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Using eQTL networks to decipher the
architecture of complex traits
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Outline

e Introduction:

* The genetic architecture of complex traits
* Why studying eQTL networks ?

* Biologically characterizing cancer risk SNP with eQTL networks
* Improving our understanding of complex trait heritability
* Detecting past selection events?

* Conclusion and future topics



Mendelian vs. Polygenic traits

Mendelian traits:

Gene =l  Phenotype

Complex traits:

Normal cells Cancer cells

Gene 1l
Gene 2 Phenotype
Gene 2

>

Environment



Genetic architecture of some often-studied traits

Monogenic Oligogenic Polygenic
Mendelian
1 trait = 1 gene 1 trait = 2-10 genes 1 trait = many genes



Genetic architecture of some often-studied traits

Monogenic

Mendelian
1 trait = 1 gene

Lactose tolerance

Sickle-cell disease

Oligogenic
1 trait = 2-10 genes

Skin/eye/hairs color

Risk to develop type Il
diabetes

Risk to develop a cancer

Polygenic

1 trait = many genes

Risk to develop
schizophrenia

Adult size



Diving deeper in the architecture of complex traits

Phenotype Trait of interest

Environmental Context

BIGIEIE

Adapted from Hallgrimsson et al., PLoS Genetics, 2014

» The genotype-phenotype gap:

Mechanisms by which most genetic variation identified in GWAS affect the final phenotype unknown



Diving deeper in the architecture of complex traits

Set Set 2 Pleiotropy
Correlated

Sets of Traits

Trait 3

Process
Effects

Process
Interactions

|

Processes e \
= [l 7 =

k Adapted from Hallgrimsson et al., PLoS Genetics, 2014

Process
Effects

Gene Regulatory Networks <

Gene
Effects

» The importance of gene regulatory networks



Diving deeper in the architecture of complex traits

Set Set 2 Pleiotropy
Correlated

Sets of Traits

Trait 3

Process
Effects

Process
Interactions

|

Processes

Redundancy ‘
Tissue-specificity - .
Genotype

k Adapted from Hallgrimsson et al., PLoS Genetics, 2014

Process
Effects

Gene Regulatory Networks <

Gene
Effects

» Complex interactions at the basis of polygenic traits, including pleiotropy and redundancy



The different challenges

Complexity Tissue-Specificity

Pleiotropy

Redundancy

Mutations Traits

Genotype-Phenotype Gap



Environmental Exposures

Exploring the genotype-phenotype gap
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The importance of gene expression regulation in polygenic phenotypes

GWAS in humans

GWAS for developmental traits in

intergenic .
maize

Window-
based CNVs

coding g
Genic CNVs

Intergenic

Intronic

regulatory

Gene- Missense

proximal Synonymous

Not Annotated UTRs

non—coding genic

n=4,_3802

n=144,876



Environmental Exposures

Exploring the genotype-phenotype gap
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Gene Expression Regulation in cis and in trans

cis-acting elements

trans-acting elements

B

gene

T
____-___

Intronic
silencer enhancer promoter onhancer

Transcription Factors

Intronic
silencer enhancer promoter onhancer
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miRNA




Building a bridge between genotype and phenotype:
Step 1 —the expression Quantitative Trait Loci (eQTLs)

Expression quantitative
trait locus (eQTL)
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» Expression quantitative traits loci are potential regulatory SNPs

> SNPs associated to traits or diseases are enriched for eQTLs



Organising the complexity: a graph representation

Expression quantitative trait locus Cis- and trans-eQTL bipartite networks

SNPs Gene Expression

4‘

» Using a systems biology network approach to groups SNPs influencing the expression of the same genes



Grouping SNPs using a network property : modularity

Cis- and trans-eQTL bipartite network Community detection

Gene

SNPs Expression @




Grouping SNPs using a network property : modularity

Cis- and trans-eQTL bipartite network Community detection
Gene
SNPs Expression

4.

o

Bipartite Modularity Maximization
Q= (e —a

N

Fraction of network links in Fraction of links
community i expected by chance

Platig et al. (2016) PLoS Comp Bio
Barber et al. (2007) Phys Rev E Stat Nonlin Soft Matter Phys




Taking into account the tissue-specificity

Get tissue-specific
expression data

=1GTEX

e 449 individuals.

* Genotyping data:

* 84.3% European Am.

e 13.7% African Am.
* 1% Asian Am.

