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STUDY OF THE NUMERICAL METHOD FOR AN INVERSE

PROBLEM OF A SIMPLIFIED INTESTINAL CRYPT.

MARIE HAGHEBAERT, BEATRICE LAROCHE,

AND MAURICIO A. SEPÚLVEDA CORTÉS

Abstract. In this work we consider the study of an inverse problem for an

intestinal crypt model. The original model is based on the interaction of ep-

ithelial cells with microbiota-derived chemicals diffusing in the crypt from the
gut lumen. The 5 types of cells considered in the original model [3] were re-

duced in this work to 3 types of cells for simplifications of the inverse problem.
The inverse problem consists of determining the shape of the secretory cells

of the deep crypt from observations of the stem cells and progenitor cells at

a fixed time. The method used is the calculation of the adjoint state asso-
ciated with the second-order BGK numerical scheme considered in [3], which

allows calculating the critical points of the Lagrangian associated with the in-

verse problem, and applying a gradient method in order to minimize the cost
function. The algorithm is described, and some numerical examples are given.

1. The simplified intestinal crypt model

1.1. The stem-progenitor interaction model. We consider a model of ep-
ithelial cells interacting with the microbiota-derived chemicals diffusing in the
crypt from the gut lumen. The original model, derived from an individual-based
PDMP model (piecewise deterministic Markov process model, see [3]) treats 5 well-
differentiated cell types: stem cells (SC); progenitor cells (PC); enterocytes (ENT);
globet cells (GC); and deep crypt secretory cells (DCS). For a simplification of the
original model in the process of studying the inverse problem, we will consider at
first, only the SC, PC and DCS cells. We set ρtot = ρsc + ρdcs + ρpc and solve
equations on ρsc and ρpc, with ρdcs = ρdcs(z) independent of t. In this reduced
model the system of equations is given by:
(1.1)

∂tρsc −W∂z (ϕ(z)ρsc∂zρtot) = H1(z, ρdcs, ρsc, ρpc), 0 < z < zmax, t > 0,

ρsc(t, 0) = ρbotsc , ∂zρsc(t, zmax) = 0, t > 0,

ρsc(x, 0) = ρinitsc (x), 0 < z < zmax,
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whereH1(z, ρdcs, ρsc, ρpc) = [qsc(1−Rn(z))(1−Rsc(Dρtot))− qdiffRn(z)] ρsc with

Rn(z) = R(z, Zniche, κniche)

Rsc(ϱ) = R(ϱ,Ksc, κdens)

(1.2)
∂tρpc −W∂z (ϕ(z)ρpc∂zρtot) = H2(z, ρdcs, ρsc, ρpc), 0 < z < zmax, t > 0,

ρpc(t, 0) = 0, ∂zρpc(t, zmax) = 0, t > 0,

ρpc(x, 0) = ρinitpc (x), 0 < z < zmax.

whereH2(z, ρdcs, ρsc, ρpc) = [qpc(1−Rt(z))(1−Rpc(Dρtot))− qexRe(z)Rpc(Dρtot)] ρpc+
qdiffRn(z)ρsc with

Rt(z) = R(z, Ztiers, κtiers),

Re(z) = R(z, Zex, κex),

Rpc(ϱ) = R(ϱ,Kpc, κdens).

We use a generic regulation function R(y,K, κ) for y ≥ 0, K ≥ 0 and κ ≥ 0 that
model the regulation of cell fate event according to variable y. The function R is a
piecewise polynomial function in C1(0, zmax) defined as :

R(y,K, κ) =


0 if y ≥ K − κ,
−y3 + 3Ky2 − (3K2 − 3κ2)y + (K3 + 2κ3 − 3Kκ2)

4κ3
if K − κ < y < K + κ,

1 if K + κ ≥ y.

Additionally ϕ ∈ C1(0, zmax), such that ϕ(0) = ϕ(zmax) = 0, ϕ(z) = 1 in [r0 −

Figure 1. Generic regulation function and its derivative, with
K = 12, κ = 5.

ε, zmax − r0 + ε], and ϕ(z) ≥ 0, represents a corrective function taking into account
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the impact of curvature on mechanical forces modelling by [3]:

ϕ(z) =


√

(ε+z) (2 r0−ε−z)−
√

ε (2 r0−ε)

r0−
√

ε (2 r0−ε)
if z ≤ r0 − ε

1 if r0 − ε < z < zmax − r0 + ε
2 r0−

√
ε (2 r0−ε)

r0
− 2 r0−

√
(ε−z+zmax) (2 r0−ε+z−zmax)

r0−
√

ε (2 r0−ε)
if z ≥ zmax − r0 + ε

The system (1.1)-(1.2) can be rewritten as

Figure 2. Graph of the geometric curvature function and its de-
rivative, with zmax = 200, r0 = 10, ε = 1.

(1.3)



∂tρsc + ∂zAsc = ∂zzB(ρsc) +H1, 0 < z < zmax, t > 0,

∂tρpc + ∂zApc = ∂zzB(ρpc) +H2, 0 < z < zmax, t > 0,

ρsc(t, 0) = ρbotsc , ρpc(t, 0) = 0, t > 0,

∂zρsc(t, zmax) = ∂zρpc(t, zmax) = 0, t > 0,

ρsc(x, 0) = ρinitsc (x), ρpc(x, 0) = ρinitpc (x), 0 < z < zmax.

whose semiconservative structure (conservative in its convective and diffusive terms
but with nonlinear source terms), allows us to consider a relaxation scheme as in
[1]. The system (1.3) is equivalent to (1.1)-(1.2), through the relations:

Asc = A(z, ρ′dcs, ∂zρpc, ρsc)

Apc = A(z, ρ′dcs, ∂zρsc, ρpc)

A(z, ξ, η, ρ) = −W
[
ϕ(ξ + η)ρ− ϕ′ρ2/2)

]
,

B(ρ) = B(z, ρ) = Wϕρ2/2.

