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Veterinary Research

Milk fat miRNome changes in response 
to LPS challenge in Holstein cows
Christine Leroux1*   , Matteo Cuccato1,2, Karol Pawłowski1,3, Francesca Tiziana Cannizzo2, Paola Sacchi2, 
José A. A. Pires1 and Yannick Faulconnier1 

Abstract 

Mastitis is an inflammatory disease in dairy cows, causing economic losses and reducing animal welfare. In order 
to contribute for the discovery of early and noninvasive indicators, our objective was to determine the effects 
of a lipopolysaccharide (LPS) challenge on the microRNA profile (miRNome) of milk fat, using microarray analy-
ses in cows. Cows were fed a lactation diet at ad libitum intake (n = 6). At 27 ± 3 days in milk, cows were injected 
with 50 µg of LPS Escherichia coli in one healthy rear mammary quarter. Milk samples were collected just before LPS 
challenge (LPS−) and 6.5 h after LPS challenge (LPS +) from the same cows. Microarray analysis was performed using 
customized 8 × 60 K ruminant miRNA microarrays to compare LPS− to LPS + miRNome. In silico functional analyses 
were performed using OmicsNet and Mienturnet software. MiRNome comparison between LPS− and LPS + identi-
fied 37 differentially abundant miRNAs (q-value ≤ 0.05). The predicted target genes of the 37 differentially abundant 
miRNAs are mostly involved in cell life including apoptosis, cell cycle, proliferation and differentiation and in gene 
expression processes. MiRNome analyses suggest that miRNAs profile is related to the inflammation response 
of the mammary gland. In conclusion, we demonstrated that milk fat might be an easy and rapid source of miRNAs 
that are potential indicators of early mastitis in cows.
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Introduction
In dairy cows, mastitis is one of the most prevalent 
inflammatory diseases which affects animal health and 
welfare, and impacts profitability [1]. Dairy cows are par-
ticularly susceptible to mammary gland inflammation 
during early lactation [2]. In early lactation, cow health 

is impacted by many factors including metabolic stress, 
hypocalcemia, and metritis [3, 4] that influence immune 
function [5]. One aim of the One Health concept is to 
reduce the use of antibiotics, by prioritizing disease pre-
vention, and promoting early detection. The identifica-
tion of early indicators for rapid and accurate detection 
of mastitis could lead to earlier and more effective treat-
ment allowing the animal to recover faster, and there-
fore reducing the associated economic losses. A better 
understanding of the molecular regulation of the mam-
mary response to inflammation would allow the identi-
fication of such indicators. MicroRNAs (miRNAs) are 
small (18–25 nucleotides) non-coding RNAs and known 
to regulate many biological processes including those 
involved in immune system activity. During disease, dif-
ferently expressed miRNAs are used as biomarkers of 
pathological condition [6]. Several studies on the effects 
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of inflammation on miRNA profiles have been conducted 
to decipher the underlining molecular mechanisms of 
mastitis. For instance, in the bovine mammary gland tis-
sue, 29 miRNAs were modulated during spontaneous 
mastitis [7]. Mastitis caused by Staphylococcus aureus [8] 
and Streptococcus agalactiae [9] modified the expression 
of 77 and 35 known miRNAs, respectively. Similarly, the 
miRNA profile of mammary glands infected by Gram-
positive (S. aureus) and Gram-negative (Escherichia 
coli) bacteria showed a different response, with 82 and 
108 differentially expressed miRNAs, respectively [10]. 
These studies provided evidence of inflammation effects 
on miRNA mammary expression. However, the use of 
mammary tissue biopsies to investigate these molecular 
regulations requires invasive procedures and is not suit-
able for large-scale studies. In contrast, liquid sampling 
is increasingly used as a noninvasive method for diagnos-
ing diseases such as cancer [11, 12] or metabolic disor-
ders [13]. The presence of miRNAs in milk offers a new 
opportunity to research their use in disease diagnostic 
[14]. Sun et al. [15] identified 14 known miRNAs differ-
entially abundant in milk extracellular vesicles after S. 
aureus infection, and Lai et  al. [16] detected 25 known 
miRNAs differentially abundant in whey milk of cows 
with mastitis. Milk fat (MF) globules, secreted by mam-
mary epithelial cells, are abundant in milk and easy to 
obtain. During their secretion, MF globules load cyto-
plasmic crescents with miRNAs. Thus, MF is an easily 
accessible source of miRNAs [17, 18]. In addition, MF 
miRNomes were reported to portray mammary gland 
miRNomes more accurately than the other milk fractions 
[17, 18].

