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Abstract
Distance-based methods (DBMs) are frequently used to analyze spatial structures in economics. Results provided by DBMs
are particularly effective for the precise detection of spatial concentration, dispersion or absence of significant patterns at any
scale. The utility of plotting the results of DBMs in homogeneous space has already been shown. However, no consideration
has been given to mapping results in non-homogeneous space. This paper aims to fill this gap. We provide a technique to
map local values when using a relative DBM. We illustrate its advantages at first on a theoretical case and then on a real
case drawing on contagious disease data on trees in a Parisian park. Data and R code are given for reproducible research.
In both cases, we show that local plotting can enable a more accurate spatial characterization of the underlying patterns. To
give an example, our empirical results on infested maple trees support evidence of the existence of a contagion disease
because they appear to be located in areas where maples are relatively spatially concentrated.
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Introduction
Distance-based methods (DBM) are frequently used to an-
alyze spatial structures in economics (Marcon and Puech,
2017). The results provided by these methods are highly
effective for the precise detection of phenomena of spatial
concentration, dispersion or the absence of significant pat-
terns at any level. Rather than zoning space in separate units
(regions etc.), space is considered within that framework as
continuous, that is without any zoning. This is possible be-
cause, in such cases, estimates are only based on the distances
that separate the entities under study (e.g., shops, produc-
tive establishments, accidents etc.). This understanding of
space opens the door to a very detailed analysis of space
without any bias. Today, both geolocalized and satellite data
are increasingly available to researchers: as a consequence,
in economics, DBM have been significantly developed over
the last fifteen years (Arbia et al., 2021).1 A series of DBM
applications can be found in the economics literature to eval-
uate the location of manufacturing establishments (Sweeney
and Feser, 1998), stores (Arbia et al., 2015), emergencies

1Analyzing such kinds of data in continuous space undoubtedly presents
a great advantage, because depending on the drivers considered, the relevant
neighborhood is not the same. If we consider for example the explanation
of industrial agglomeration, many factors should be taken into account and
their intensity varies according to the distance. For instance, studies show
that the benefits of externalities decrease rapidly with distance (very close
neighborhoods in that case) whereas larger distances are considered for the
explanation of input/output linkages (Rosenthal and Strange, 2020).

(Bonneu, 2007), patents (Arbia et al., 2008) etc. In a recent
article, Piacentino et al. (2021, p.121) wrote that this kind
of data has "the potential to revolutionize spatial economic
analysis". We strongly support that view. On the one hand,
micro-geographic data can describe all spatial phenomena at
any scale (even if it is very small). On the other hand, these
precise results can henceforth be explained through an econo-
metric analysis. The aim of this article is to contribute to the
first step of the analysis; that is the descriptive one.

DBMs detect a departure from the null hypothesis (for
example from a completely random location of entities) and,
depending on the DBM used, the interpretation of the level of
spatial concentration or dispersion may or may not be possible.
Our attention in this paper is focused on a continuous mapping
of DBM results. Under the assumption of a homogeneous
space, that is the hypothesis of a constant density across the
entire territory, Getis and Franklin (1987, p.476) proposed a
spatial representation of the level of the average local value
of DBM results based on maps with contour lines. However,
as far as we are aware, under the non-homogeneous space hy-
pothesis, a spatial representation of DBM results has not yet
been proposed. This paper fills that gap for a given function,
the M-function proposed by Marcon and Puech (2010). Our
objective is to plot these observations so as to bring comple-
mentary local information to the results provided by DBMs.
Firstly and most evidently, this helps to identify places where
high or low values of the DBM occur. Secondly, continuous
local plotting can help to obtain an improve spatial charac-
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terization of the underlying patterns. Finally, this mapping
can give support to an intuition that later analysis may con-
firm. In section 1, we explain the importance of exploring
non-homogeneous space with DBMs. In section 2, we present
how mapping results in non-homogeneous space. In section 3,
we propose a concrete application on a dataset providing an
inventory of contagious disease affecting trees in a Parisian
park. Thanks to this mapping, we try to establish whether
concentration favors contagion. Along with our examples
(whether theoretical or empirical), a complete R code is given
in the appendix to enable the reproducibility of the research.