When H1 and H2 does not depend on ρpc, ρsc and

H1, H2 ∈ L∞((0, zmax × (0, T )),

the problem (1.3) is well posed and there is a unique entropy solution in L∞((0, zmax×
(0, T )) such that B(ρ) ∈ L2(0, T ;H1(0, zmax)) (see for example [2, 5]). On the other
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hand, the weak solution of the system (1.3) verifies

E(ρsc, ρpc, wsc, wpc; ρdcs) = 0, for all wsc, wpc

with wsc, wpc smooth test functions on [0, T ] × [0, zmax], such that for all t,
wpc(t, 0) = wpc(t, zmax) = 0 and wsc(t, 0) = wsc(t, zmax) = 0 and

E(ρsc, ρpc, wsc, wpc; ρdcs) :=∫ T

0

∫ zmax

0

[ρsc∂twsc +Asc∂zwsc +B(ρsc)∂zzwsc +H1wsc] dz dt

+

∫ T

0

∫ zmax

0

[ρpc∂twpc +Apc∂zwpc +B(ρpc)∂zzwpc +H2wpc] dz dt

−
∫ zmax

0

ρsc(z, T )wsc(z, T ) dz +

∫ zmax

0

ρinitsc (z)wsc(z, 0) dz

−
∫ zmax

0

ρpc(z, T )wpc(z, T ) dz +

∫ zmax

0

ρinitpc (z)wpc(z, 0) dz(1.4)

2. Inverse Problem.

2.1. The problem of identifying the function ρdcs(z).

1) Given ρobssc (z, T ) and ρobspc (z, T ) (experimental, observed or measured data),

find ρdcs ∈ C(0, zmax)∩L∞(0, zmax), such that ρsc(z, T ) ≈ ρobssc (z, T ) and ρpc(z, T ) ≈
ρobspc (z, T ).

Equivalently, assuming a parametrization of the ρdcs density by a vector θ of N
real parameters

ρdcs(z) = ρ̄dcs(z, θ)

the identification problem is expressed as
2) Given ρobssc (z, T ) and ρobspc (z, T ) (experimental, observed or measured data),

find θ ∈ A ⊂ RN , such that ρsc(z, T ) ≈ ρobssc (z, T ) and ρpc(z, T ) ≈ ρobspc (z, T ).

We define the cost function, with α, β > 0, as

J(ρsc, ρpc) :=
α

2

∫ zmax

0

|ρsc(z, T )− ρobssc (z, T )|2dz(2.1)

+
β

2

∫ zmax

0

|ρpc(z, T )− ρobspc (z, T )|2dz

The inverse problem consists of{
find θ ∈ A, such that

J({ρsc, ρpc} (θ̄)) = min
θ∈A

J(ρsc, ρpc)

We define the Lagrangian

(2.2) L(ρsc, ρpc, wsc, wpc; ρdcs) := J(ρsc, ρpc) + E(ρsc, ρpc, wsc, wpc; ρdcs)

The derivative of L respect of ρsc and ρpc in the directions δρsc and δρpc, re-
spectively are given by
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〈
∂L
∂ρsc

, δρsc

〉
= α

∫ zmax

0

(ρsc(z, T )− ρobssc (z, T ))δρsc(z, T )dz

+

〈
∂E

∂ρsc
, δρsc

〉
= 0(2.3) 〈

∂L
∂ρpc

, δρpc

〉
= β

∫ zmax

0

(ρpc(z, T )− ρobspc (z, T ))δρpc(z, T )dz

+

〈
∂E

∂ρpc
, δρpc

〉
= 0(2.4)

Derivating (1.4) respect of ρsc and ρpc and replacing in (2.3)-(2.4), allows us to
establish the adjoint problem given by:



∂twsc +
∂A

∂ρ
(z, ρ′dcs, ∂ρpc, ρsc)∂zwsc − ∂z

[(
∂A

∂η
(z, ρ′dcs, ∂ρsc, ρpc)

)
∂zwpc

]
=

∂B

∂ρ
(ρsc)∂zzwsc +

∂H1

∂ρsc
wsc +

∂H2

∂ρsc
wpc,

wsc(zmax, t) = wsc(0, t) = 0,

wsc(z, T ) = α(ρsc(z, T )− ρobssc (z, T ))

∂twpc +
∂A

∂ρ
(z, ρ′dcs, ∂ρsc, ρpc)∂zwpc − ∂z

[(
∂A

∂η
(z, ρ′dcs, ∂ρpc, ρsc)

)
∂zwsc

]
=

∂B

∂ρ
(ρpc)∂zzwpc +

∂H1

∂ρpc
wsc +

∂H2

∂ρpc
wpc,

wpc(zmax, t) = wpc(0, t) = 0,

wpc(z, T ) = β(ρpc(z, T )− ρobspc (z, T ))

