

Using eQTL networks to functionally characterize regulatory mutations

Maud Fagny

▶ To cite this version:

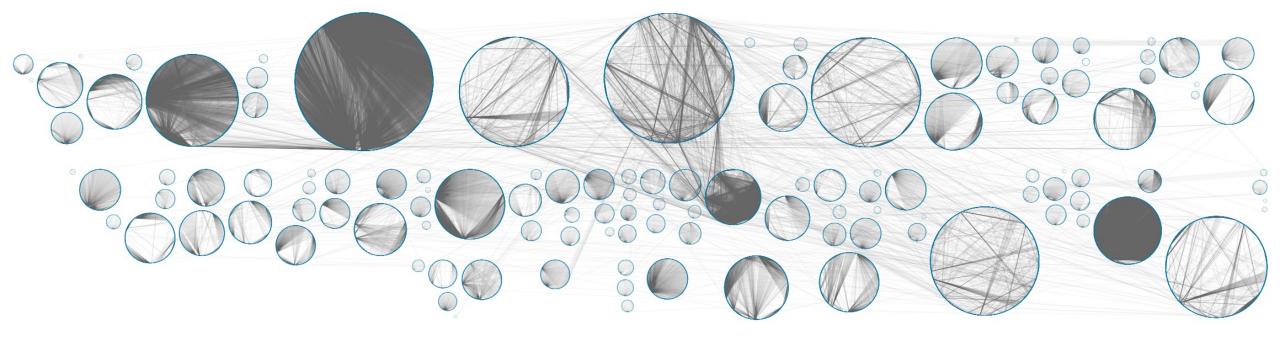
Maud Fagny. Using eQTL networks to functionally characterize regulatory mutations. Doctoral. NCMM PhD Courses in Multi-Omics, NCMM, Oslo, Norway. 2022. hal-04331011

HAL Id: hal-04331011 https://hal.inrae.fr/hal-04331011

Submitted on 8 Dec 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

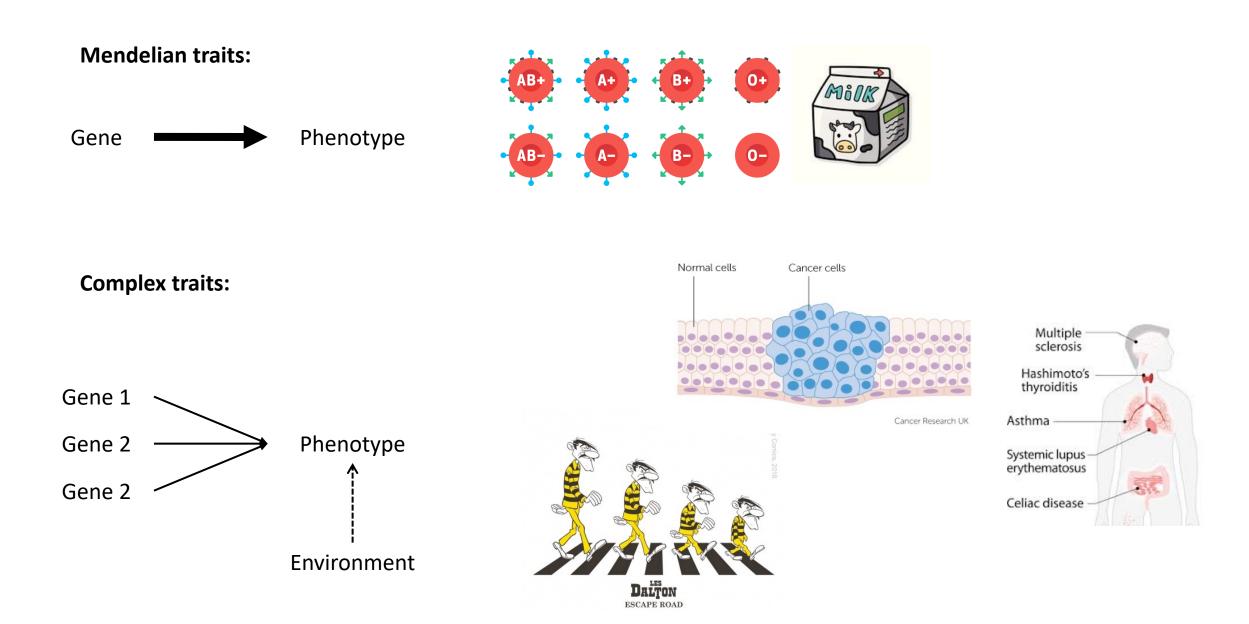
Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License



Using eQTL networks to functionally characterize regulatory mutations

Maud Fagny, PhD INRAE, Gif-sur-Yvette

Mendelian vs. Polygenic traits



Genetic architecture of some often-studied traits

Monogenic	Oligogenic	Polygenic
Mendelian 1 trait = 1 gene	1 trait = 2-10 genes	1 trait = many genes
Risk to develop a cancer	Risk to develop schizophrenia	Risk to develop type II
Adult size	Lactose tolerance	diabetes