1. Exploring non-homogeneous space
with distance-based methods

1.1 The necessity to go beyond a spatial distribution
of entities or density-maps

The first possibility that we have in mind for mapping micro-
geographic data is to represent the distribution of the exact
geographic positions of the entities under study. This is equiv-
alent to a representation of mapped points in space. Many
examples can be found in the economic literature: public
schools and alcohol retailers in Picone et al. (2009), manufac-
turing plants in Aleksandrova et al. (2020) etc. This technique
can detect certain location trends (such as clusters), but it is
not informative if datasets contain an overly large number of
observations. To solve this problem, one possibility is to map
the density of the observations under study in two dimensions
(Arbia et al., 2012, 2014; Coll-Martìnez et al., 2019; Moreno-
Monroy and Cruz, 2016) or in three dimensions (Lang et al.,
2020).

The limit is that mapped density can not provide any
information as to the relations between entities (e.g., spa-
tial attraction, repulsion or neither attraction nor repulsion).
Distance-based methods solve this problem: their mapped
results reveal location patterns and detect the intensity of
relationships, at any scale.

1.2 Distance-based methods: basic concepts
Distance-based methods (DBMs) preserve the geolocalized
information. This is possible because they rely on the ex-
act position of entities (geographic coordinates) and on the
individual characteristics under scrutiny (for example the gen-
der of humans, sector of shops, circumference of trees etc).
DBMs are particularly effective for testing whether there is
any attraction or repulsion between entities under study (Floch
et al., 2018; Sweeney and Arabadjis, 2022). Within that frame-
work, space is considered as continuous and one’s attention
is only focused on the distance that separates pairs of entities.
We test for whether there is any attraction or any repulsion
between entities belonging to one group (what we refer to as
localization) or two different groups (e.g., the phenomenon of
co-localization, as per the vocabulary employed in the litera-
ture by Duranton and Overman, 2005). Technically, conclu-
sions drawn from the results of distance-based methods rely
on point process theory (Møller and Waagepetersen, 2004).

Today, more than ten distance-based methods are used in the
literature (Marcon and Puech, 2017). They are notably based
on a set of hypotheses to correctly define the neighborhood
of the points and the benchmark against which the observed
distribution is compared. Thus, the question under study must
always guide research in the direction of the appropriate func-
tion to use (Bickenbach and Bode, 2008). DBM results are
represented as a plot of a function of distance and always
compared to a simulated envelope representing the confidence
interval of a null hypothesis to be tested. Depending on the
DBM used, empirical values may or may not be interpreted;
however, all DBMs can detect the intensity level of the spatial
concentration or dispersion. The advantage of all DBMs is
that they can detect a departure from the null hypothesis (e.g.,
a random distribution) at any scale and without statistical bias.
This point is crucial because to grasp the interactions between
entities, aggregating data up to a given level of space is not
optimal. Many examples point out the loss of information
by using areal data and illustrate the well-known Modifiable
Areal Unit Problem (Openshaw and Taylor, 1979; Openshaw,
1984; Arbia, 1989). Finally, from a practical point of view,
we can note that the evaluation of underlying structures of
spatialized data (humans, shops, accidents etc.) can be carried
out with R packages, for example with the dbmss package
(Marcon et al., 2015).

