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1.

The simplified intestinal crypt model 1.1. The stem-progenitor interaction model. We consider a model of epithelial cells interacting with the microbiota-derived chemicals diffusing in the crypt from the gut lumen. The original model, derived from an individual-based PDMP model (piecewise deterministic Markov process model, see [START_REF] Darrigade | A PDMP model of the epithelial cell turn-over in the intestinal crypt including microbiota-derived regulations[END_REF]) treats 5 welldifferentiated cell types: stem cells (SC); progenitor cells (PC); enterocytes (ENT); globet cells (GC); and deep crypt secretory cells (DCS). For a simplification of the original model in the process of studying the inverse problem, we will consider at first, only the SC, PC and DCS cells. We set ρ tot = ρ sc + ρ dcs + ρ pc and solve equations on ρ sc and ρ pc , with ρ dcs = ρ dcs (z) independent of t. In this reduced model the system of equations is given by: (1.1) where H 1 (z, ρ dcs , ρ sc , ρ pc ) = [q sc (1 -R n (z))(1 -R sc (Dρ tot )) -q dif f R n (z)] ρ sc with

     ∂ t ρ sc -W∂ z (ϕ(z)ρ sc ∂ z ρ tot ) = H 1 (z, ρ dcs , ρ sc , ρ pc ), 0 < z < z max , t > 0, ρ sc (t, 0) = ρ bot sc , ∂ z ρ sc (t, z max ) = 0, t > 0, ρ sc (x, 0) = ρ init sc (x), 0 < z < z max ,
R n (z) = R(z, Z niche , κ niche ) R sc (ϱ) = R(ϱ, K sc , κ dens ) (1.2)     
∂ t ρ pc -W∂ z (ϕ(z)ρ pc ∂ z ρ tot ) = H 2 (z, ρ dcs , ρ sc , ρ pc ), 0 < z < z max , t > 0, ρ pc (t, 0) = 0, ∂ z ρ pc (t, z max ) = 0, t > 0, ρ pc (x, 0) = ρ init pc (x), 0 < z < z max .

where H 2 (z, ρ dcs , ρ sc , ρ pc ) = [q pc (1 -R t (z))(1 -R pc (Dρ tot )) -q ex R e (z)R pc (Dρ tot )] ρ pc + q dif f R n (z)ρ sc with R t (z) = R(z, Z tiers , κ tiers ), R e (z) = R(z, Z ex , κ ex ), R pc (ϱ) = R(ϱ, K pc , κ dens ).

We use a generic regulation function R(y, K, κ) for y ≥ 0, K ≥ 0 and κ ≥ 0 that model the regulation of cell fate event according to variable y. The function R is a piecewise polynomial function in C 1 (0, z max ) defined as :

R(y, K, κ) =        0 if y ≥ K -κ, -y 3 + 3Ky 2 -(3K 2 -3κ 2 )y + (K 3 + 2κ 3 -3Kκ 2 ) 4κ 3 if K -κ < y < K + κ, 1 if K + κ ≥ y.
Additionally ϕ ∈ C 1 (0, z max ), such that ϕ(0) = ϕ(z max ) = 0, ϕ(z) = 1 in [r 0 - ε, z max -r 0 + ε], and ϕ(z) ≥ 0, represents a corrective function taking into account the impact of curvature on mechanical forces modelling by [START_REF] Darrigade | A PDMP model of the epithelial cell turn-over in the intestinal crypt including microbiota-derived regulations[END_REF]:

ϕ(z) =          √ (ε+z) (2 r0-ε-z)- √ ε (2 r0-ε) r0- √ ε (2 r0-ε) if z ≤ r 0 -ε 1 if r 0 -ε < z < z max -r 0 + ε 2 r0- √ ε (2 r0-ε) r0 - 2 r0- √ (ε-z+zmax) (2 r0-ε+z-zmax) r0- √ ε (2 r0-ε) if z ≥ z max -r 0 + ε
The system (1.1)-(1.2) can be rewritten as (1.3)

               ∂ t ρ sc + ∂ z A sc = ∂ zz B(ρ sc ) + H 1 , 0 < z < z max , t > 0, ∂ t ρ pc + ∂ z A pc = ∂ zz B(ρ pc ) + H 2 , 0 < z < z max , t > 0, ρ sc (t, 0) = ρ bot sc , ρ pc (t, 0) = 0, t > 0, ∂ z ρ sc (t, z max ) = ∂ z ρ pc (t, z max ) = 0, t > 0, ρ sc (x, 0) = ρ init sc (x), ρ pc (x, 0) = ρ init pc (x), 0 < z < z max .
whose semiconservative structure (conservative in its convective and diffusive terms but with nonlinear source terms), allows us to consider a relaxation scheme as in [START_REF] Aregba-Driollet | Explicit Diffusive Kinetic Schemes for Nonlinear Degenerate Parabolic Systems[END_REF]. The system (1.3) is equivalent to (1.1)-(1.2), through the relations:

A sc = A(z, ρ ′ dcs , ∂ z ρ pc , ρ sc ) A pc = A(z, ρ ′ dcs , ∂ z ρ sc , ρ pc ) A(z, ξ, η, ρ) = -W ϕ(ξ + η)ρ -ϕ ′ ρ 2 /2) , B(ρ) = B(z, ρ) = Wϕρ 2 /2.
When H 1 and H 2 does not depend on ρ pc , ρ sc and