Skin/eye/hairs color

Sickle-cell disease

Genetic architecture of some often-studied traits

Monogenic

Oligogenic

Polygenic

Risk to develop schizophrenia

Risk to develop a cancer

Risk to develop type II diabetes

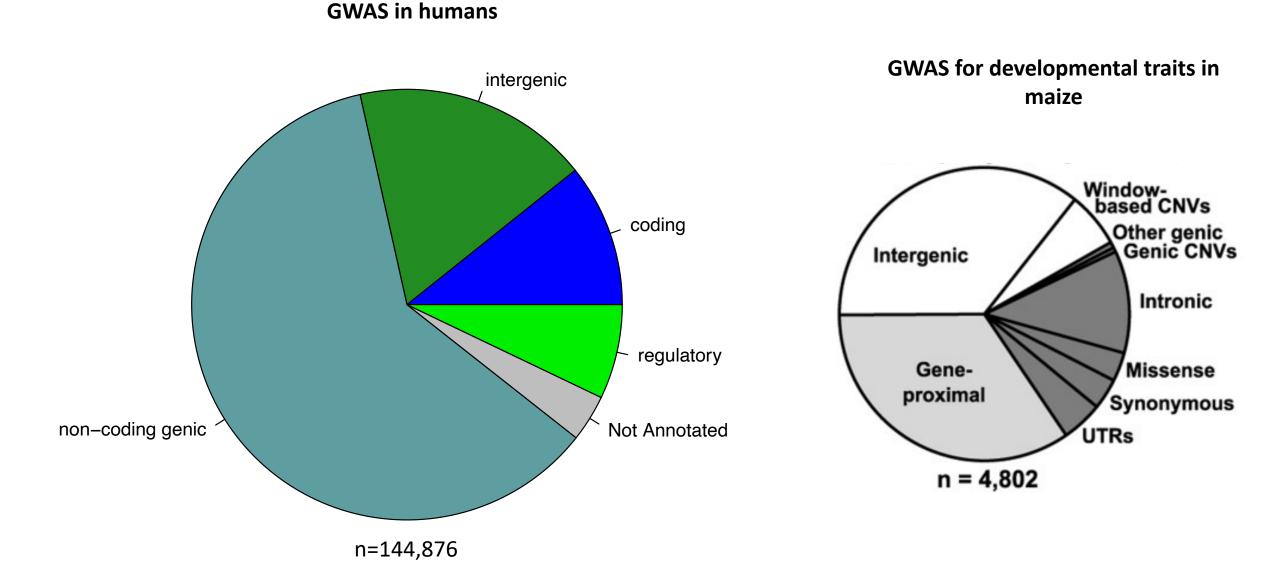
Adult size

Lactose tolerance

Skin/eye/hairs color

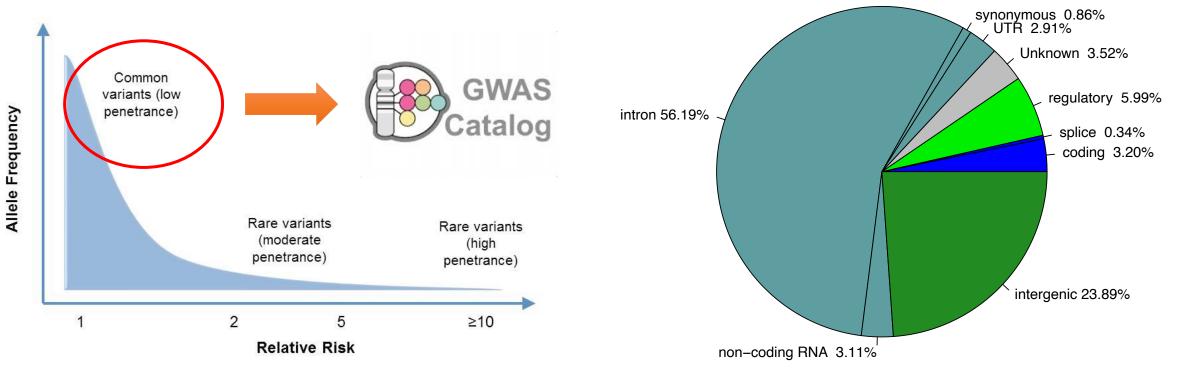
Sickle-cell disease

The importance of gene expression regulation in polygenic phenotypes



A particularly complex trait: the risk to develop cancer(s)

Genetic Architecture of Cancer Risk

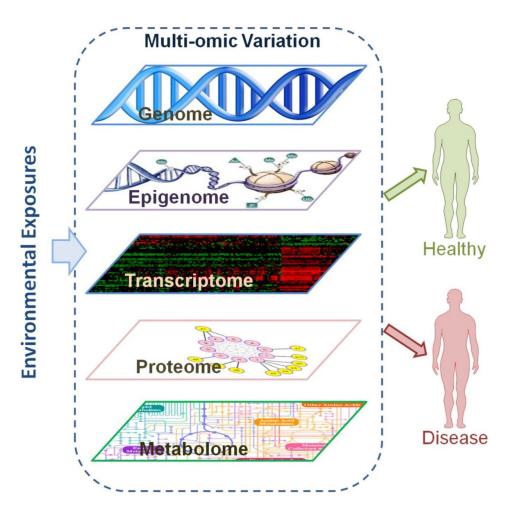


Adapted from Cancer Genetics Overview (PQD®)

- ➤ 4,587 SNPs associated to 265 cancer-related traits
- 87% of cancer-risk SNPs with an odds ratio under 3

How can we functionally annotate regulatory SNPs associated with traits & diseases?

