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Abstract

We examine the problem of natural resource exploitation when an exceptional

extraction of a resource (groundwater) is needed and devoted to a di�erent use than its

regular use. The study applies a two-stage Stackelberg game to examine the strategic

behavior of players who compete for water. The leader, with varying weights assigned

to the di�erent uses and environmental concern, is the manager of the new (nonregular)

resource use, who only intervenes in the second stage of the game. The follower is a

regular (agricultural) resource user. We examine the crucial resource of groundwater,

introducing two types of Stackelberg equilibria (open-loop and feedback) that can arise

depending on agents' commitment behavior. We compare the extraction behaviors of

the leader and the follower for the two equilibria and the e�ects on the �nal state of

the resource and agents' pro�ts. Unexpectedly, we demonstrate that situations can

occur in which noncommitment strategies could be more favorable than commitment

strategies in terms of the �nal aquifer stock and the regular user's pro�ts. To avoid

that noncommitment strategies are implemented in these circumstances, the weights

assigned by the leader to the di�erent uses will play an important role.
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1 Introduction

Natural resource management is an important issue and the sustainability of these re-

sources is a concern shared by political agents and citizens. Avoiding the depletion of

natural resources has led decision makers to implement di�erent exploitation strategies

with the common objective of achieving sustainable resource exploitation under manage-

ment. When natural resource management is shared by di�erent agents that compete for

its use, strategic behaviors of the agents arise. Although this situation can occur in the

management of di�erent natural resources, we focus on water, one of the most valuable

resources on the planet, and in particular, groundwater resources.

Groundwater depletion is a major challenge in which groundwater resources have an in-

creasingly important role, not only for irrigation (a regular use in the majority of aquifers),

but also for domestic, industrial, and recreational purposes. One circumstance that occurs

and illustrates the increased competition for groundwater resources is the need for excep-

tional extraction of groundwater for nonregular use such as the construction of a water

reserve, transfer between basins, and special needs for domestic or recreational water (e.g.,

irrigation of golf courses, swimming pools, water sport complexes, and other uses). In

this study, we examine a problem of groundwater resource exploitation, mainly used for a

unique purpose (e.g., irrigation), that exceptionally faces the entrance of a new use in the

system, which causes a problem of water scarcity for the regular user.

In this context, a benevolent water authority (e.g., a water agency) is needed to manage

how much groundwater could be extracted for the new (nonregular) use so that di�erent

resource users can simultaneously exploit and pro�t from the resource. Because of the ex-

ceptional groundwater needed for this new nonregular use, we consider that a benevolent

water authority that manages this new use over the regular use acts as the leader in a

Stackelberg game. Hence, we do not focus on the implementation of public policies that

facilitate socially optimal resource allocation since we consider the extraction of water for

nonagricultural use to be exceptional; therefore, the speci�c problem we examine does not

require public policy implementation. We concentrate on investigating and characterizing

a second-best equilibrium, through the resolution of a Stackelberg game between the water

agency (the leader) and the agricultural user (the follower). Speci�cally, we focus on the

comparison of two Stackelberg equilibrium concepts that correspond to di�erent agents'

commitment behavior, and analyze how the agents' di�ering behaviors when making de-

cisions regarding extraction concerning new (nonregular) use (the leader) and regular use

(the follower) a�ect the sustainability of the resource and the decision makers' pro�ts.
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Indeed, our study contrasts with previous literature that focuses on the centralized

management of aquifers and consequently seeks to identify the e�cient or Pareto solution

for the groundwater management problem. Groundwater quantity issues are primarily

addressed in the literature using optimal control theory (Koundouri et al. (2017) for a

review), and most studies examine di�erent types of uncertainties (Tsur and Zemel (2014)

for a review), particularly the problem of water scarcity (de Frutos Cachorro et al. (2014)).

In de Frutos Cachorro et al. (2014), water scarcity is considered through modeling an

exogenous shock to the groundwater resource (namely, a decrease in the recharge rate of

the aquifer) to analyze optimal extraction paths and the social costs of optimal adaptation

to the shock. In contrast to previous research, our approach importantly introduces the

strategic aspect in the behavior of the di�erent decision-makers and treats water scarcity

as an endogenous shock to the groundwater resource.

The extraction of any natural resource has three characteristics. First, the extraction

problem is intrinsically dynamic; second, strategic interdependencies exist when the ex-

traction decisions of one agent a�ect their pro�ts as well as the pro�ts of the other agents;

and third, strategic and forward-looking behavior, in the sense that the decision makers

consider the present and future consequences of their own actions and those of the other

agents. These three problem characteristics make it extremely suitable for modeling and

exploration as a dynamic game (Jørgensen et al. (2010)). In this context, the use of dy-

namic games has been largely justi�ed in the literature on water management to examine

problems in which the dynamic and strategic interactions that occur between decision

makers (i.e., the water agency and the regular user) are considered (Madani (2010) for

a review). Two main externalities could arise in this type of problem under decentral-

ized management, and consequently, noncooperative equilibria are generally ine�cient (in

terms of stock and/or welfare) with respect to cooperative solutions. First, a strategic

(or stock) externality emerges because of competition between the di�erent users for the

limited resource. Next, extraction by one user lowers the resource stock, resulting in in-

creased extraction cost for other users, which is a cost externality. Indeed, game theory

literature focuses on cooperative and/or noncooperative (Nash equilibrium) solutions for

irrigation users (Negri (1989) and Rubio and Casino (2001)) under water scarcity (de Fru-

tos Cachorro et al. (2019)) or more complex problems due to farmers' heterogeneity (Saleh

et al. (2011)), competition between uses (de Frutos Cachorro et al. (2021)), and spatial

characteristics such as multicell aquifers (e.g., Saak and Peterson (2007)), among others.

However, as explained in Kicsiny (2017), when water con�icts enter the problem, Stackel-

berg (or leader�follower) equilibria o�er a more realistic representation of the problem in
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practical cases in terms of previous classic Nash equilibria. As noted previously, in this

study, since the exceptional need of water for a nonregular use leads to a water con�ict be-

tween users, it is appropriate and interesting to consider that the di�erent agents compete

à la Stackelberg and play hierarchically. To investigate this speci�c situation, we formulate

our problem as a two-period discrete time game. The water agency is the leader and as

such makes extraction decisions regarding the new (nonregular) use in the �rst place and

exclusively in the second period of the game. Subsequently, the agent who makes deci-

sions about regular use (the follower in the Stackelberg game) makes resource extraction

decisions in the two periods depending on the leader's actions.

General Stackelberg dynamic games could be classi�ed according to their relevance

at theoretical and/or empirical levels. The books by Dockner et al. (2000) and Ba³ar

and Olsder (1999) are well-known references for Stackelberg dynamic games in continuous

or discrete time, respectively. Some studies o�er interesting �ndings from a theoretical

perspective, although their application to real cases is restricted (Nie (2005), Erdlenbruch

et al. (2014)). To the best of our knowledge, only a few previous articles focus on comparing

di�erent types of Stackelberg equilibria that correspond to agents' di�erent commitment

behaviors, particularly open-loop and feedback Stackelberg equilibria. This is extremely

important in practice since each equilibrium concept can be considered more realistic than

the other, depending on the information that is available to each player. Implementing

feedback strategies requires that the current stock of the aquifer can be observed by decision

agents. Therefore, in some settings open-loop strategies are more realistic if the stock

of water is unobservable or only observable with a delay. Furthermore, in the open-loop

equilibrium, the leader makes a commitment regarding extraction behavior and the follower

believes this commitment and chooses the resource extraction based on this belief. The

problem with Stackelberg open-loop equilibria is that they are generally inconsistent1 over

time and therefore less realistic. The feedback Stackelberg equilibrium does not have this

disadvantage. This equilibrium is consistent over time, and the players do not commit

to their extraction behavior over time, but make decisions depending on the stock of

the resource at the beginning of each period. In particular, Nie (2005) analyzes and

compares open-loop (commitment) and feedback (noncommitment) Stackelberg equilibria

for a general setting, concluding that feedback Stackelberg strategies are more e�cient

1The problem of temporal inconsistency is due to the fact that if the leader optimally decides to perform

a number of actions over several periods, and if other economic agents (in our case, the agent who decides

the regular use) believe in this commitment and choose their actions under this belief, then, at some period

in the future, the leader would want to deviate from this commitment (Kydland and Prescott (1977)).
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for the leader's objective than open-loop strategies. Most empirical studies use general

algorithms to determine approximate solutions to complex problems, primarily focusing

on a speci�c equilibrium type (Kicsiny et al. (2014) and Xu et al. (2019)).

In the literature combining Stackelberg problems, water scarcity, and competition be-

tween groundwater uses, Kicsiny et al. (2014) address the problem of a local authority

(the leader) who would manage the use of a water reserve for di�erent types of uses in a

given time period by �rst reserving a minimally guaranteed quantity for both uses, and by

subsequently assigning a proportion of the water reserve available for domestic use. The

follower (a representative agent of the farmers) then decides the proportion of the available

reserve left for irrigation after the leader's decision. However, Kicsiny et al. (2014), only

analyze the feedback Stackelberg solution, and in contrast to our study, the water con�ict

is continuous over time; therefore, the local authority �xes minimum and maximum quan-

tities for both uses at each period before making extraction decisions for nonagricultural

use. Moreover, a crucial di�erence between our study and Kicsiny et al. (2014) is that the

dynamics in our formulation are in the stock of the aquifer (renewable resource), whereas in

Kicsiny et al. (2014), the dynamics are in the available water; that is, the water remaining

from the total reserve (nonrenewable resource).

In this study, we examine whether noncommitment (feedback) and commitment (open-

loop) Stackelberg strategies could be more pro�table for the sustainability of the resource

(in terms of �nal aquifer stock level) and/or for the agents' pro�ts. To the best of our

knowledge, this study is novel in the sense that it proposes and compares di�erent Stack-

elberg equilibria for resource management in a context of competition between di�erent

groundwater uses.

Our paper also di�ers from previous literature in several ways. First, and most impor-

tantly, we are interested in modeling a speci�c situation that requires a water authority

(e.g., a water agency) to manage an exceptional extraction of water for nonregular use.

To do so, we construct a two-stage discrete problem in which the leader only intervenes

when necessary (in this case, in the second stage of game in which the nonregular water

use takes place), while in Nie (2005) and Kicsiny et al. (2014), a leader�follower approach

is applied at each step of the game in which both the leader and follower are active play-

ers at all stages. Our speci�c game depicts three external e�ects, the cost and strategic

e�ects in the second period, where both agents compete for the limited resource, and a

third intertemporal e�ect that arises because the follower's extraction in the �rst period

lowers the available stock for the second period, resulting in increased extraction cost for

the leader in the second period. Second, we assume that the leader (the water agency)
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is a benevolent entity that decides how much groundwater can be extracted for the new

(nonregular) use. For this purpose, the leader considers the pro�ts from the di�erent uses

(regular and nonregular uses) in the objective to avoid a water con�ict while also allow-

ing for the possibility of assigning di�erent weights to di�erent uses. Indeed, this kind of

objective that considers both users' pro�ts has already been introduced in the literature

regarding water con�icts between di�erent water uses (Maas et al. (2017)), considering

equal weights for the di�erent uses in the objective. Furthermore, the leader is environ-

mentally concerned, speci�cally about the sustainability of the natural resource; therefore,

the leader values the �nal stock of the aquifer in the objective function. In contrast, the

decision-agent who determines the regular use of the resource (the follower) assumes the

role of a pro�t maximizing �rm. Since the two agents (the leader and the follower) de-

termine extraction strategies to maximize di�erent objectives and compete for water, our

problem can be understood as a mixed duopoly (De Fraja and Delbono (1990))2; however,

in contrast to the majority of the literature on mixed duopolies in which �rms compete in

quantities through the price�demand function (e.g., recent studies such as Lee and Park

(2021), De Chiara and Manna (2022), Zhu et al. (2022), and Delbono et al. (2023)), in

this study, �rms compete for water through the cost function, more speci�cally, through

the pumping costs that depend on the stock of the aquifer and the extracted quantity.