We suppose that ρdcs = ρdcs(θ) is of class C1 with respect to θ, the finite set of
parameters to identify, and we suppose that ρ′dcs = ρ′dcs(θ) is also of class C1 with
respect to θ. The derivative of the cost function with respect of θi is given by

∂J

∂θi
=

∂L
∂θi

+

〈
∂L
∂ρsc

,
∂ρsc
∂θi

〉
+

〈
∂L
∂ρpc

,
∂ρpc
∂θi

〉
=

∂

∂θi
[E(ρsc, ρpc, wsc, wpc; ρdcs)]

=

〈
∂E

∂ρdcs
,
∂ρdcs
∂θi

〉
+

〈
∂E

∂ρ′dcs
,
∂ρ′dcs
∂θi

〉
= −

∫ T

0

∫ zmax

0

Wϕ(z)(ρsc∂zwsc + ρpc∂zwpc)
∂ρ′dcs
∂θi

dz dt

+

∫ T

0

∫ zmax

0

(
∂H1

∂ρdcs

∂ρdcs
∂θi

wsc +
∂H2

∂ρdcs

∂ρdcs
∂θi

w

)
dz dt

= −
∫ T

0

∫ zmax

0

Wϕ(z)(ρsc∂zwsc + ρpc∂zwpc)
∂ρ′dcs
∂θi

dz dt

−
∫ T

0

∫ zmax

0

Dqsc(1−Rn)R
′
scρscwsc

∂ρdcs
∂θi

dz dt

−
∫ T

0

∫ zmax

0

D [qpcRt + qe(1−Re)]R
′
pcρpcwpc

∂ρdcs
∂θi

dz dt
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This calculation is formal, and the derivative of the cost function is not guaranteed.
However, it establishes a necessary condition criterion of optimality:∫ T

0

∫ zmax

0

W∂z [ϕ(z)(ρsc∂zwsc + ρpc∂zwpc)] δρdcs dz dt

−
∫ T

0

∫ zmax

0

Dqsc(1−Rn)R
′
scρscwscδρdcs dz dt

−
∫ T

0

∫ zmax

0

D [qpcRt + qe(1−Re)]R
′
pcρpcwpcδρdcs dz dt ⩾ 0, for all δρdcs.

2.2. Example of ρdcs shapes and δρdcs directions :

(1) Trapezoidal shape. Let
(2.5)
ρtrapz(z) = (d(z−zd)+1)1[zd−1/d,zd](z)+1]zd,zu[(z)+(1+u(z−zu))1[zu,zu−1/u](z),

with its derivative

ρ′trapz(z) = d1[zd−1/d,zd](z) + u1[zu,zu−1/u](z),

where 1[a, b](z) = H(x−a)−H(x− b) is the characteristic function for the
interval [a, b]. We consider the renormalization:

ρdcs =
Ndcs∫ zmax

0
ρtrapz(z) dz

ρtrapz(z), ρ′dcs =
Ndcs∫ zmax

0
ρtrapz(z) dz

ρ′trapz(z)

TakingNdcs ∈ R+, and (d, u, zd, zu) ∈ A := {0 < 1
d ⩽ zd ⩽ zu ⩽ zmax− 1

u <
zmax}. We deduce

∂

∂d
ρtrapz = (z − zd)1[zd−1/d,zd](z)

∂

∂zd
ρtrapz = −d1[zd−1/d,zd](z)

∂

∂u
ρtrapz = (z − zu)1[zu,zu−1/u](z)

∂

∂zu
ρtrapz = −u1[zu,zu−1/u](z)

∂

∂d
ρ′trapz = 1[zd−1/d,zd](z)− (1/d)δ(z − zd + 1/d),

∂

∂u
ρ′trapz = 1[zu,zu−1/u](z) + (1/u)δ(z − zu + 1/u),

∂

∂zd
ρ′trapz = −d (δ(z − zd + 1/d)− δ(z − zd))

∂

∂zu
ρ′trapz = −u (δ(z − zu)− δ(z − zu + 1/u))

and then

∂ρdcs
∂Ndcs

=
ρtrapz∫ zmax

0
ρtrapz dz

,
∂ρ′dcs
∂Ndcs

=
ρ′trapz∫ zmax

0
ρtrapz dz

∂ρdcs
∂θi

= Ndcs

(
1− ρtrapz(∫ zmax

0
ρtrapz dz

)2
)

∂ρtrapz
∂θi

,
∂ρ′dcs
∂θi

= Ndcs

∂ρ′trapz
∂θi

−
Ndcsρtrapz

∂ρtrapz
∂θi(∫ zmax

0
ρtrapz dz

)2
for i = 2, . . . , 5, θ1 = Ndcs, θ2 = d, θ3 = u, θ4 = zd and θ5 = zu.
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(2) Smoothing of the trapezoidal shape.
We can take ρεdcs = ϱε ⋆ ρdcs a smooth approximation of the trapezoidal

shape via convolution with mollifiers. In this case, the derivatives are ap-
plied with practically the same formulas as in the previous case, thanks to
the commutativity properties of the derivative with the convolution prod-
uct.

