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Abstract 30 

Analyzing how climate change has affected forest growth is crucial for predicting future 31 

dynamics and adapting forest management to future climate change. In this paper, we 32 

investigate how climate change has modified stand dominant height dynamics and site 33 

index of 20 European tree species. We used an innovative method based on an annual 34 

height increment equation to model stand dominant height as a function of climate back to 35 

1872 and of other stand environmental conditions. We used these models to simulate stand 36 

dominant height dynamics and site index under two different climates (prior to climate 37 

change and actual recent climate) to analyze the impact of climate change over the past 38 



century. To build our models, we combined the recently published FYRE long-term climate 39 

database, which provides daily data since 1871, with data from more than 17,000 forest 40 

stands of the French National Forest Inventory network. Higher temperature, precipitation 41 

and climatic water balance generally favor stand dominant height dynamics when the 42 

variables are considered separately. However, the positive effects often saturate at the 43 

higher end of the variable distribution. Over the past century, the effect of climate change 44 

on the site index has varied widely among species, ranging from a decrease of less than 3% 45 

to an increase of more than 5%. The effect of climate change has also varied within species, 46 

with more positive effects on initially temperature-limited stands for some species. For the 47 

species and environmental conditions considered, our results highlight a positive response 48 

of site index to past climate change for most species, albeit with between- and within-49 

species differences. Our results also suggest that this positive response could become 50 

negative under continued climate change. These conclusions, as well as the quantitative 51 

relationships we provide between climate and stand dominant height dynamics or site 52 

index, will help design management strategies to adapt forests to climate change.   53 

1. Introduction 54 

In the context of rapid climate change, indicators used in forest management should take 55 

into account the impact of climate change on forest dynamics. This is a prerequisite for 56 

implementing management strategies that promote adaptation to climate change. 57 

Stand productivity, defined as “the potential of a particular forest stand to produce 58 

aboveground wood volume” (Skovsgaard and Vanclay, 2008) is a key indicator for forest 59 



management (Socha et al., 2020). Since it largely depends on climatic and soil factors, it is 60 

important to develop models assessing the impact of climate change on site productivity. In 61 

pure even-aged stands, the average height of the tallest trees, defined as “dominant height”, 62 

is an interesting indicator to analyze stand productivity. In such stands, the increase in 63 

stand dominant height indeed correlates with stand volume growth and is largely 64 

independent of stand density, provided that thinning is not done from above (Skovsgaard 65 

and Vanclay, 2008). A common indicator of stand productivity in pure even-aged forest is 66 

therefore site index, defined as stand dominant height at a given reference age, e.g. at 100 67 

years (Skovsgaard and Vanclay, 2008). 68 

Stand dominant height dynamics and site index depend on environmental conditions 69 

(Vallet and Perot, 2016; Sharma et al., 2015; Scolforo et al., 2020). It is therefore important 70 

to better understand how climate change affect both. Existing studies across a variety of 71 

species and contexts have generally found a positive effect of higher temperature and water 72 

availability on site index (e.g. Messaoud and Chen, 2011; Brandl et al. 2018; González-73 

Rodríguez and Diéguez-Aranda, 2021) and stand dominant height dynamics (e.g. Vallet and 74 

Perot, 2016). However, the sign and magnitude of climate effect vary among species and 75 

environmental conditions (Albert and Schmidt, 2010; Pau et al., 2022) and the positive 76 

effects of temperature or precipitation may saturate when they reach a certain level (e.g. 77 

Brandl et al., 2018). Such climate–growth relationships have been well studied for some 78 

iconic European tree species such as Picea abies (L.) H.Karst or Fagus sylvatica L.. However, 79 

climate–growth relationships are scarcer for other species such as Quercus pubescens Willd., 80 

Fraxinus excelsior L. or Larix decidua Mill., and it would be useful for forest managers to 81 

have information for a larger number of species. 82 



The site index for a given site depends on the year of establishment of the stand, in relation 83 

to changes in climate, atmospheric CO2 concentration, or N deposition (Sharma et al. 2012; 84 

Socha et al., 2021; Messaoud et al., 2022). Bontemps et al. (2012) even found that 85 

environmental changes during stand lifetime influence the stand dominant height 86 

dynamics, suggesting that the site index evolves during stand lifetime. However, to our 87 

knowledge, empirical quantitative relationships on the scale of stand lifetime between on 88 

the one hand stand dominant height dynamicsor site index and on the other hand climate 89 

change are still lacking for many species. Such relationships would be very useful for forest 90 

management to anticipate short-term effects of climate change on stand productivity. 91 

One challenge in establishing these relationships is relating stand dominant height 92 

observations to climate data at the scale of the year (or a few years). One solution would be 93 

to relate annual (or multi-year) climate data to height data at the same temporal resolution. 94 

Such high-frequency height data come mainly from stem analysis (Bontemps and Bouriaud 95 

2014). However, stem analysis often focuses on a low number of species and comes at the 96 

cost of a small number of observations (Bontemps and Bouriaud 2014). This may limit the 97 

ability to identify a relationship between climate and stand dominant height, and this may 98 

limit the range of climate conditions to which the relationship applies. In contrast, national 99 

forest inventories (NFIs) provide large-scale, spatially intensive, randomly sampled data 100 

from forest stands and include a large number of species (Bontemps and Bouriaud, 2014; 101 

Aguirre et al., 2022). They therefore allow the detection of climate impacts under different 102 

resource limitations (Charru et al., 2017). National forest inventories have been used to 103 

infer relationships between climate and site index (Brandl et al., 2018) and between climate 104 

and stand dominant height dynamics (Vallet and Perot, 2016; Stimm et al., 2021). However, 105 



these inventories generally do not include annual series of age and height measurements 106 

from the year of establishment. This makes it difficult to study the effects of climate change 107 

over the lifetime of stands, and generally leads to building stand dominant height models 108 

based only on an aggregate equation linking mean climate to observed stand dominant 109 

height (Vallet and Perot, 2016). 110 

Spatial heterogeneity in climate influences the effects of climate change on stand dominant 111 

height dynamics and site index for a given species or between species. For example, Albert 112 

and Schmidt (2010) showed that Picea abies site index responded more negatively to 113 

climate change in water-limited environments and Fagus sylvatica site index responded 114 

more positively to climate change in temperature-limited environments. Generalizing such 115 

results to a larger number of species could help to design forest adaptation strategies to 116 

climate change. 117 

This paper has three main objectives: first, to develop species-specific models linking 118 

climate to stand dominant height dynamics for a large number of European tree species, 119 

capable of capturing the impact of climate variation during stand life and accounting for 120 

non-linear climate effects; second, to analyze the effect of each climatic variable on site 121 

index; third, to assess the impact of climate change over the past century on stand dominant 122 

height dynamics and site index. 123 

To this end, we developed an original modeling strategy that takes into account the 124 

influence of annual climate on stand dominant height dynamics even without repeated 125 

measurements of stand dominant height. This strategy allowed us use the data from the 126 