H 1 , H 2 ∈ L ∞ ((0, z max × (0, T )),
the problem (1.3) is well posed and there is a unique entropy solution in L ∞ ((0, z max × (0, T )) such that B(ρ) ∈ L 2 (0, T ; H 1 (0, z max )) (see for example [START_REF] Carrillo | Entropy solutions for nonlinear degenerate problems[END_REF]5]). On the other hand, the weak solution of the system (1.3) verifies E(ρ sc , ρ pc , w sc , w pc ; ρ dcs ) = 0, for all w sc , w pc with w sc , w pc smooth test functions on [0, T ] × [0, z max ], such that for all t, w pc (t, 0) = w pc (t, z max ) = 0 and w sc (t, 0) = w sc (t, z max ) = 0 and

E(ρ sc , ρ pc , w sc , w pc ; ρ dcs ) := T 0 zmax 0 [ρ sc ∂ t w sc + A sc ∂ z w sc + B(ρ sc )∂ zz w sc + H 1 w sc ] dz dt + T 0 zmax 0 [ρ pc ∂ t w pc + A pc ∂ z w pc + B(ρ pc )∂ zz w pc + H 2 w pc ] dz dt - zmax 0 ρ sc (z, T )w sc (z, T ) dz + zmax 0 ρ init sc (z)w sc (z, 0) dz - zmax 0 ρ pc (z, T )w pc (z, T ) dz + zmax 0 ρ init pc (z)w pc (z, 0) dz (1.4) 2. Inverse Problem.
2.1. The problem of identifying the function ρ dcs (z).

1) Given ρ obs sc (z, T ) and ρ obs pc (z, T ) (experimental, observed or measured data), find ρ dcs ∈ C(0, z max )∩L ∞ (0, z max ), such that ρ sc (z, T ) ≈ ρ obs sc (z, T ) and ρ pc (z, T ) ≈ ρ obs pc (z, T ). Equivalently, assuming a parametrization of the ρ dcs density by a vector θ of N real parameters ρ dcs (z) = ρdcs (z, θ)

the identification problem is expressed as 2) Given ρ obs sc (z, T ) and ρ obs pc (z, T ) (experimental, observed or measured data), find θ ∈ A ⊂ R N , such that ρ sc (z, T ) ≈ ρ obs sc (z, T ) and ρ pc (z, T ) ≈ ρ obs pc (z, T ).

We define the cost function, with α, β > 0, as

J(ρ sc , ρ pc ) := α 2 zmax 0 |ρ sc (z, T ) -ρ obs sc (z, T )| 2 dz (2.1) + β 2 zmax 0 |ρ pc (z, T ) -ρ obs pc (z, T )| 2 dz
The inverse problem consists of find θ ∈ A, such that J({ρ sc , ρ pc } ( θ)) = min θ∈A J(ρ sc , ρ pc )

We define the Lagrangian (2.2) L(ρ sc , ρ pc , w sc , w pc ; ρ dcs ) := J(ρ sc , ρ pc ) + E(ρ sc , ρ pc , w sc , w pc ; ρ dcs )

The derivative of L respect of ρ sc and ρ pc in the directions δρ sc and δρ pc , respectively are given by ∂L ∂ρ sc , δρ sc = α zmax 0 (ρ sc (z, T ) -ρ obs sc (z, T ))δρ sc (z, T )dz

+ ∂E ∂ρ sc , δρ sc = 0 (2.3) ∂L ∂ρ pc , δρ pc = β zmax 0 (ρ pc (z, T ) -ρ obs pc (z, T ))δρ pc (z, T )dz + ∂E ∂ρ pc , δρ pc = 0 (2.4)
Derivating (1.4) respect of ρ sc and ρ pc and replacing in (2.3)-(2.4), allows us to establish the adjoint problem given by:

                                         ∂ t w sc + ∂A ∂ρ (z, ρ ′ dcs , ∂ρ pc , ρ sc )∂ z w sc -∂ z ∂A ∂η (z, ρ ′ dcs , ∂ρ sc , ρ pc ) ∂ z w pc = ∂B ∂ρ (ρ sc )∂ zz w sc + ∂H 1 ∂ρ sc w sc + ∂H 2 ∂ρ sc w pc , w sc (z max , t) = w sc (0, t) = 0, w sc (z, T ) = α(ρ sc (z, T ) -ρ obs sc (z, T )) ∂ t w pc + ∂A ∂ρ (z, ρ ′ dcs , ∂ρ sc , ρ pc )∂ z w pc -∂ z ∂A ∂η (z, ρ ′ dcs , ∂ρ pc , ρ sc ) ∂ z w sc = ∂B ∂ρ (ρ pc )∂ zz w pc + ∂H 1 ∂ρ pc w sc + ∂H 2 ∂ρ pc w pc ,
w pc (z max , t) = w pc (0, t) = 0, w pc (z, T ) = β(ρ pc (z, T ) -ρ obs pc (z, T ))

We suppose that ρ dcs = ρ dcs (θ) is of class C 1 with respect to θ, the finite set of parameters to identify, and we suppose that ρ ′ dcs = ρ ′ dcs (θ) is also of class C 1 with respect to θ. The derivative of the cost function with respect of θ i is given by