Exploring the genotype-phenotype gap



Cancer-risk SNPs:

Intermediate frequencies

&

Small effect size on phenotype

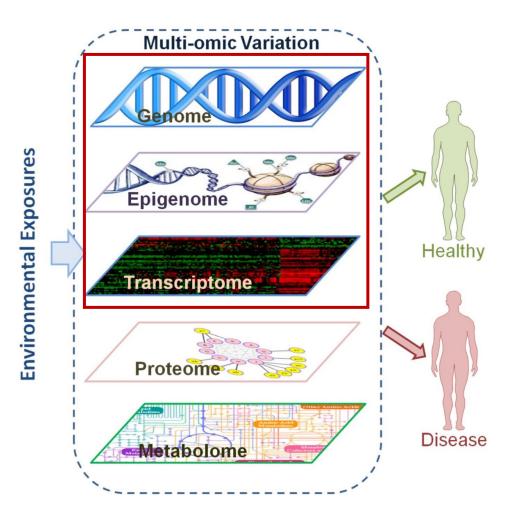
&

Tissue-specific effect

&

Located in regulatory regions

Exploring the genotype-phenotype gap



Cancer-risk SNPs:

Intermediate frequencies

&

Small effect size on phenotype

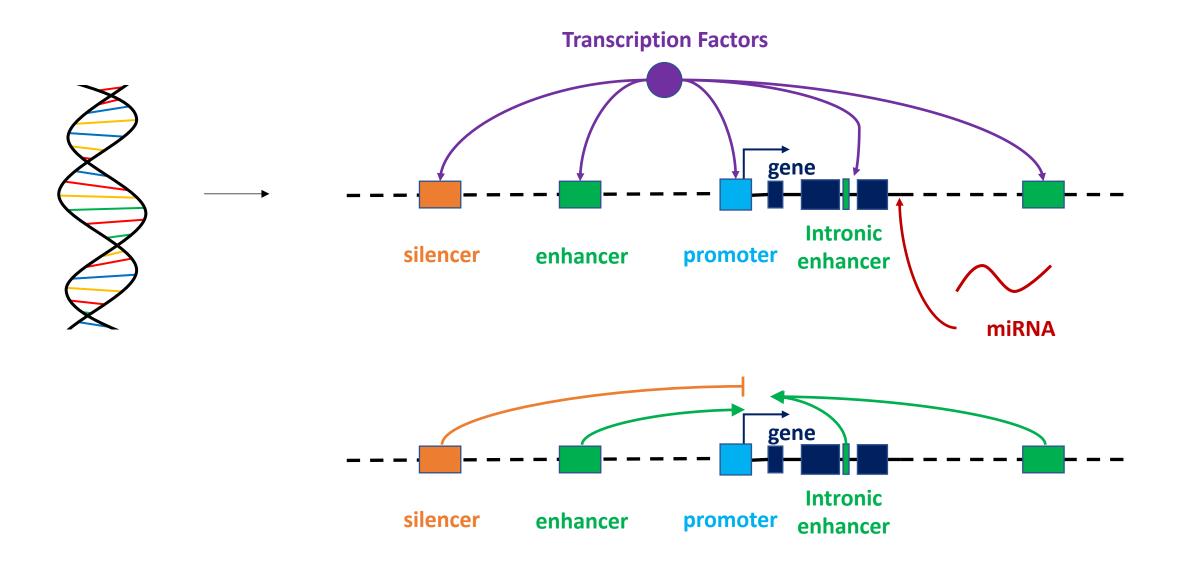
&

Tissue-specific effect

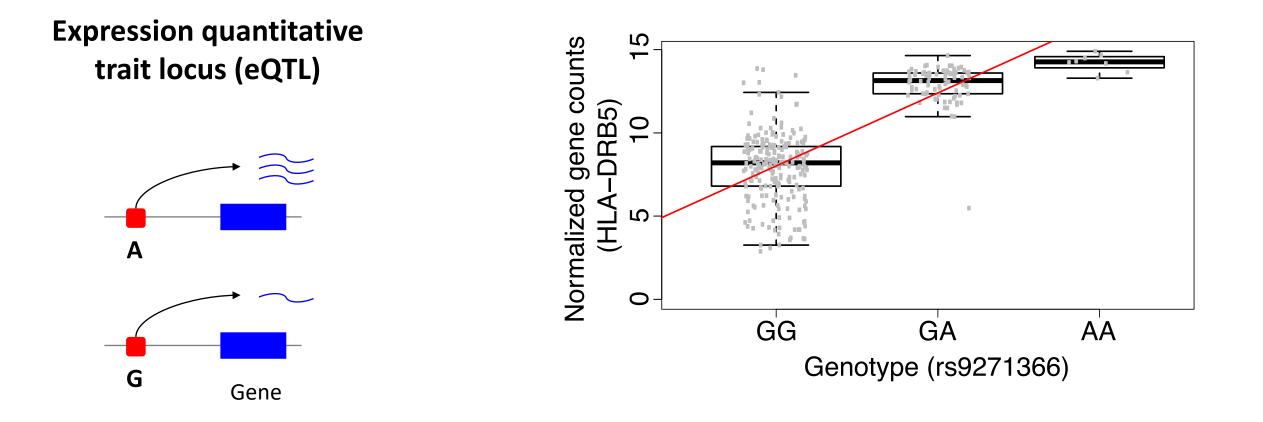
&

Located in regulatory regions

Intergenic and non-coding genic regions regulate gene expression



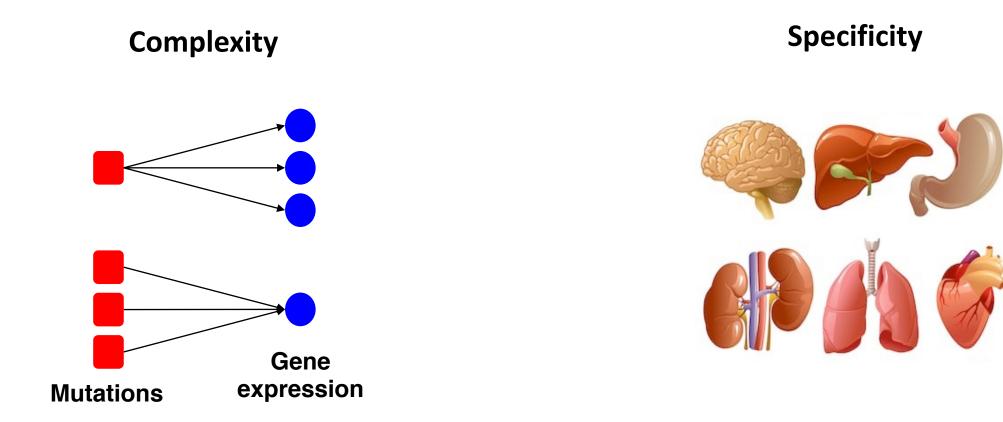