(3) Simplification of the parameters.
In order to simplify the number of parameters limiting them to 3, and

considering those that play a role in the main modifications of the shape of
the DCS population distribution, namely: height, width and center of the
distribution, let us assume a predetermined shape ρ0dcs(z), which can be,
for example, the trapezoidal shape (ρtrapz) or smooth form (ρεdcs) described
above. We define the DCS population distribution as

ρNLz0(z) := ρdcs(z;N,L, z0) = Nρ0dcs(Lz + z0) = Nρ0dcs(y).

with it derivative ρ′NLz0
(z) = NL{ρ0dcs}′(y), where y = Lz + z0. For

example, taking the trapezoidal shape ρ0dcs = ρtrapz given by (2.5), we
obtain:

∂

∂N
ρNLz0(z) = ρtrapz(y),

∂

∂N
ρ′NLz0(z) = Lρ′trapz(y)

∂

∂z0
ρNLz0(z) = Nρ′trapz(y),

∂

∂z0
ρ′NLz0(z) = NLρ′′trapz(y)

∂

∂L
ρNLz0(z) = Nzρ′trapz(y),

∂

∂L
ρ′NLz0(z) = Nρ′trapz(y) +NLzρ′′trapz(y)

where

ρtrapz(y) is given by (2.5) with y = Lz + z0

ρ′trapz(y) = ρ′trapz(y(z)) = d1[z1,z2](z) + u1[z3,z4](z)

ρ′′trapz(y) = ρ′′trapz(y(z)) = d (δz1 − δz2) + u (δz3 − δz4)

with z1 =
zd − z0

L
− 1

Ld
, z2 =

zd − z0
L

, z3 =
zu − z0

L
and z4 =

zu − z0
L

− 1

Lu
.
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For instance

∂J

∂L
= −WN

∫ T

0

[
d

∫ z2

z1

ϕ(z)(ρsc∂zwsc + ρpc∂zwpc) dz

+u

∫ z4

z3

ϕ(z)(ρsc∂zwsc + ρpc∂zwpc) dz

]
dt

−WNL

[
dz1ϕ(z1)

∫ T

0

(ρsc∂zwsc + ρpc∂zwpc)
∣∣∣
z=z1

dt

−dz2ϕ(z2)

∫ T

0

(ρsc∂zwsc + ρpc∂zwpc)
∣∣∣
z=z2

dt

+uz3ϕ(z3)

∫ T

0

(ρsc∂zwsc + ρpc∂zwpc)
∣∣∣
z=z3

dt

−uz4ϕ(z4)

∫ T

0

(ρsc∂zwsc + ρpc∂zwpc)
∣∣∣
z=z4

dt

]

−DNqsc

∫ T

0

(
d

∫ z2

z1

z(1−Rn)R
′
scρscwsc dz

+u

∫ z4

z3

z(1−Rn)R
′
scρscwsc dz

)
dt

−DN

∫ T

0

(
d

∫ z2

z1

z [qpcRt + qe(1−Re)]R
′
pcρpcwpc dz

+u

∫ z4

z3

z [qpcRt + qe(1−Re)]R
′
pcρpcwpc dz

)
dt

3. Numerical approximation.

3.1. BGK schemes for the direct problem. Based on the explicit diffusive
kinetic schemes introduced by [1], we obtain a general 5-points scheme in a conser-
vative form described in details in [4]:

δz(ρε,n+1
sc,i − ρε,nsc,i) + δt(Fε,n

sc,i+1/2 −Fε,n
sc,i−1/2) = δtδzH1(z, ρdcs, ρ

ε,n
sc,i, ρ

ε,n
pc,i)(3.1)

ρ0sc,i = ρinitsc,i ,(3.2)

δz(ρε,n+1
pc,i − ρε,npc,i) + δt(Fε,n

pc,i+1/2 −Fε,n
pc,i−1/2) = δtδzH2(z, ρdcs, ρ

ε,n
sc,i, ρ

ε,n
pc,i),(3.3)

ρ0pc,i = ρinitpc,i ,(3.4)

where

Fε,n
sc,i+1/2 =

4∑
ℓ=1

λℓFℓ(
scMε,n

i−1,ℓ,
scMε,n

i,ℓ ,
scMε,n

i+1,ℓ)

Fε,n
pc,i+1/2 =

4∑
ℓ=1

λℓFℓ(
pcMε,n

i−1,ℓ,
pcMε,n

i,ℓ ,
pcMε,n

i+1,ℓ)



STUDY OF THE NUMERICAL METHOD FOR AN INVERSE PROBLEM OF A SIMPLIFIED INTESTINAL CRYPT.9

with λ1 = λ, λ2 = −λ, λ3 = λ+
θ√
ε
, λ4 = −λ− θ√

ε
,

F1,2(Mi−1,Mi,Mi+1) = FL(Mi,Mi+1)

+φSuperbee(Mi−1,Mi,Mi+1)
(
FH(Mi,Mi+1)− FL(Mi,Mi+1)

)
F3(Mi−1,Mi,Mi+1) = F3(Mi,Mi+1) = Mi + b0(Mi+1 −Mi)

F4(Mi−1,Mi,Mi+1) = F4(Mi,Mi+1) = Mi+1 + b0(Mi −Mi+1)

and

scMε,n
i,1 =

1

2λ

(
λ(ρnsc,i −

B(iδz, ρnsc,i)

θ2
) +Asc

i+ 1
2

)
scMε,n

i,2 =
1

2λ

(
λ(ρnsc,i −

B(iδz, ρnsc,i)

θ2
)−Asc

i+ 1
2

)
scMε,n

i,3 = scMε,n
i,4 =

B(iδz, ρnsc,i)

2θ2

pcMε,n
i,1 =

1

2λ

(
λ(ρnpc,i −

B(iδz, ρnpc,i)