∂J ∂θ i = ∂L ∂θ i + ∂L ∂ρ sc , ∂ρ sc ∂θ i + ∂L ∂ρ pc , ∂ρ pc ∂θ i = ∂ ∂θ i [E(ρ sc , ρ pc , w sc , w pc ; ρ dcs )] = ∂E ∂ρ dcs , ∂ρ dcs ∂θ i + ∂E ∂ρ ′ dcs , ∂ρ ′ dcs ∂θ i = - T 0 zmax 0 Wϕ(z)(ρ sc ∂ z w sc + ρ pc ∂ z w pc ) ∂ρ ′ dcs ∂θ i dz dt + T 0 zmax 0 ∂H 1 ∂ρ dcs ∂ρ dcs ∂θ i w sc + ∂H 2 ∂ρ dcs ∂ρ dcs ∂θ i w dz dt = - T 0 zmax 0 Wϕ(z)(ρ sc ∂ z w sc + ρ pc ∂ z w pc ) ∂ρ ′ dcs ∂θ i dz dt - T 0 zmax 0 Dq sc (1 -R n )R ′ sc ρ sc w sc ∂ρ dcs ∂θ i dz dt - T 0 zmax 0 D [q pc R t + q e (1 -R e )] R ′ pc ρ pc w pc ∂ρ dcs ∂θ i dz dt
This calculation is formal, and the derivative of the cost function is not guaranteed. However, it establishes a necessary condition criterion of optimality:

T 0 zmax 0 W∂ z [ϕ(z)(ρ sc ∂ z w sc + ρ pc ∂ z w pc )] δρ dcs dz dt - T 0 zmax 0 Dq sc (1 -R n )R ′ sc ρ sc w sc δρ dcs dz dt - T 0 zmax 0 D [q pc R t + q e (1 -R e )] R ′ pc ρ pc w pc δρ dcs dz dt ⩾ 0,
for all δρ dcs .

2.2.

Example of ρ dcs shapes and δρ dcs directions :

(1) Trapezoidal shape. Let (2.5)

ρ trapz (z) = (d(z -z d ) + 1)1 [z d -1/d,z d ] (z) + 1 ]z d ,zu[ (z) + (1 + u(z -z u ))1 [zu,zu-1/u] (z), with its derivative ρ ′ trapz (z) = d1 [z d -1/d,z d ] (z) + u1 [zu,zu-1/u] (z),
where

1[a, b](z) = H(x -a) -H(x -b) is the characteristic function for the interval [a, b].
We consider the renormalization:

ρ dcs = N dcs zmax 0 ρ trapz (z) dz ρ trapz (z), ρ ′ dcs = N dcs zmax 0 ρ trapz (z) dz ρ ′ trapz (z) Taking N dcs ∈ R + , and (d, u, z d , z u ) ∈ A := {0 < 1 d ⩽ z d ⩽ z u ⩽ z max -1 u < z max }. We deduce ∂ ∂d ρ trapz = (z -z d )1 [z d -1/d,z d ] (z) ∂ ∂z d ρ trapz = -d1 [z d -1/d,z d ] (z) ∂ ∂u ρ trapz = (z -z u )1 [zu,zu-1/u] (z) ∂ ∂z u ρ trapz = -u1 [zu,zu-1/u] (z) ∂ ∂d ρ ′ trapz = 1 [z d -1/d,z d ] (z) -(1/d)δ(z -z d + 1/d), ∂ ∂u ρ ′ trapz = 1 [zu,zu-1/u] (z) + (1/u)δ(z -z u + 1/u), ∂ ∂z d ρ ′ trapz = -d (δ(z -z d + 1/d) -δ(z -z d )) ∂ ∂z u ρ ′ trapz = -u (δ(z -z u ) -δ(z -z u + 1/u))
and then

∂ρ dcs ∂N dcs = ρ trapz zmax 0 ρ trapz dz , ∂ρ ′ dcs ∂N dcs = ρ ′ trapz zmax 0 ρ trapz dz ∂ρ dcs ∂θ i = N dcs 1 - ρ trapz zmax 0 ρ trapz dz 2 ∂ρ trapz ∂θ i , ∂ρ ′ dcs ∂θ i = N dcs ∂ρ ′ trapz ∂θ i - N dcs ρ trapz ∂ρ trapz ∂θ i zmax 0 ρ trapz dz 2 for i = 2, . . . , 5, θ 1 = N dcs , θ 2 = d, θ 3 = u, θ 4 = z d and θ 5 = z u .
(2) Smoothing of the trapezoidal shape. We can take ρ ε dcs = ϱ ε ⋆ ρ dcs a smooth approximation of the trapezoidal shape via convolution with mollifiers. In this case, the derivatives are applied with practically the same formulas as in the previous case, thanks to the commutativity properties of the derivative with the convolution product.

(3) Simplification of the parameters.