Early lactation cows experience negative energy bal-
ance and profound shifts in metabolic and hormonal 
status. This period is also characterized by increased risk 
of inflammatory diseases such as mastitis, and altered 
immune function [2, 19]. In addition, this period of nega-
tive energy balance influenced mammary gland gene 
expression, which may be related to affect the response to 
inflammation [20]. With the ultimate objective to explore 
the MF as a source of noninvasive biomarkers of mastitis 
in dairy cows, the aims of this study were: (1) to deter-
mine the effects of a lipopolysaccharide (LPS) challenge, 
used as a model of Gram-negative bacteria-associated 
mastitis, on the miRNome of MF; (2) to assess the poten-
tial biological functions of the differentially expressed 
miRNA.

Materials and methods
Experimental design: animals and sampling
Six multiparous Holstein cows from the experimen-
tal Herbipôle Unit of INRAE Research Center of 

Auvergne-Rhone-Alpes [21] with a lactation number 
ranging from 2 to 4 were used. The procedures were 
approved by the regional ethics committee on animal 
experimentation (APAFIS #2018062913565518).

Cows were allowed ad  libitum intake of a lactation 
diet containing corn silage (29%, dry matter basis), corn 
(24.2%), grass silage (25.5%), soybean meal (16.9%) and a 
vitamin and mineral complement (0.9%). At 27 ± 3 days 
in milk, one healthy rear mammary quarter of all cows 
was injected with 50 µg of LPS E. coli 0111:B4; (LPS-EB 
Ultrapure, InvivoGen, San Diego, CA, USA) diluted in 
10  mL of sterile saline CDM (Lavoisier, Paris, France) 
containing 0.5 mg/mL BSA cell culture grade, endotoxin-
free, A9576, (Sigma-Aldrich, St. Louis, MO, USA), as 
described in Pires et al. [19]. Residual milk in mammary 
gland was collected after AM milking, just before infu-
sion (LPS-) and the end of PM milking, corresponding 
to 6.5 h after LPS injection (LPS +). This sampling time-
line was adopted to target the first step of inflamma-
tory state. The effects of LPS were monitored to confirm 
the inflammation response of the mammary gland. The 
inflammation response to LPS was confirmed by multiple 
indicators, including increased rectal temperature, and 
milk somatic cell counts, selected milk cytokines, and 
decrease in milk yield, as previously reported [19].

RNA preparation
Total RNA from residual milk samples, collected immedi-
ately after standard milking, was extracted as previously 
described [22]. Briefly, immediately after centrifugation 
at 2000 × g for 10 min at 4 °C of fresh residual milk sam-
ples, cells and cellular debris were on the bottom of the 
tubes, MF was collected on the top layer. One g of MF 
was mixed with 2.0  mL of TRIzol LS solution (Invitro-
gen Life Technologies Inc.), then 600  µL of chloroform 
were added before centrifugation at 12 000 × g for 20 min 
at 4  °C. The upper aqueous layer was precipitated using 
500 µL of isopropanol overnight. The pellet obtained by 
centrifugation at 12 000 × g for 10 min at 4 °C was washed 
and RNA was dissolved in 50  μL of RNase-free water. 
RNAs were stored at − 80 °C until miRNA analyses.

Microarray analyses
Customized 8 × 60K miRNA microarray (Agilent Tech-
nologies, Inc. Santa Clara, USA) were used. This micro-
array contained 786, 276 and 105 miRNAs from bovine, 
caprine and ovine sequences, respectively. All the 
sequences were spotted at least twice. Twelve microar-
rays were carried out. Total RNA (100  ng) was labelled 
with Cy3 using the one-color Quick Amp Labeling 
Kit (Agilent Technologies, Inc. Santa Clara, USA) and 
hybridized overnight to the microarrays using the High-
RPM Gene Expression Hyb Kit (Agilent Technologies, 
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Inc. Santa Clara, USA) following manufacturer’s instruc-
tions. After washing, microarrays were scanned using 
the Innoscan (Innopsys, France) and the resulting TIFF 
images were processed using Feature Extraction software 
Version 11 (Agilent Technologies, Inc. Santa Clara, USA). 
The data are accessible through the GEO series acces-
sion number GSE229476. Normalized data obtained with 
75th percentile shift date from the microarray assay were 
analyzed using GeneSpring software (Agilent Technolo-
gies, Inc. Santa Clara, USA). We considered the q-value 
described as a powerful approach [23] to control the false 
discovery rate (FDR), which were obtained using the Sto-
rey method [24] with curve fitting model and considered 
significant at the FDR q-value ≤ 0.05.