As described above, we are particularly interested in analyzing and comparing the

agents' extraction behaviors for di�erent Stackelberg equilibria depending on the type of

existing commitment between decision makers. With this aim, we analytically solve and

compare the commitment (open-loop) and noncommitment (feedback) equilibria. Our

theoretical results demonstrate that committed strategies lead to higher stock levels than

uncommitted strategies when the leader assigns a weight to the pro�ts from regular use

that equals the one assigned to the pro�ts from the new (nonregular) use. Finally, we

perform numerical simulations to analyze decision makers' pro�ts and determine whether

the main results concerning �nal stock levels remain valid when the leader assigns di�erent

weights to di�erent uses. We demonstrate that the introduction of this aspect into the

model is extremely relevant, representing one of the main drivers of �nal results. Notably,

the numerical results suggest that situations can emerge in which uncommitted strategies

could be more favorable than committed strategies, not only in terms of the �nal resource

stock, but also in terms of pro�t of the agent deciding on regular use. However, the water

agency (the leader) always obtains higher pro�ts under committed strategies; therefore,

2We thank an anonymous reviewer for bringing this literature to our attention.
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the decision makers' interests (the water agency and the agent deciding on the regular

use) cannot be aligned. As a consequence, since the agent deciding on the regular use

is the only active player in the �rst period, this agent could induce the water agency to

employ uncommitted strategies in the second period by playing uncommitted strategies in

the �rst period. In this case, since the objective of the water agency could be seen as a

measure of social welfare (it considers total surplus from groundwater exploitation and a

term that measures its environmental concern about �nal stock levels), the implemented

strategies would not coincide with strategies that procure a higher value of the water

agency's objective to the detriment of social welfare.

The remainder of this paper is organized as follows. Section 2 describes the Stackelberg

game and the model resolution for the two types of commitment behavior. We conduct

comparisons between theoretical results for open-loop and feedback Stackelberg equilibria

in Section 3 for the case in which the water agency (the leader) assigns an equal weight to

the two uses (regular and nonregular) in its objective function. In Section 4, we complete

our analysis through numerical simulations, relaxing the previous hypothesis and allowing

the leader to weigh the two uses in its pro�ts function di�erently. A further analysis is

presented in Section 5, examining how the previous results could change if the follower

applies a discount rate to the second-period pro�ts. We detail our conclusions in Section

6. All the proofs are presented in the appendices. The supplementary material includes

detailed tables showing the results of our numerical simulations and the Maple program

used to generate these results.

2 The game

We investigate a problem in which a regular user of a groundwater resource (e.g., an agent in

charge of making extraction decisions concerning agricultural use) faces the announcement

that another exceptional extraction for a nonagricultural use will occur in the second

period. This leads to a competition problem between the two uses for the limited stock of

the aquifer over the two periods. To avoid groundwater overexploitation, a water authority

is needed to manage how much water can be extracted for the new use in such a way that

both users can simultaneously and pro�tably exploit the common resource.

We formulate our problem as a discrete two-stage Stackelberg model with two decision

makers who have di�erent objectives. First, there is the agent in charge of the extraction

of the resource for regular use (i.e., irrigation in the majority of the aquifers), who is the

follower aiming to maximize pro�ts. Second, there is a water authority (e.g., a water
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agency), who is the leader of the Stackelberg game aiming to maximize the sum of total

surplus derived from groundwater exploitation, which is de�ned as a weighted sum of

pro�ts from both uses, and an environmental term that considers the �nal stock value of

the resource in the objective function and measures the leader's environmental concern.

Both agents maximize their objectives, considering the aquifer dynamics over the two

periods. The stock of the aquifer is the state variable and, at the initial time, this stock

is denoted by G0. Agents' extraction decisions over the two periods (i.e., extraction of

the leader for the new (nonagricultural) use in the second period and extractions of the

follower for the agricultural use in the �rst and second periods) are the decision variables

of the problem.

2.1 Game formulation

2.1.1 Aquifer dynamics

In the �rst period, the aquifer is exclusively exploited by the follower, and we denote the

amount of water extracted by the follower in this period by g1f . Hence, the stock of the

aquifer at the end of the �rst period, G1, is as follows:

G1 = G0 − g1f + r, (1)

where r represents the constant recharge of the aquifer over the �rst period.

In the second period, the leader and the follower make extraction decisions, with g2l

denoting the leader's extraction for the new (nonagricultural) use and g2f denoting the

follower's extraction for irrigation purposes. For simplicity, assuming that the recharge of

the aquifer over the second period is identical to that over the �rst period, the stock of the

aquifer at the end of the second period, G2, is as follows:

G2 = G1 − g2f − g2l + r. (2)

2.1.2 Revenue and cost functions of the di�erent users

Concerning the regular use (irrigation), we consider the agent deciding this use faces a

(per period) linear demand for irrigation gtf = a − bpwtf (a, b > 0), where gtf represents

the water extraction and pwtf the price of water in period t. Taking the di�erential game of

groundwater exploitation of Rubio and Casino (2001) as a reference, we assume that the

decision-agent is a price taker in the output market, the agricultural production function

exhibits constant returns to scale, and production factors other than water and land are

8



optimized, conditioned on the water extraction. As a result, the price of water equals the

value of the marginal product of water and the (per period) follower's revenue function

can be obtained by integrating the inverse demand function as follows:

Rtf (gtf ) =

∫
pwtf (gtf ) dgtf =

∫
a− gtf
b

dgtf =
a

b
gtf −

1

2b
g2
tf , t = 1, 2. (3)

In what follows, we denote af = a
b and bf = 1

b to simplify the notation.

Unlike the pro�ts from the regular use de�ned in (3), for analytical tractability, we

assume that the new (nonagricultural) use faces perfectly elastic demand; therefore, the

marginal revenue for water is constant for this use. Examples of this exceptional extraction

for nonagricultural use could be the construction of a water reserve, transfer between basins,

or a special need for domestic or recreational water (e.g., irrigating golf courses, swimming

pools, or water sport complexes). The revenue function of the new aquifer user in the

second period is therefore linear with respect to the water extracted for this new use, g2l,

and can be de�ned as follows:

R2l(g2l) = alg2l with al > 0. (4)

As in the previous literature regarding exploitation of groundwater resources (Negri

(1989), Rubio and Casino (2001) and de Frutos Cachorro et al. (2019)), individual (per

period) pumping costs depend on the stock of the aquifer at the end of the period, Gt, and

the extracted quantity of water in this period by agent i, gti, as follows:

Cti(Gt, gti) = (z − cGt)gti, t = 1, 2, i = f, l, (5)

where z and c are positive parameters. More speci�cally, z corresponds to the maximum

unit (or marginal) cost, indicating the marginal cost when G = 0.3

2.1.3 Leader and follower objectives

The players (the leader and the follower) make extraction decisions to maximize di�erent

objectives. This can be seen as a mixed duopoly following the de�nition of classic stud-

ies such as De Fraja and Delbono (1990), in the sense that one �rm (the agent deciding

on the agricultural use) maximizes pro�ts, and another environmentally and socially con-

cerned (or public) �rm (the water agency) maximizes the sum of total surplus derived

3 We assume that the marginal pumping costs are positive and check a posteriori in all the numerical

simulations that this hypothesis is satis�ed. In particular, G0 < z/c by assumption.
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from groundwater exploitation and an environmental term that considers the �nal stock

value of the resource while competing for groundwater. However, in contrast to the major-

ity of previous literature examining mixed duopolies in which �rms compete in quantities

through the price�demand function (e.g., recent studies such as Lee and Park (2021), De

Chiara and Manna (2022), Zhu et al. (2022), and Delbono et al. (2023)), in this study,

�rms compete for water through the cost function (see Equation (5)).

The follower's objective: The decision-agent of the agricultural use (the follower) aims

to maximize total pro�ts over the two periods, where the pro�ts at period t are determined

by the following expression:

Πtf (gtf , Gt) = Rtf (gtf )− Ctf (Gt, gtf ) = afgtf −
bf
2
g2
tf − (z − cGt)gtf , t = 1, 2, (6)

with functions Rtf and Ctf given by (3) and (5), respectively.

The leader's objective: We assume that the leader is an environmentally and socially

concerned (or public) water authority with the objective of maximizing the sum of the

total surplus4 from groundwater exploitation, de�ned as a weighted sum of pro�ts derived

from agricultural, Πf , and nonagricultural, Πl, uses, and an environmental term that adds

the possibility that the leader values the �nal resource stock in the objective function, as

follows:

θ

(
2∑
t=1

Πtf

)
+ (1− θ)Π2l +AG2, (7)

with θ, 0 ≤ θ < 1, A ≥ 0 and,

Π2l(g2l, G2) = R2l(g2l)− C2l(G2, g2l) = alg2l − (z − cG2)g2l, (8)

with functions R2l and C2l given by (4) and (5), respectively.

Parameter θ represents the weight that the water agency assigns to the agricultural

pro�ts. The greater the weight θ, the more signi�cant the agricultural use of the aquifer

for the leader; and vice versa, the lower θ, the more important the new use of the aquifer

for the leader.
4In the literature on mixed duopolies, a di�erent objective function is commonly used by socially

concerned �rms, i.e., to maximize social welfare de�ned as the sum of consumers' and producers' surplus

(see De Fraja and Delbono (1990) for a review). Furthermore, some studies include the possibility of

assigning di�erent weights to the consumer surplus in the objective function (De Chiara and Manna

(2022), Zhu et al. (2022)) or incorporate an environmental damage function (Lee and Park (2021)) in the

case of environmentally concerned �rms.
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2.2 Game resolution under di�erent commitment behaviors

In a general Stackelberg game, or leader�follower game, the leader makes decisions �rst and

the follower subsequently makes decisions depending on the actions of the leader. Di�erent

types of Stackelberg equilibria can be computed depending on the commitment behavior

between the two agents over the two-period game. We next analytically solve the game for

open-loop (commitment solution) and feedback (noncommitment) Stackelberg equilibria.

While the former involves time-inconsistent solutions, the latter procures time-consistent

solutions (see proofs in Appendix A).

In this study, we assume that agriculture requires water continuously to grow crops.

Moreover, we are interested in examining the problem in which a new use needs water to

procure a new activity. Consequently, we are interested in positive extractions of water both

for agricultural (the follower's extraction) and nonagricultural (the leader's extraction) use

and the positive stock of the aquifer at the end of the two periods. In summary, we focus

on interior and strictly positive solutions; hence, corner solutions are not analyzed.

2.2.1 Open-loop Stackelberg equilibrium

In an open-loop Stackelberg equilibrium, the leader commits at t = 0 to the path of ex-

traction for the new use in the second period. The follower then believes the leader's

commitment and subsequently chooses extraction paths over the two-period game under

this belief.