In order to simplify the number of parameters limiting them to 3, and considering those that play a role in the main modifications of the shape of the DCS population distribution, namely: height, width and center of the distribution, let us assume a predetermined shape ρ 0 dcs (z), which can be, for example, the trapezoidal shape (ρ trapz ) or smooth form (ρ ε dcs ) described above. We define the DCS population distribution as

ρ N Lz0 (z) := ρ dcs (z; N, L, z 0 ) = N ρ 0 dcs (Lz + z 0 ) = N ρ 0 dcs (y). with it derivative ρ ′ N Lz0 (z) = N L{ρ 0 dcs } ′ (y)
, where y = Lz + z 0 . For example, taking the trapezoidal shape ρ 0 dcs = ρ trapz given by (2.5), we obtain:

∂ ∂N ρ N Lz0 (z) = ρ trapz (y), ∂ ∂N ρ ′ N Lz0 (z) = Lρ ′ trapz (y) ∂ ∂z 0 ρ N Lz0 (z) = N ρ ′ trapz (y), ∂ ∂z 0 ρ ′ N Lz0 (z) = N Lρ ′′ trapz (y) ∂ ∂L ρ N Lz0 (z) = N zρ ′ trapz (y), ∂ ∂L ρ ′ N Lz0 (z) = N ρ ′ trapz (y) + N Lzρ ′′ trapz (y)
where

ρ trapz (y) is given by (2.5) with y = Lz + z 0 ρ ′ trapz (y) = ρ ′ trapz (y(z)) = d1 [z1,z2] (z) + u1 [z3,z4] (z) ρ ′′ trapz (y) = ρ ′′ trapz (y(z)) = d (δ z1 -δ z2 ) + u (δ z3 -δ z4 ) with z 1 = z d -z 0 L - 1 Ld , z 2 = z d -z 0 L , z 3 = z u -z 0 L and z 4 = z u -z 0 L - 1 Lu .
For instance

∂J ∂L = -WN T 0 d z2 z1 ϕ(z)(ρ sc ∂ z w sc + ρ pc ∂ z w pc ) dz +u z4 z3 ϕ(z)(ρ sc ∂ z w sc + ρ pc ∂ z w pc ) dz dt -WN L dz 1 ϕ(z 1 ) T 0 (ρ sc ∂ z w sc + ρ pc ∂ z w pc ) z=z1 dt -dz 2 ϕ(z 2 ) T 0 (ρ sc ∂ z w sc + ρ pc ∂ z w pc ) z=z2 dt +uz 3 ϕ(z 3 ) T 0 (ρ sc ∂ z w sc + ρ pc ∂ z w pc ) z=z3 dt -uz 4 ϕ(z 4 ) T 0 (ρ sc ∂ z w sc + ρ pc ∂ z w pc ) z=z4 dt -DN q sc T 0 d z2 z1 z(1 -R n )R ′ sc ρ sc w sc dz +u z4 z3 z(1 -R n )R ′ sc ρ sc w sc dz dt -DN T 0 d z2 z1 z [q pc R t + q e (1 -R e )] R ′ pc ρ pc w pc dz +u z4 z3 z [q pc R t + q e (1 -R e )] R ′ pc ρ pc w pc dz dt
3. Numerical approximation.

3.1. BGK schemes for the direct problem. Based on the explicit diffusive kinetic schemes introduced by [START_REF] Aregba-Driollet | Explicit Diffusive Kinetic Schemes for Nonlinear Degenerate Parabolic Systems[END_REF], we obtain a general 5-points scheme in a conservative form described in details in [START_REF] Haghebaert | Personal communication concerning the Thesis of M[END_REF]:

δz(ρ ε,n+1 sc,i -ρ ε,n sc,i ) + δt(F ε,n sc,i+1/2 -F ε,n sc,i-1/2 ) = δtδzH 1 (z, ρ dcs , ρ ε,n sc,i , ρ ε,n pc,i ) (3.1) ρ 0 sc,i = ρ init sc,i , (3.2) δz(ρ ε,n+1 pc,i -ρ ε,n pc,i ) + δt(F ε,n pc,i+1/2 -F ε,n pc,i-1/2 ) = δtδzH 2 (z, ρ dcs , ρ ε,n sc,i , ρ ε,n pc,i ), (3.3) ρ 0 pc,i = ρ init pc,i , (3.4) 
where

F ε,n sc,i+1/2 = 4 ℓ=1 λ ℓ F ℓ ( sc M ε,n i-1,ℓ , sc M ε,n i,ℓ , sc M ε,n i+1,ℓ ) F ε,n pc,i+1/2 = 4 ℓ=1 λ ℓ F ℓ ( pc M ε,n i-1,ℓ , pc M ε,n i,ℓ , pc M ε,n i+1,ℓ ) with λ 1 = λ, λ 2 = -λ, λ 3 = λ + θ √ ε , λ 4 = -λ - θ √ ε , F 1,2 (M i-1 , M i , M i+1 ) = F L (M i , M i+1 ) +φ Superbee (M i-1 , M i , M i+1 ) F H (M i , M i+1 ) -F L (M i , M i+1 ) F 3 (M i-1 , M i , M i+1 ) = F 3 (M i , M i+1 ) = M i + b 0 (M i+1 -M i ) F 4 (M i-1 , M i , M i+1 ) = F 4 (M i , M i+1 ) = M i+1 + b 0 (M i -M i+1 )
and

sc M ε,n i,1 = 1 2λ λ(ρ n sc,i - B(iδz, ρ n sc,i ) θ 2 ) + A sc i+ 1 2 sc M ε,n i,2 = 1 2λ λ(ρ n sc,i - B(iδz, ρ n sc,i ) θ 2 ) -A sc i+ 1 2 sc M ε,n i,3 = sc M ε,n i,4 = B(iδz, ρ n sc,i ) 2θ 2 pc M ε,n i,1 = 1 2λ λ(ρ n pc,i - B(iδz, ρ n pc,i ) θ 2 ) + A pc i+ 1 2 pc M ε,n i,2 = 1 2λ λ(ρ n pc,i - B(iδz, ρ n pc,i ) θ 2 ) -A pc i+ 1 2 pc M ε,n i,3 = pc M ε,n i,4 = B(iδz, ρ n pc,i ) 2θ 2 .
where