In silico functional analyses
In silico functional annotations of miRNAs and their pre-
dicted targets were performed using OmicsNet tools [25]. 
Due to the higher level of annotations in human than in 
bovine species, we used human tools with miRTarBase 
(V8.0) experimentally validated miRNA-gene interac-
tions. OmicsNet analyses also identified functional bio-
logical categories related to differentially expressed 
miRNAs, using Panther Biological Processes database 
by selecting only validated miRNA-gene interactions. 
Then, we categorized and grouped manually biological 
processes. The gene lists were also filtered by previously 
obtained results using Mienturnet software [26]http://​
userv​er.​bio.​uniro​ma1.​it/​apps/​mient​urnet/. The potential 
miRNAs-genes networks were identified and visualized 
using Cytoscape (Version 3.8).

Results
Effects of LPS challenge on milk fat miRNomes
Before studying the effects of LPS on MF miRNomes, the 
effect of inflammation was confirmed by increased rec-
tal temperature and, increased milk somatic cell counts. 
In addition, foremilk IL-8, IL-1β, TNF-α, and CXCL3 
concentrations increased in response to LPS (Additional 
file  1) as previously reported [19, 20]. The comparison 
between miRNomes of MF obtained before (LPS-) and 
after (LPS+) revealed 37 differentially abundant miRNAs 
(DAMs) (Table 1). Among the 37 DAMs, 28 and 9 were 
downregulated and upregulated, respectively. The heat 
map analysis of DAMs showed a classification of cows 
according to the LPS challenge status (Figure 1).

Comparison of the effects of different miRNA sources 
on miRNome responses
The effects of the miRNAs tissue-sources were evaluated 
by comparisons of studies using different sources of miR-
NAs. The effects of S. aureus challenge were compared 
from studies using mammary gland [10], mammary 

epithelial cells [27] and milk extracellular vesicles [15] as 
source of miRNAs (Figure  2). We detected no common 
modulated miRNAs between the three studies of the 
effects of the same pathogen. Similarly the comparison 
between the 37 DAMs in response to E. coli derived LPS 
challenge in our study to the 179 differentially expressed 
miRNAs detected in mammary gland tissue infected with 
E. coli [10] showed only 4 common miRNAs (miR-154c, 
miR-362-3p, miR-138, and miR-2310) with both study 

Table 1  Differentially abundant miRNAs (q-value ≤ 0.05) in 
milk fat after LPS challenge in early lactation cows 

FC: fold change in miRNA abundance in LPS+ vs. LPS- cows.

Gene name q-value FC

miR-16b-5p 0.04 1.15

miR-18b-3p 0.05 −1.19

miR-29c-5p 0.05 −1.22

miR-34a 0.05 −1.21

miR-99a-3p 0.04 −1.26

miR-138 0.04 1.36

miR-143 0.05 −1.18

miR-154c 0.05 −1.10

miR-190a-3p 0.05 −1.14

miR-208b 0.05 −1.38

miR-214-3p 0.05 1.24

miR-329b-3p 0.04 −1.15

miR-340 0.05 −1.21

miR-362-3p 0.03 −1.29

miR-379-3p 0.04 1.26

miR-412 0.04 −1.23

miR-496 0.04 −1.36

miR-499 0.04 −1.20

miR-1301 0.04 −1.27

miR-1814a 0.05 −1.33

miR-2284d 0.04 −1.19

miR-2284f 0.05 −1.24

miR-2284 g 0.05 −1.30

miR-2285ae 0.05 −1.14

miR-2297 0.05 −1.24

miR-2308 0.04 1.13

miR-2310 0.04 −1.33

miR-2312 0.05 −1.18

miR-2325a 0.05 −1.23

miR-2343 0.05 1.25

miR-2361 0.04 −1.30

miR-2363 0.04 −1.15

miR-2388-5p 0.04 –1.31

miR-2423 0.05 −1.27

miR-2454-3p 0.05 1.37

miR-3431-3p 0.05 1.13

miR-6523b 0.05 1.32

http://userver.bio.uniroma1.it/apps/mienturnet/
http://userver.bio.uniroma1.it/apps/mienturnet/
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(Figure 3). With the aim to identify MF miRNAs as bio-
markers of mastitis, we compared the 37 DAMs detected 
in the present study with those identified by Ju et al. [7] 
in a study of the effects of spontaneous mastitis on mam-
mary gland miRNome. Two miRNAs (miR-99a and miR-
143) were identified in common between Ju et al. [7] and 
the present study.