1.3 Distance-based methods in homogeneous vs.
non-homogeneous space

One of the main differences between DBMs is the definition of
space they rely on (Marcon and Puech, 2010, 2017). Consider
that the density of points is a function of space. If the hypoth-
esis of a constant density everywhere across the area under
study can be supposed, space is considered as homogeneous.
In technical terms, we say that the point process is station-
ary. If not, space will be considered as non-homogeneous
(or inhomogeneous). This consideration should be studied
with care because it is one of the key indicators for choosing
the most appropriate DBM to use. To give an example, the
hypothesis of homogeneous space is limited for studying the
location of firms (as noted by Duranton and Overman, 2005,
footnote 24). Ripley’s K function (Ripley, 1976, 1977) or its
variations (such as the L function of Besag, 1977) is certainly
the best known DBM. It is used under the hypothesis of a ho-
mogeneous space. Many applications can be found in various
fields of research. This certainly explains why a technique
for mapping the results of the K-function has already been
proposed. Getis and Franklin (1987, p.476) proposed a spatial
representation of the level of the average local value of DBM
results based on maps with contour lines. More precisely, they
analyze the spatial distribution of ponderosa pine trees in a
square area (120m x 120m) of the Klamath National Forest
in North Carolina in the United States. They plot the results
of Besag’s L function and map their results by using isolines.
Due to the properties of Besag’s L function, results can be
compared across distances, making it particularly convenient
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for analyzing the spatial structure of the distribution of pines
across the entire territory and identifying the spatial positions
of clusters of pines. Hereinafter, we propose a technique to
map points in that vein by using a DBM in non-homogeneous
space for which the results may be also compared whatever
the distance. A good candidate seems to be the M function:
we explain why in the following section.

1.4 Presentation of the M function
1.4.1 Intuitive idea
The M function is a relative distance-based function proposed
by Marcon and Puech (2010). The main idea of this function
is to compare the local proportion of points of interest to the
one observed over the entire territory. More precisely, if there
are relatively more entities observed in the neighborhood of
entities of interest than over the entire territory, the M func-
tion will detect a relative concentration of entities. On the
contrary, if there are relatively less entities observed in the
neighborhood of points of interest, a relative dispersion of en-
tities will be detected by the M function. The null hypothesis
is defined as the same distribution of points of interest as that
of all points all over the territory. The simulation of a confi-
dence envelope of the null hypothesis gives the significance
of the results. Depending on the question under study, the
researcher may define a distance for the relevant surroundings
of an entity, for instance a neighborhood of 50 meters. If there
is no privileged distance, the M function can be calculated
for all distances (e.g., 5 meters, 10 meters, 15 meters etc.).
The maximum distance is where we suspect no more potential
interactions between entities will occur because they are too
far from each other to interact. In general, Euclidean distance
is the distance used in the analysis.

To give an example, suppose that we are interested in
characterizing the location of one given species of trees, let
us say maples, in a forest.
Step 1: For a series of surroundings defined as circular disks

around each maple for example, measuring 5 meters,
10 meters, 15 meters etc., the relative proportion
of maples compared to the other species of trees is
counted.

Step 2: If the average local proportion of maples is greater
than the one observed in the forest, we say that there is a
relative spatial concentration of maples around maples
(spatial attraction of maples). In contrast, if the local
proportion of maples is lower than the one observed on
the forest, we say that there is a relative dispersion of
maples around maples (repulsion between maples).

Step 3: To test the significance of the results, at first we de-
fine each tree as a bundle of its characteristics (e.g.,
its species, its height, the circumference of its trunk
etc.). Then, we simulate distributions by maintaining
the exact positions of all trees but drawing the bundle
of characteristics of trees randomly. For each iteration,
the M function is calculated, the level of confidence
defines the lower and upper bands of the confidence

interval of the null hypothesis. A sufficient number of
simulations is recommended to obtain the confidence
interval. Finally, note that depending on the question,
we can define a weight for each point of the distribution.
In our example, it could be the circumference of the
trunk or the basal area of the tree, i.e., the area of its
trunk cut 1.3 meter above ground.