A i+ 1 2 = V + i+ 1 2 ρ i + V - i+ 1 2 ρ i+1 + W(ϕ ′ i+ 1 2 ) + ρ 2 i /2 + W(ϕ ′ i+ 1 2 ) -ρ 2 i+1 /2
with v + = max(v, 0), and v -= min(v, 0), ϕ ′

i+ 1 2 = ϕ ′ (iδz)+ϕ ′ ((i+1)δz) 2
, and

V sc i+ 1 2 = -W (ϕρ ′ dcs ) i+ 1 2 + ϕ i+ 1 2 D + ρ pc,i V pc i+ 1 2 = -W (ϕρ ′ dcs ) i+ 1 2 + ϕ i+ 1 2 D + ρ sc,i with D + ρ i = ρ i+1 -ρ i δz .
Additionally, the parameter λ and θ are chosen as

θ = max{B ′ (ρ l )} α -1 + δ, λ = max ∂ ∂ρ l A l i+ 1
+ δ l = sc, pc. Replicating these formulas independently for both ρ and ρ sc , thus obtaining the parameter pairs (θ, λ) and (θ sc = δ, λ sc ), respectively, and the CFL condition

(3.5) δt ⩽ min δz 2 2θ 2 , δz λ sc , δz λ pc 3.2.
Adjoint scheme associate to BGK scheme. Let ρ sc,δ = (ρ n sc,i ) i,n , ρ pc,δ = (ρ n pc,i ) i,n Multiplying (3.1)-(3.4) by w n sc,i , w n pc,i , and summing by parts, we obtain E δ (ρ sc,δ , ρ pc,δ , w sc,δ , w pc,δ ; ρ dcs ) = 0, for all w sc,δ , w pc,δ with E δ (ρ sc,δ , ρ pc,δ , w sc,δ , w pc,δ ; ρ dcs ) = E 1,δ (ρ sc,δ , ρ pc,δ , w sc,δ ; ρ dcs )+E 2,δ (ρ sc,δ , ρ pc,δ , w pc,δ ; ρ dcs ) where E 1,δ (ρ sc,δ , ρ pc,δ , w sc,δ ; ρ dcs ) :=

(3.6) N n=1 ⌊ zmax δz ⌋-1 i=1 ρ ε,n sc,i w n sc,i -w n-1 sc,i δz + F ε,n sc,i+1/2 w n sc,i+1 -w n sc,i δt + H n 1,i w n sc,i δzδt - ⌊ zmax δz ⌋-1 i=1 (ρ N sc,i w N sc,i -ρ init sc,i w 0 sc,i )δz E 2,δ (ρ sc,δ , ρ pc,δ , w pc,δ ; ρ dcs ) := (3.7) N n=1 ⌊ zmax δz ⌋-1 i=1 ρ ε,n pc,i w n pc,i -w n-1 pc,i δz + F ε,n pc,i+1/2 w n pc,i+1 -w n pc,i δt + H n 2,i w n pc,i δzδt - ⌊ zmax δz ⌋-1 i=1 (ρ N pc,i w N pc,i -ρ init pc,i w 0 pc,i )δz 3.3. Discrete inverse problem.
The discrete cost function is given by

(3.8) J δ (ρ δ , ρ sc,δ ) := α 2 ⌊ zmax δz ⌋-1 i=1 |ρ N sc,i -ρ obs sc,i | 2 δz + β 2 ⌊ zmax δz ⌋-1 i=1 |ρ N pc,i -ρ obs pc,i | 2 δz
Thus derivating of the discrete Lagrangian L δ (ρ sc,δ , ρ pc,δ , w sc,δ , w pc,δ ; ρ dcs ) := J δ (ρ sc,δ , ρ pc,δ ) + E δ (ρ sc,δ , ρ pc,δ , w sc,δ , w pc,δ ; ρ dcs ) with respect to ρ n sc,i and ρ n pc,i , we obtain the discrete adjoint scheme

w n-1 sc,i = w n sc,i + δt δz 4 k=1 ∂ ∂ρ sc,k-2 F ε,n sc,i-k+5/2
w n sc,i-k+3 -w n sc,i-k+2

+ δt δz 4 k=1 ∂ ∂ρ sc,k-2 F ε,n pc,i-k+5/2 w n pc,i-k+3 -w n pc,i-k+2 +δt ∂H n 1,i ∂ρ n sc,i w n sc,i + δt ∂H n 2,i ∂ρ n sc,i
w n pc,i , (3.9)