Identifying the gene targeted by regulatory SNPs: eQTLs



- > Expression quantitative traits loci are potential regulatory SNPs
- > SNPs associated to traits or diseases are enriched for eQTLs

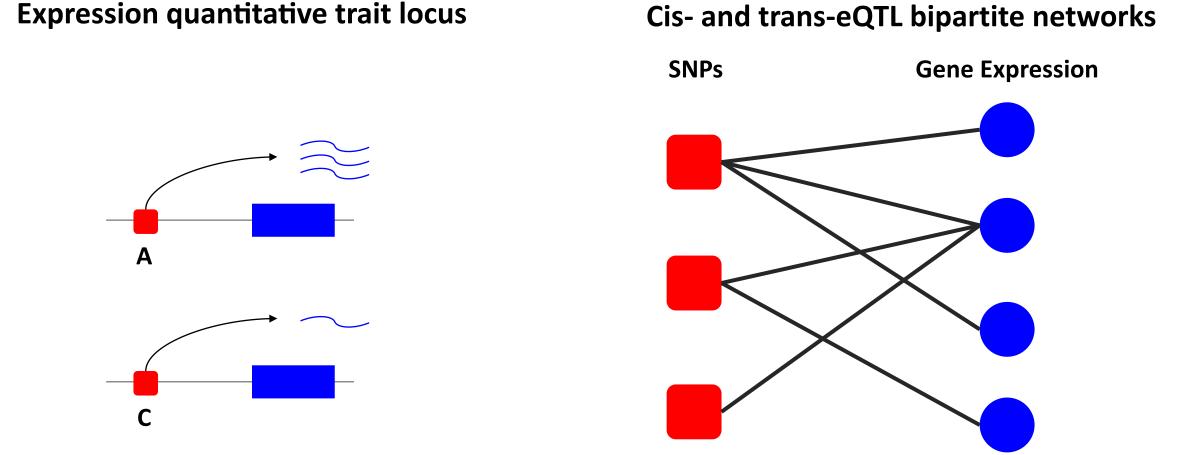
A complex relationship between mutations and gene expression

A complex relationship between mutations and gene expression



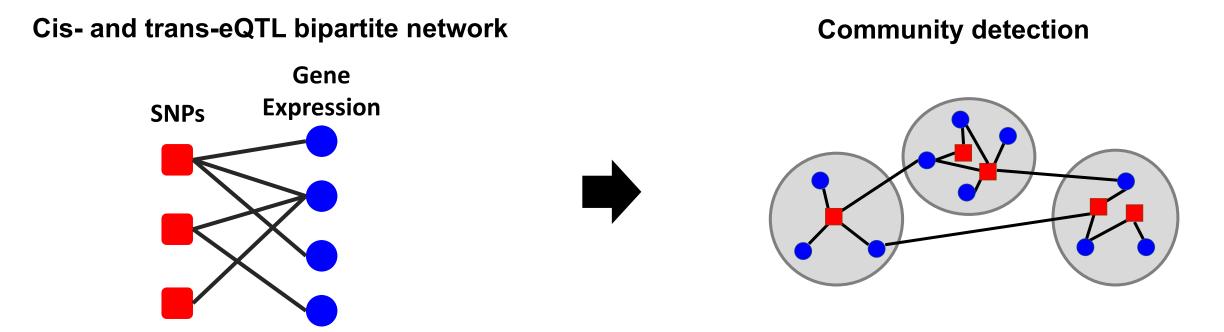
How to handle the complexity?

How to handle the complexity?

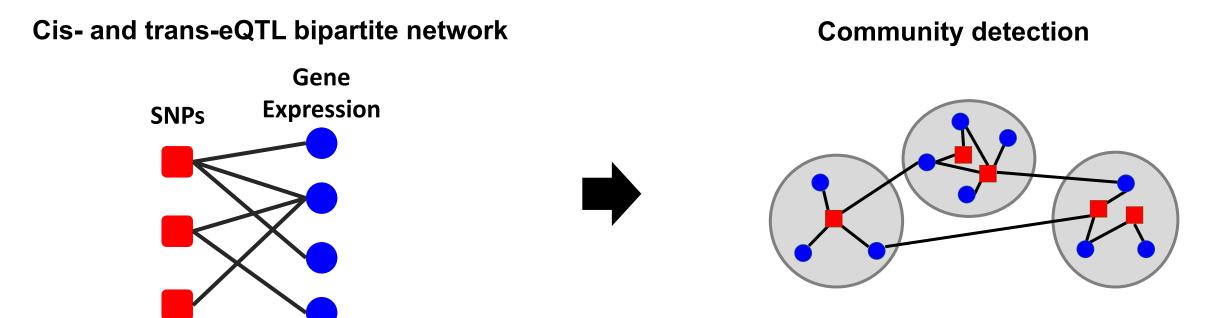


> Using a systems biology network approach to groups SNPs influencing the expression of the same genes