1.4.2 Definition of the M function and the local M function
The M function (Marcon and Puech, 2010) belongs to cumu-
lative distance-based methods, that is the neighborhood of
entities are analyzed up to a given distance rather than at a
given distance. The M function (as is the case with all distance-
based methods) is based on a strong mathematical foundation,
that of point process theory (Møller and Waagepetersen, 2004;
Baddeley et al., 2015). In less technical terms, let’s say that the
M function helps to characterize the relative spatial structures
of entities under study by measuring the relative frequency of
entities of interest up to each distance (denoted r), compared
to the same ratio but defined in the whole area under study. In
what follows, we will consider the data according to a given
characteristic (species, sector etc.). We focus at first on the
definition of the intra-type function: this means that the type
of neighbors of interest of one given point is its own type only,
denoted s. Let us denote:
• xs

i , the position of point i of the reference type s, at the
center of the disk i.e., the point at which the neighborhood
is to be analyzed),

• xs
j, the position of a neighbor of interest j of the same type

as point i,
• x j, the position of a neighbor j of i, whatever its type,
• w(.), the weight of a given neighbor. For example, w(x j)

defines the weight of a neighbor j of i.
• Ws, the total weight of the points xs

j,
• W , the total weight of all points of the dataset, whatever

their type,
• 1

(∥∥xs
i − x j

∥∥≤ r
)
, the indicator function equal to 1 if x j is

in the neighborhood of xs
i , e.g., the distance between xs

i and
x j is at most equal to r, 0 otherwise.

• 1
(∥∥∥xs

i − xs
j

∥∥∥≤ r
)

, the indicator function equal to 1 if the
distance between xs

i and xs
j is at most equal to r, 0 otherwise.

The intra-type M function is estimated by the following
equation:

M̂ (r) = ∑
i

∑ j ̸=i 1
(∥∥∥xs

i − xs
j

∥∥∥ ≤ r
)

w
(

xs
j

)
∑ j ̸=i 1

(∥∥xs
i − x j

∥∥ ≤ r
)

w(x j)
/∑

i

Ws − w(xs
i )

W − w(xs
i )

(1)

As the M function compares two ratios (a local one to a
global one), its reference value is 1 for any distance r con-
sidered. The significance of the results is obtained by Monte
Carlo simulations after choosing the risk level (generally 1%,
5% or 10%) and the number of simulations. The dbmss pack-
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age (Marcon et al., 2015) for the R software (R Development
Core Team, 2022) is useful to compute the M function easily.

The intertype version of the function is immediately de-
rived from the previous definitions, by replacing neighbors of
interest of the same type s as the reference points by neighbors
of another type t to obtain:

M̂s,t (r) = ∑
i

∑ j ̸=i 1
(∥∥∥xs

i − xt
j

∥∥∥ ≤ r
)

w
(

xt
j

)
∑ j ̸=i 1

(∥∥xs
i − x j

∥∥ ≤ r
)

w(x j)
/∑

i

Ws

W − w(xs
i )

(2)

Finally, note that the M function gives, at each distance r,
the average value of the individual values calculated around
every point i. As a consequence, the M function only returns,
for all distances, the average spatial structure of points ob-
served around all of the points of interest. Maps will preserve
local values of the M function around every point i. We call
them "individual values of M" hereinafter.

2. Mapping spatial structures in
non-homogeneous space

2.1 Additional development needed in R software
The increasing availability of geo-referenced data opens the
way for a more effective characterization of the spatial struc-
ture of entities: human beings, firms, plants, objects etc. (Bad-
deley et al., 2015). Consequently, new developments have
been proposed to test new hypotheses of research. Moreover,
a great number of developments were recently made to im-
prove statistical methods and software applications for spatial
analysis. The R software (R Development Core Team, 2022)
now constitutes an essential tool in spatial analysis (Bivand
et al., 2013). We are in line with this contemporary approach
and propose two main developments. Firstly, we develop an
extension of an existing R package: dbmss (Marcon et al.,
2015; R Development Core Team, 2022) for mapping relative
concentration. Secondly, our motivation is to both develop the
methodology and facilitate the use of R code by researchers
to reproduce this methodology if they are interested in its ap-
plications. The open data we used in the following empirical
example helps the reader to reproduce the example, step by
step, using its R code.