w n-1 pc,i = w n pc,i + δt δz 4 k=1 ∂ ∂ρ pc,k-2 F ε,n sc,i-k+5/2 w n sc,i-k+3 -w n sc,i-k+2 + δt δz 4 k=1 ∂ ∂ρ pc,k-2 F ε,n pc,i-k+5/2 w n pc,i-k+3 -w n pc,i-k+2 +δt ∂H n 1,i ∂ρ n pc,i w n sc,i + δt ∂H n 2,i ∂ρ n pc,i w n pc,i , (3.10) w N -1 sc,i = α ρ N sc,i -ρ obs sc,i (3.11) w N -1 pc,i = β ρ N pc,i -ρ obs pc,i (3.12) Because ∂M ε,n k,ℓ ∂ρ ′ dcs , δρ ′ dcs = - Wϕ k 2
ρ n k , we deduce that the derivative of the discrete cost function is given by: We make here a simulation for z max = 200 and T = 20. We choose a reasonable discretization with N = 250, which gives dz = z max /(N -1) = 0.8032. Additionally, the values proposed in [START_REF] Darrigade | A PDMP model of the epithelial cell turn-over in the intestinal crypt including microbiota-derived regulations[END_REF] for the physical-biological parameters of the model are considered, that is: W = 6.01/8, q SC = 0.15, Z niche = 12.0, k niche = 5.0, D = 12.07, K SC = 53, k dens = 6, q dif f = 0.2, q P C = 0.22, Z tiers = 40.0, k tiers = 40.0, K P C = 41.0, q ex = 0.34, Z ex = 190.0, k ex = 15.0. As for the geometric parameters of the crypt, these are given by r 0 = 10, ε 0 = 0.1r 0 . Regarding the DCS cells, we initially consider the same trapezoidal shape of [START_REF] Darrigade | A PDMP model of the epithelial cell turn-over in the intestinal crypt including microbiota-derived regulations[END_REF], with the parameters d = 2.25, u = -1/8 and 0 ⩽ N DCS ⩽ 20, 0 ⩽ z d = z u ⩽ 10.

∂J δ ∂ρ dcs , δρ dcs = δt N n=1 ⌊ zmax δz ⌋-1 i=1 4 k=1 ∂ ∂ρ ′ dcs,k-2 F ε,n sc,i+1/2 w n sc,i+1 -w n sc,i + δt N n=1 ⌊ zmax δz ⌋-1 i=1 4 k=1 ∂ ∂ρ ′ dcs,k-2 F ε,n pc,i+1/2 w n pc,i+1 -w n pc,i +δtδz N n=1 ⌊ zmax δz ⌋-1 i=1 ∂H n 1,i ∂ρ dcs w n sc,i + ∂H n 2,i
Firstly, we experimentally confirmed that a trapezoidal shape for the DCS cells, although they generate regular solutions, they do not behave regularly in the face of small variations in the parameters of said trapezoid. Although there is a continuity of the solution with respect to these parameters, we observe through some numerical tests that the cost function (2.1) and its approximation (3.8) contain oscillations and therefore several local minima that are uncomfortable to minimize. Therefore we choose to approximate the DCS cell distribution function by regularizing it through convolution with molliifier functions.

On the other hand, since in this instance we do not have real experimental observations, we consider a reference simulation with N DCS = 12 and z d = z u = 3 (chosen values of [START_REF] Darrigade | A PDMP model of the epithelial cell turn-over in the intestinal crypt including microbiota-derived regulations[END_REF]) at which we will call observed data. We then start from a simulation without DCS cells, that is, N DCS = 0 and z d = z u = 0, and we try to reconstruct the shape of the DCS cells for the observed solution by solving the inverse problem 2.1.2) and minimizing the cost function (3.8).

Additionally, the parameters δ = 10 -5 , α = 0.9 and b 0 = 1 were chosen for the description of the BGK scheme and the calculation of the values of λ ℓ and θ. We consider a CFL condition (3.5) sufficiently strict that it covers all the range of values that N DCS ∈ [0; 20] and z d = z u ∈ [0; 10] can take. This gives a value δt = 3.2257 • 10 -5 for the set of physical, geometric and meshing parameters described here.

Figure 3 shows the simulated cost function for various values of N DCS varying from 0 to 20, and various values of z d = z u varying from 0 to 10. The trapezoid of the DCS cell distribution function is smoothed using the smooth1DconvNE2xConv() Figure 5. Solutions of the adjoint scheme associated to the BGK scheme of the cell distributions: w sc in a hot color map, and w pc +3 (in order to be able to visualize it differentiated from w sc ) in a slightly transparent "parula" color map and above of the w sc graph. ρ obs pc (z) -ρ pc (z, T ) 2 dz is being minimized in that each of them alone does not have a locally convex shape as defined as the sum of both.

4.1. Inverse problem results. In Figure 4, the distribution of reference densities (considered as "observations") for the stem cells (cyan color) and for the progenitor cells (red color) are plotted. Additionally, the distribution of smoothed DCS cells is graphed (in yellow) that allows simulating such results, and corresponds to the shape that is desired to be reconstructed through the method of solving the inverse problem. Then, for comparison, the simulation of the distributions corresponding to the starting point for the resolution using gradient descent of the minimization problem is graphed, this is simulation without the presence of DCS cells (N DCS = z d = z u = 0) : stem cells (in purple) and progenitor cells (in light green). Additionally and as a reference, the representative function of the geometry of the crypt ϕ(z) is graphed. We compute the adjoint state of the BGK numerical scheme, in order to obtain the critical points of the Lagrangian (2.2). The numerical simulation of the adjoint state (3.9)-(3.10) is graphed in Figure 5. In order to simultaneously display both w sc and w pc in the same figure, the constant 3 is added to w pc to graph it in Table 1. Numerical result of the inverse problem test a slightly transparent "parula" color map , in contrast to the reddish map for w sc . Like Lagange multipliers, these quantities are related to the derivatives of the constraints (in this case the equations that characterize the BGK scheme), and their stability is important for the calculation of the gradient. In this case we observe a stability of the solution except in z = 0 where there is a singularity in its neighborhood, and for a time t ⩽ t * with t * ≈ 12. This could become problematic if we want to identify, for example, the boundary condition at the bottom of the crypt (z = 0), which is surely an ill-posed problem.