French National Forest Inventory (IGN, 2022) and thus to calibrate our models on more 127 



than 17,000 stands covering a wide range of species and climate conditions. This modeling 128 

strategy relies on the reconstruction of an unobserved stand dominant height trajectory 129 

from stand origin based on initial stand dominant height, stand age, and a theory-based 130 

stand dominant height increment equation (Tomé et al., 2006; Bontemps et al., 2009) 131 

incorporating annual climate. This approach relies critically on the long-term FYRE climate 132 

database, which dates back to 1871(Devers et al., 2021). We then used these models to 133 

assess the impact of climate change during the past century by comparing simulated stand 134 

dominant height dynamics (and site index) under two scenarios: with a climate prior to 135 

climate change and with actual climate. 136 

Based on these stand dominant height models taking into account annual climate and the 137 

associated simulations, we examined the following question: 138 

• Question 1: How do individual climatic variables influence stand dominant height 139 

and site index? We tested the following hypotheses: 140 

– Hypothesis 1: Higher temperature, precipitation and climatic water balance 141 

during spring and summer favor site index, but these positive effects may 142 

saturate beyond a certain value, and in the case of temperature may even be 143 

reversed. 144 

• Question 2: What was the effect of climate change on stand dominant height and site 145 

index during the last century? We tested the following hypotheses: 146 

– Hypothesis 2a: Climate change has had a different effect (sign and magnitude) 147 

depending on the species during the period considered; 148 



– Hypothesis 2b: For a given species, the effect of climate change during the 149 

period considered varied depending on the climate context of the stand. 150 

2. Materials and methods 151 

2.1. General approach 152 

For each of 20 European tree species, we built a species-specific model to relate observed 153 

stand dominant height (SDH) to (i) SDH at the stand establishment date, (ii) climate data 154 

series from the stand establishment date, and (iii) other site variables. We then used these 155 

models to simulate the SDH dynamics of each stand for a period of 70 years under a 156 

reference climate representing the climate before climate change (1891-1920 mean 157 

climate) and under the actual climate of the recent period (1950-2020 climate series).  This 158 

allowed us to evaluate the impact of climate change on SDH dynamics during the last 159 

century. We then computed simulated site index as simulated SDH at the age of 70 years. 160 

Therefore, simulated site index depends on stand climate history, which enabled us to study 161 

the impact of climate change on site index. 162 

2.2. Data used for modeling and simulation 163 

2.2.1. National Forest Inventory data and variables 164 

We used data from the French National Forest Inventory (IGN, 2022) from 2006 to 2020. 165 

Each year, 5000 to 6000 temporary forest plots are measured throughout the French 166 

metropolitan territory, through a progressive survey of a grid with a resolution of 1 km. 167 

This ensures uniform coverage of the territory for each measurement year. For each stand, 168 



the NFI data provides canopy cover per tree species and forest vertical structure (even-169 

aged or uneven-aged forest), determined within a 25m-radius circle. Dominant trees are 170 

defined as the six largest-diameter trees in a 15m-radius circle. Age and height are 171 

generally measured for two of these dominant trees, referred to as “measured dominant 172 

trees” in the rest of this section. In some specific configurations (a single living tree, or high-173 

value trees that could not be cored), a single dominant tree is measured. Supplementary 174 

Material A give some details on these data, which are described in detail in IGN (2022) and 175 

in Vallet and Perot (2016). 176 

2.2.2. Stands and species selection 177 

We considered even-aged pure stands. We defined a stand as even-aged if (i) the NFI 178 

labeled it as such, and (ii) in case two dominant trees were measured, the difference in age 179 

between the oldest measured dominant tree and the youngest measured dominant tree is 180 

below 25% of the age of the youngest measured dominant tree. The latter condition 181 

ensured that all dominant trees in the stand share roughly the same history. We considered 182 

a stand to be pure if all of the following conditions were met: (i) a single species represents 183 

more than 75% of the canopy cover, (ii) both measured dominant trees belong to the same 184 

species, and (iii) the species with the highest canopy cover had the highest basal area. We 185 

excluded stands with incomplete data (cf. section 2.2.4 and 2.2.5 for the list of explanatory 186 

variables) and stands whose establishment date was older than the depth of the climate 187 

data, namely 1871 (cf. section 2.2.3. for the calculation of stand establishment date). Finally, 188 

we considered the 20 species with the highest number of observations in the NFI database. 189 

We ended with 17,462 stands. For 15,802 of them, age and height were measured for two 190 



trees, and for the others, age and height were measured for a single tree. Table 1 shows the 191 

list of species studied together with the corresponding number of stands. We show the 192 

geographic repartition of the stands per species in supplementary materials (Fig. A.1). 193 

2.2.3. Calculation of stand age, stand dominant height at observation date and stand 194 
establishment date 195 

Following Assmann and Davis (1970), we defined SDH as the average height of the 100 196 

biggest trees within a hectare. To get SDH over an area of n hundred-square-meters (n < 197 

100), SDH has to be computed as the mean height of the n-1 biggest trees to correct for 198 

sample bias (Vallet and Perot, 2016). According to the French NFI protocol, the two 199 

measured dominant trees are selected within the six biggest trees over a 7 hundred-square-200 

meters surface, so the mean height of these two trees provides an unbiased estimate of SDH 201 

at the observation year (Vallet and Perot, 2016). Therefore, we calculated SDH at the 202 

observation year as the mean height of the two measured dominant trees.  We defined 203 

stand age as the average age of the two measured dominant trees. We defined stand 204 

establishment date as the NFI observation year minus stand age. The NFI protocol defined 205 

tree age as the number of years between the date when the tree height was 1.3 m and the 206 

observation date. Therefore, at the stand establishment date, SDH was always 1.3 m. When 207 

age and height were measured for a single tree, we considered stand age and SDH to be 208 

equal to respectively the age and height of that tree. This still provided us with an unbiased 209 

estimation of stand dominant height. Damaged trees were excluded from our calculation. If 210 

NFI stand surveys were conducted between January and April of year  , the stand had not 211 

yet benefited from the spring and summer growing season of that year, so we considered 212 



the observation year to be    . Table 1 shows the SDH distribution, stand age distribution 213 

and stand establishment date range per species.  214 



  SDH (m) Age (year) Stand establishment 
date 

Species 
Number 

of 
stands 

Mean s.d Mean s.d. Min Max Min Max 

Abies alba Mill., 1768 817 25.5 6.2 72.7 33.6 9 147 1871 2002 
Betula pendula Roth, 

1788 106 16.0 4.5 31.2 16.5 4 83 1932 2009 

Carpinus betulus L., 
1753 97 19.5 4.9 63.4 25.5 11 125 1885 2003 

Castanea sativa Mill., 
1768 440 17.7 4.8 43.9 26.1 5 141 1871 2013 

Fagus sylvatica L., 1753 1,470 23.4 7.2 83.1 35.0 8 147 1871 2006 
Fraxinus excelsior L., 