Functional annotation of the differentially abundant 
miRNAs
The in silico functional annotation by OmicsNet [25] 
with Panther database is presented in Figure  4. The 
targets are mainly involved in cell life (47%) including 
apoptosis, cell cycle, death, proliferation, and differenti-
ation. The second class of biological processes affected 
were those involved in gene expression machinery 
(31%) including chromatin organization, regulation 
of translation and transcription (Figure  4). One Gene 

Ontology-Biological Processes (GO-BP) corresponds to 
a response to toxic substance process (Figure  4). Fur-
thermore, the cell life and gene expression machinery 
were also highlighted by reactome analysis (Figure  5). 
Reactome analysis also identified Interleukin-4 and −13 
signaling (Figure 5).

The network analyses using Cytoscape showed networks 
that are influenced by 8 known miRNAs (miR-18b-3p, 
miR-29c-5p, miR-99a-3p, miR-190a-3p, miR-214-3p, miR-
362-3p, miR-379-3p, and miR-496) that were affected by LPS 
injection (Figure 6A). A total of 448 validated miRNA-gene 
interactions were found. Two large nodes were observed 
involving miR-190a-3p and miR-362-3p. A total of 60 
(13.4%) of miRNA-gene interactions were related to cell life 
(Figure 6B) and a total of 29 (13.8%) of miRNA-gene interac-
tions were linked to gene expression processes (Figure 6C). 
The two main miRNAs (miR-190a-3p and miR-362-3p), 
which were downregulated in MF by LPS injection, were 
both involved in the regulation of many processes, including 
cell life and gene expression processes.

Figure 1  Heatmap analysis of differentially abundant miRNAs after LPS challenge in early lactation cows by comparing LPS- (just before 
LPS injection) to LPS+ (6.5 h after 50 µg of LPS E. coli injection). The scale indicated the level of abundance in LPS+ vs. LPS-. Each cow number 
is indicated at the bottom of the figure.
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Discussion
To mitigate the negative effects of mastitis, its fast and 
accurate detection may allow earlier and more efficient 
treatment, enabling the animal to recover quickly and 
thus reducing the economic losses. Such detection may 
be possible by identifying early indicators of inflam-
mation in milk. The immune function is influenced by 

metabolic disorders, which are often associated with the 
spontaneous negative energy balance of early lactation 
[4, 5, 28]. A better understanding of the molecular regu-
lation of the mammary response to inflammation would 
reduce their negative impacts and allow to identify new 
early biomarkers. Mammary gland miRNomes are modi-
fied during mastitis in the bovine [7, 9, 10, 15]. Mammary 

Figure 2  Venn diagram of the differentially abundant miRNAs after S. aureus challenge in mammary gland [10], mammary epithelial cells 
[25], and milk extracellular vesicles [15].

Figure 3  Venn diagram of differentially abundant miRNAs in milk fat (present study) and mammary gland [10].
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gland secretes abundantly MF globules, which are one of 
the major miRNA-carrying compartments in milk [17, 
18]. MF miRNomes showed strong similarity with that 
of mammary gland tissue [17], however, MF globules are 
not an exact mirror of mammary gland. Indeed, miRNA 
composition may differ among mammary gland tissue, 
mammary epithelial cells and milk fat globules [17].

The number of DAMs is relatively low compared 
to studies conducted on the mammary gland tissue. 
Luoreng et al. [10] identified 179 and 162 miRNAs using 
E. coli and S. aureus infections, respectively and Li et al. 
[8] highlighted 77 miRNAs from mammary glands 
infected by S. aureus. In addition to the source of miR-
NAs (MF vs mammary gland), we cannot exclude that 

Figure 4  Functional annotation of the differentially abundant miRNAs in cows identified by OmicsNet [25] with Panther database using a 
threshold p-value ≤ 0.1. 