Accordingly, the follower �rst determines their extraction behavior in the two periods,

g1f and g2f , assuming the leader's extraction policy in the second period, g2l. Since the

follower's objective is to maximize pro�ts over the two periods, the follower faces the

following problem:

max
g1f≥0, g2f≥0

2∑
t=1

Πtf (gtf , Gt), (9)

s.t: (1), (2)

G1, G2 ≥ 0

where function Πtf is given by (6). We then obtain the follower's best-reaction functions,

g̃1f (g2l) and g̃2f (g2l), representing the follower's extractions over the two periods as func-

tions of the leader's extraction in the second period. Next, the leader determines the water

extraction in the second period, g2l, to maximize a weighted sum of the two-period pro�ts
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of the follower (considering the follower's best-reaction functions, g̃1f (g2l) and g̃2f (g2l))

and the pro�ts derived from extraction for the new use in the second period, as well as the

term measuring the leader's environmental concern as follows:

max
g2l≥0

{
θ

(
2∑
t=1

Πtf (g̃tf (g2l), Gt)

)
+ (1− θ)Π2l(g2l, G2) +AG2

}
, (10)

s.t: (1), (2)

G1, G2 ≥ 0.

Functions Πtf and Π2l are given by (6) and (8), and θ, with 0 ≤ θ < 1 is the weight

assigned to the follower's pro�ts. The equilibrium strategies of this model formulation are

examined using numerical examples in Section 4. Here, to ease the presentation, we restrict

our attention to the case θ = 1/2 (i.e., the case in which the leader equally weighs both

users' pro�ts in the objective function). Solving the previous problem with θ = 1/2 (see

Appendix B.1 for details), we obtain gOL2l , where the superscript OL indicates open-loop

equilibrium. Finally, substituting gOL2l in the follower's best-reaction functions, we obtain

gOL1f and gOL2f :

gOL
1f =

2(G0c+cr+af−z)b2f +c(6(G0c−z)+5(cr+af )−2A+al)bf +c2(2(G0c+z)−4A+3al−af )

(bf + 2c)(bf + 3c)(2bf + c)
,

(11)

gOL
2f =

(G0c+ 2cr + 2A− al + 2af − z)bf + c(G0c+ 3cr + 4A− 3al + 4af − z)
(bf + 3c)(2bf + c)

, (12)

gOL
2l =

(G0c+2cr−2A+al−z)b2f +c(G0c+3cr−6A+4al−3af−z)bf +(3al−3af−4A)c2

c(bf + 2c)(2bf + c)
. (13)

Once the optimal extraction strategies are characterized, we can obtain the states of
the aquifer at the end of the two periods for previous extraction behavior as follows:

GOL
1 =

1

(2bf + c)(bf + 2c)(bf + 3c)

{
2(G0+r)b3f +(9(G0c+cr)−2af +2z)b2f

+c(11G0c+12cr+2A−al−5af +6z)bf +c2(4G0c+6cr+4A−3al+af +2z)
}
, (14)

GOL
2 =

1

c(2bf + c)(bf + 3c)

{
(G0c+2cr+2A−al+z)b2f +c(2G0c+5cr+6A−4al−af +5z)bf

+c2(G0c+3cr+4A−3al+af +2z)
}
. (15)
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The mathematical expressions concerning the players' pro�ts from optimal extraction

strategies and the states of the aquifer are extremely long and are omitted for brevity.

To guarantee the positivity of extraction decisions and aquifer state variables, we as-

sume that the su�cient conditions summarized in Condition 1 in Appendix D.1 are ful�lled.

Since both players' goal is to achieve maximum value for their objectives (problems

(9) and (10)), the concavity of the objective functions of the leader and the follower with

respect to their decision variables must be guaranteed. In Appendix B.2, we derive these

concavity conditions and demonstrate that condition θ = 1/2 ensures this property.

2.2.2 Feedback Stackelberg equilibrium

In a feedback Stackelberg equilibrium, the follower chooses extraction behavior at each

step after the leader has decided and announced the strategy. The problem must be solved

using backward induction. As the leader does not extract water in the �rst period, there

is only one decision maker (the follower) in this �rst period. Because the leader is not an

active player in the �rst period, the feedback equilibrium of the problem can be seen as

a �degenerated Stackelberg�, for which a solution can be obtained following a three-step

procedure (see Appendix C.1 for details).

Since the game is solved via backward induction, in the �rst step, the follower deter-

mines extraction behavior in period two, g2f , assuming the leader's extraction policy in

the second period, g2l, and the extraction in the �rst period, g1f . The follower must then

solve the following problem in the second period:

max
g2f≥0

Π2f (g2f , G2), (16)

s.t: (1), (2)

G1, G2 ≥ 0,

with function Π2f given by (6). The solution to this problem gives g2f as a function of

g2l and g1f , ĝ2f (g2l, g1f ). In the second step, after substituting ĝ2f (g2l, g1f ) in the leader's

problem, the leader determines extraction behavior in period two, g2l. The leader's problem
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is as follows:

max
g2l≥0

θΠ2f (ĝ2f (g2l, g1f ), G2) + (1− θ)Π2l(g2l, G2) +AG2, (17)

s.t: (1), (2),

G1, G2 ≥ 0,

with functions Π2f and Π2l given by (6) and (8), and 0 ≤ θ < 1. The solution to this

problem establishes g2l as a function of g1f , i.e., ĝ2l(g1f ). Finally, substituting the leader's

reaction function in the second stage of the game in the follower's problem, the follower's

problem to solve in the �rst period is as follows:

max
g1f≥0

Π1f (g1f , G1) + Π2f (ĝ2f (ĝ2l(g1f ), g1f ), G2) , (18)

s.t: (1), (2),

G1, G2 ≥ 0,

with function Πtf given by (6). From the solution to this problem, we obtain the follower's

extraction strategy in the �rst period, gFB1f , where the superscript FB denotes feedback

equilibrium. Subsequently, we replace the latter value in the leader's and follower's reac-

tion functions in period two, obtaining gFB2l , gFB2f , i.e., the leader's and follower's optimal

strategies in the second period. We next present all optimal strategies and aquifer states

derived from these strategies for the particular and important case of θ = 1/2:

gFB
1f =

1

(2b2f +4bfc+c2)(2b2f +6bfc+3c2)

{
4(G0c+cr+af−z)b3f

+c(11(G0c−z)+10cr−2A+al+10af )b2f +c2(7(G0c−z)+5cr−4A+3al+4af )bf

+c3(G0c−2A+2al−af−z))
}
, (19)

gFB
2f =

1

(2b2f +4bfc+c2)(2b2f +6bfc+3c2)

{
2(G0c+2cr+2A−al+2af−z)b3f

+c(5(G0c−z)+10cr+14A−9al+14af )b2f +c2(4(G0c−z)+11cr+14A−12al+16af )bf

+c3(G0c+3cr+4A−4al+5af−z))
}
, (20)

gFB
2l =

1

c(2b2f +4bfc+c2)(2b2f +6bfc+3c2)

{
2(G0c+2cr−2A+al−z)b4f

+c(7(G0c−z)+16cr−22A+13al−6af )b3f +c2(7(G0c−z)+19cr−40A+29al−22af )b2f

+c3(2(G0c−z)+6cr−28A+25al−23af )bf +6c4(al−af−A)
}
, (21)
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GFB
1 =

1

(2b2f +4bfc+c2)(2b2f +6bfc+3c2)

{
4(G0+r)b4f +4(4G0c+4cr−af +z)b3f

+c(21G0c+22cr+2A−al−10af +11z)b2f +c2(11G0c+13cr+4A−3al−4af +7z)bf

+c3(2G0c+3cr+2A−2al+af +z)
}
, (22)

GFB
2 =

1

c(2b2f +4bfc+c2)(2b2f +6bfc+3c2)

{
2(G0c+2cr+2A−al+z)b4f

+c(7G0c+16cr+18A−11al−2af +13z)b3f +c2(9G0c+23cr+28A−21al−2af +23z)b2f

+c3(5G0c+14cr+18A−16al+3af +13z)bf +c4(G0c+3cr+4A−4al+2af +2z)
}
. (23)

Once again, the mathematical expressions concerning optimal pro�ts are extremely

long; hence, are omitted for brevity.

All the conditions collected under Condition 1 in Appendix D.1 are su�cient conditions

ensuring positive resource extractions and stocks in the feedback case.

As in the open-loop equilibrium, the concavity of the leader's and follower's objective

functions with respect to the corresponding decision variables in the three steps of the

game resolution (i.e., in problems (16), (17), and (18)) must be guaranteed. In Appendix

C.2, we derive the conditions that ensure the concavity of the di�erent objective functions

and prove that these conditions are satis�ed for θ = 1/2.

We next compare the extraction strategies, aquifer states, and agents' pro�ts for dif-

ferent commitment behaviors. In Section 3, we focus on theoretical results for the case

in which the weight assigned to agricultural use equals the weight of nonagricultural use,

θ = 1/2. A numerical analysis of di�erent values that the leader assigns to θ and a

robustness analysis for other parameters are performed in Section 4.

3 Theoretical results: Open-loop vs. Feedback Stackelberg

equilibria

In this section, we compare both agents' extraction behavior, aquifer states, and players'

pro�ts for the di�erent types of equilibria (see equations (11) to (15) for the open-loop case

and (19) to (23) for the feedback case). The results for both equilibria can be compared

if Condition 1 in Appendix D.1 is satis�ed; therefore, we assume this condition in what
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follows. Please recall that our attention is restricted to the case in which the leader's weight

for the new use equals the weight for agricultural use, θ = 1/2.

We �rst compare the follower's and the leader's extraction for each period depending

on the type of commitment behavior.

Proposition 1 The follower's extraction in the �rst period, g1f , and the leader's extrac-

tion in the second period, g2l, are greater in the feedback case than in the open-loop case.

The opposite is obtained for the follower's extraction behavior in the second period, g2f .

Proof: See Appendix D.2.

One of the results indicating that the leader's extraction behavior in the second period

is more aggressive in the feedback case than in the open-loop case can be explained by the

fact that the leader has extra information about stock levels at the beginning of each period

in the feedback case than in the open-loop case. Consequently, the leader is able to better

adapt to only using the resource in the second period by increasing extraction. In addition,

as explained in the introduction, we can interpret the entrance of a new use in the second

period, and therefore the leader's extraction, as an endogenous shock to the groundwater

resource, implying a water scarcity problem for the follower. In the literature regarding

shocks in optimal groundwater management, de Frutos Cachorro et al. (2014) treats water

scarcity as an exogenous shock to the groundwater resource and shows that the higher the

intensity of the shock (which could be equivalent to higher extraction from the leader in our

case), the higher the impatience e�ect and therefore, the higher the extraction before the

shock occurrence (which could be equivalent to the follower's extraction in the �rst period

in our case). The same reasoning can be applied in this work to explain that gFB2l > gOL2l

implies gFB1f > gOL1f . Furthermore, the follower in the feedback case adapts earlier (in the

�rst period) to anticipate extraction losses in the second period (i.e., gFB2f < gOL2f ) due to

competition with the leader, by increasing extraction in the �rst period in comparison to

the open-loop case (i.e., gFB1f > gOL1f ).

We next compare both players' total extractions over the two periods under the two

scenarios concerning the players' behavior (open-loop and feedback). Using the notation

Total = g1f + g2f + g2l, we obtain the following proposition.

Proposition 2 The total amount of water extracted by the follower and the leader over

the two periods is higher in the feedback case, TotalFB, than in the open-loop case, TotalOL.
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Proof: See Appendix D.3.

Focusing on the impact of extraction decisions on resource stocks in the two periods,

the following corollary is evident from Propositions 1 and 2.

Corollary 1 The resource state after the �rst and second periods, i.e., G1 and G2, respec-

tively, is higher in the open-loop case than in the feedback case.

This means that the players' commitment regarding extraction behavior over the two

periods is positive for the resource state with respect to the noncommitment case. This

result aligns with those obtained in previous research characterizing Nash equilibria (Ne-

gri (1989), Rubio and Casino (2001), de Frutos Cachorro et al. (2019)). Noncommitment

strategies exacerbate the competition between the di�erent users for the available stock

(strategic externality); therefore, exacerbating resource exploitation.