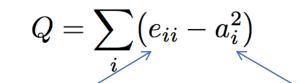
Grouping SNPs using a network property : modularity



Grouping SNPs using a network property : modularity



Bipartite Modularity Maximization



Fraction of network links in community *i*

Fraction of links expected by chance

Platig et *al.* (2016) **PLoS Comp Bio** Barber et *al.* (2007) **Phys Rev E Stat Nonlin Soft Matter Phys**

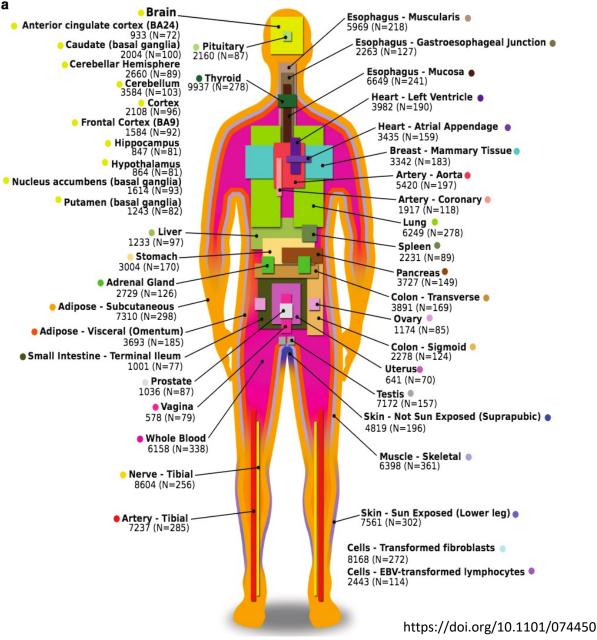
How to handle the tissue-specificity?

How to handle the tissue-specificity?

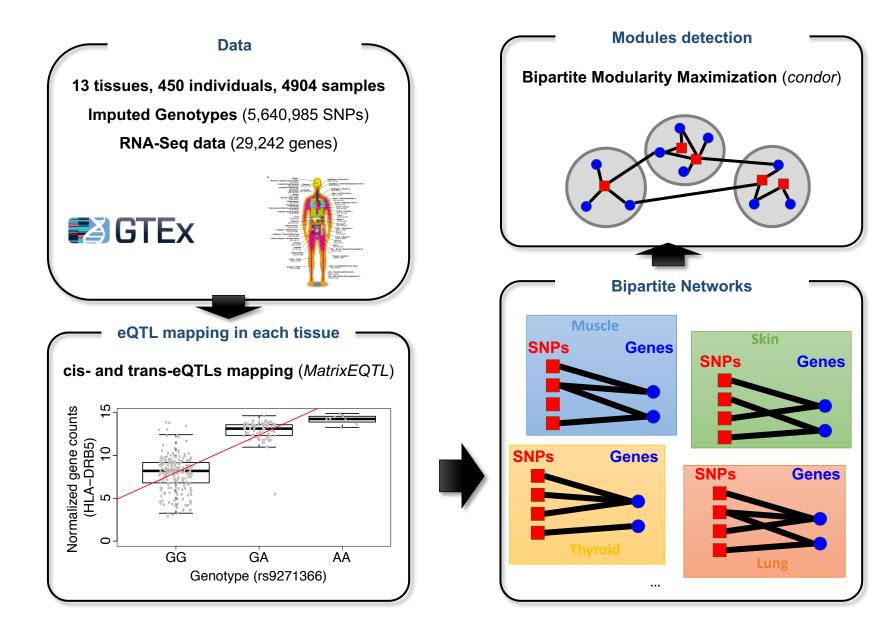
Get tissue-specific

expression data !

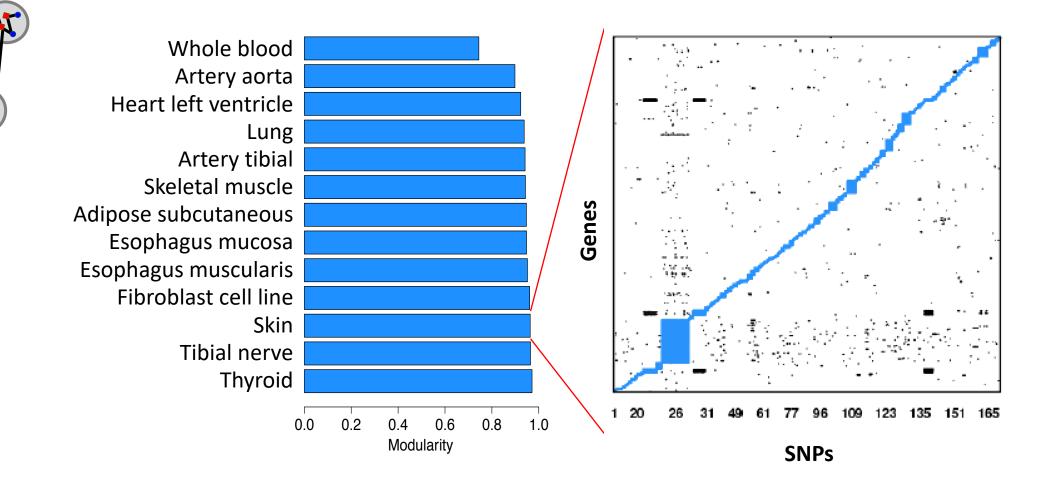
- 449 individuals.
- Genotyping data:
 - 84.3% European Am.
 - 13.7% African Am.
 - 1% Asian Am.
- RNA sequencing data:
 - 13 tissues.