1753 334 21.6 6.9 50.9 28.2 6 131 1875 2011 

Larix decidua Mill., 1768 151 19.0 6.1 67.5 36.0 7 137 1873 2009 
Picea abies (L.) 
H.Karst., 1881 1,338 22.9 6.6 42.7 22.5 7 145 1871 2011 

Picea sitchensis (Bong.) 
Carrière, 1855 143 22.3 6.9 31.0 10.3 5 63 1944 2013 

Pinus halepensis Mill., 
1768 344 12.5 3.9 50.1 23.6 6 137 1875 2010 

Pinus nigra subsp. nigra 
J.F.Arnold, 1785 413 15.0 5.3 53.2 29.3 6 135 1881 2012 

Pinus nigra var. 
corsicana (Loudon) Hyl., 

1913 
526 16.0 5.9 30.6 20.3 4 146 1871 2015 

Pinus pinaster Aiton, 
1789 2,424 16.8 6.5 30.3 20.8 2 132 1876 2018 

Pinus sylvestris L., 1753 1,551 15.8 5.9 59.3 27.6 5 144 1873 2011 
Pseudotsuga menziesii 

(Mirb.) Franco, 1950 1,449 24.1 8.6 30.6 13.0 4 110 1910 2015 

Quercus petraea (Matt.) 
Liebl., 1784 2,472 22.2 6.1 80.6 33.4 7 149 1871 2010 

Quercus pubescens 
Willd., 1805 1,019 13.9 4.3 67.6 25.0 7 145 1871 2006 

Quercus robur L., 1753 2,105 20.7 5.4 70.3 30.9 8 149 1871 2006 
Quercus rubra L., 1753 114 18.5 6.2 26.4 16.3 4 81 1930 2006 
Robinia pseudoacacia 

L., 1753 149 18.0 5.1 32.3 18.0 5 94 1916 2014 

Table 1: Calibration data. Only stands with complete data and with establishment date from 1871 are considered. 215 

NFI data contain a single SDH measure for each stand. s.d. : standard deviation  216 

2.2.4. Climate data and climate variables 217 

We used temperature and precipitation data from the FYRE database (Devers et al., 2020a; 218 

2020b; 2021) for the period 1871-2012 and the Météo France SAFRAN database (Vidal et 219 



al., 2010) for 2013-2020. This temporal depth was necessary to cover the full stand life 220 

span observed in our data. The Safran data consist in an interpolation merging observations 221 

and background data over 608 climatologically homogeneous zones covering metropolitan 222 

France, then disaggregated onto a 8 km grid taking into account altitude (Devers et al., 223 

2020). FYRE data consist in a reanalysis over the same 8 km grid, assimilating observation 224 

into the SCOPE background (Devers et al., 2020). The FYRE data include 25 climate series, 225 

which represent equally plausible meteorological series (Caillouet et al., 2019). We used the 226 

average of these 25 climate series. For both the FYRE and SAFRAN data, we converted daily 227 

data to monthly data by averaging daily temperature and summing daily precipitation. For 228 

each grid cell, we computed the mean difference between FYRE data and SAFRAN data over 229 

the period 1990-2012, and we added this difference to SAFRAN data over 2013-2020 to 230 

correct for the bias between the two data sources. We used the 1990-2012 period to 231 

compute the bias because it represents a compromise between having enough data and 232 

covering a period close enough to the period over which we want to implement the 233 

correction (namely 2013-2020). We then created a single gridded climate database by 234 

concatenating FYRE data over 1871-2012 and SAFRAN unbiased data over 2013-2020. 235 

To derive the temperature series at each NFI site, we corrected the grid-based climate data 236 

for an elevation gradient following Devers et al. (2020). For each of the 608 homogeneous 237 

climate areas, we defined an altitude gradient by fitting a linear model between the mean 238 

temperature and the mean altitude of each grid cell. In case there was less than three grid 239 

cells in a homogeneous climatic area, we grouped these cells with the cells of the closest 240 

homogeneous climatic area. We used this gradient to correct the climate series for each NFI 241 

site, based on the difference between the NFI site elevation and the corresponding grid cell 242 



elevation. We applied a similar procedure to determine precipitation at each NFI site. 243 

Because elevation correction for precipitation is not relevant in lowland areas, we applied 244 

the correction only when the difference between the NFI site elevation and the 245 

corresponding grid cell elevation was greater than 300m (Devers et al., 2020) 246 

To combine the influence of temperature and precipitation, we calculated a monthly 247 

climatic water balance, defined as the difference between precipitation and potential 248 

evapotranspiration (Lebourgeois and Piedallu, 2005). Potential evapotranspiration was 249 

derived from monthly temperature and radiation using the Turc formula (Lebourgeois and 250 

Piedallu, 2005). Monthly radiation without nebulosity was obtained following Piedallu and 251 

Gégout (2007). Since this radiation varies little between years, we assumed that the 252 

monthly radiation was equal to the monthly values for the year 2000. To account for light 253 

interception by clouds, we corrected the radiation value with the average monthly 254 

nebulosity between 1960 and 2019, following Piedallu and Gégout (2007). The nebulosity 255 

data were taken from Harris et al. (2020). 256 

We defined climate year   as the period from September of year     to August of year  . 257 

We did this because growth during the growing season of year   can be influenced by 258 

precipitation during the previous fall and winter (Bravo-Oviedo et al., 2008). This definition 259 

led us to limit our analysis to the climate years 1872-2020, since the FYRE database starts 260 

in January 1871. 261 

For each stand and each climate year  , we calculated mean temperature, total precipitation, 262 

and total climatic water balance for fall (September to November of year    ), winter 263 

(December of year     to February of year  ), spring (March to May of year  ) and summer 264 



(June to August of year  ) as well as for two semesters (September of year     to February 265 

of year   and March of year   to August of year  ) and for the entire climate year. We 266 

calculated the annual sum of growing degree days (SGDD), defined as the sum of 267 

temperature above 5.5°C over all days from January to December (Kunstler et al., 2021). In 268 

this calculation, we approximated daily temperature based on the mean temperature of the 269 

corresponding month. In total, we retained 22 climatic variables. 270 

We defined a reference climate to represent the climate prior to climate change. For each 271 

climatic variable, we defined the reference climate as the mean of the variable over the 272 

period 1891-1920. Figure 1 shows the distribution of annual climatic variables per species 273 

for the reference climate and climate anomalies over the recent period (1950-2020) 274 

compared to the reference climate. 275 

To calibrate our models, we standardized each of the 22 climatic variables per species by 276 

subtracting the mean and dividing by the standard deviation. For each species, we 277 

calculated the mean and standard deviation based on the distribution of each variable 278 

across all stands of that species for the period 1872-2020. 279 



 280 

Figure 1: Reference climate per species (first row) and climate anomalies in the recent period 281 