θ2
) +Apc

i+ 1
2

)
pcMε,n

i,2 =
1

2λ

(
λ(ρnpc,i −

B(iδz, ρnpc,i)

θ2
)−Apc

i+ 1
2

)
pcMε,n

i,3 = pcMε,n
i,4 =

B(iδz, ρnpc,i)

2θ2
.

where

Ai+ 1
2
= V +

i+ 1
2

ρi + V −
i+ 1

2

ρi+1 +W(ϕ′
i+ 1

2
)+ρ2i /2 +W(ϕ′

i+ 1
2
)−ρ2i+1/2

with v+ = max(v, 0), and v− = min(v, 0), ϕ′
i+ 1

2

= ϕ′(iδz)+ϕ′((i+1)δz)
2 , and

V sc
i+ 1

2
= −W

[
(ϕρ′dcs)i+ 1

2
+ ϕi+ 1

2
D+ρpc,i

]
V pc

i+ 1
2

= −W
[
(ϕρ′dcs)i+ 1

2
+ ϕi+ 1

2
D+ρsc,i

]
with D+ρi =

ρi+1 − ρi
δz

. Additionally, the parameter λ and θ are chosen as

θ =

√
max{B′(ρl)}

α− 1
+ δ, λ = max

{
∂

∂ρl
Al

i+ 1
2

}
+ δ

l = sc, pc. Replicating these formulas independently for both ρ and ρsc, thus
obtaining the parameter pairs (θ, λ) and (θsc = δ, λsc), respectively, and the CFL
condition

(3.5) δt ⩽ min

{
δz2

2θ2
,
δz

λsc
,
δz

λpc

}
3.2. Adjoint scheme associate to BGK scheme. Let ρsc,δ = (ρnsc,i)i,n, ρpc,δ =
(ρnpc,i)i,n Multiplying (3.1)-(3.4) by wn

sc,i, w
n
pc,i, and summing by parts, we obtain

Eδ(ρsc,δ, ρpc,δ, wsc,δ, wpc,δ; ρdcs) = 0, for all wsc,δ, wpc,δ

with

Eδ(ρsc,δ, ρpc,δ, wsc,δ, wpc,δ; ρdcs) = E1,δ(ρsc,δ, ρpc,δ, wsc,δ; ρdcs)+E2,δ(ρsc,δ, ρpc,δ, wpc,δ; ρdcs)
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where

E1,δ(ρsc,δ, ρpc,δ, wsc,δ; ρdcs) :=

(3.6)

N∑
n=1

⌊ zmax
δz ⌋−1∑
i=1

[
ρε,nsc,i

(
wn

sc,i − wn−1
sc,i

)
δz + Fε,n

sc,i+1/2

(
wn

sc,i+1 − wn
sc,i

)
δt+Hn

1,iw
n
sc,iδzδt

]

−
⌊ zmax

δz ⌋−1∑
i=1

(ρNsc,iw
N
sc,i − ρinitsc,iw

0
sc,i)δz

E2,δ(ρsc,δ, ρpc,δ, wpc,δ; ρdcs) :=

(3.7)

N∑
n=1

⌊ zmax
δz ⌋−1∑
i=1

[
ρε,npc,i

(
wn

pc,i − wn−1
pc,i

)
δz + Fε,n

pc,i+1/2

(
wn

pc,i+1 − wn
pc,i

)
δt+Hn

2,iw
n
pc,iδzδt

]

−
⌊ zmax

δz ⌋−1∑
i=1

(ρNpc,iw
N
pc,i − ρinitpc,iw

0
pc,i)δz

3.3. Discrete inverse problem. The discrete cost function is given by

(3.8) Jδ(ρδ, ρsc,δ) :=
α

2

⌊ zmax
δz ⌋−1∑
i=1

|ρNsc,i − ρobssc,i|2δz +
β

2

⌊ zmax
δz ⌋−1∑
i=1

|ρNpc,i − ρobspc,i|2δz

Thus derivating of the discrete Lagrangian

Lδ(ρsc,δ, ρpc,δ, wsc,δ, wpc,δ; ρdcs) := Jδ(ρsc,δ, ρpc,δ)+Eδ(ρsc,δ, ρpc,δ, wsc,δ, wpc,δ; ρdcs)

with respect to ρnsc,i and ρnpc,i, we obtain the discrete adjoint scheme

wn−1
sc,i = wn

sc,i +
δt

δz

4∑
k=1

∂

∂ρsc,k−2

[
Fε,n

sc,i−k+5/2

] (
wn

sc,i−k+3 − wn
sc,i−k+2

)
+
δt

δz

4∑
k=1

∂

∂ρsc,k−2

[
Fε,n

pc,i−k+5/2

] (
wn

pc,i−k+3 − wn
pc,i−k+2

)
+δt

∂Hn
1,i

∂ρnsc,i
wn

sc,i + δt
∂Hn

2,i

∂ρnsc,i
wn

pc,i,(3.9)

wn−1
pc,i = wn

pc,i +
δt

δz

4∑
k=1

∂

∂ρpc,k−2

[
Fε,n

sc,i−k+5/2

] (
wn

sc,i−k+3 − wn
sc,i−k+2

)
+
δt

δz

4∑
k=1

∂

∂ρpc,k−2

[
Fε,n

pc,i−k+5/2

] (
wn

pc,i−k+3 − wn
pc,i−k+2

)
+δt

∂Hn
1,i

∂ρnpc,i
wn

sc,i + δt
∂Hn

2,i

∂ρnpc,i
wn

pc,i,(3.10)