* RNA sequencing data:

e 13 tissues.

Brain

Anterior cingulate cortex (BA24)\
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Cortex
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Liver
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® Whole Blood
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Artery Tibial
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Heart - Left Ventricle @
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https://doi.org/10.1101/074450



Approach summary: building tissue-specific eQTL networks

Modules detection —\

/— Data \ 4
. T Bipartite Modularity Maximization (condor)

13 tissues, 450 individuals, 4904 samples

Imputed Genotypes (5,640,985 SNPs)
RNA-Seq data (29,242 genes)
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eQTL networks have high modularity

(a)

\

A random network

Modularity ~ 0

(b)
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A modular network

Modularity >> 0



eQTL networks have high modularity

A random network

Modularity ~ 0

(b)

A modular network

Modularity >> 0

Network Modularity

Whole blood

Artery aorta

Heart left ventricle
Lung

Artery tibial

Skeletal muscle
Adipose subcutaneous
Esophagus mucosa
Esophagus muscularis
Fibroblast cell line
Skin

Tibial nerve

Skin network

i = i
“?'4 R
i.
- . ) - - 2
o S =
. A Tt
S o . - -
120 26 31 4% 61 77 96 108 123 135 151 165

SNPs

Fagny et al. (2017) PNAS



Communities correspond to biological functions of tissues

Example of communities identified in skin eQTL network

I

» Groups of SNPs regulate groups of genes involved in similar functions.

» Communities can be tissue-specific or shared across tissues
Fagny et al. (2017) PNAS



Research question:
Understanding the genetic architecture of complex traits

» Biological characterization of SNPs identified by GWAS: How do genetic
variation influence a trait ? Which biological pathways are involved?

» Heritability: Which mutations most affect the trait? Where are they located
in the regulatory network

» Natural Selection: How do such a complex trait evolve?



Research question:
Understanding the genetic architecture of complex traits

» Biological characterization of SNPs identified by GWAS: How do genetic
variation influence a trait ? Which biological pathways are involved?

John Platig,
Assistant Professor,
Univ. Of Virginia



A particularly complex trait: the risk to develop cancer(s)

Allele Frequency

Genetic Architecture of Cancer Risk

synonymous 0.86%
UTR 2.91%

Unknown 3.52%

f Common
. variants (low
. penetrance)

regulatory 5.99%

intron 56.19%
splice 0.34%

coding 3.20%

Rare variants Rare variants
(moderate (high

penetrance) penetrance)

intergenic 23.89%

Relative Risk non-coding RNA 3.11%

Adapted from Cancer Genetics Overview (PQD®)

» 4,587 SNPs associated to 265 cancer-related traits
» 87% of cancer-risk SNPs with an odds ratio under 3



Mapping cancer-risk SNPs to eQTL networks

Cancer risk
SNPs?

» Where do the cancer-risk SNPs map in these networks?
» In which community are they located?

» What are their properties?



Mapping cancer-risk SNPs to eQTL networks

Nb of cancer-risk SNPs by community

Frequency
0.4 0.6 0.8
|

0.2

0.0

0 5 10 15 20 25 30

Nb cancer-risk SNPs

» 2-6 communities enriched in cancer risk SNPs by tissue



Biological function of cancer-risk SNPs-enriched communities

Enriched in multiple cancer risk SNPs (all tissues)

antigen processing and presentation of

exogenous peptide antigen |

antigen processing and presentation

of exogenous antigen |

antigen processing

and presentation

antigen processing and presentation

of peptide antigen |

antigen processing and presentation of

peptide antigen via MHC class Il ]

antigen processing and presentation of

exogenous peptide antigen via MHC class Il

antigen processing and presentation of

peptide or polysaccharide antigen via MHC class Il

positive regulation of

immune response |

regulation of immune response

activation of immune response -

Odds
Ratio ®
10 )
® 20
® 30
® 40 °
@ 50
(@)
0 5 10 15 20

—log, ,(FDR qgvalue)

epithelium development -

epidermis development

regulation of water |

loss via skin

establishment of skin barrier -

skin development 4

multicellular organismal |

water homeostasis

tissue development -
water homeostasis -
epithelial cell differentiation -

lipid metabolic process A

Enriched in breast cancer risk SNPs (skin)

Odds
° Ratio
. 2
10
° 20

0 5 10
—log, (FDR gvalue)



Cancer-risk SNPs preferentially target oncogenes

Genes targeted by cancer risk SNPs?