As the previous results should not necessarily be maintained for other values of θ, we

next run numerical simulations to analyze our previous results for any θ. We also assess the

robustness of the previous results by performing a sensitivity analysis for other important

parameters of the model.

4 Numerical results

Parameter Description Value

af Coe�cient of revenue agricultural use (linear term) 4.5

z Marginal pumping cost intercept 4

c Marginal pumping cost slope 0.281

G0 Initial stock level 10

r Natural recharge rate 5

θ Weight assigned by the leader to agricultural use θ ∈ {0.4, 0.5, 0.581, 0.59, 0.655}
bf Coe�cient of revenue agricultural use (nonlinear term) bf ∈ {0.01, 0.1, 0.5, 1}
al Marginal revenue from alternative use al ∈ {4.8, 6, 6.2}
A Coe�cient of the leader's valuation of the �nal stock A ∈ {0, 0.07}

Table 1: Parameter values of the model.

We next perform numerical simulations to analyze whether the main results obtained

in the previous sections concerning the agents' extraction behavior and �nal resource stock
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remain unchanged after relaxing the assumption θ = 1/2. We complete the analysis by

examining the agents' pro�ts for these numerical scenarios. For this purpose, we use values

of the parameters that are listed in Table 1. More speci�cally, we �x values corresponding

to model parameters above the horizontal line and run several simulations with respect

to parameters below the line. In particular, we consider di�erent weights that the leader

can assign to agricultural use (θ) and other important parameters of the model as the

coe�cient (nonlinear term) of the follower's revenue function (bf ), the marginal revenue of

alternative use (al), and the coe�cient of the leader's valuation of �nal stock levels (A).

As shown in Appendices B.1 and C.1, for any value of θ in [0,1], we obtain analytical

solutions for these general cases, and in this section, we run numerical simulations for dif-

ferent parameter values with Maple (2022).

We next examine whether the results of the extraction decisions and the �nal resource

stock (Propositions 1 and 2 and Corollary 1) remain valid when the leader does not equally

weigh the two di�erent resource uses; that is, θ di�ers from 1/2, and we analyze pro�ts

per period and per agent. The key results of the numerical simulations are summarized in

Table 2 (see also Table 3 and Tables in the Appendix E for detailed results). The Maple

program and values for all numerical simulations can be found in the supplementary ma-

terial.

Focusing �rst on the description of the key results concerning the �nal stock levels

described in Table 2, the simulated results suggest that when the leader assigns a higher

weight to the pro�ts from agricultural use than to those from the alternative use (θ > 1
2),

noncommitment strategies could be more favorable than commitment strategies in terms

of �nal stock levels (see �rst row Table 2). This result is the opposite to what we showed

for the case θ = 1/2. In fact, parameter bf of the follower's revenue function, or similarly,

parameter al of the leader's revenue function5, also has an important role concerning key

results on �nal stock levels, and previous results are obtained when the value of bf is low

enough, i.e., when the follower's productivity is high enough to compete with the new use6

5Results of the robustness analysis with respect to al are summarized in Tables 7 and 8 in Appendix

E.2.
6Note that the follower's inverse demand function pwtf =

a−gtf
b

can be rewritten as pwtf = af − bfgtf

because a = af/bf and b = 1/bf (see subsection 2.1.2 for details). Therefore, a decrease in bf means that a

higher price is paid for the same quantity of water extracted, leading to higher productivity of the output

product.
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or when the value of al is low enough, i.e., for a less competitive new use.

Key results Mathematical assumption Signi�cance to lit-

erature

Policy recommen-

dation

Final stock levels

higher in FB

θ > 1
2
and bf low enough Contradicts the liter-

ature of Nash equi-

libria (e.g. de Fru-

tos Cachorro et al.

(2019))

Noncommitment

strategies could

be more favorable

than commitment

strategies in terms of

the sustainability

of the resource.

Follower's total pro�t

higher in FB

θ >> 1
2
and A > 0 Contradicts the liter-

ature of Nash equi-

libria (e.g. de Fru-

tos Cachorro et al.

(2019))

Noncommitment

strategies could

be more pro�table

for the follower

than commitment

strategies.

Leader's total pro�t

higher in FB

Never Contradicts the liter-

ature of Stackelberg

equilibria (e.g. Nie

(2005)

The leader will al-

ways prefer commit-

ment strategies.

Table 2: Key results of numerical simulations for di�erent coe�cients (nonlinear term) of

the revenue function (bf ), di�erent weights that the leader assigns to the agricultural use

(θ), and di�erent valuations of the �nal stock level by the leader (A), where >> means

�much higher�, > means �slightly higher�.

The key results regarding the �nal stock levels are primarily attributable to the fol-

lower's extraction behavior in the �rst and second period (see rows 1 and 2 in Table 3 for

a summary of the main results or columns 1 and 2 in Table 5 in Appendix E for detailed

results). When the leader assigns a lower or equal weight to the agricultural use pro�ts

than to those from the alternative use (θ ≤ 1
2), the follower seems to adapt by increasing

extraction in the �rst period in the feedback case compared with the open-loop case (see

row 1 in Table 3), to anticipate extraction losses in the second period due to competition

with the new use. Indeed, the opposite is observed in the second period (see row 2 in Table

3), where the follower's extraction is lower in the feedback case than in the open-loop case

when θ ≤ 1
2 . In fact, the leader's extraction is consistently higher in the feedback case

than in the open-loop case in these scenarios (see row 3 in Table 3 or detailed results in

Appendix Table 5 column 3). When θ increases (i.e., agricultural use becomes increasingly

important for the leader compared with the new use (θ > 1
2)), this �anticipation� or fear
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of a water shortage is reduced in the feedback case compared with the open-loop case.

Consequently, the follower focuses on extracting more in the second period (see row 2 in

Table 3) and less in the �rst period (see row 1 in Table 3) in the feedback case than in the

open-loop case, leading to a reduction in the leader's extraction in the second period of the

feedback case due to competition (see row 3 in Table 3). Therefore, the total extractions

over the two periods become less signi�cant in the feedback case than in the open-loop

case (see row 4 in Table 3). In other words, a higher �nal stock level is obtained in the

feedback case than in the open-loop case.

Summary results Mathematical assumption

1. Follower's �rst-period extraction higher in FB θ ≤ 1
2 OR (θ > 1

2 and bf high enough)

2. Follower's second-period extraction lower in FB θ ≤ 1
2 OR (θ > 1

2 and bf high enough)

3. Leader's second-period extraction higher in FB θ ≤ 1
2 OR (θ > 1

2 and bf high enough)

4. Two-period total extractions lower in FB θ > 1
2 and bf low enough

5. Follower's �rst-period pro�t lower in FB θ > 1
2 and bf low enough

6. Follower's second-period pro�t higher in FB θ >> 1
2 and bf low enough

7. Follower's total pro�t higher in FB A > 0, θ >> 1
2 and bf low enough

8. Leader's total pro�t higher in FB Never

Table 3: Summary of main results of the numerical simulations for di�erent coe�cients

(nonlinear term) of the revenue function (bf ), di�erent weights assigned to agricultural use

by the leader (θ), and di�erent valuations of the �nal stock level by the leader (A), where

>> means �much higher�, > means �slightly higher�.

The key results concerning the agents' pro�ts also suggest that noncommitment strate-

gies could be more pro�table for the follower than the commitment case (see second row

in Table 2). This result could occur when the leader assigns a much higher weight to the

agricultural use pro�ts than the alternative use pro�ts (θ >> 1
2) and considers the �nal

stock value in the objective function (A > 0). Indeed, when the leader values the sustain-

ability of the resource, the leader's second-period extraction for the new use is reduced to

preserve stock levels, and this reduction is more signi�cant in the feedback case than in the

open-loop case.7 This entails less competition for water in the second period when playing

noncommitment strategies.8 In other words, this conservative extraction behavior for the

resource opens more opportunities for the follower to extract and accumulate pro�ts in
7For example, for the speci�c values θ = 0.655 and bf = 0.1, when A > 0 (more speci�cally, when

A = 0.07), the leader's second-period extraction for the new use decreases by 1.21 (1.69) units in the

open-loop (feedback) case with respect to scenario A=0.
8Again, for the same parameter values (i.e., θ = 0.655 and bf = 0.1), when A = 0.07 > 0, total
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the second period9 in the noncommitment case (see row 6 Table 3), achieving higher total

pro�ts in the noncommitment case than in the commitment case (see row 7 Table 3).

Finally, as shown in the third row of Table 2 (and row 8 Table 3), the leader will al-

ways prefer commitment strategies. This result apparently contradicts the initial intuition

gained from the literature of Standard Stackelberg games (Nie (2005)) in which noncom-

mitment strategies ensure higher pro�ts for the leader than commitment strategies. Indeed,

our problem can be seen as a �degenerated Stackelberg game� in the sense that the leader

does not extract for the new use in the �rst period, and the objective function of the

leader considers a weighted sum of pro�ts of regular and new uses and a term measuring

the leader's environmental concern. Our results are then closer to those found when Nash

equilibria are characterized (de Frutos Cachorro et al. (2019)). However, as the follower

(i.e. the decision-agent of the agricultural use) is the only resource user in the �rst period,

if situations arise in which noncommitment behavior produces higher agricultural pro�ts

than commitment behavior, the follower could force the leader to play noncommitment

strategies in the second period by playing noncommitment strategies in the �rst period.

Therefore, the policy implications derived from this study indicate that the leader should

avoid assigning a high weight to the regular user's pro�ts (i.e., a high θ) to ensure that

commitment strategies are played out.

5 Further analysis

In this section, we extend the analysis performed in the previous section by introducing

the possibility that the follower applies a discount to second-period pro�ts in the objective

function. Moreover, we conduct a sensitivity analysis regarding the weight assigned by the

leader to agricultural use (θ) and characterize the intervals of θ for which the key results

are obtained.

We consider a short, two-period planning horizon, focusing on the case in which the

follower equally values the pro�ts of both periods in the objective function, and therefore,

the follower does not apply a discount to the second-period pro�ts. This could be justi�ed,

for example, when the two periods refer to two consecutive irrigation seasons of spring

and summer in the same year. However, it could indeed be interesting to analyze how our

extractions in the second period decrease by 0.59 (0.66) units in the open-loop (feedback) case with respect

to scenario A=0.
9Please note that the opposite result is observed concerning the follower's pro�ts in the �rst period,

which are lower in the feedback case than in the open-loop case when θ >> 1
2
(see row 5 Table 3).
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main results might change when the follower applies a discount factor to the second-period

pro�ts in the commitment and noncommitment scenarios. To this goal, we add parameter

β, the discount factor, in the follower's objective function, which now reads Π1f + βΠ2f ,

and perform a sensitivity analysis with respect to θ, for �xed value model parameters (i.e.,

parameter values in Table 1 with bf = 1, al = 6, A = 0.07). The key results for the

discount factors (β = 0.1, 0.5 and 1) are presented in Table 4. Detailed results for a �xed

value of θ = 1/2 are summarized in Tables 9 and 10 in Appendix F.

β = 0.1 β = 0.5 β = 1

(θ ∈ [0.366, 0.678]) (θ ∈ [0.13, 0.667]) (θ ∈ [0.094, 0.656])

Final stock levels higher in FB θ ∈ [0.366, 0.678] θ ∈ [0.438, 0.667] θ ∈ [0.637, 0.656]

Follower's total pro�t higher in FB θ ∈ [0.366, 0.678] θ ∈ [0.413, 0.667] θ ∈ [0.654, 0.656]

Leader's total pro�t higher in FB Never Never Never

Table 4: Key results of numerical simulations concerning the weight assigned to agricultural

use (θ) by the leader and for di�erent discount factors (β = 0.1, 0.5 and 1). Feasible sets

are presented in parentheses.