Approach summary: building tissue-specific eQTL networks



eQTL networks have high modularity

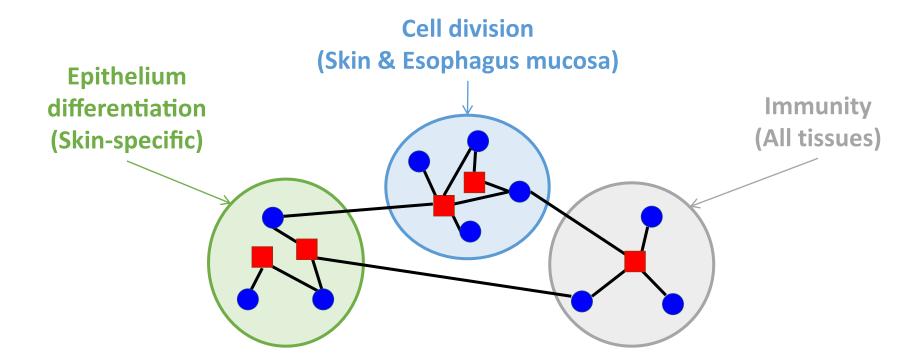


Network Modularity

Skin network

Communities correspond to biological functions of tissues

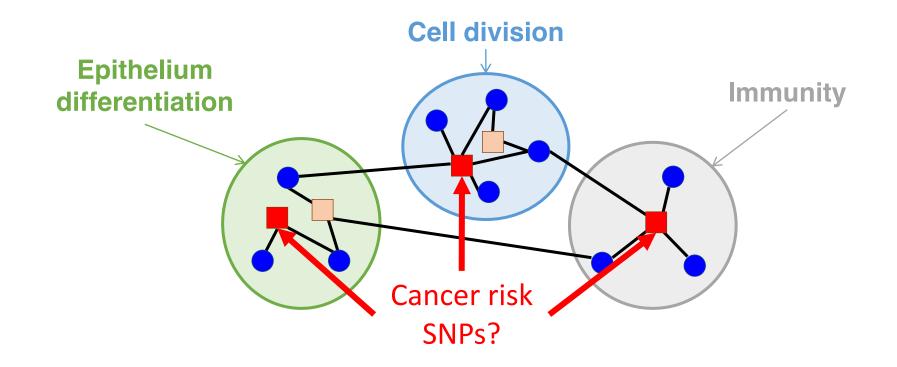
Example of communities identified in skin eQTL network



- > Groups of SNPs regulate groups of genes involved in similar functions.
- > Communities can be tissue-specific or shared across tissues

Fagny et al. (2017) PNAS

Mapping cancer-risk SNPs to eQTL networks

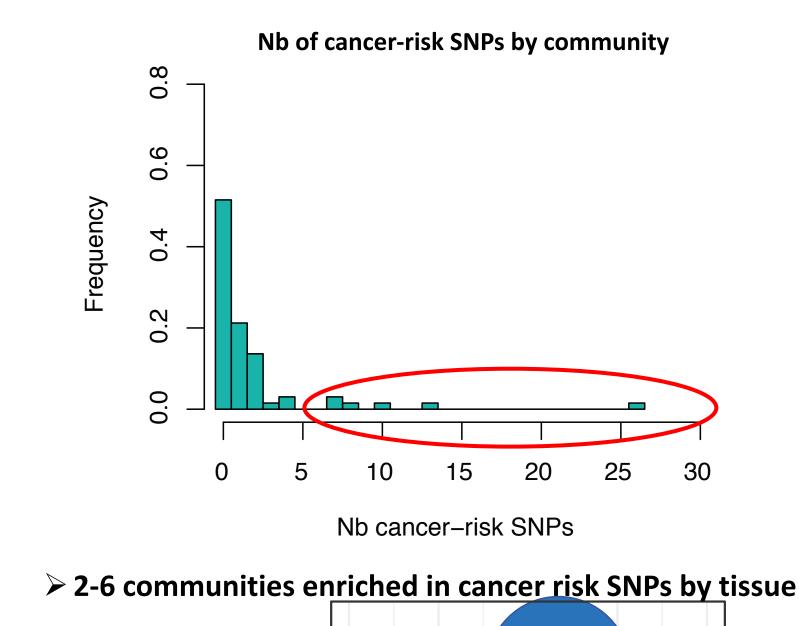


> Where do the cancer-risk SNPs map in these networks?

> In which community are they located?