Cancer-risk SNP

P<10°% '

T T
Other SNPs Cancer-risk SNPs

3
\

2
\

Other SNP

1

Degree (Cancer Genes)

0
\

Oncogenes
Others
O ‘ Tumor suppressors



What are the properties of cancer-risk SNPs in the eQTL networks?




2 hypotheses: high-degree?

High-degree SNP (global hub)




Or high core-score?

od

High-degree SNP (global hub)

_ ok,
m 2 (AU m

Observed — expected

) 5(Ci, h)3(C;, h)

Is gene j in community h?

edge

between SNP | and gene j



Cancer-risk SNPs are local hubs

P=1.16x10°
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An example of breast cancer risk SNP

epithelium development 4

epidermis development 4

regulation of water |

loss via skin

establishment of skin barrier -

skin development -

multicellular organismal |

water homeostasis

tissue development 4
water homeostasis -
epithelial cell differentiation 4

lipid metabolic process A

Odds
° Ratio
. 2
10
e 20

0 5 10
—log,,(FDR qgvalue)

COL17A1

KRT10 - Cis-eQTL

rs11249433

- trans-eQTL

PHGDH

FERMT1

> rs11249433 is associated to breast cancer

> It targets genes that are deregulated in epithelium cancers (EMS).



Research question:
Understanding the genetic architecture of complex traits

» Biological characterization of SNPs identified by GWAS: How do genetic
variation influence a trait ? Which biological pathways are involved?

» Heritability: Which mutations most affect the trait? Where are they located
in the regulatory network

Katherine Stone
(Bachelor student)



Offspring phenotypic value

Genetic heritability
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h? = heritability, proportion of variance explained by additive genetic value

Visscher et al. (2008) Nature Review Genetics



Genetic heritability in a network

L

Where is most of the heritability located?

e High-degree SNP
(global hub)

eQTLs summary statistics
(Gaynor et al. 2022)

JL
Gene

SNPs Expression

Weighted eQTL

bipartite network

CONDOR
/) (new implementation)

2

High Outdegree

Network structure &
summary statistics

GWAS

BRC

HDL

HGT

MS

ovC

PRC

SCz

SCzJ
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sz\o\/
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Q‘O
@%
O
o
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$
"OO
4
- B
Q&
Q0 -
[ . s

-1

-08 -06 -04 -02 O 02 04 06

Correlation coefficient

summary statistics

<

Stratified LD-Score

regression

(Finucane et al. 2015)

Enriched heritability?




Traits

Trait or disease Abbreviation Genetic structure Estimated genetic heritability

Alzheimer's disease ALZ) Oligogenic 58-90%
Breast Cancer BRC Polygenic 31%

HDL HDL Polygenic 40-60%
Height HGT Omnigenic 50%
Multiple Sclerosis MS Polygenic 64%
Ovarian Cancer OVvC Polygenic 39%
Prostate Cancer PRC Polygenic 57%
Schizophrenia SCZP Polygenic 79%
Schizophrenia SCZR Polygenic 79%
Schizophrenia SCZ Polygenic 79%
Smoking Cessation SMC Polygenic 75%

Type 2 diabetes TIID Oligogenic 25-72%




Genetic heritability in a network

Is there a link between the amount of heritability
explained and the network topology?

e High-degree SNP
(global hub)



Genetic heritability in a network

Is there a link between the amount of heritability
explained and the network topology?

High-degree SNP
(global hub)

Global hubs
ALZJ o
BRC - e
HDL - ot
HGT =
MS o
OVC A o
PRC e
SCZ o
SMC A —e—
TID o
Combined —
T T T T T T
0.5 1 1.5 2 2.5 3
GWAS effect size
Local hubs
ALZJ o
BRC e
HDL A o~
HGT o
MS - o
OVC -+ o
PRC e
SCZ o
SMC -+ —o—
THD ~ g
Combined - P

