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Mendelian vs. Polygenic traits

Mendelian traits:
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Genetic architecture of some often-studied traits

Monogenic Oligogenic Polygenic
Mendelian
1 trait = 1 gene 1 trait = 2-10 genes 1 trait = many genes
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Genetic architecture of some often-studied traits
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The importance of gene expression regulation in polygenic phenotypes

GWAS in humans
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A particularly complex trait: the risk to develop cancer(s)

Genetic Architecture of Cancer Risk

synonymous 0.86%
UTR 2.91%

Unknown 3.52%

Common
regulatory 5.99%

. variants (low

intron 56.19%

5 . penetrance)
= : splice 0.34%
Z,'; coding 3.20%
i
2
2
< Rare variants Rare variants
(moderate (high

penetrance) penetrance)

intergenic 23.89%

Relative Risk non-coding RNA 3.11%

Adapted from Cancer Genetics Overview (PQD®)

» 4,587 SNPs associated to 265 cancer-related traits
» 87% of cancer-risk SNPs with an odds ratio under 3



How can we functionally annotate regulatory SNPs
associated with traits & diseases?
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Environmental Exposures
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Exploring the genotype-phenotype gap
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Environmental Exposures

Exploring the genotype-phenotype gap
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Intergenic and non-coding genic regions regulate gene expression

Transcription Factors

Intronic
silencer enhancer promoter onhancer

Intronic
silencer enhancer promoter onhancer



ldentifying the gene targeted by regulatory SNPs: eQTLs

Expression quantitative
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» Expression quantitative traits loci are potential regulatory SNPs

> SNPs associated to traits or diseases are enriched for eQTLs



A complex relationship between mutations and gene expression



A complex relationship between mutations and gene expression

Complexity Specificity
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Mutations expression



How to handle the complexity?



How to handle the complexity?

Expression quantitative trait locus Cis- and trans-eQTL bipartite networks

SNPs Gene Expression

4‘

» Using a systems biology network approach to groups SNPs influencing the expression of the same genes



Grouping SNPs using a network property : modularity

Cis- and trans-eQTL bipartite network Community detection

Gene

SNPs Expression @




Grouping SNPs using a network property : modularity

Cis- and trans-eQTL bipartite network Community detection
Gene
SNPs Expression

4‘

o

Bipartite Modularity Maximization
Q= (e —a

N

Fraction of network links in Fraction of links
community i expected by chance

Platig et al. (2016) PLoS Comp Bio
Barber et al. (2007) Phys Rev E Stat Nonlin Soft Matter Phys




How to handle the tissue-specificity?



How to handle the tissue-specificity?

Get tissue-specific
expression data

=1GTEX

e 449 individuals.

* Genotyping data:

* 84.3% European Am.

e 13.7% African Am.
* 1% Asian Am.

* RNA sequencing data:

e 13 tissues.
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Approach summary: building tissue-specific eQTL networks
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eQTL networks have high modularity

Network Modularity Skin network

Whole blood [
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Fagny et al. (2017) PNAS



Communities correspond to biological functions of tissues

Example of communities identified in skin eQTL network

I

» Groups of SNPs regulate groups of genes involved in similar functions.

» Communities can be tissue-specific or shared across tissues
Fagny et al. (2017) PNAS



Mapping cancer-risk SNPs to eQTL networks

Cancer risk
SNPs?

» Where do the cancer-risk SNPs map in these networks?
» In which community are they located?

» What are their properties?



Mapping cancer-risk SNPs to eQTL networks

Nb of cancer-risk SNPs by community

Frequency
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» 2-6 communities enriched in cancer risk SNPs by tissue



Biological function of cancer-risk SNPs-enriched communities

Enriched in multiple cancer risk SNPs (all tissues)
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Cancer-risk SNPs preferentially target oncogenes

Genes targeted by cancer risk SNPs?

Cancer-risk SNP
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What are the properties of cancer-risk SNPs in the eQTL networks?




2 hypotheses: high-degree?

High-degree SNP (global hub)




Or high core-score?
Core-SNP (local hub)

High-degree SNP (global hub)

Core-score for SNP i in community h
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Cancer-risk SNPs are local hubs
Core-SNP =

f
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Exemple of a core, cancer-risk SNP
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» Target genes deregulated in epithelium cancers (extra-cellular matrix secretion).



Take-home message

* Most disease-associated SNPs are located outside of coding regions, and likely impact regulatory functions.

* Expression quantitative trait loci (eQTL) bipartite networks can help functionally annotating them

e Cancer risk SNPs:
* Impact the expression of oncogenes and tumor suppressor genes
e Collectively deregulates groups of genes involved in recognition of damaged cells and immune
response.
* Are more likely to be “core-SNPs” impacting the expression of many genes involved in the same

biological process.