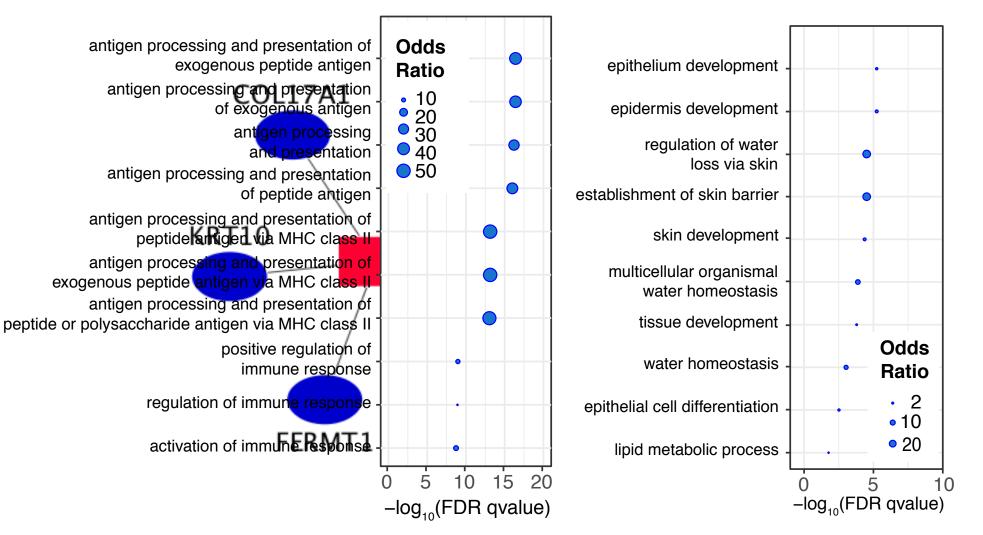
> What are their properties?

Mapping cancer-risk SNPs to eQTL networks



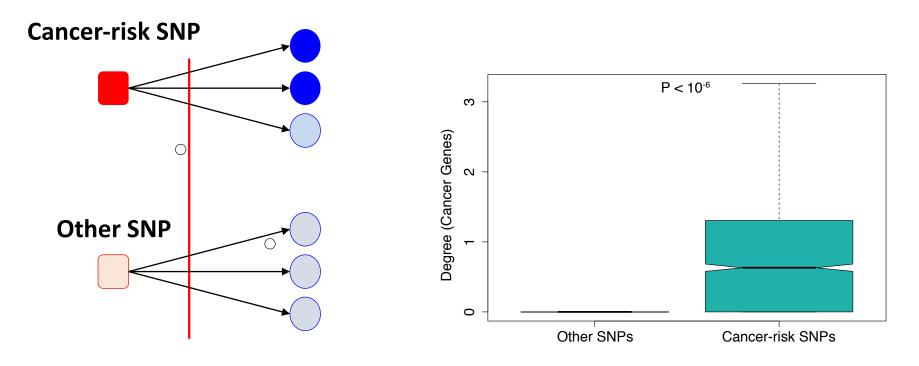
Biological function of cancer-risk SNPs-enriched communities

Enriched in multiple cancer risk SNPs (all tissues) Enriched in breast cancer risk SNPs (skin)

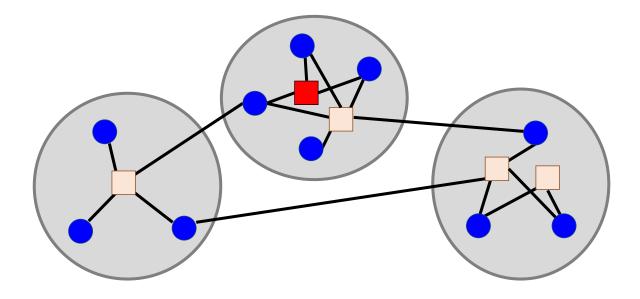


Cancer-risk SNPs preferentially target oncogenes

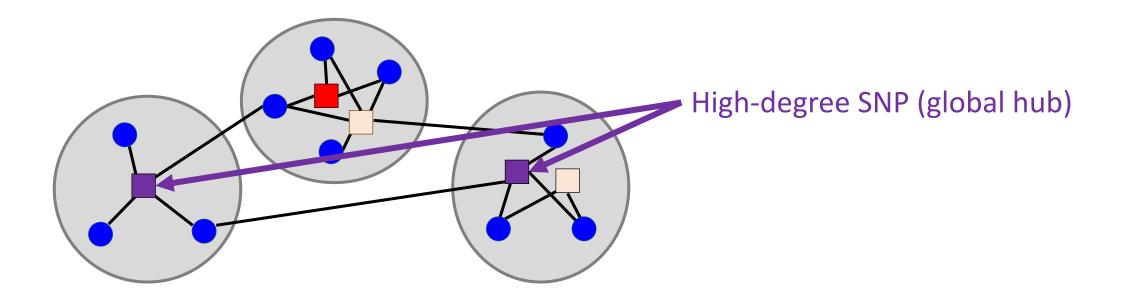
Genes targeted by cancer risk SNPs?

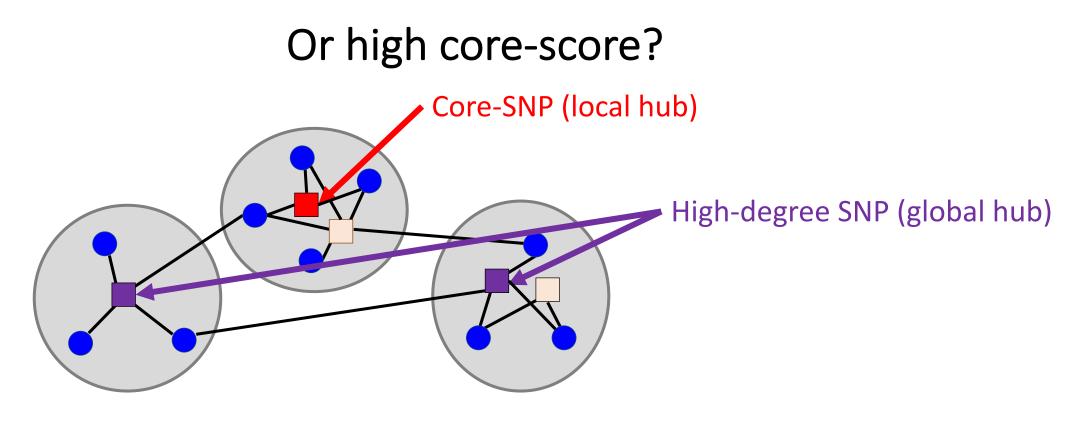


What are the properties of cancer-risk SNPs in the eQTL networks?