wN−1
sc,i = α

(
ρNsc,i − ρobssc,i

)
(3.11)

wN−1
pc,i = β

(
ρNpc,i − ρobspc,i

)
(3.12)
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Because

〈
∂Mε,n

k,ℓ

∂ρ′dcs
, δρ′dcs

〉
= −Wϕk

2
ρnk , we deduce that the derivative of the discrete

cost function is given by:〈
∂Jδ
∂ρdcs

, δρdcs

〉
= δt

N∑
n=1

⌊ zmax
δz ⌋−1∑
i=1

4∑
k=1

∂

∂ρ′dcs,k−2

[
Fε,n

sc,i+1/2

] (
wn

sc,i+1 − wn
sc,i

)
+ δt

N∑
n=1

⌊ zmax
δz ⌋−1∑
i=1

4∑
k=1

∂

∂ρ′dcs,k−2

[
Fε,n

pc,i+1/2

] (
wn

pc,i+1 − wn
pc,i

)
+δtδz

N∑
n=1

⌊ zmax
δz ⌋−1∑
i=1

(
∂Hn

1,i

∂ρdcs
wn

sc,i +
∂Hn

2,i

∂ρdcs
wn

pc,i

)
,(3.13)

4. Numerical Examples

Figure 3. Cost function J(ρsc, ρpc) =
1

2

∫ zmax

0

∣∣∣ρobssc (z)− ρsc(z, T )
∣∣∣2 dz + 1

2

∫ zmax

0

∣∣∣ρobspc (z)− ρpc(z, T )
∣∣∣2 dz.

We make here a simulation for zmax = 200 and T = 20. We choose a reasonable
discretization withN = 250, which gives dz = zmax/(N−1) = 0.8032. Additionally,
the values proposed in [3] for the physical-biological parameters of the model are
considered, that is: W = 6.01/8, qSC = 0.15, Zniche = 12.0, kniche = 5.0, D =
12.07, KSC = 53, kdens = 6, qdiff = 0.2, qPC = 0.22, Ztiers = 40.0, ktiers = 40.0,
KPC = 41.0, qex = 0.34, Zex = 190.0, kex = 15.0. As for the geometric parameters
of the crypt, these are given by r0 = 10, ε0 = 0.1r0. Regarding the DCS cells, we
initially consider the same trapezoidal shape of [3], with the parameters d = 2.25,
u = −1/8 and 0 ⩽ NDCS ⩽ 20, 0 ⩽ zd = zu ⩽ 10.

Firstly, we experimentally confirmed that a trapezoidal shape for the DCS cells,
although they generate regular solutions, they do not behave regularly in the face of
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Figure 4. Evolution of cell population: Simulation of the interac-
tion SC-PC with the presence of a smooth form for the distribution
of DCS v/s simulation with lacking of DCS. Testing of the inverse
problem: starting from the case with lacking of DCS, reconstruct
their shape, using the numerical simulation of the case with DCS
as a reference (observation) for the objective function.

small variations in the parameters of said trapezoid. Although there is a continuity
of the solution with respect to these parameters, we observe through some numerical
tests that the cost function (2.1) and its approximation (3.8) contain oscillations
and therefore several local minima that are uncomfortable to minimize. Therefore
we choose to approximate the DCS cell distribution function by regularizing it
through convolution with molliifier functions.

On the other hand, since in this instance we do not have real experimental
observations, we consider a reference simulation with NDCS = 12 and zd = zu = 3
(chosen values of [3]) at which we will call observed data. We then start from a
simulation without DCS cells, that is, NDCS = 0 and zd = zu = 0, and we try
to reconstruct the shape of the DCS cells for the observed solution by solving the
inverse problem 2.1.2) and minimizing the cost function (3.8).

Additionally, the parameters δ = 10−5, α = 0.9 and b0 = 1 were chosen for
the description of the BGK scheme and the calculation of the values of λℓ and θ.
We consider a CFL condition (3.5) sufficiently strict that it covers all the range of
values that NDCS ∈ [0; 20] and zd = zu ∈ [0; 10] can take. This gives a value δt =
3.2257 · 10−5 for the set of physical, geometric and meshing parameters described
here.

Figure 3 shows the simulated cost function for various values of NDCS varying
from 0 to 20, and various values of zd = zu varying from 0 to 10. The trapezoid of
the DCS cell distribution function is smoothed using the smooth1DconvNE2xConv()
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Figure 5. Solutions of the adjoint scheme associated to the BGK
scheme of the cell distributions: wsc in a hot color map, and wpc+3
(in order to be able to visualize it differentiated from wsc) in a
slightly transparent ”parula” color map and above of the wsc

graph.

function of matlab [6]. This smoothed function can be seen in figure 4 (yellow
graph). Based on this, a cost function is obtained with a single, clearly defined
minimum, locally convex, and sufficiently sensitive to data perturbation. It should

be noted that the sum of two functionals
1

2

∫ zmax

0

∣∣ρobssc (z)− ρsc(z, T )
∣∣2 dz and

1

2

∫ zmax

0

∣∣ρobspc (z)− ρpc(z, T )
∣∣2 dz is being minimized in that each of them alone

does not have a locally convex shape as defined as the sum of both.