Figure 5  Reactome analysis of differentially abundant miRNAs in milk fat after LPS challenge identified by Mienturnet software .[26]. Blue 
and orange arrows indicate the reactomes related to cell life and to gene expression, respectively, and star pointed out the IL4-13 signaling.
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even though most milk somatic cells are eliminated dur-
ing centrifugation, some may be trapped in MF used 
for RNA extraction. The trapped cells could contribute 
to miRNA supply, increasing variability. Moreover, the 
variability may also be due to animal polymorphism, or 
to  the methodology used for miRNome analyses. How-
ever, the number of 37 DAMs in the present study is in 
line with those obtained using different fractions of milk. 
For instance, in response to S. aureus infection, Sun et al. 
[15] and Lai et al. [16] reported 14 and 25 DAMs in milk 
extracellular vesicle and in milk whey fraction from cows 
with clinical mastitis, respectively.

The variability of miRNome responses could be 
due to the sources of miRNAs and also by a variety of 
pathogens. In order to evaluate the factors that may 
affect miRNA abundance in response to inflammation, 
we compared available published data using different 
sources of miRNAs to study the effect of S. aureus (Fig-
ures 2, 3). The miRNome responses after S. aureus chal-
lenge in mammary gland [10], mammary epithelial cells 
[27] and milk extracellular vesicles [15] were differents 
with no common miRNA (Figure  2). The  variability of 
response in these  tissues did not allow to detect many 
common miRNAs among these studies (Figure 2). The 
comparison between the 37 DAMs in response to E. coli 
derived LPS challenge in our study to the differentially 

expressed miRNAs detected in mammary gland tissue 
infected with E. coli [10] showed 4 common miRNAs 
(miR-154c, miR-362-3p, miR-138, and miR-2310) with 
both studies (Figure 3). Among them, miR-154c, down-
regulated in the present study, is known to be stable 
and highly expressed in the mammary gland [10] and 
to influence the cell proliferation in melanoma and 
suppressed cell invasion and migration in nasopharyn-
geal carcinoma [29]. These roles may be related to the 
inflammation processes of the mammary gland after 
the LPS challenge in cows and must be studied more 
deeply. In addition, miR-362 has been also described to 
repress cell proliferation, migration, invasion and epi-
thelial-mesenchymal transition in sinonasal carcinoma 
[30]. The downregulation of miR-154c and miR-362 
in response to LPS injection could help cell migration 
through mammary tissue and the epithelium remod-
eling in response to inflammation. The LPS challenge 
induces recruitment of macrophages, which is poten-
tially facilitated by the downregulation of miR-362 
and miR-154c. The influence of differentially expressed 
miRNAs on the invasion of epithelial cells was also sug-
gested to occur in mammary gland parenchyma during 
inflammation [31]. To evaluate the effects of different 
pathogens, we compared studies of E. coli and S. aureus 
effects. Luoreng et al. [10] studied the effects of E. coli 

Figure 6  Networks of the differentially abundant miRNAs in cows identified using Cytoscape: A Total miRNA-gene interactions; B 
miRNA-gene interactions involved in cell life processes; C miRNA-gene interactions involved in gene expression machinery.
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(179 differentially expressed miRNAs) and S. aureus 
(162 differentially expressed miRNAs) on mammary 
gland miRNomes and showed 131 common miRNAs 
regulated by infection (Figure  3). Similarly, Jin et  al. 
[27] identified 8 common miRNAs among the 17 and 
14 differentially expressed miRNAs in mammary epi-
thelial cells after E. coli and S. aureus, respectively.

The comparison with a study of spontaneous masti-
tis [7] showed two miRNAs (miR-99a and miR-143) in 
common. These two miRNAs were reported to influ-
ence proliferation and apoptosis in cancer models [32, 
33]. The decrease of their expression after the LPS chal-
lenge in synergy with miR-154c and miR-362-3p could 
facilitate apoptosis of inflamed cells. Unfortunately, 
none of the miRNA was common between the present 
study and those performed using milk to obtain EVs in a 
S. aureus challenge study [15] and whey fraction during 
mastitis [16]. This may be due to the inherent variability 
of both the different source of miRNAs and the differ-
ent pathogens. All these comparisons showed different 
responses due to the studied miRNA sources, and, also 
in a lesser extent, the involved pathogens. These differ-
ences should be considered when a set of miRNAs will 
be used as biomarker of mastitis diagnosis.