In the Table 1 a summary of the identification of the parameters can be observed. Indeed, based on a situation without DCS cells, we managed to rebuild the parameters of the distribution of reference DCS cells in 17 gradient iterations and 72 evaluations of the cost function, reaching the values N Identif DCS = 12 and z Identif u = 3 with an error of less than 4 • 10 -6 .
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Annexes

Appendix A. Derivative of the flux for 5-points schemes A.1. Derivative of the flux respect of ρ sc and ρ pc . We consider the descomposition

F ε,n σ,i+1/2 = 4 ℓ=1 λ ℓ F σ,ℓ,i+1/2 = 4 ℓ=1 λ ℓ F ℓ (M n σ,i-1,ℓ , M n σ,i,ℓ , M n σ,i+1,ℓ ) for σ = sc, pc, with λ 1 = λ, λ 2 = -λ, λ 3 = λ + θ √ ε , λ 4 = -λ - θ √ ε . In this sense, we have ∂ ∂ρ ϖ,-1 F ε,n σ,i+3/2 = 4 ℓ=1 λ ℓ ∂F σ,ℓ,i+3/2 ∂M σ,-1,ℓ ∂M σ,i,ℓ ∂ρ ϖ,0 ∂ ∂ρ ϖ,0 F ε,n σ,i+1/2 = 4 ℓ=1 λ ℓ ∂F σ,ℓ,i+1/2 ∂M σ,-1,ℓ ∂M σ,i-1,ℓ ∂ρ ϖ,,1 + ∂F σ,ℓ,i+1/2 ∂M σ,0,ℓ ∂M σ,i,ℓ ∂ρ ϖ,,0 ∂ ∂ρ ϖ,1 F ε,n σ,i-1/2 = 4 ℓ=1 λ ℓ ∂F σ,ℓ,i-1/2 ∂M σ,0,ℓ ∂M σ,i-1,ℓ ∂ρ ϖ,,1 + ∂F σ,ℓ,i-1/2 ∂M σ,1,ℓ ∂M σ,i,ℓ ∂ρ ϖ,,0 ∂ ∂ρ ϖ,2 F ε,n σ,i-3/2 = 4 ℓ=1 λ ℓ ∂F σ,ℓ,i-3/2 ∂M σ,1,ℓ ∂M σ,i-1,ℓ ∂ρ ϖ,,1
with σ = sc, pc and ϖ = sc, pc. Then, we can replace directly this expressions on (3.9) and (3.10).

A.2. Derivative of the flux respect of ρ ′ dcs . We have

∂ ∂ρ ′ dcs,-1 F ε,n σ,i+1/2 = 4 ℓ=1 λ ℓ ∂F σ,ℓ,i+1/2 ∂M σ,-1,ℓ ∂M σ,i-1,ℓ ∂ρ ′ dcs,0 ∂ ∂ρ ′ dcs,0 F ε,n σ,i+1/2 = 4 ℓ=1 λ ℓ ∂F σ,ℓ,i+1/2 ∂M σ,-1,ℓ ∂M σ,i-1,ℓ ∂ρ ′ dcs,,1 + ∂F σ,ℓ,i+1/2 ∂M σ,0,ℓ ∂M σ,i,ℓ ∂ρ ′ dcs,,0 ∂ ∂ρ ′ dcsi,1 F ε,n σ,i+1/2 = 4 ℓ=1 λ ℓ ∂F σ,ℓ,i+1/2 ∂M σ,0,ℓ ∂M σ,i,ℓ ∂ρ ′ dcs,,1 + ∂F σ,ℓ,i+1/2 ∂M σ,1,ℓ ∂M σ,i+1,ℓ ∂ρ ′ dcs,,0 ∂ ∂ρ ′ dcs,2 F ε,n σ,i+1/2 = 4 ℓ=1 λ ℓ ∂F σ,ℓ,i+1/2 ∂M σ,1,ℓ ∂M σ,i+1,ℓ ∂ρ ′ dcs,,1
for σ = sc, pc. Then, we can replace these derivatives of the flux directly on (3.13).

To calculate these derivatives it is necessary to specify the calculation of the derivative of the flux with respect to the Maxwellian ones, as well as the derivatives of the Maxwellian ones with respect to the distribution of cells. Below we detail these two levels of derivatives.