(1950-2020) compared to the average of the reference period (1891-1920) (second row), for 282 

mean temperature (left), total precipitation (middle) and total climatic water balance (right). 283 

A higher climatic water balance corresponds to a wetter climate. In the second row, the result 284 

for a given year is obtained by averaging all stands, regardless of species. 285 



2.2.5. Non-climate environmental data s 286 

The French NFI provides field data for soil texture, soil depth, rock presence, rock 287 

emergence, slope and herbaceous species presence. We used NFI data on herbaceous 288 

species presence to calculate bioindicated values for C:N ratio, P2O5 and soil pH (Gégout et 289 

al., 2005). We calculated a soil water holding capacity following Piedallu et al. (2018) based 290 

on NFI data on soil texture, soil depth, and rock presence and emergence. This calculation 291 

was not possible for soils labeled as “organic soil” in NFI data, so we excluded such stands 292 

from the analysis (21 stands). Finally, NFI data do not provide field measurement of slope 293 

for stands located on complex topography. Therefore, we excluded such stands from the 294 

analysis (288 stands). Supplementary Material C provides details and summary statistics 295 

for the 14 non-climatic variables (Tab. C.1 to C.4). To calibrate our models, we standardized 296 

each of the non-climate environmental variables per species by subtracting the mean and 297 

dividing by the standard deviation. For each species, we calculated the mean and standard 298 

deviation based on the distribution of each variable across all stands of that species. 299 



2.3. Modeling stand dominant height and site index as a function of 300 

annual climatic variables 301 

2.3.1. Model equations 302 

 303 

Figure 2: Modeling strategy to model stand dominant height (SDH) dynamics of a given stand. 304 

Variables available in the NFI database or climate database are shown in bold: observed SDH 305 

(      ), stand observation year (    ), stand age (age) and annual environmental 306 

conditions (  ).      is the modeled SDH at the time of observation and   is the modeling 307 

error. From the stand establishment date (        ), we reconstructed the unobserved 308 

annual trajectory of SDH (      year by year using a theory-based function (f) that relates 309 



the unobserved SDH increment between year t and t+1 to observed contemporary 310 

environmental conditions. 311 

The French NFI data do not include observations for annual SDH or SDH annual increment, 312 

so it was not possible to model directly SDH increments as a function of annual climate. We 313 

therefore used an indirect strategy (cf. Figure 2): for each species, we modeled SDH 314 

observations (one per stand) as a function of the series of annual climatic stand conditions 315 

from stand establishment date and of non-climatic stand conditions. Our model relies on 316 

the fact that (i) SDH at a given age is the sum of annual SDH increments over the period 317 

between stand establishment date and the age considered and (ii) annual SDH increments 318 

can be described by a theoretical function of non-climatic conditions, climatic conditions 319 

and SDH at the beginning of the period (Bontemps et al., 2009; Zeide, 1993). 320 

Equation 1 describes for a given stand the relationship between observed stand dominant 321 

       and the series of SDH increment (      . In this equation, 1.3 meters is the stand 322 

dominant height at the stand establishment date (cf. section 2.2.3),       is the observation 323 

year,     is the age, and   is a heteroscedastic Gaussian residual error. To take into 324 

account increasing error with SDH, we assumed                 where      is the 325 

fitted value of SDH at the observation year for the stand under consideration,   is a positive 326 

parameter independent of the stand and   is a scalar parameter independent of the stand. 327 

             
      

          
       (Equation 1) 328 

Equation 2 describes for a given stand how we replaced unobserved annual SDH increment 329 

(       by a theoretical function of environmental variables and SDH at the beginning of 330 



the period. Zeide (1993) suggests writing SDH increment as the sum of an expansion term 331 

     and a decline term      , to reflect catabolic and anabolic processes, respectively. 332 

Among the equations presented by Zeide (1993), we chose the Chapman-Richards equation 333 

because it reflects physiological processes, assuming that catabolic processes depend on 334 

size, modified by a species-specific shape term   , and that anabolic processes are size-335 

dependent (Tomé et al., 2006). To ensure the biological soundness of our models, we 336 

imposed         to ensure that SDH does not decrease over time, for a given stand. In 337 

Equation 2,   
    and   

     are the sets of explanatory variables at year   used to predict the 338 

expansion and the decline terms, respectively. 339 

                   
         

           
                Equation 2) 340 

We assumed that the expansion term was a species-specific function of the climate of the 341 

year in which the increment occurred and of other environmental variables. We assumed 342 

that the decline term was a species-specific function that depended only on temperature 343 

variables. We made this choice because the decline term reflects respiration, and 344 

respiration is primarily temperature dependent (Valentine, 1997). Finally, we assumed the 345 

shape term    to be a species-specific constant. We made      and       non-divergent 346 

following Antón-Fernández et al. (2016): we expressed both      and       as a species-347 

specific intercept (   and   , respectively), multiplied by a logistic function of the 348 

explanatory variables (cf.  Equation 3 and Equation 4).   and   are species-specific 349 

parameter vectors associated with the explanatory variables. We expect    and    to be 350 

positive, but we did not constraint the model to ease convergence. A posterior, we checked 351 

that the parameter value was positive or that the parameter value was not significantly 352 



different from 0, using a p-value of 0.05 to define significance. In case there are no 353 

explanatory variable for the expansion term (resp. the decline term), the logistic function in 354 

equations 3 and 4 is replaced by a factor 0.5. This allows interpreting 
  

 
 (resp. 

  

 
) as the 355 

value of the expansion term (resp. decline term) for a stand at the species mean 356 

environmental conditions.  357 

       
        

        
   

 

          
   

 
     Equation 3) 358 

           
         

        
     

          
     

     Equation 4) 359 

Equation 5 gives the final model for a given species and a given stand. 360 

                     
        

   
 

          
   

 
    

      
        

     

          
     

     
      

          
      (Equation 5) 361 

2.3.2. Parameter inference and model selection 362 

For each species, we calibrated the model presented in Equation 5 using the data presented 363 

in section 2.2. For a given set of explanatory variables, we used the nlminb function in the 364 

“stats” R-package version 4.2.0 (R Core Team, 2022) and the TMB R-package version 1.9.0 365 

(Kristensen et al. 2016) to minimize the model negative log-likelihood (nll, given by 366 

Equation 6) with respect to the species-specific parameters             . In Equation 6, n 367 

is the number of stands for the species considered, i is a stand index and     
   is the 368 

prediction for stand i of the model given in Equation 5. The nlminb function allows 369 

optimizing expressions without simple analytical form, and the TMB package makes the 370 

computation faster. 371 



     
 

 
                   

 
   

    
 

 
   

    
         

     
 
   

   

 

 (Equation 6) 372 

For each species, we followed a stepwise variable selection process (Vallet and Perot, 2016; 373 

Mina et al., 2018). In this process, we considered the standardized 22 climatic variables and 374 