Being the case β = 1 the scenario used in the previous sections (the no-discount case),

a lower value of β (0 < β < 1) represents a positive discount case applied to the follower's

second-period pro�ts � that is, when the new user enters in the game � and therefore to

a less competitive scenario for the available stock in the second period. More speci�cally,

when β decreases, i.e., when the follower becomes more impatient, the follower's fear of a

water shortage in the second period is reduced in the noncommitment case with respect

to the commitment case, leading to higher extraction.10 As a result, higher pro�ts are

obtained in the feedback case than in the open-loop scenario. In fact, the second row of

Table 4 reveals that the interval in which the follower obtains higher pro�ts in the feedback

case than in the open-loop case expands as β decreases. A very impatient follower (i.e.,

a low β) will always prefer not to commit with the leader as the follower is the only user

of the resource in the �rst period. In contrast, the leader will always prefer committed

strategies (see the third row of the Table). Therefore, as explained in the previous section,

some circumstances in which the leader's and follower's interests are not aligned can arise.

As a consequence, the follower could force the leader to play uncommitted strategies in the

second period by playing uncommitted strategies in the �rst period. In this case, since the

10For the numerical example in Appendix F, when β = 1, the follower's total extraction is higher by 0.3

units in the open-loop case than in the feedback case, while the opposite arises when β = 0.1, with the

total extractions lower by 0.63 units in the open-loop case than in the feedback case.
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leader's pro�ts could be seen as a measure of social welfare, the strategies implemented

would not coincide with the strategies that allow to attain a higher social welfare.

The �ndings have important policy implications regarding the strategies that would

ultimately be implemented. When β = 1 (the case without discount), the follower is more

patient about extraction behavior over the two periods; therefore, the leader's and the

follower's preferences are generally aligned for any value of θ in the feasible set (i.e., for

θ ∈ [0.094, 0.656]). Committed strategies would be implemented except in the case of an

extremely high θ value (i.e., for θ ∈ [0.654, 0.656]). In the case of an intermediate discount

factor, β = 0.5, the follower is more impatient and the strategies implemented are highly

dependent on the weight assigned by the leader to agricultural use. For lower values of θ

(i.e., θ ∈ [0.13, 0.413]) the leader's and follower's interests are aligned, and both achieve

higher pro�ts in the open-loop case. For higher values of θ (i.e., θ ∈ [0.413, 0.667], the

leader's and follower's interests diverge and the follower would compel the leader to play

uncommitted strategies. To avoid this con�ict and ensure that committed strategies are

implemented, the leader should not assign a high weight to the agricultural user's pro�ts

in the objective function. Finally, in the case of a very impatient follower (a low value of

β, β = 0.1), the leader's and follower's interests never coincide. Uncommitted strategies

would then be implemented to the detriment of social welfare.

6 Conclusions and extensions

In this study, we investigate the challenge of groundwater resource exploitation that is

primarily used for a unique purpose (irrigation) and faces the exceptional entrance of a

new use in the system, indicating a potential problem of water scarcity for the agricultural

resource user. Therefore, a water agency is required to manage how much groundwater

can be extracted for the new (nonagricultural) user. To model this circumstance, we con-

struct a two-stage discrete Stackelberg game in which the leader (the water agency) only

intervenes when the new use occurs (in the second stage), and the follower is an agent

who makes decisions regarding agricultural use. This study analyzes and compares the

extraction behaviors of the di�erent agents (the water agency and the decision-agent for

the agricultural use) for di�erent Stackelberg equilibria that represent various commitment

behaviors and the consequences of these extraction policies for the �nal state of the re-

source and agents' pro�ts. We compute and compare open-loop (commitment solution)

and feedback (noncommitment) equilibria.

First, theoretical results are provided for the case in which the leader weighs the pro�ts
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from agricultural use and the alternative/new use equally. We analytically demonstrate

that the leader's extraction behavior in the second period is more aggressive in the feedback

case than in the open-loop case. Hence, the follower in the feedback case adapts earlier

to anticipate extraction losses of the second period due to competition with the leader

by augmenting extraction in the �rst period in comparison with the open-loop case. In

other words, the follower's extraction behavior is more (less) aggressive in the feedback

case than in the open-loop case in the �rst (second) period. This results in lower total

extractions, or equivalently, higher �nal stock levels in the commitment case than in the

non-commitment case. These theoretical results align with the existing literature that

considers simultaneous play and characterizes Nash equilibria (Negri (1989), Rubio and

Casino (2001), de Frutos Cachorro et al. (2019)).

We then perform numerical simulations to examine the robustness of the previous

results when relaxing the previous assumption, θ = 1
2 , conducting robustness analyses

for di�erent weights assigned by the leader to the agricultural use. We also carry out

sensitivity analyses for other important parameters of the model related to the agents'

revenue and the leader's environmental concern. First, we �nd that the theoretical results

regarding �nal stock levels remain qualitatively unchanged when the weight assigned by

the leader to the pro�ts from agricultural use is lower than that assigned to the new use

pro�ts (θ < 1
2). In contrast, the simulated results demonstrate that when the leader assigns

a higher weight to the pro�ts from agricultural use than those from the alternative use (θ >
1
2), noncommitment strategies could result in higher �nal stock levels than commitment

strategies. This is primarily due to reduction in the fear of water shortage from the

decision-agent for agricultural use in the noncommitment case and a consequent decrease

in total extraction over the two periods with respect to the commitment case. This result

is obtained when the follower's productivity is high enough to compete with the new use or

when the marginal revenue of the alternative use is low enough (i.e., for a less competitive

new use).

The simulated results also show that noncommitment strategies could be more favorable

for the sustainability of the resource (i.e., higher stock levels at the end of the second

period) and could also be more pro�table for the follower in comparison to commitment

strategies. The rationale for this interesting result could be that the leader allows for

more conservative extraction behavior for the new use by assigning a higher weight to

agricultural use pro�ts than alternative use pro�ts and valuing the sustainability of the

resource. This opens more possibilities for the decision-agent for agricultural use to extract

and accumulate pro�ts in the noncommitment case in comparison to the commitment case.
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Nie (2005) obtains a similar result for the leader's pro�ts. However, since our problem can

be seen as a �degenerated Stackelberg game�, in the sense that the leader only extracts in

the second period, in contrast to Nie (2005), the leader always obtains higher pro�ts in

the commitment case than in the noncommitment case. The same result is achieved for

the pro�ts of the decision-agent of the agricultural use, when the weight assigned by the

leader to the pro�ts from agricultural use is lower or equal to that assigned to the new use

pro�ts. Consequently, in this sense, these results are closer to those that are often found

for Nash equilibria (de Frutos Cachorro et al. (2019)).

Finally, we extend our analysis by introducing the possibility that the follower applies

a discount to the second-period pro�ts in the objective function. The numerical results

demonstrate that when the follower has a low or middle level of impatience and the leader

assigns a high weight to the agricultural pro�ts, uncommitted strategies are more favorable

than committed strategies in terms of �nal resource stock and the regular user's pro�ts.

The same result is obtained for a very impatient follower, and is independent of the weight

assigned to the agricultural use in the leader's objective. In any case, the leader will always

prefer committed strategies.

In conclusion, committed strategies are continuously more pro�table for the leader;

however, some circumstances can occur in which uncommitted strategies produce higher

pro�ts for the follower than committed strategies. Depending on the discount factor applied

by the follower (i.e., level of impatience) and/or the weight assigned to the agricultural

pro�ts by the leader, the leader's and follower's interests may not be aligned; therefore,

as the only user of the resource in the �rst period, the follower could compel the leader

to play uncommitted strategies in the second period by playing uncommitted strategies in

the �rst period. Consequently, one of the primary policy implications of our study is that

to ensure that committed strategies are implemented, the leader must avoid assigning too

much weight to the agricultural pro�ts in the objective function when the follower has a

low or middle level of impatience.

Several possible research extensions emerge from this study. First, as we consider

the follower to be the unique decision-agent for agricultural use, it could be interesting to

introduce di�erent followers such as multiple heterogeneous farmers, playing simultaneously

à la Nash between them, and à la Stackelberg with the leader. We could also investigate

the corresponding e�cient solution to our problem in which the leader could be a social

planner who makes all the extraction decisions considering the same objective function, to

compute and analyze potential policy implications. Finally, we could apply our theoretical

model to a real case using available data.
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A Study of time-consistency

To verify the time-inconsistency of the open-loop equilibrium and the time-consistency

of the feedback equilibrium in our model, we use the pure de�nition of time-consistency

described in Kydland and Prescott (1977) and adapted to our setup. A policy plan g2l

is consistent if, for t = 2, g2l maximizes the leader's objective function, taking as given

previous decisions, and the strategy selected coincides with the optimal decision rule.

In the open-loop case, the problem the leader faces at t = 2 is described in (10), where

the follower's strategies can be expressed as functions of g2l as follows:

g1f = g̃1f (g2l), (24)

g2f = g̃2f (g2l). (25)

Denoting the leader's objective function as Π̄OL
l (g1f , g2f , g2l), the leader aims to �nd

g2l that maximizes the objective, subject to restrictions (24) and (25).

The necessary condition for an interior solution is as follows:

∂Π̄OL
l

∂g2l
= 0 ⇐⇒

∂Π̄OL
l

∂g1f

∂g̃1f

∂g2l
+
∂Π̄OL

l

∂g2f

∂g̃2f

∂g2l
+
∂Π̄OL

l

∂g2l
= 0. (26)

If past decision (g1f ) is given, the previous necessary condition is the following:

∂Π̄OL
l

∂g2l
= 0 ⇐⇒

���
���∂Π̄OL

l

∂g1f

∂g̃1f

∂g2l
+
∂Π̄OL

l

∂g2f

∂g̃2f

∂g2l
+
∂Π̄OL

l

∂g2l
= 0. (27)

The leader's strategy is time-consistent if the conditions in (26) and (27) coincide, i.e.,

if the following occurs:
∂Π̄OL

l

∂g1f

∂g̃1f

∂g2l︸ ︷︷ ︸
6=0

= 0 ⇐⇒
∂Π̄OL

l

∂g1f
= 0.

From equations (6), (8), and (10), we can easily demonstrate the following:

∂Π̄OL
l

∂g1f
= −θc(g1f + g2f )− (1− θ)cg2l < 0.

This demonstrates that the open-loop equilibrium described in this study cannot be

time-consistent.

In the feedback case, the problem that the leader must solve at t = 2 is described in

(17), where the follower's strategy at t = 2 can be expressed as a function of g1f and g2l
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as follows:

g2f = ĝ2f (g1f , g2l). (28)

Denoting the leader's objective function as π̂FBl (g1f , g2f , g2l), the leader aims to �nd

g2l to maximize the objective, subject to restriction (28).

Then, the necessary condition for an interior solution is the following:

∂π̂FBl
∂g2l

= 0 ⇐⇒
∂π̂FBl
∂g2f

∂ĝ2f

∂g2l
+
∂π̂FBl
∂g2l

= 0. (29)

This expression clearly coincides with the necessary condition when g1f is given; thus,

the leader's plan is time-consistent in the feedback information case.

B Open-loop Stackelberg equilibrium

B.1 Derivation of the open-loop Stackelberg equilibrium

The follower's objective function in (9), representing the sum of pro�ts over the two periods

once G1 and G2 have been replaced by their expressions in (1) and (2), are as follows:

Π̄f (g1f , g2f , g2l) = g2f (af +c(G0 +2r−g1f−g2f−g2l)−z)+(af−(z−c(G0−g1f +r)))g1f .