In parallel to the identification of potential indicators 
of mastitis, the in silico functional annotation identified 
the biological processes potentially regulated by the 37 
differently abundant miRNAs in bovine MF in response 
to the LPS challenge (Figure 4). As expected, the main 
affected biological process corresponded to cell life 
(47%) including apoptosis, cell cycle, death, prolifera-
tion, and differentiation. The second class of biological 
processes affected were those involved in gene expres-
sion machinery (31%) including chromatin organi-
zation, regulation of translation and transcription 
(Figure  4). One Gene Ontology-Biological Processes 
(GO-BP) corresponds to a response to toxic substance 
process. Furthermore, the cell life and gene expression 
machinery were also highlighted by reactome analysis 
(Figure  5). In line, network analysis using Cytoscape 
identified also a total of 60 (13.4%) of miRNA-gene 
interactions were related to cell life (Figure  6B) and a 
total of 29 (13.8%) of miRNA-gene interactions were 
linked to gene expression processes (Figure 6C).

Reactome analysis identified interleukin signal-
ing, which is consistent with an inflammation status 
and increased cytokine concentrations in milk after 
LPS injection (Figure  5; Additional file  1). The role of 
interleukins in mammary epithelial cell response to 
infection has been previously described [34]. Inter-
actions between miRNAs and several proinflamma-
tory cytokines playing crucial roles in the modulation 

of inflammatory signaling pathways were previously 
reported [35].

The network analyses using Cytoscape identified 8 
known miRNAs (miR-18b-3p, miR-29c-5p, miR-99a-3p, 
miR-190a-3p, miR-214-3p, miR-362-3p, miR-379-3p, and 
miR-496) that were affected by LPS injection (Figure 6A). 
A total of 448 validated miRNA-gene interactions were 
found. Two large nodes were observed involving miR-
190a-3p and miR-362-3p. The two main miRNAs (miR-
190a-3p and miR-362-3p), which were downregulated 
in MF by LPS injection, were both involved in the reg-
ulation of many processes, including cell life and gene 
expression processes. Indeed, previous studies showed 
the involvement of miR-362-3p in the induction of apop-
tosis. Indeed, a downregulation of miR-362-3p was also 
detected in mouse microglial cells (BV2) treated with 
LPS injection and associated with an increased occur-
rence of apoptotic cells [36]. In addition, miR-362-3p was 
also downregulated in LPS-treated PC12 cells mimick-
ing neurological disorders [37]. The authors suggested 
a possible role of LPS in the induction of apoptosis and 
repression of cell proliferation. Other studies reported 
a role of miR-362-3p as a tumor suppressor and an 
anti-inflammatory activity in several tumors, i.e. cervi-
cal adenocarcinoma [38], ovarian [39], renal [40] and 
human breast [41] cancer. Taken together these results 
suggested that the downregulation of miR-362-3p is 
involved in the induction of apoptosis. Considering that 
LPS is a powerful inflammation inducer, our results are 
in line with the abovementioned studies and consolidate 
the role of LPS and the downregulation of miR-362-3p. 
The second major miRNA identified by network analysis, 
miR-190a-3p is downregulated by LPS. This miRNA was 
reported to be an inducer of cell proliferation and migra-
tion in glioma [37] and associated with apoptosis induc-
tion in the chicken liver [42], which is not in line with the 
downregulation of this miRNA observed in the present 
study. However, several studies demonstrated a complex 
regulation of miR-190a-3p and its target genes, mediated 
by long non-coding RNAs [43, 44]. Therefore, further 
studies should be conducted to better understand the 
role of miR-190a-3p in the modulation of LPS mammary 
response. The network of miRNA-target enrichment 
analysis identified two major MF miRNAs, miR-190a-3p 
and miR-362-3p, down regulated by LPS challenge and 
both involved in the induction of apoptosis. However, 
their potential role in inflammation must be deeply 
investigated.

In conclusion, we showed that MF is a suitable source 
of miRNAs during inflammation challenge and MF miR-
Nome is modified by inflammation challenge in early 
lactation cows. The 37 DAMs in MF identified from the 
comparison between LPS- and LPS + Holstein cows, 
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could be used as a set of candidate miRNAs for future 
studies. These 37 miRNA modifications are detectable 
rapidly after LPS challenge (6.5 h) and thus could be very 
useful for early diagnosis of mastitis. However, we also 
highlighted differences depending on the source of miR-
NAs and to a lesser extend in the considered pathogens. 
Thus, the identification of a unique miRNA as a bio-
marker of inflammation status may not be possible, and 
a set of miRNAs may be required instead. The set of the 
37 miRNAs identified in the present study must be vali-
dated by studying different models. Spontaneous mas-
titis caused by different etiological agents are needed to 
explore this panel of MF miRNAs as potential biomark-
ers for the early diagnosis of mastitis.
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