14 non-climatic variables. We also considered the square of each climatic variable and the 375 

square of pH, C:N ratio and P2O5 indicator to identify potential saturation or non-monotonic 376 

effects. At each step, (i) for each variable non-included in the model yet, we tested the 377 

inclusion of the variable in the expansion term, (ii) for temperature variables, we also 378 

tested the inclusion in the decline term and (iii) we selected the model that most decreased 379 

the Bayesian information criterion (BIC). The BIC penalizes the inclusion of an additional 380 

variable in the model more than AIC, which limits the risk of overfitting. We repeated this 381 

process until the BIC reached its minimum. To avoid collinearity, we used a variance 382 

inflation factor (VIF) (O’Brien, 2007). We excluded all models with variables with a VIF 383 

greater than 2 from the model selection process. To avoid issues in parameter identification 384 

due to the appearance of the same variable in both the expansion and decline terms, we 385 

allowed a given temperature variable to appear either in the expansion or decline terms, 386 

but not both. For Castanea sativa, Picea sitchensis, Quercus rubra and Betula pendula, we 387 

excluded the qualitative variable reflecting the calcareous nature of the bedrock, because 388 

more than 90% of the stands were on the same type of bedrock. 389 

2.3.3. Assessment of model quality 390 

To assess the risk of overfitting for each species-specific model, we calculated the difference 391 

between model prediction error using data not used for calibration and model prediction 392 

error using calibration data.  We refer to this difference in prediction error as “model 393 



optimism”. To do this, we implemented a fivefold cross-validation. First, we randomly 394 

divided our sample into five equally sized subsamples. Then we repeated the following 395 

procedure for each subsample: (i) we considered this subsample as a validation subsample 396 

and the remaining four subsamples as a single calibration subsample,  (ii) we calibrated the 397 

model presented in equation 5 on this calibration subsample and (iii) we calculated the root 398 

mean square error (RMSE) over this calibration subsample and the RMSE over the 399 

validation subsample and (iv) we defined an intermediate optimism indicator as the 400 

relative difference between the RMSE calculated on the validation subsample and the RMSE 401 

calculated on the calibration subsample. If the difference was negative, we considered it to 402 

zero. We defined the final optimism indicator as the average of the five intermediate 403 

optimism indicators. The higher the optimism indicator, the higher the prediction error 404 

when the model was applied to new data compared to the error when it was applied to 405 

calibration data. Details can be found in Supplementary Material D. We also calculated the 406 

RMSE, root mean square percentage error (RMSPE) and bias of each species-specific model 407 

when calibration was done on the whole sample (cf. Supplementary Material D for 408 

calculation details). 409 

2.4. Simulations to analyze the partial effect of climatic variables and 410 

the effect of climate change on stand dominant height and site index  411 

To analyze the impact of each climatic variable and climate change on SDH and site index, 412 

we ran simulations based on the models we calibrated. To allow for interspecific 413 

comparisons, we stopped the simulation at age 70 years, which corresponds to the lowest 414 



observed maximum age amongst our species (see Tab.  1). We therefore defined the site 415 

index as SDH at age 70 years. 416 

For each species, we analyzed the partial effect of each variable, defined as the effect of a 417 

variation in that variable on site index, holding all other variables constant. To do this, we 418 

simulated the site index using the model developed in 2.3, while varying the variable from 419 

the 0.05 to the 0.95 percentile of its species-specific range. We defined this species-specific 420 

range as the distribution of annual values of the variable from 1872 to 2020 over all stands 421 

of the species. For these simulations, we set all other variables to their mean values. 422 

We then analyzed the impact of climate change over the last century, taking into account 423 

the simultaneous evolution of the different climatic variables. For each species, we 424 

simulated the SDH dynamics of each observed stand under the pre-climate change 425 

reference climate (1891-1920 mean) and under the actual climate of the recent period 426 

(1950 to 2020 climate series). We analyzed the impact of climate change on both (i) the 427 

shape of the SDH trajectory and (ii) the percentage variation of the site index between the 428 

recent and the reference climates. 429 

3. Results 430 

3.1. Importance of climatic variables 431 

Some climatic variables were selected in our models for all species except Pinus nigra subsp. 432 

nigra and Picea sitchensis. Species differed in the type of variable selected (temperature, 433 

precipitation, climatic water balance, SGDD) and the season of the year for which the 434 

variable was selected. Non-climate environmental characteristics such as C:N ratio, soil pH, 435 



slope were often selected in the models. Detailed parameters are given in Supplementary 436 

Material G (Table G. 1).  437 

3.2. Performance of the models 438 

Depending on the species, the RMSE varied between 2.4 m and 3.8 m and the RMSPE varied 439 

between 14.3% and 29.9% over the stands used for calibration, while bias was null for all 440 

species (cf. Supplementary Material, table D.1). Model optimism decreased with increasing 441 

number of calibration points and was below 10% for all species with more than 200 442 

calibration stands (cf. Supplementary Material Fig. D.1). 443 

3.3. Partial effect of climatic variables on site index 444 

Higher temperature, precipitation, and climatic water balance during spring and summer 445 

generally favored the site index, defined as SDH at 70 years (Figure 3). For a large number 446 

of species and variables, site index reached a maximum value and then saturated at the 447 

upper end of the variable range. The decrease in site index at the upper end of the variable 448 

distribution for some species and variables is quite weak. We also found a positive 449 

saturation effect of fall and winter temperature for three species. We found more 450 

contrasting results for fall and winter precipitation and climatic water balance, with a 451 

positive saturating effect for some species, optimal values for other species, and a negative 452 

effect for other species. The magnitude of the partial effect depended on the species and the 453 

variable. Spring and summer temperature and precipitation generally had the most positive 454 

effects. Our results show an outlier behavior for Castanea sativa: for this species, summer 455 

temperature had a negative effect on the site index.456 



 457 

  458 

Figure 3: Partial effect of climatic variables on site index. Each graph represents site index (y-axis) as a function of climate (x-axis). 459 

Each color represents a species. Each column corresponds to a specific season, each line corresponds to variable. First line: 460 

temperature (mean temperature of the period for the six first columns, and annual sum of growing degree days for the seventh 461 



column), second line: precipitations, third line: climatic water balance. In each graph, only the species for which a climate effect 462 

was found are represented. See the Material and Methods section for an explanation of how partial effect was calculated. 463 



3.4. Effect of climate change on stand dominant height over the past 464 

century 465 

3.4.1. Effect of climate change on stand dominant height dynamics 466 

We simulated SDH dynamics for each species under both the actual 1950-2020 climate and 467 
the reference 1891-1920 average climate. To illustrate, 468 

 469 

Figure 4 compares the SDH dynamics for Abies alba. After 40 years of almost no effect, the 470 

effect of climate change became positive. This positive effect was more pronounced at the 471 

lowest levels of productivity, where productivity is defined as the site index under the 472 

reference climate. We found a similar pattern for Fagus sylvatica and Picea abies 473 