Assuming an interior solution, maximizing Π̄f (g1f , g2f , g2l) with respect to g1f and g2f

gives the follower's best-reaction function as follows:

g̃1f (g2l) =
(bf + c)(af + cG0 − z) + c(bfr + cg2l)

(bf + c)(bf + 3c)
, (30)

g̃2f (g2l) =
(bf + c)(af + cG0 − z) + c(bf (2r − g2l) + c(3r − 2g2l))

(bf + c)(bf + 3c)
. (31)

The follower's optimal two-period pro�ts as a function of g2l are as follows:

Π̄f (g̃1f (g2l), g̃2f (g2l), g2l) =
1

2(bf + c)(bf + 3c)
{2(af−z)(bf+c)(af+c(2G0−g2l+3r)−z)

+c2(bf+c)
(
2G2

0−2G0g2l+6G0r+g2
2l−4g2lr+5r2

)
+c3(g2l−r)2

}
.

Then, the leader's objective in (10) becomes the following:

θΠ̄f (g̃1f (g2l), g̃2f (g2l), g2l) + (1− θ)Π2l(g2l, G2) +AG2, (32)
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where once the follower's best-reaction functions have been substituted, Π2l(g2l, G2) and

AG2 are as follows:

Π2l(g2l, G2) =
g2l

bf + 3c
(c(−2af+(bf+c)(G0−g2l+2r)+c(r−g2l))+al(bf+3c)−z(bf+c)),

AG2 =
A

bf + 3c
(−2af + (bf + c)(G0 − g2l + 2r) + c(r − g2l) + 2z).

Assuming an interior solution, the maximization of (32) with respect to g2l, gives the

leader's optimal strategy, which is expressed as follows:

gOL2l =
1

c(bf + 2c)(2bf (1− θ) + c(2− 3θ))
{(bf + c) [cr(2bf + 3c) + al(1− θ)(bf + 3c)

−A(bf + 2c)− 2afc− (bf + c)(z − cG0) + θ((bf + 2c)(z − cG0) + afc)]

−cθr(bf + 2c)(2bf + 3c)} . (33)

The expression in (13) corresponds to the above expression, which is particularized at

θ = 1/2.

The follower's optimal strategies are obtained by replacing g2l with expression (33) in

the follower's best-reaction functions in (30) and (31), which are expressed as follows:

gOL1f =
1

(bf + 2c)(bf + 3c)(2bf (1− θ) + c(2− 3θ))
{c(al(bf + 3c)−A(bf + 2c))

+2af
(
b2f + 3bfc+ c2

)
− afθ(bf + c)(2bf + 5c)− alcθ(bf + 3c)

−
(
2b2f + 7bfc+ 5c2

)
(z − cG0) + cr

(
2b2f + 6bfc+ 3c2

)
−(bf + 2c)(2bfc(G0 + r)− 2bfz + c(4cG0 + 3cr − 4z))} ,

gOL2f =
(1−θ)(2af (bf+2c)−al(bf+3c)+(bf+c)(cG0−z)+cr(2bf+3c))−A(bf+2c)

(bf + 3c)(2bf (1− θ) + c(2− 3θ))
.

We obtain the follower's optimal strategies in (11) and (12) by replacing θ by 1/2 in

the expressions above.

The optimal pro�ts of the leader and the follower can be obtained by replacing the

optimal extraction strategies in the agents' pro�t functions.

B.2 Concavity conditions

The concavity of the follower's objective function in (9) with respect to the decision vari-

ables g1f and g2f is ensured if the quadratic form associated with the Hessian matrix is

negative de�nite. The entries of this matrix are h11 = −bf − 2c, h12 = −c, h21 = −c, and
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h22 = −bf − 2c; therefore, h11 < 0 and h11h22 − h12h21 = b2f + 4bfc+ 3c2 > 0, indicating

that the quadratic form is negative de�nite and the follower's objective function is strictly

concave.

The follower's best-responses to g2l are given by (30) and (31), provided that these expres-

sions are positive. (30) is always positive under condition af > z (one of the conditions

that we impose to ensure the positivity of extraction decisions and state variables; see

Condition 1 in Appendix D.1), and (31) is positive if g2l <
(bf+c)(af+cG0−z)+cr(2bf+3r)

c(bf+2c) .

The leader is interested in the follower's positive extractions and maximizes (32) under the

last condition. The concavity of the leader's objective function with respect to decision

variable g2l is ensured if the second derivative of this function is negative with respect to

g2l. The sign of this derivative is given by the sign of 2bf (−1 + θ) + c(−2 + 3θ). Therefore,

the concavity of the leader's objective function requires θ < (2bf + 2c)/(2bf + 3c) and

gOL2l <
(bf+c)(af+cG0−z)+cr(2bf+3r)

c(bf+2c) .

Notably, for θ = 1/2, the expression 2bf (−1 + θ) + c(−2 + 3θ) is always negative.

C Feedback Stackelberg equilibrium

C.1 Derivation of the feedback Stackelberg equilibrium

We determine the feedback Stackelberg equilibrium using backward induction.

In the �rst stage, the follower decides the amount of extraction in period two and solves

the problem in (16). Once G1 and G2 are replaced by their expressions in (1) and (2), the

follower's objective function in the second period is as follows:

Π̃2f (g1f , g2f , g2l) = g2f (af + c(G0 − g1f − g2f − g2l + 2r)− z).

Assuming an interior solution, maximizing Π̃2f (g1f , g2f , g2l) with respect to g2f gives the

follower's second-period best-reaction function as follows:

ĝ2f (g2l, g1f ) =
af + c(G0 − g1f − g2l + 2r)− z

bf + 2c
. (34)

The follower's optimal second-period pro�ts are as follows:

Π̃2f (g1f , ĝ2f (g2l, g1f ), g2l) =
(af + c(G0 − g1f − g2l + 2r)− z)2

2(bf + 2c)
.

In the second step, the leader determines the extraction in period two, considering the

follower's extraction in this period that is given in (34). Therefore, the leader's objective
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in (17) is the following:

θΠ̃2f (g1f , ĝ2f (g2l, g1f ), g2l) + (1− θ)Π2l(g2l, G2) +AG2, (35)

where Π2l(g2l, G2) and AG2 once G1, G2, and g2f are replaced by their expression in (1),

(2), and (34), respectively, are as follows:

Π̃2l(g2l, g1f ) =
g2l(−afc+ al(bf + 2c) + (bf + c)(c(G0 − g1f − g2l + 2r)− z))

bf + 2c
,

AG2 =
A(−af + bf (G0 − g1f − g2l + 2r) + cG0 − cg1f − cg2l + 2cr + z)

bf + 2c
.

Assuming an interior solution, maximizing (35) with respect to g2l gives the leader's ex-

traction in the second period as a function of the follower's extraction in the �rst period,

as follows:

ĝ2l(g1f )=
A(bf+c)+afc+al(θ−1)(bf+2c)+(bf (θ−1)+c(2θ−1))(c(G0−g1f+2r)−z)

c(θ(2bf + 3c)− 2(bf + c))
.

(36)

In the third and �nal step, the follower decides the extraction in period one considering

the leader's reaction function in the second period given in (36). The follower's objective

function in the �rst period is the following:

Π̃1f (g1f ) =
(A(bf+c)−(θ−1)(af (2bf+3c)−al(bf+2c)+(bf+c)(c(G0−g1f+2r)− z)))2

2(bf + 2c)(2bf (1− θ) + c(2− 3θ))2

+ afg1f −
1

2
g1f (bfg1f − 2c(G0 − g1f + r) + 2z).

Assuming an interior solution, the maximization of Π̃1f (g1f ) with respect to g1f , gives the

optimal strategy, gFB1f , as follows:

gFB1f =
M3b

3
f +M2b

2
f +M1bf +M0(

2b2f (θ−1)+bfc(6θ−5)+c2(5θ−3)
)(

2b2f (θ−1)+bfc(8θ−7)+c2(7θ−5)
) , (37)

where

M3 = 4(θ − 1)2(af + c(G0 + r)− z),

M2 = c(θ − 1)(A+ 2af (9θ − 7) + θ(al + 19(cG0 − z) + 18cr)− al − 15(cG0 − z)− 14cr),

M1 = c2(2A(θ−1) + θ(θ(28af+3al+31(cG0−z)+29cr)−42af−6al−48(cG0−z)−44cr)

+ 15af + 3al + 2(9(cG0 − z) + 8cr)),

M0 = c3
(
A(θ−1)+θ2(15af+2al+17(cG0−z)+16cr)−2θ(9af+2al+11(cG0−z)+10cr)

+ 5af + 2al + 7(cG0 − z) + 6cr) .

30



(19) corresponds to (37) for the particular case θ = 1/2 .

The optimal strategy for the leader's extraction gFB2l is obtained by replacing g1f with

the expression in (37) in the leader's second-period best-reaction function in (36) as follows:

gFB2l =
N4b

4
f +N3b

3
f +N2b

2
f +N1bf +N0

c
(

2b2f (θ−1)+bfc(6θ−5)+c2(5θ−3)
)(

2b2f (θ−1)+bfc(8θ−7)+c2(7θ−5)
) , (38)

where

N4 = 2(θ − 1)(A+ (θ − 1)(al + cG0 + 2cr − z)),

N3 = c(A(13θ − 12) + (θ − 1)(−2af (θ − 2) + θ(15al + 13(cG0 − z) + 28cr)

− 2(7al + 5(cG0 − z) + 11cr))),

N2 = c2(5A(6θ − 5) + θ(θ(−10af + 41al + 31(cG0 − z) + 73cr) + 28af − 76al

− 48(cG0 − z)− 115cr)− 17af + 35al + 18(cG0 − z) + 44cr),

N1 = c3(A(30θ − 22) + θ(θ(−17af + 49al + 32(cG0 − z) + 84cr) + 43af − 86al

− 43(cG0 − z)− 115cr)− 23af + 37al + 14(cG0 − z) + 38cr),

N0 = c4(A(11θ − 7)− 2af (θ(5θ − 11) + 5) + 2al(θ − 1)(11θ − 7)

+ 2(θ(6θ − 7) + 2)(c(G0 + 3r)− z)).

(21) is (38), which is particularized at θ = 1/2.

Finally, the optimal strategy for the follower's extraction in the second period, gFB2f is

obtained by replacing g1f and g2l with the expressions in (37) and (38), respectively, into

the follower's second-period best-reaction function in (34) as follows:

gFB2f =
P4b

4
f + P3b

3
f + P2b

2
f + P1bf + P0(

2b2f (θ−1)+bfc(6θ−5)+c2(5θ−3)
)(

2b2f (θ−1)+bfc(8θ−7)+c2(7θ−5)
) , (39)

where

P3 = 2(θ − 1)((θ − 1)(2af − al + cG0 + 2cr − z)−A),

P2 = c(A(8−9θ)+(θ−1)(θ(18af−11al+7(cG0−z)+16cr)−2(8af−5al+3(cG0−z)+7cr))),

P1 = c2(A(10−13θ)+(θ−1)(θ(28af−20al+8(cG0−z)+21cr)−2(11af−8al+3(cG0−z)+8cr))),

P0 = c3(3θ − 2)((θ − 1)(5af − 4al + cG0 + 3cr − z)− 2A).

(20) is obtained replacing θ = 1/2 in (39).