1 2 3 4 5 6 7
GWAS effect size (x10-8)

p=1.75e-117
p=7.99e-176
p=1.53e-110
p =2.23e-191
p = 8.00e-86
p =6.57e-60
p=257e-92
p = 6.82e-147
p = 2.28e-67
p =5.35e-61
p = 0.00e+00

p =7.64e-128
p =1.26e-190
p =3.26e-119
p =1.47e-207
1.36e-93

T T T T T TDO



Top 5% 22 SNPs (%)
0 16 36 56 76 96 118 14

Genetic heritability among communities

28 037 R

5e 34 e

39 e

”””””””””””””””””””””””””””””” SCZR -

68 e
ALZJ

98 o BRC
HDL
149 o HGT
MS -
129 o OVC -

PRC

SCZ
SCZJ

106 o

SMC
TIID

Proportion of enriched modules (%)

Module ID

» Most of the heritability is concentrated in a few communities




Genetic heritability and biological functions

Adipose Visceral Omentum community
HDL levels

chylomicron remnant clearance -

very—low—density lipoprotein particle clearance -
regulation of skeletal muscle satellite cell proliferation -
very—low—density lipoprotein particle assembly -
phospholipid efflux -

positive regulation of T cell receptor signaling pathway -
high—density lipoprotein particle remodeling -
regulation of vascular permeability -

positive regulation of DNA binding -

mitotic recombination -

0

.'I

2

3

4

—log10(p—value)

5

Significant/
Expected

@ 10

Colon sigmoid community
prostate cancer

TRAIL-activated apoptotic signaling pathway - '
linoleic acid metabolic process - .

unsaturated fatty acid biosynthetic process - )
positive regulation of cartilage development - .
phosphatidylethanolamine acyl-chain remodeling - .
androgen receptor signaling pathway - ()
chloride transmembrane transport °
mRNA polyadenylation - @
snRNA metabolic process A @

transcription—coupled nucleotide—excision repair -

o 1 2 3 4
—log10(p-value)

» Genetic heritability is concentrated in tissue-specific, biologically relevant communities

5




Research question:
Understanding the genetic architecture of complex traits

» Biological characterization of SNPs identified by GWAS: How do genetic
variation influence a trait ? Which biological pathways are involved?

» Heritability: Which mutations most affect the trait? Where are they located
in the regulatory network

» Natural Selection: How do such a complex trait evolve?

Rosanne Phebe (M1)



Polygenic adaptation: from phenotype to molecules

Polygenic adaptation at the molecular level
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Adapted from Hallgrimsson et al., PLoS Genetics, 2014 @ Selected

» The omnigenic model
» Pleiotropic loci



The genetic architecture of complex traits may limit adaptation

The omnigenic model
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» High pleiotropy



But... Many examples of polygenic adaptation
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Structuration & Tissue-specificity & Redundancy

Structured GRN (Arabidopsis)
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«MBW complex» regulators Sore
(" LEGEND  Node  Protein Edge color A
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L @ Other . ohter w,

The omnigenic model

S. cerevisiae
S. paradoxus

Doroshkov et al., BMC Plant Biology, 2019 ISR,

S. bayanus
web, S. castellii

C. glabrata
1,2 K. polysporus

K. thermotolerans

L. waltii

S. kluyveri

K. lactis
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Duplication
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MalR
— & o

Lodderomyces elongisporus

Yflos52w

Selection of promoters
with appropriate motifs
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@

x
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Q
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Saccharomyces cerevisiae

Malx3 ﬁf\

Saccharomyces bayanus

Palatinose uptake

Malx3 Maltose uptake
Ign3

Tissue-specific gene expression (maize)

H B

Percent of genes in each class
S
1

0~

F2 gene expression
Filtered Gene Set
| F2—specific genes

56789101112

Number of tissues/condiﬂons in which genes are expressed

Pougach et al., Nat Comm, 2014

Redundancy and neofunctionalization (yeast)

Darracq et al., BMC Genomics, 2018



Proposed model: a major role for redundancy and node topology in
evolvability

Selection target for function 2

Function 2 Redundancy

Function 3 Function 2

Function 1



Take-home message

Expression quantitative trait loci (eQTL) bipartite networks can help functionally annotating SNPs
associated with complex traits
Cancer-risk SNPs are :
* located preferentially in local hubs and communities related to immune (several cancers), or tissue-
specific (cancer-specific) functions.
e impacting the expression of oncogenes and tumor suppressor genes
Most of complex trait heritability is :
* Located in local and global hubs,
 Concentrated in a few, tissue-specific and biologically relevant communities.
To go further:
 eQTL network structure may help us understand how complex trait evolve despites a high level of

pleiotropy