A.3. Derivative of the flux respect of the maxwellian distrubutions. For ℓ = 1, 2 we consider a second order limiter flux with Lax-Wendroff scheme, that is

λ 1 F 1 (M -1 , M 0 , M 1 ) = λF 1 (M -1 , M 0 , M 1 ) = λM 0 + λ 2 φ(M -1 , M 0 , M 1 ) 1 -λ δt δz (M 1 -M 0 ) λ 2 F 2 (M -1 , M 0 , M 1 ) = -λF 2 (M -1 , M 0 , M 1 ) = -λM 1 + λ 2 φ(M -1 , M 0 , M 1 ) 1 -λ δt δz (M 1 -M 0 ).
On the other hand, the flux for ℓ = 3, 4 are given by monotone 5-points schemes such that F 3 (M -1 , M 0 , M 1 ) = F 4 (M 1 , M 0 , M -1 )), and taking the sample particular case of [?], we have:

F 1 (M -1 , M 0 , M 1 ) = M 0 + 1 2 φ(M -1 , M 0 , M 1 ) 1 -λ δt δz (M 1 -M 0 ) F 2 (M -1 , M 0 , M 1 ) = M 1 - 1 2 φ(M -1 , M 0 , M 1 ) 1 -λ δt δz (M 1 -M 0 ) F 3 (M -1 , M 0 , M 1 ) = M 0 + b 0 (M 1 -M 0 ) F 4 (M -1 , M 0 , M 1 ) = M 1 -b 0 (M 1 -M 0 )
From here the partial derivative rules that interest us are given by 

∂ ∂M -1 F 1 (M -1 , M 0 , M 1 ) = S ∂ ∂M -1 w(M -1 , M 0 , M 1 ) ∂ ∂M -1 F 2 (M -1 , M 0 , M 1 ) = -S ∂ ∂M -1 w(M -1 , M 0 , M 1 ) ∂ ∂M -1 F 3 (M -1 , M 0 , M 1 ) = ∂ ∂M -1 F 4 (M -1 , M 0 , M 1 ) = 0 ∂ ∂M 0 F 1 (M -1 , M 0 , M 1 ) = 1 -M + S ∂ ∂M 0 w(M -1 , M 0 , M 1 ) ∂ ∂M 0 F 2 (M -1 , M 0 , M 1 ) = M -S ∂ ∂M 0 w(M -1 , M 0 , M 1 ) ∂ ∂M 1 F 1 (M -1 , M 0 , M 1 ) = M + S ∂ ∂M 1 w(M -1 , M 0 , M 1 ) ∂ ∂M 1 F 2 (M -1 , M 0 , M 1 ) = 1 -M -S ∂ ∂M 1 w(M -1 , M 0 , M 1 ) ∂ ∂M 0 F 3 (M -1 , M 0 , M 1 ) = ∂ ∂M 1 F 4 (M -1 , M 0 , M 1 ) = 1 -b 0 ∂ ∂M 1 F 3 (M -1 , M 0 , M 1 ) = ∂ ∂M 0 F 4 (M -1 , M 0 , M 1 ) = b 0 .
= M 0 -M -1 M 1 -M 0 ∂w ∂M -1 = - 1 M 1 -M 0 , ∂w ∂M 0 = M 1 -M -1 (M 1 -M 0 ) 2 , ∂w ∂M 1 = - M 0 -M -1 (M 1 -M 0 ) 2 A.
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Figure 1 .

 1 Figure 1. Generic regulation function and its derivative, with K = 12, κ = 5.

Figure 2 .

 2 Figure 2. Graph of the geometric curvature function and its derivative, with z max = 200, r 0 = 10, ε = 1.

Figure 3 .

 3 Figure 3. Cost function J(ρ sc , ρ pc ) = 1 2 zmax

Figure 4 .

 4 Figure 4. Evolution of cell population: Simulation of the interaction SC-PC with the presence of a smooth form for the distribution of DCS v/s simulation with lacking of DCS. Testing of the inverse problem: starting from the case with lacking of DCS, reconstruct their shape, using the numerical simulation of the case with DCS as a reference (observation) for the objective function.

2 zmax 0 ρ

 20 function of matlab[6]. This smoothed function can be seen in figure4(yellow graph). Based on this, a cost function is obtained with a single, clearly defined minimum, locally convex, and sufficiently sensitive to data perturbation. It should be noted that the sum of two functionals 1 obs sc (z) -ρ sc (z, T )

1 -

 1 M 0 )φ ′ • w(M -1 , M 0 , M 1 ) w) 2 Heaviside(w),and because w

4 .

 4 Derivative of the deep crypt secretory respect of his parameters. The deep crypt secretory (dcs) probability density is given by[START_REF] Darrigade | A PDMP model of the epithelial cell turn-over in the intestinal crypt including microbiota-derived regulations[END_REF]:ρ dcs (z) = (d(z -z d ) + 1)1 [z d -1/d,z d ] (z) + 1 ]z d ,zu[ (z) + (1 + u(z -z u ))1 [zu,zu-1/u] (z) where 1[a, b](z) = H(x -a) -H(x -b) is the characteristic function for the interval [a, b].Thus, the derivative of ρ dcs respect of his parameters are given by:∂ ∂d ρ dcs = (z -z d )1 [z d -1/d,z d ] (z) ∂ ∂z d ρ dcs = -d1 [z d -1/d,z d ] (z) ∂ ∂u ρ dcs = (z -z u )1 [zu,zu-1/u] (z) ∂ ∂z u ρ dcs = -u1 [z d -1/d,z d ] (z)In the derivative of the cost function we need also to compute the derivative of ρ ′ dcs respect of the same parameters, which are:-z d -1/d) + 1 [z d -1/d,z d ] (z) ∂ ∂z d ρ dcs = -d(δ(z -z d -1/d) -δ(z -z d )) ∂ ∂u ρ dcs = -1 u δ(z -z u -1/u) + 1 [zu-1/u,zu] (z) ∂ ∂z u ρ dcs = -u(δ(z -z u ) -δ(z -z u -1/u))
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