The optimal pro�ts of the leader and the follower are obtained by replacing the optimal

extraction strategies in the agents' pro�t functions.
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C.2 Concavity conditions

In the second period, the follower's objective function in (16) is strictly concave with respect

to the decision variable g2f , because
∂2Π2f

∂g22f
= −bf − 2c < 0. The follower's best-response

is given by (34), provided it is positive. Since we ask for positive solutions (in extractions

and aquifer levels), G2 = G0 − g1f − g2l − g2f + 2r > 0, that is, G0 − g1f − g2l + 2r > g2f .

As g2f > 0 and af > z (see positivity Condition 1.A in Appendix D.1), we determine that

(34) is positive.

In the second period, the concavity of the leader's objective function in (17) for the decision

variable g2l requires
∂2Π2l

∂g22l
=

c(2bf (θ−1)+c(3θ−2))
bf+2c < 0. Therefore, this concavity condition

reduces to 2bf (θ − 1) + c(3θ − 2) < 0. The leader's best response is (36), provided that

this expression is positive. The denominator of (36) is negative, then (36) is positive if the

numerator A(bf +c)+afc+al(θ−1)(bf +2c)+(bf (θ−1)+c(2θ−1))(c(G0−g1f +2r)−z)
is negative.

In the �rst period, the follower's objective function in (18) is strictly concave with respect

to the decision variable g1f , i� c2(θ− 1)2(bf + c)2− (bf + 2c)2(2bf (θ− 1) + c(3θ− 2))2 < 0.

It can be easily checked that the two conditions ensuring the concavity of the leader's

and follower's objective functions are always satis�ed for the particular case θ = 1/2.

D Open-loop vs. Feedback Stackelberg equilibria

D.1 Positivity conditions

We next determine the conditions ensuring the positivity of agents' optimal strategies and

aquifer states over the two periods for open-loop and feedback equilibria. We characterize

these conditions under the assumptions that θ = 1/2 and al > af > z are satis�ed.

The su�cient conditions for the positivity of the players' optimal strategies and aquifer

states over the two periods are as follows:

Condition 1: A: al > af > z, B: G0c− 2A > 0, C: 3al − 3af − 4A > 0, D: G0c+ 3cr +

4A−4al+2af +2z > 0, E: G0c+3cr−14A > 0, F: 5G0c+14cr+18A−16al+3af +13z > 0

and G: 9G0c+ 23cr + 28A− 21al − 2af + 23z > 0.

In a �rst step, we demonstrate that Conditions 1.A, 1.B, 1.C, 1.D, and 1.E ensure that

the agents' optimal strategies are positive over the two periods and for the two types of

equilibria. Notably, if A = 0, which represents the extreme case where the regulator is not

concerned about the aquifer stock at the end of the second period, conditions 1.A to 1.E

reduce to Condition 1.A and G0c+ 3cr − 4al + 5af − z > 0.
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• From (11),

gOL
1f =

2(G0c+cr+af−z)b2f +c(6(G0c−z)+5(cr+af )−2A+al)bf +c2(2(G0c+z)−4A+3al−af )

(bf + 2c)(bf + 3c)(2bf + c)
,

and G0c− 2A > 0 (Condition 1.B) implies gOL1f > 0.

• From (12),

gOL
2f =

(G0c+ 2cr + 2A− al + 2af − z)bf + c(G0c+ 3cr + 4A− 3al + 4af − z)
(bf + 3c)(2bf + c)

,

and

min(G0c+ 2cr + 2A− al + 2af − z,G0c+ 3cr + 4A− 3al + 4af − z) > 0, (40)

implies gOL2f > 0.

Because the following inequalities apply:

4(G0c+ 2cr + 2A− al + 2af − z)− (G0c+ 3cr + 4A− 4al + 2af + 2z) > 0,

G0c+ 3cr + 4A− 3al + 4af − z − (G0c+ 3cr + 4A− 4al + 2af + 2z) > 0,

from (40), we obtain G0c + 3cr + 4A − 4al + 2af + 2z > 0 (Condition 1.D), which

implies gOL2f > 0.

• From (13),

gOL
2l =

(G0c+2cr−2A+al−z)b2f +c(G0c+3cr−6A+4al−3af−z)bf +(3al−3af−4A)c2

c(bf + 2c)(2bf + c)
;

therefore, condition

min(G0c+ 2cr − 2A,G0c+ 3cr − 6A) > 0 (41)

and condition 3al − 3af − 4A > 0 (Condition 1.C) imply gOL2l > 0.

Because the two following inequalities apply:

G0c+ 2cr − 2A− (G0c− 2A) > 0,

G0c+ 3cr − 6A− (G0c+ 3cr − 14A) > 0,

we have that G0c − 2A > 0 (Condition 1.B) and G0c + 3cr − 14A > 0 (Condition

1.E) imply (41).
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• From (19),

gFB
1f =

1

(2b2f +4bfc+c2)(2b2f +6bfc+3c2)

{
4(G0c+cr+af−z)b3f

+c(11(G0c−z)+10cr−2A+al+10af )b2f +c2(7(G0c−z)+5cr−4A+3al+4af )bf

+c3(G0c−2A+2al−af−z))
}
,

and

min(7G0c+ 5cr − 4A,G0c− 2A) > 0

implies gFB1f > 0.

Because 7G0c + 5cr − 4A − 2(G0c − 2A) > 0, then G0c − 2A > 0 (Condition 1.A)

implies gFB1f > 0.

• From (20),

gFB
2f =

1

(2b2f +4bfc+c2)(2b2f +6bfc+3c2)

{
2(G0c+2cr+2A−al+2af−z)b3f

+c(5(G0c−z)+10cr+14A−9al+14af )b2f +c2(4(G0c−z)+11cr+14A−12al+16af )bf

+c3(G0c+3cr+4A−4al+5af−z))
}
,

then G0c + 3cr + 4A − 4al + 2af + 2z > 0 implies gFB2f > 0 because the following

inequalities apply:

5G0c+ 10cr + 14A− 9al + 14af − 5z > 3(G0c+ 3cr + 4A− 4al + 2af + 2z),

4G0c+ 11cr + 14A− 12al + 16af − 4z > 3(G0c+ 3cr + 4A− 4al + 2af + 2z),

2G0c+ 4cr + 4A− 2al + 4af − 2z > (G0c+ 3cr + 4A− 4al + 2af + 2z).

• From (21),

gFB
2l =

1

c(2b2f +4bfc+c2)(2b2f +6bfc+3c2)

{
2(G0c+2cr−2A+al−z)b4f

+c(7(G0c−z)+16cr−22A+13al−6af )b3f +c2(7(G0c−z)+19cr−40A+29al−22af )b2f

+c3(2(G0c−z)+6cr−28A+25al−23af )bf +6c4(al−af−A)
}
,

and

min(2G0c+ 4cr− 4A, 7G0c+ 19cr− 40A, 2G0c+ 6cr− 28A,−A+ al− af ) > 0 (42)

implies gFB2l > 0.

34



Because the following inequalities apply:

2G0c+ 4cr − 4A− 2(G0c− 2A) > 0,

7G0c+ 19cr − 40A− 6(G0c+ 3cr − 14A) > 0,

−A+ al − af − 1/4(3al − 3af − 4A) > 0,

from (42), we obtain G0c−2A > 0 (Condition 1.B), G0c+ 3cr−14A > 0 (Condition

1.E), and 3al − 3af − 4A > 0 (Condition 1.C), which imply gFB2l > 0.

In a second step, we determine the su�cient conditions that guarantee that the aquifer

stocks are positive over the two periods. We �rst obtain the su�cient conditions ensuring

a positive aquifer stock at the end of the second period.

• From (15),

GOL
2 =

1

c(2bf + c)(bf + 3c)

{
(G0c+2cr+2A−al+z)b2f +c(2G0c+5cr+6A−4al−af +5z)bf

+c2(G0c+3cr+4A−3al+af +2z)
}
.

Because

G0c+2cr+2A−al+z >
1

3
(2G0c+5cr+6A−4al−af+5z),

ful�lling the following two conditions:

2G0c+ 5cr + 6A− 4al − af + 5z > 0, (43)

G0c+ 3cr + 4A− 3al + af + 2z > 0, (44)

guarantees GOL2 > 0.

• From (23),

GFB
2 =

1

c(2b2f +4bfc+c2)(2b2f +6bfc+3c2)

{
2(G0c+2cr+2A−al+z)b4f

+c(7G0c+16cr+18A−11al−2af +13z)b3f +c2(9G0c+23cr+28A−21al−2af +23z)b2f

+c3(5G0c+14cr+18A−16al+3af +13z)bf +c4(G0c+3cr+4A−4al+2af +2z)
}
.

Because the following two inequalities apply:

(G0c+ 2cr + 2A− al + z)− 1

3
(2G0c+ 5cr + 6A− 4al − af + 5z) > 0,

7G0c+ 16cr + 18A− 11al − 2af + 13z > 5G0c+ 14cr + 18A− 16al + 3af + 13z,
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then condition (43) and the following three conditions:

5G0c+ 14cr + 18A− 16al + 3af + 13z > 0 (Condition 1.F), (45)

9G0c+ 23cr + 28A− 21al − 2af + 23z > 0 (Condition 1.G), (46)

G0c+ 3cr + 4A− 4al + 2af + 2z > 0 (Condition 1.D) (47)

imply GFB2 > 0.

Because G0c+3cr+4A−3al+af +2z > G0c+3cr+4A−4al+2af +2z, considering

(44), we can conclude that Conditions 1.D, 1.F, 1.G, and (43) ensure that GOL2 and

GFB2 are positive.

We next determine the su�cient conditions ensuring a positive aquifer stock at the end

of the �rst period.

• From (48),

GOL
1 =

1

(2bf + c)(bf + 2c)(bf + 3c)

{
2(G0+r)b3f +(9(G0c+cr)−2af +2z)b2f

+c(11G0c+12cr+2A−al−5af +6z)bf +c2(4G0c+6cr+4A−3al+af +2z)
}
.

Because

9G0c+ 9cr − 2af + 2z − (4G0c+ 6cr + 4A− 3al + af + 2z)

= 5G0c+ 3cr − 4A+ 3al − 3af > 5G0c+ 3cr − 4A > 0,

where the last inequality stems from Condition 1.B, we obtain the following two

conditions:

4G0c+ 6cr + 4A− 3al + af + 2z > 0, (48)

11G0c+ 12cr + 2A− al − 5af + 6z > 0, (49)

which, combined with Condition 1.B, imply that GOL1 > 0.

• From (22),

GFB
1 =

1

(2b2f +4bfc+c2)(2b2f +6bfc+3c2)

{
4(G0+r)b4f +4(4G0c+4cr−af +z)b3f

+c(21G0c+22cr+2A−al−10af +11z)b2f +c2(11G0c+13cr+4A−3al−4af +7z)bf

+c3(2G0c+3cr+2A−2al+af +z)
}
.
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Because

4G0c+ 4cr − af + z − 1

2
(4G0c+ 6cr + 4A− 3al + af + 2z)

= 2cG0 + cr − 3

2
af +

3

2
al − 2A > 2cG0 + cr − 2A > 0, and (50)

2G0c+ 3cr + 2A− 2al + af + z − (G0c+ 3cr + 4A− 4al + 2af + 2z)

= G0c− 2A+ 2al − af − z > 0, (51)

where the last inequality in (50) and the inequality in (51) stem from Conditions 1.A

and 1.B, we obtain the following two conditions:

21G0c+ 22cr + 2A− al − 10af + 11z > 0, (52)

11G0c+ 13cr + 4A− 3al − 4af + 7z > 0, (53)

which, combined with Conditions 1.A, 1.B, and 1.D, imply that GFB1 > 0.