(Supplementary Material Fig. E.1), but other species showed contrasting responses. 474 

  475 



 476 

Figure 4: Simulated SDH dynamics for actual recent climate (solid line, climate series 1950 to 477 

2020) and reference climate (ribbon, average climate 1891-1920) for Abies alba stands. 478 

Stands were grouped into three categories according to their productivity, defined as site 479 

index under the reference climate: productivity quantiles 0.05 to 0.15 (green), 0.45 to 0.55 480 

(blue) and 0.85 to 0.95 (red). 481 

3.4.2. Interspecific responses to climate change 482 

The median impact of climate change on the site index was positive for 15 species, negative 483 

for three species, and null for two species (Figure 5). The positive impacts were generally 484 

stronger than the negative impacts: the median impact was above 3% for four species, 485 

while only Castanea sativa had a negative impact below 3%. We did not find a general 486 

interspecific pattern linking the mean climate impact to the species’ climate niche prior to 487 

climate change (cf. Supplementary Material F, Fig. F.1 and Fig F.2). 488 



 489 

Figure 5: Climate change effect on site index. Boxplots show the distribution of climate 490 

change effect over NFI stands for each species. Climate change effect was calculated as the 491 

relative difference between the simulated site index under the actual recent climate (1950-492 

2020 climate series) and the reference climate (1891-1920 average). For each species, the 493 

number of calibration stands is given above the box. Outliers are not shown. Intraspecific 494 

response to climate change 495 

We found intraspecific variation in the effects of climate change on the site index (Figure 5). 496 

For six species, the median impact was positive, but the first quartile impact was negative. 497 

For nine species, the effect of climate change on the site index was positive at the cold edge 498 

of the species’ temperature range and negative or close to zero at the warm edge (Figure 6). 499 

  500 



 501 

 502 

Figure 6: Climate change effect on site index as a function of mean annual temperature over 503 

the reference period (1891-1920). Boxplots show the distribution of climate change effect on 504 

site index across the NFI stands for each species. The effect of climate change was calculated 505 

as the relative difference between the simulated site index under the actual climate (1950-506 

2020 climate series) and the reference climate (1891-1920 average). The x-axis represents the 507 

average climate of the stand over the reference period (1891-1920). For Betula pendula, 508 

Fagus sylvatica and Pinus halepensis, some whiskers extend beyond the box; their values are 509 



given at the extremities of the corresponding boxplots. Outliers are not shown. Boxplots in 510 

white are based on fewer than 10 stands. 511 

4. Discussion 512 

In this paper, we analyzed the impact of past climate change on SDH dynamics and site 513 

index for 20 common European tree species and we analyzed interspecific and intraspecific 514 

differences in SDH and site index response to climate change. In the discussion, we first 515 

point out the interest of our modeling approach; we will emphasize some limitations of this 516 

approach; then we comment on the partial effect of climatic variable on site index; then we 517 

discuss the impact of climate change during the last century on SDH dynamics and site 518 

index, and finally we elaborate on implications for management. 519 

4.1. Interest of the approach 520 

To our knowledge, this is the first time annual SDH trajectories have been empirically 521 

modeled for 20 species, taking into account annual climate over the past century. We 522 

achieved this by combining French NFI data and FYRE long-term climate data, and by using 523 

a theory-based annual SDH increment equation. The FYRE data allowed us to model SDH 524 

dynamics for stands as old as 150 years while accounting for annual climate. The French 525 

NFI data include a large number of stands per species and cover a large climatic gradient, 526 

which allowed us to identify climate effects. Different stand age classes at the time of stand 527 

observation allowed us to partially decorrelate age with date. The French NFI data provided 528 

us with field measurements of non-climatic variables to use as covariates, limiting potential 529 

bias due to overrepresentation of older stands on infertile sites (Socha et al., 2021). The 530 



theory-based SDH increment equation we used ensured that our approach was biologically 531 

consistent (Tomé et al., 2006). 532 

Our approach has operational advantages over stem analysis. Stem analysis requires 533 

intensive field sampling for each stand, and is generally conducted in the context of a 534 

specific study. The number of stands used in stem analysis studies can therefore be quite 535 

limited (Bontemps and Bouriaud, 2014) although some studies are based on a large number 536 

of stands (Socha et al., 2021; Pau et al., 2022). In contrast, the French NFI data are 537 

representative of the species’ distribution in the study area. They cover a large climatic 538 

gradient and include numerous stands of common species. Our approach allowed us to 539 

derive SDH-dynamics models for rarely studied species such as Larix decidua, Quercus 540 

pubescens and Fraxinus excelsior. The main advantage of stem analysis over our approach is 541 

that it provides a temporal series of SDH measurements, whereas our approach relies on a 542 

single SDH measurement. Stem analysis also provides more accurate height measurements 543 

compared to NFI data. In the future, it would be interesting to compare our simulated SDH 544 

dynamics with observed SDH dynamics and with SDH dynamics simulated by a model 545 

based on stem analysis. 546 

The RMSE we found are in the same order of magnitude as in other studies based on NFI 547 

data (Seynave et al., 2008; Sharma et al., 2012) but higher than in studies based on stem 548 

analysis (Socha et al., 2021). The optimism of our models is generally low, indicating good 549 

robustness, especially for species with a large number of calibration stands. Parameter 550 

values for species with high model optimism should be used with caution. 551 



4.2. Limits of the approach 552 

The NFI data do not provide information on stand history. This forced us to make several 553 

assumptions. First, we assumed that the dominant trees at observation time had been 554 

dominant throughout stand development. This is a common assumption in SDH studies. 555 

Second, we assumed that SDH dynamics were independent of competition history. This is 556 

justified for a wide range of densities (Skovsgaard and Vanclay, 2008). The inclusion of a 557 

competition variable could still be interesting (Vallet and Perot, 2016). Third, we did not 558 

include interactions in our models because this could have led to overparameterized 559 

models. Fourth, we did not include nitrogen deposition in our model because due to a lack 560 

of historical data. This variable has been identified as an important driver of SDH in the late 561 

20th century (Bontemps et al., 2011). As a proxy, we included the C:N ratio at the 562 

observation date in our models. This allowed us to account for spatial heterogeneity, but 563 

not temporal changes. Atmospheric CO2 concentrations are sometimes considered to be an 564 

important driver of the increase in tree growth during the last century, but this role is still 565 

under debate, especially since the positive effect may be restricted to young stages (Asshoff, 566 