2 hypotheses: high-degree?



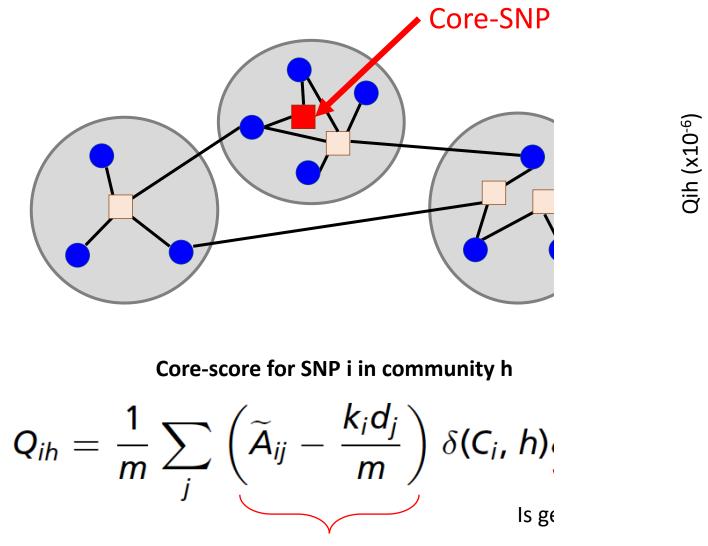


Core-score for SNP i in community h

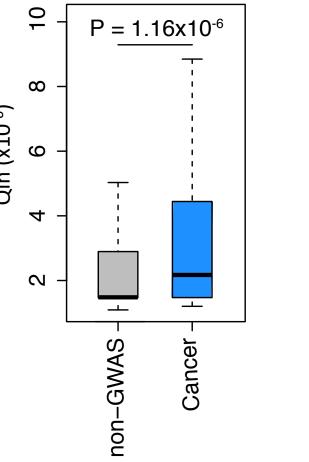
$$Q_{ih} = \frac{1}{m} \sum_{j} \left(\widetilde{A}_{ij} - \frac{k_i d_j}{m} \right) \delta(C_i, h) \delta(C_j, h)$$
Is gene j in community h?

Observed – expected edge between SNP I and gene j

Cancer-risk SNPs are local hubs

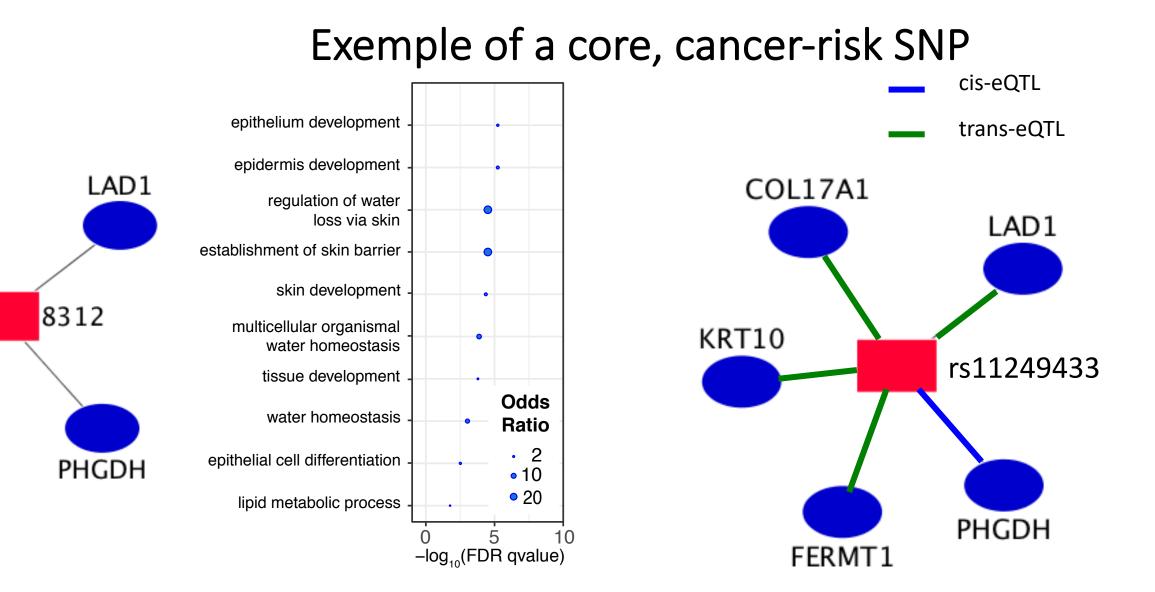


Observed – expected edge between SNP I and gene j



COI

KRT10



rs11249433 is associated to breast cancer

> Target genes deregulated in epithelium cancers (extra-cellular matrix secretion).

Take-home message

- Most disease-associated SNPs are located outside of coding regions, and likely impact regulatory functions.
- Expression quantitative trait loci (eQTL) bipartite networks can help functionally annotating them
- Cancer risk SNPs:
 - Impact the expression of oncogenes and tumor suppressor genes
 - Collectively deregulates groups of genes involved in recognition of damaged cells and immune response.
 - Are more likely to be "core-SNPs" impacting the expression of many genes involved in the same biological process.