Considering (43), (49), and (52), and because

2(11G0c+ 12cr + 2A− al − 5af + 6z)− (21G0c+ 22cr + 2A− al − 10af + 11z)

= G0c+ 2cr + 2A− al + z >
1

3
(2G0c+ 5cr + 6A− 4al − af + 5z) > 0,

we can conclude that Conditions 1.A, 1.B, 1.D, (52), and (43) ensure the ful�llment

of condition (49).

Considering conditions (43), (48), and (53), we obtain the following:

(11G0c+ 13cr + 4A− 3al − 4af + 7z)− 2(2G0c+ 5cr + 6A− 4al − af + 5z)

= 7G0c+ 3cr − 8A+ 5al − 2af − 3z > 0,

(4G0c+ 6cr + 4A− 3al + af + 2z)− (2G0c+ 5cr + 6A− 4al − af + 5z)

= 2G0c+ cr − 2A+ al + 2af − 3z > 0,

where the inequalities stem from Conditions 1.A and 1.B; therefore, condition (43)

implies conditions (48) and (53).

Furthermore, under Conditions 1.A and 1.B, the following inequality applies:

23(21G0c+22cr+2A−al−10af+11z)− 19(9G0c+23cr+28A−21al−2af+23z)

= 312G0c+ 69cr − 486A+ 376al − 192af − 184z > 0,

then Condition 1.G (46) implies condition (52).
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Because under Conditions 1.A and 1.B,

46(2G0c+ 5cr + 6A− 4al − af + 5z)− 10(9G0c+ 23cr + 28A− 21al − 2af + 23z)

= 2G0c− 4A+ 26al − 26af > 0,

we determine that Condition 1.G (46) implies condition (43).

In summary, Conditions 1.A to 1.G ensure that the aquifer stock is positive at the end

of the two periods.

In this section, all proofs were performed under Condition 1 to ensure the comparison

between the di�erent equilibria.

D.2 Proof of Proposition 1

gFB1f − gOL1f =
A5b

5
f +A4b

4
f +A3b

3
f +A2b

2
f +A1bf +A0

(2bf + c)(bf + 2c)(bf + 3c)
(

2b2f + 4bfc+ c2
)(

2b2f + 6bfc+ 3c2
) , (54)

where

A5 = 2c(G0c+ 2cr + 2A− al + 2af − z),

A4 = c2(11G0c+ 24cr + 26A− 15al + 26af − 11z),

A3 = c3(22G0c+ 53cr + 62A− 38al + 60af − 22z),

A2 = c4(18G0c+ 49cr + 62A− 35al + 53af − 18z),

A1 = 5c5(G0c+ 3cr + 4A− al + 2af − z),

A0 = 3c6(al − af ).

We next demonstrate that under Condition 1, all the coe�cients Ai, i = 0, 1, . . . , 5 are

positive; hence, gFB1f − gOL1f > 0.

A5 is positive because the following inequalities apply:

G0c+2cr+2A−al+2af−z > G0c+2cr+2A−al+af > G0c+2cr+2A−al+z

>
1

3
(2G0c+ 5cr + 6A− 4al − af + 5z) > 0. (55)

The �rst two inequalities apply because af > z (Condition 1.A), the third one applies

because al > af > z (Condition 1.A), and the last one applies because we already demon-

strated that Condition 1.G (46) implies condition (43) (2G0c+5cr+6A−4al−af +5z > 0)

in section D.1.
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A4 is positive because the following inequality applies:

11G0c+ 24cr + 26A− 15al + 26af − 11z − 4(G0c+ 3cr + 4A− 4al + 2af + 2z)

= 7G0c+ 12cr + 10A+ al + 18af − 19z > 0,

where the mathematical expression in Condition 1.D is used in the term in round brackets

in the �rst line and the last inequality is implied by inequalities al > af > z (Condition

1.A).

A3 is positive because the following inequality applies:

22G0c+ 53cr + 62A− 38al + 60af − 22z − 10(G0c+ 3cr + 4A− 4al + 2af + 2z)

= 12G0c+ 23cr + 22A+ 2al + 40af − 42z > 0, (56)

where, once again, the mathematical expression in Condition 1.D is used in the term in

round brackets in the �rst line and the last inequality is implied by inequalities al > af > z

(Condition 1.A).

A2 is positive because the following inequality applies:

18G0c+49cr+62A−35al+53af−18z−10(G0c+3cr+4A−4al+2af+2z)

= 8G0c+ 19cr + 22A+ 5al + 33af − 38z > 0,

where, for a third time, the mathematical expression in Condition 1.D is used in the term in

round brackets in the �rst line and the last inequality is implied by inequalities al > af > z

(Condition 1.A).

A1 is positive because the following inequality applies:

G0c+ 3cr + 4A− al + 2af − z > G0c+ 2cr + 2A− al + 2af − z > 0,

where last inequality stems from (55).

Therefore, we can conclude that the di�erence gFB1f − gOL1f in (54) is positive.

gOL2f − gFB2f =
B3b

3
f +B2b

2
f +B1bf +B0

(2bf + c)(bf + 3c)
(

2b2f + 4bfc+ c2
)(

2b2f + 6bfc+ 3c2
) , (57)

where

B3 = c2(3G0c+ 6cr + 6A+ al + 2af − 3z),

B2 = c3(5G0c+ 13cr + 16A+ 5al − 5z),

B1 = c4(2G0c+ 6cr + 8A+ 7al − 5af − 2z),

B0 = 3c5(al − af ).
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Under condition 1.A (al > af > z), coe�cients Bi, i = 0, 1, . . . , 3 are positive; hence,

gOL2f − gFB2f > 0.

gOL2l − gFB2l = −c
C4b

4
f + C3b

3
f + C2b

2
f + C1bf + C0

(2bf + c)(bf + 2c)
(

2b2f + 4bfc+ c2
)(

2b2f + 6bfc+ 3c2
) , (58)

where

C4 = G0c+ 2cr + 2A+ 3al − 2af − z,

C3 = c(3G0c+ 7cr + 8A+ 15al − 12af − 3z),

C2 = c2(3G0c+ 8cr + 10A+ 24al − 21af − 3z),

C1 = c3(G0c+ 3cr + 4A+ 14al − 13af − z),

C0 = 3c4(al − af ).

Under condition 1.A (al > af > z), coe�cients Ci, i = 0, 1, . . . , 4 are positive; hence,

gOL2l − gFB2l < 0.

D.3 Proof of Proposition 2

The di�erence of total extractions under the open-loop and feedback scenarios is as follows:

TotalOL − TotalFB = −
c(bf + c)(D3b

3
f +D2b

2
f +D1bf +D0)

(2bf + c)(bf + 3c)
(

2b2f + 4bfc+ c2
)(

2b2f + 6bfc+ 3c2
) , (59)

where

D3 = 6A+ 2af + al + 3cG0 + 6cr − 3z > 0,

D2 = c(16A+ 5al + 5cG0 + 13cr − 5z) > 0,

D1 = c2(8A− 5af + 7al + 2cG0 + 6cr − 2z) > 0, and

D0 = 3c3(al − af ) > 0.

The signs of the expressions above are from Condition 1.A; therefore, from (59), the sign

of the di�erence TotalOL − TotalFB is negative.
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E Numerical results

E.1 Sensitivity analysis with respect to parameters bf and A

Column 1 2 3 4 5 6 7 8 9 10 11 12

bf = 0.01 bf = 0.1 bf = 1

Follower Leader Follower Leader Follower Leader

Period 1 2 2 Total 1 2 2 Total 1 2 2 Total

θ = 0.4

A=0 n.a n.a n.a n.a + � + + + � + +

A=0.07 n.a n.a n.a n.a + � + + + � + +

θ = 1/2

A=0 + � + + + � + + + � + +

A=0.07 + � + + + � + + + � + +

θ = 0.581

A=0 � � + + + � + + + � + +

A=0.07 � � + + + � + + + � + +

θ = 0.59

A=0 � + + � + � + + + � + +

A=0.07 � + � � + � + + + � + +

θ = 0.655

A=0 n.a. n.a n.a n.a � + � � + � + +

A=0.07 n.a n.a n.a n.a � + � � + � + +

Table 5: Sign of di�erences between feedback and open-loop extraction results: + means

FB > OL, � means FB < OL.

Column 1 2 3 4 5 6 7 8 9 10 11 12

bf = 0.01 bf = 0.1 bf = 1

Follower Leader Follower Leader Follower Leader

Period 1 2 Total Total 1 2 Total Total 1 2 Total Total

θ = 0.4

A=0 n.a. n.a. n.a. n.a. + � � � + � � �

A=0.07 n.a. n.a. n.a. n.a. + � � � + � � �

θ = 1/2

A=0 + � � � + � � � + � � �

A=0.07 + � � � + � � � + � � �

θ = 0.581

A=0 � � � � + � � � + � � �

A=0.07 � � � � + � � � + � � �

θ = 0.59

A=0 � + � � + � � � + � � �

A=0.07 � + � � + � � � + � � �

θ = 0.655

A=0 n.a. n.a. n.a. n.a. � + � � + � � �

A=0.07 n.a. n.a. n.a. n.a. � + + � + � � �

Table 6: Sign of di�erences between feedback and open-loop pro�t results: + means FB >

OL, � means FB < OL.
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E.2 Sensitivity analysis with respect to parameter al

We use the parameter values from Table 1 with bf = 0.1 and A = 0.07 for the following

numerical simulation, presenting a summary of results for di�erent al and θ.

Column 1 2 3 4 5 6 7 8 9 10 11 12

al = 4.8 al = 6 al = 6.2

Follower Leader Follower Leader Follower Leader

Period 1 2 2 Total 1 2 2 Total 1 2 2 Total

θ = 0.4 + � + + + � + + + � + +

θ = 1/2 + � + + + � + + + � + +

θ = 0.581 � � + + + � + + + � + +

θ = 0.59 � + + � + � + + + � + +

θ = 0.655 n.a. n.a n.a n.a � + � � � + � �

Table 7: Sign of di�erences between feedback and open-loop extraction results: + means

FB > OL, � means FB < OL.

Column 1 2 3 4 5 6 7 8 9 10 11 12

al = 4.8 al = 6 al = 6.2

Follower Leader Follower Leader Follower Leader

Period 1 2 Total Total 1 2 Total Total 1 2 Total Total

θ = 0.4 + � � � + � � � + � � �

θ = 1/2 + � � � + � � � + � � �

θ = 0.581 � � � � + � � � + � � �

θ = 0.59 � + � � + � � � + � � �

θ = 0.655 n.a. n.a. n.a. n.a. � + + � � + � �

Table 8: Sign of di�erences between feedback and open-loop pro�t results: + means FB >

OL, � means FB < OL.
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F Further analysis with respect to β, the discount factor

We conduct numerical simulation in this section using the parameter values from Table 1

with θ = 0.5, bf = 0.1 and A = 0.07, presenting a summary of results for di�erent values

of β.

Column 1 2 3 4 5 6 7 8 9 10 11 12

β = 0.1 β = 0.5 β = 1

Follower Leader Follower Leader Follower Leader

Period 1 2 2 Total 1 2 2 Total 1 2 2 Total

θ = 1/2 � + � � + + � � + � + +

Table 9: Sign of di�erences between feedback and open-loop extraction results: + means

FB > OL, � means FB < OL.

Column 1 2 3 4 5 6 7 8 9 10 11 12

β = 0.1 β = 0.5 β = 1

Follower Leader Follower Leader Follower Leader

Period 1 2 Total Total 1 2 Total Total 1 2 Total Total

θ = 1/2 � + + � + + + � + � � �

Table 10: Sign of di�erences between feedback and open-loop pro�t results: + means

FB > OL, � means FB < OL.
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