Zotz, and Körner, 2006; Boisvenue and Running, 2006; McDowell et al., 2020). We did not 567 

include this variable in our models because it would have created a temporal trend that 568 

could have prevented us from identifying the effect of climatic variables. Because we did not 569 

properly disentangle the effects of climate, atmospheric nitrogen deposition, and 570 

atmospheric CO2 concentration in our models, some of the effect we attributed to climate 571 

could be related to the other two factors. Complementing this study with process-based 572 

models may be useful to disentangle these effects. 573 



4.3. Partial effect of climatic variables on site index 574 

Our results regarding the partial effect of climatic variables confirm our hypothesis 1 that 575 

an increase in temperature, precipitation and climatic water balance during spring and 576 

summer favors the site index, but that these positive effects may saturate when the climatic 577 

variable reaches a certain level. However, contrary to our hypothesis, our results do not 578 

clearly show a negative effect of temperature above a certain threshold. Indeed, the 579 

decrease of site index at the upper range of the variable distribution for some species and 580 

variables is not very pronounced and may simply reflect the fact that we integrated 581 

saturation and non-monotonic effects in the model using a quadratic form. 582 

For commonly studied species, our results are largely consistent with the literature, 583 

especially (i) the generally positive effect of temperature and SGDD (Albert and Schmidt, 584 

2010; Álvarez-Álvarez et al. ,2011; González-Rodríguez and Diéguez-Aranda, 2020), (ii) the 585 

generally positive effect of precipitation and climatic water balance (Vallet and Perot, 2016; 586 

Stimm et al., 2021), (iii) the saturation effect beyond a certain level of temperature 587 

(Seynave et al. 2008; Caicoya and Pretzsch, 2021; Pau et al., 2022) or precipitation (Brandl 588 

et al., 2018) and (iv) the existence of interspecific differences in the climatic variables and 589 

seasons affecting SDH (Vallet and Perot, 2016). Table 2 compares the species-specific 590 

effects we found with those reported in the literature for the five most common European 591 

tree species, as listed by (Mahnken et al., 2022). The present work allows to extend such 592 

results to species for which, to our knowledge, the climate – SDH relationship has hardly 593 

been studied yet, such as Larix decidua, Fraxinus excelsior or Quercus pubescens. 594 

These effects on site index are consistent with the expected response based on tree 595 

physiology. The positive effects of higher spring and summer temperature probably relate 596 



to an increase photosynthetic efficiency or a lengthening of the growing season (Brandl et 597 

al., 2018). Saturation may occur because temperature is no longer the limiting factor, or 598 

because high temperature increase evapotranspiration and hydric stress, and reduce 599 

photosynthesis (Lindner et al., 2010; Anderson-Teixeira et al., 2022). The lack of a clear 600 

signal of negative effects of temperature above a certain level may relate to the fact that 601 

such extreme temperature have only occurred in recent years, and therefore their effects 602 

are not well captured in our multi-decadal modeling strategy. The negative effect of high 603 

winter temperature for some species may relate to disturbance of bud break or high winter 604 

respiration (Seynave et al., 2008). The generally positive impact of spring and summer 605 

precipitation and climatic water balance, and the saturation of this positive effect at the 606 

wetter edge of the range, may be related to a positive effect of relaxing the water constraint 607 

only in water-limited environments. With respect to fall and winter precipitation and 608 

climatic water balance, the interspecific diversity of responses suggests that species have 609 

different levels of tolerance to water excess or develop under specific stand conditions. 610 

Negative responses can be explained by nutrient depletion in the case of too much water 611 

(Álvarez-Álvarez et al., 2011) or by snow damage (Seynave et al., 2008). The outlier 612 

behavior of Castanea sativa (negative effect of summer temperature) could be due to the 613 

impact of the chestnut ink disease, which can hinder tree growth, especially under drought 614 

conditions (Maurel et al., 2001). In our dataset, this may have translated into a correlation 615 

between the warmer and drier recent climate and less dynamic growth in young stands. 616 

  617 



Species Effects found in this study 
Convergence with the 

literature for some effects 
Other effects found in the 

literature 

Picea abies 

summer temperature (+, 

sat.)  

summer water availability 

(+, sat.) 

Seynave et al. (2005), 

Albert and Schmidt 

(2010), Sharma et al. 

(2012), Vallet and Perot 

(2016), Antón-Fernández 

et al. (2016), Brandl et al. 

(2018), Caicoya and 

Pretzsch (2021) 

Seynave et al. (2005): spring 

temperature (+), summer 

temperature (-)  

Antón-Fernández et al. (2016): 

summer water availability (opt.)  

Brandl et al. (2018): winter 

temperature (-)  

Caicoya and Pretzsch (2021): 

GS temperature (-) 

Fagus sylvatica 

GS temperature (+, sat.)  

winter water availability (-)  

summer water availability 

(+) 

Seynave et al. (2008), 

Albert and Schmidt 

(2010), Vallet and Perot 

(2016), Brandl et al. 

(2018) 

Seynave et al. (2008): summer 

temperature (-), winter 

temperature (opt.) 

Pinus sylvestris 
spring temperature (+)  

winter water availability 

(opt.) 

Fries et al. (1998), 

Sharma et al. (2012), 

Antón-Fernández et al. 

(2016), González-

Rodríguez and Diéguez-

Aranda (2021) 

Vallet and Perot (2016): July 

water balance (+)  

Antón-Fernández et al. (2016): 

summer water availability (opt.) 

Quercus robur GS water availability (+, 

sat.) 

Pilcher and Gray 

(1982)*, Stimm et al. 

(2021)* 

Pilcher and Gray (1982)*: 

winter temperature (-), GS 

temperature (+)  

Stimm et al. (2021)*: summer 

temperature (+, sat.) 

Quercus petraea 
spring temperature (+, sat.)  

winter water availability 

(+) 

Pilcher and Gray 

(1982)*, Vallet and Perot 

(2016) 

Pilcher and Gray (1982)*: GS 

water availability (+), winter 

temperature (-)  

Stimm et al. (2021)*: summer 

temperature (+, sat.), GS water 

availability (+) 

Table 2: Comparison between the partial effects of climatic variables in our study and in the literature for the 

five most common tree species in Europe. '+': positive impact; '-': negative impact; 'sat.' means that the effect 

saturates at the higher range of the variable's distribution; 'GS': growing season (spring and summer); *: 

studies that did not distinguish between Quercus petraea and Quercus robur, 'opt.': optimal value. 'Water 

availability' refers both to precipitation and climatic water balance. 



