Sim.

Cumulated N_2O-N emissions for the CONV treatment using vpotdenit = 0,07

> Results – Simulations of N_2O emissions

vpotdenit_S = 0.07 kg_{N} .ha⁻¹.day⁻¹ over 0-20 cm (default is 2)

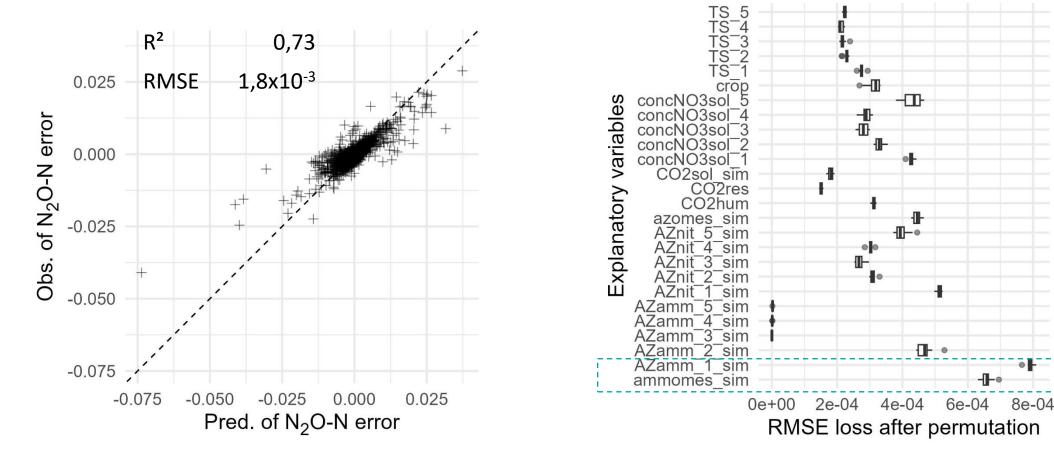


Observed and simulated N₂O-N emissions through time for the CONV treatment

INRAØ

> Results – Simulations of N_2O emissions

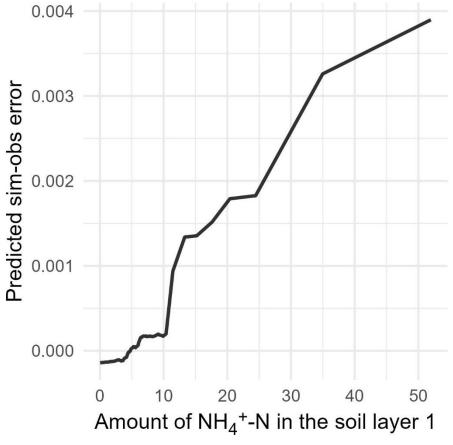
vpotdenit_S = 0.07 kg_{N} .ha⁻¹.day⁻¹ over 0-20 cm (default is 2)



— Obs. — Sim.

Cumulated N₂O-N emissions for all treatments

INRAØ


Result – Predict STICS error on N₂O emissions

Assessment of the variable importance for predicting the sim-obs error

Prediction of N2O-N sim-obs error using Random Forest model on test dataset

Results – Interpreting the random forest model

Accumulated-local profile of the main variable influencing the error

> Conclusion

- Simulation of N₂O emissions drivers
 - Soil temperature and soil moisture are considered as good enough
 - [NO₃⁻] is treatment-dependent
 - [NH₄⁺] is good for low concentration values but unknown for high concentration values.
- Simulation of N₂O
 - Despite bad R², the RMSE is low and the overall seasonality is simulated
 - Cumulative values are good except for the ORG-LEG treatment
- Understanding the error:
 - STICS error can be estimated using a random forest model fuelled by simulated variables
 - The amount of NH₄⁺ is the main variable contributing to the random forest

Thank you for your attention!

5 mins for questions