4.1. Inverse problem results. In Figure 4, the distribution of reference densities
(considered as ”observations”) for the stem cells (cyan color) and for the progen-
itor cells (red color) are plotted. Additionally, the distribution of smoothed DCS
cells is graphed (in yellow) that allows simulating such results, and corresponds to
the shape that is desired to be reconstructed through the method of solving the
inverse problem. Then, for comparison, the simulation of the distributions cor-
responding to the starting point for the resolution using gradient descent of the
minimization problem is graphed, this is simulation without the presence of DCS
cells (NDCS = zd = zu = 0) : stem cells (in purple) and progenitor cells (in light
green). Additionally and as a reference, the representative function of the geometry
of the crypt ϕ(z) is graphed.

We compute the adjoint state of the BGK numerical scheme, in order to obtain
the critical points of the Lagrangian (2.2). The numerical simulation of the adjoint
state (3.9)-(3.10) is graphed in Figure 5. In order to simultaneously display both
wsc and wpc in the same figure, the constant 3 is added to wpc to graph it in
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Identification indicators Values

Number of iterations 17

Evaluations of J(·) 72

J(ρIdentifsc , ρIdentifpc ) 2.62119e-13

(N Identif
DCS ; zIdentifd ) (12; 3)

N Identif
DCS −Nobs

DCS -3.8188e-06

zIdentifd − zobsd 4.6803e-07

∇J(ρIdentifsc , ρIdentifpc )T (-0.1863e-06; -0.4405e-06)

Hessian of J(ρIdentifsc , ρIdentifpc )

0.0741 0.1925

0.1925 0.6007


Table 1. Numerical result of the inverse problem test

a slightly transparent ”parula” color map , in contrast to the reddish map for
wsc. Like Lagange multipliers, these quantities are related to the derivatives of
the constraints (in this case the equations that characterize the BGK scheme), and
their stability is important for the calculation of the gradient. In this case we
observe a stability of the solution except in z = 0 where there is a singularity in its
neighborhood, and for a time t ⩽ t∗ with t∗ ≈ 12. This could become problematic
if we want to identify, for example, the boundary condition at the bottom of the
crypt (z = 0), which is surely an ill-posed problem.

In the Table 1 a summary of the identification of the parameters can be ob-
served. Indeed, based on a situation without DCS cells, we managed to rebuild
the parameters of the distribution of reference DCS cells in 17 gradient iterations

and 72 evaluations of the cost function, reaching the values N Identif
DCS = 12 and

zIdentifu = 3 with an error of less than 4 · 10−6.
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Annexes

Appendix A. Derivative of the flux for 5-points schemes

A.1. Derivative of the flux respect of ρsc and ρpc. We consider the descom-
position

Fε,n
σ,i+1/2 =

4∑
ℓ=1

λℓFσ,ℓ,i+1/2 =

4∑
ℓ=1

λℓFℓ(M
n
σ,i−1,ℓ,M

n
σ,i,ℓ,M

n
σ,i+1,ℓ)

for σ = sc, pc, with λ1 = λ, λ2 = −λ, λ3 = λ+
θ√
ε
, λ4 = −λ− θ√

ε
. In this sense,

we have

∂

∂ρϖ,−1

[
Fε,n

σ,i+3/2

]
=

4∑
ℓ=1

λℓ

∂Fσ,ℓ,i+3/2

∂Mσ,−1,ℓ

∂Mσ,i,ℓ

∂ρϖ,0

∂

∂ρϖ,0

[
Fε,n

σ,i+1/2

]
=

4∑
ℓ=1

λℓ

[
∂Fσ,ℓ,i+1/2

∂Mσ,−1,ℓ

∂Mσ,i−1,ℓ

∂ρϖ,,1
+

∂Fσ,ℓ,i+1/2

∂Mσ,0,ℓ

∂Mσ,i,ℓ

∂ρϖ,,0

]
∂

∂ρϖ,1

[
Fε,n

σ,i−1/2

]
=

4∑
ℓ=1

λℓ

[
∂Fσ,ℓ,i−1/2

∂Mσ,0,ℓ

∂Mσ,i−1,ℓ

∂ρϖ,,1
+

∂Fσ,ℓ,i−1/2

∂Mσ,1,ℓ

∂Mσ,i,ℓ

∂ρϖ,,0

]
∂

∂ρϖ,2

[
Fε,n

σ,i−3/2

]
=

4∑
ℓ=1

λℓ

∂Fσ,ℓ,i−3/2

∂Mσ,1,ℓ

∂Mσ,i−1,ℓ

∂ρϖ,,1

with σ = sc, pc and ϖ = sc, pc. Then, we can replace directly this expressions on
(3.9) and (3.10).

A.2. Derivative of the flux respect of ρ′dcs. We have

∂

∂ρ′dcs,−1

[
Fε,n

σ,i+1/2

]
=

4∑
ℓ=1

λℓ

∂Fσ,ℓ,i+1/2

∂Mσ,−1,ℓ

∂Mσ,i−1,ℓ

∂ρ′dcs,0

∂

∂ρ′dcs,0

[
Fε,n

σ,i+1/2

]
=

4∑
ℓ=1

λℓ

[
∂Fσ,ℓ,i+1/2

∂Mσ,−1,ℓ

∂Mσ,i−1,ℓ

∂ρ′dcs,,1
+

∂Fσ,ℓ,i+1/2

∂Mσ,0,ℓ

∂Mσ,i,ℓ

∂ρ′dcs,,0

]
∂

∂ρ′dcsi,1

[
Fε,n

σ,i+1/2

]
=

4∑
ℓ=1

λℓ

[
∂Fσ,ℓ,i+1/2

∂Mσ,0,ℓ

∂Mσ,i,ℓ

∂ρ′dcs,,1
+

∂Fσ,ℓ,i+1/2

∂Mσ,1,ℓ

∂Mσ,i+1,ℓ

∂ρ′dcs,,0

]
∂

∂ρ′dcs,2

[
Fε,n

σ,i+1/2

]
=

4∑
ℓ=1

λℓ

∂Fσ,ℓ,i+1/2

∂Mσ,1,ℓ

∂Mσ,i+1,ℓ

∂ρ′dcs,,1

for σ = sc, pc. Then, we can replace these derivatives of the flux directly on (3.13).
To calculate these derivatives it is necessary to specify the calculation of the