4.4. Analysis of climate change during the last century on stand 618 

dominant height 619 

Our models allow us to compare SDH dynamics under the actual recent climate (1950 to 620 

2020) with the climate before climate change. For some species, the effects of climate 621 

change were small in the first decades of the simulations and positive thereafter. This 622 

relates to a period of relative cooling in France between 1950 and 1990, followed by a 623 

period of strong temperature increase (cf. Figure 1). Such temporal variations in the effects 624 

of climate change support the relevance of modeling SDH dynamics while taking into 625 

account climate variations during stand life. At the final simulation age of 70 years, the 626 

effect of climate change on SDH varied between species and between stands for a given 627 

species. In the following sections, we analyze first the interspecific and then the 628 

intraspecific variation of the site index in response to climate change, where site index Is 629 

defined as SDH at the age of 70 years. 630 

4.4.1. Interspecific analysis 631 

Our results confirm our hypothesis 2a that climate change during the last century has had 632 

different effects on different species, both in terms of sign and magnitude. The increase in 633 

the site index over the period considered for the majority of species studied is consistent 634 

with an increase in forest productivity over the last decades (Boisvenue and Running, 2006; 635 

Bontemps et al. 2009; Messaoud et al., 2022). Together with nitrogen deposition and CO2 636 

increase, climate change is a key driver of recent changes in forest growth in Europe 637 

(Boisvenue and Running, 2006; Bontemps et al. 2009; Charru et al. 2017).  638 



Interspecific differences in the effect of climate change on SDH may be related to differences 639 

in species ecology, but also to interspecific differences in the pre-climate change climate 640 

niche and the actual climate change experienced by the species (cf. Figure 1 and 641 

Supplementary Material Fig. B.1 and Fig. B.2). We did not find a clear pattern linking the 642 

species-specific mean effect of climate change on site index to species-specific mean initial 643 

climate niche (cf. Supplementary Material Fig. F.1 and Fig. F.2). This suggests that species 644 

ecology and experienced climate change are also key drivers of this effect. Studying another 645 

growth variable and fewer species, Charru et al. (2017) found that species-specific mean 646 

changes in basal area increment between 1982 and 2005 could be related to species-647 

specific mean initial climate niche, with a more positive effect for species that initially 648 

experienced the coldest temperature and highest precipitation. When focusing on the same 649 

species as Charru et al. (2017), our results suggest such a pattern. 650 

Our results shed light on past limitations to species growth and provide insight into future 651 

impacts of ongoing climate change. Over the period we considered, climate change affected 652 

all species in two ways: increasing annual and summer mean temperature as well as 653 

decreasing summer precipitation and / or climatic water balance (cf. Supplementary 654 

Material Fig. B.1 and Fig. B.2). Increasing temperature favor simulated height growth, while 655 

decreasing summer precipitation or climatic water balance negatively affects growth (cf. 656 

section 4.3.). The generally positive effect of climate change on the site index we found for 657 

the period 1950-2020 compared to the climate of 1891-1920 probably reflects that most of 658 

the species studied were temperature-limited in France during the period 1891-1920. Our 659 

finding of a strong positive effect of climate change on mountain species (Larix decidua, 660 

Abies alba, and to a lesser extent Picea abies) is consistent with the fact that mountain 661 

species are particularly temperature-limited (Charru et al., 2017). Nevertheless, the 662 



positive effect of climate change on SDH could turn negative if temperature continue to 663 

increase and precipitation continue to decrease, due to saturation of the positive partial 664 

effect of temperature increase and the negative partial effect of precipitation (or climatic 665 

water balance ) decrease (cf. section 4.3.). Studies have already found observations of 666 

negative impacts of climate change on growth under water limitation (Lindner et al., 2014) 667 

or projected negative impacts on site index of future climate change Albert and Schmidt 668 

(2010). We also found such negative effects of climate change for Pseudotsuga menziesii and 669 

Quercus robur. The negative effect on Castanea sativa should be interpreted with caution 670 

(see 4.3).  671 

4.4.2. Intraspecific analysis 672 

Our results confirm our hypothesis H2b that, for a given species, the impact of climate 673 

change over the last century varied among stands depending on their climate context. 674 

Intraspecific variation in the impact of climate change on site index can be related to 675 

differences in environmental conditions, management history, or plant genetics (Kremer et 676 

al., 2012). Here, we focused on the first dimension, as the French NFI does not provide data 677 

on management history or genetics. The intraspecific relationship we found between 678 

climate change effects and initial stand temperature for a large number of species reflects 679 

that, for a given species, different climatic contexts produce different growth limitations 680 

(Lindner et al., 2014; Kunstler et al., 2021; Guyennon et al., 2023). For nine species, our 681 

results suggest that climate change alleviated a temperature limitation at the cold edge of 682 

the species’ distribution in France, while it had only a small positive or even negative effect 683 

on stands at the warm edge of the distribution. Such a pattern is consistent with the results 684 

of Albert and Schmidt (2010), Messaoud and Chen (2011) and Ols et al. (2020). The 685 



mountain species we analyzed (Abies alba, Picea abies, Larix decidua) follow this pattern, 686 

which is consistent with the temperature limitation they experience at high altitudes 687 

(Charru et al., 2017). Finally, Pinus halepensis follows the same pattern, probably because it 688 

is adapted to warmer climates than that of France. For the other species, the identification 689 

of intraspecific patterns relating climate change effects to the reference climate is more 690 

complex.  691 

4.5. Implication for management 692 

Our results raise awareness of the risk of switching from positive climate change effect on 693 

SDH to negative effects due to ongoing climate change. The magnitude and timing of this 694 

switch for a given stand will depend on the species, the current climatic context and the 695 

climate change that the stand will experience. Our results may help forest managers to 696 

identify which species to favor when managing a pure even-aged stand. Furthermore, our 697 

models could be used to project SDH dynamics under future climate scenarios, although 698 

caution should be taken when running simulations outside the calibration range of 699 

empirical models. Thus, it may be useful to integrate our work into models used to inform 700 

management strategy. 701 

Our results also suggest that climate change may alter the relative competitiveness of 702 

species for light in mixed stands, due to interspecific differences in the effect of climate 703 

change on SDH dynamics.  This may lead to changes in forest composition if climate change 704 

penalizes the height growth of some shade-intolerant species more than the height growth 705 

of shade-tolerant species (Bontemps et al., 2012; Messaoud et al., 2022). Taking this effect 706 

into account is important for the management of mixed stands. This is even more true in a 707 



context where forest managers are encouraged to diversify species to adapt forests to 708 

climate change. 709 

5. Conclusion 710 

For 20 European species, we developed stand dominant height dynamics models taking 711 

into account annual climate, based on data from more than 17,000 forest stands surveyed 712 

by the French National Forest Inventory and a 150-years climate database. 713 

We found that climate change over the past century had contrasting effects between and 714 

within species. For the majority of species studied, most stands have benefited from climate 715 

change, as shown by comparing the average climate of 1891-1920 with the actual recent 716 

climate of 1950-2020. For some species, however, we found that a significant percentage of 717 

stands were already experiencing negative impacts. The relationship between temperature 718 

and within-species differences in climate change effects suggests that climatic context may 719 

drive differences in response to climate change for a given species. 720 

These results suggest that future forest response to continued climate change will vary by 721 

species, initial stand climate context, and stand climate trends. They also suggest that 722 

continued increases in temperature and decreases in summer precipitation may lead to 723 

more negative trends than observed in the past. Consideration of these different aspects is 724 

critical to inform management to adapt forests to future climate change.  725 

 726 



Additional files 727 

 Supplementary Material (provided in a separate file) contains additional information 728 

regarding some points mentioned in the main text 729 
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