derivative of the flux with respect to the Maxwellian ones, as well as the derivatives
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of the Maxwellian ones with respect to the distribution of cells. Below we detail
these two levels of derivatives.

A.3. Derivative of the flux respect of the maxwellian distrubutions. For
ℓ = 1, 2 we consider a second order limiter flux with Lax-Wendroff scheme, that is

λ1F1(M−1,M0,M1) = λF1(M−1,M0,M1)

= λM0 +
λ

2
φ(M−1,M0,M1)

(
1− λ

δt

δz

)
(M1 −M0)

λ2F2(M−1,M0,M1) = −λF2(M−1,M0,M1)

= −λM1 +
λ

2
φ(M−1,M0,M1)

(
1− λ

δt

δz

)
(M1 −M0).

On the other hand, the flux for ℓ = 3, 4 are given by monotone 5-points schemes
such that F3(M−1,M0,M1) = F4(M1,M0,M−1)), and taking the sample particular
case of [?], we have:

F1(M−1,M0,M1) = M0 +
1

2
φ(M−1,M0,M1)

(
1− λ

δt

δz

)
(M1 −M0)

F2(M−1,M0,M1) = M1 −
1

2
φ(M−1,M0,M1)

(
1− λ

δt

δz

)
(M1 −M0)

F3(M−1,M0,M1) = M0 + b0(M1 −M0)

F4(M−1,M0,M1) = M1 − b0(M1 −M0)

From here the partial derivative rules that interest us are given by

∂

∂M−1
F1(M−1,M0,M1) = S ∂

∂M−1
w(M−1,M0,M1)

∂

∂M−1
F2(M−1,M0,M1) = −S ∂

∂M−1
w(M−1,M0,M1)

∂

∂M−1
F3(M−1,M0,M1) =

∂

∂M−1
F4(M−1,M0,M1) = 0

∂

∂M0
F1(M−1,M0,M1) = 1−M+ S ∂

∂M0
w(M−1,M0,M1)

∂

∂M0
F2(M−1,M0,M1) = M−S ∂

∂M0
w(M−1,M0,M1)

∂

∂M1
F1(M−1,M0,M1) = M+ S ∂

∂M1
w(M−1,M0,M1)

∂

∂M1
F2(M−1,M0,M1) = 1−M−S ∂

∂M1
w(M−1,M0,M1)

∂

∂M0
F3(M−1,M0,M1) =

∂

∂M1
F4(M−1,M0,M1) = 1− b0

∂

∂M1
F3(M−1,M0,M1) =

∂

∂M0
F4(M−1,M0,M1) = b0.
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where

S =
1

2

(
1− λ

δt

δz

)
(M1 −M0)φ

′ ◦ w(M−1,M0,M1)

M =
1

2

(
1− λ

δt

δz

)
φ ◦ w(M−1,M0,M1),

φ′
Superbee(w) =


2 if 0 ⩽ w < 1/2,

1 if 1 ⩽ w < 2,

0 otherwise

, φ′
V anLeer(w) =

2

(1 + w)2
Heaviside(w),

and because w =
M0 −M−1

M1 −M0

∂w

∂M−1
= − 1

M1 −M0
,

∂w

∂M0
=

M1 −M−1

(M1 −M0)2
,

∂w

∂M1
= − M0 −M−1

(M1 −M0)2

A.4. Derivative of the deep crypt secretory respect of his parameters.
The deep crypt secretory (dcs) probability density is given by [3]:

ρdcs(z) = (d(z − zd) + 1)1[zd−1/d,zd](z) + 1]zd,zu[(z) + (1 + u(z − zu))1[zu,zu−1/u](z)

where 1[a, b](z) = H(x−a)−H(x− b) is the characteristic function for the interval
[a, b]. Thus, the derivative of ρdcs respect of his parameters are given by:

∂

∂d
ρdcs = (z − zd)1[zd−1/d,zd](z)

∂

∂zd
ρdcs = −d1[zd−1/d,zd](z)

∂

∂u
ρdcs = (z − zu)1[zu,zu−1/u](z)

∂

∂zu
ρdcs = −u1[zd−1/d,zd](z)

In the derivative of the cost function we need also to compute the derivative of ρ′dcs
respect of the same parameters, which are:

∂

∂d
ρ′dcs =

1

d
δ(z − zd − 1/d) + 1[zd−1/d,zd](z)

∂

∂zd
ρdcs = −d(δ(z − zd − 1/d)− δ(z − zd))

∂

∂u
ρdcs = − 1

u
δ(z − zu − 1/u) + 1[zu−1/u,zu](z)

∂

∂zu
ρdcs = −u(δ(z − zu)− δ(z − zu − 1/u))
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