2.2 Mapping M ’s individual values
The way to plot the M results is the following.
Step 1: Definition of the pertinent distance for the anal-

ysis. Firstly, the most relevant distance r should be
chosen. It may be driven by the knowledge of the
process under analysis (a meaningful distance of inter-
action between points) or a preliminary estimation of
the function at all distances.

Step 2: Calculation of the individual M values. The
M function must be computed at the chosen distance
and all individual values maintained.

Step 3: Application of spatial smoothing. M individual
results are geolocalized data: they are defined at the lo-
cation of the points of interest only. To plot them across
the whole area under study, we need to apply spatial
smoothing.2 The Smooth.ppp() function is available in
the R package spatstat (Baddeley and Turner, 2005). It
is based on kernel smoothing and requires the choice
of an arbitrary bandwidth that is still as yet undefined
(Lang et al., 2020). The combination of Gaussian ker-
nel smoothing with the bandwidth proposed by Scott
(1992) seems to be a good compromise for the purpose
of our study.

Step 4: Mapping the results A development in the dbmss
(version 2.8) R package is proposed in order to proceed
with this final step. It is thus possible to visualize the
smoothing results of the local M function plotted on a
map. Contour lines delimit areas with the same level of
spatial concentration. The number of rows and columns
of the grid defines the resolution of the map and should
be chosen with care.

2.3 Theoretical example
We consider a study area defined as a 1-by-1 window where
two types of points are located. The first type of points defines
the controls. Their generation respects the hypothesis of a
non-homogeneous distribution of points. The second type of
points defines the cases, clustered in space. We focus our
interest on the cases: the controls added to the cases constitute
the benchmark distribution.

A step-by-step presentation of the R code in this example
is available in the appendix.

In figure 1a, red points identify the cases while the blue
ones represent the controls. All point weights are fixed to 1,
whatever their type. The distribution of controls is simulated
by a non-homogeneous Poisson process defined by an arbi-
trary density function (see appendix for details). 435 controls
are indicated in figure 1a. The distribution of cases is simu-
lated from a Matérn (1960) process that produces, on average,
10 randomly located clusters of radius 0.05 and containing 10
cases. In figure 1a, 97 cases are plotted: aggregates of cases
can be easily detected.

In figure 1b, the M function for the case points is plotted
by using the dbmss R package (Marcon et al., 2015; R Devel-
opment Core Team, 2022). The global confidence envelope
is obtained by 1,000 simulations at 1% risk level. For all
distances, the M cases plot is above the confidence interval:
M detects a relative spatial concentration of cases for all radii
considered. The maximum value of M is obtained for a dis-
tance around 0.05, which corresponds to the simulated size
of the clusters. One can see that the M plot decreases as the
distance r increases: the lack of cases outside the clusters and
the presence of controls leads to a decrease of relative spatial
concentration of cases. Irregularities in the decreasing of the

2We thank the anonymous referee that suggests the spatial smoothing
technique as opposed to kriging, used in a previous version.
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Figure 1. Theoretical example
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M plot signal the presence of (aggregated) cases around the
case clusters.

The M function gives an average estimation of the relative
spatial concentration or relative spatial dispersion of cases
over the whole territory. As a consequence, if we only have
figure 1b to refer to, and no other information is available, no
observations can be made as to: (i) the location of clusters on
the area and (ii) the local variations of the M values. However,
for example, if two clusters of cases are closely located, locally
there is a greater level of spatial concentration that may prove
useful to plot for the purpose of our study. Mapping individual
M values provides the answer.

In figure 1c, local M values are plotted with contour lines,
all cases are represented by red points. A distance (r) of 0.1
is chosen for mapping. We can now easily detect different
levels of spatial concentration or dispersion all over the area.
M values are readable on the contour lines. Cold colors repre-
sent low levels of M local values while warm colors indicate
high levels. The relative spatial concentration of cases is the
greatest in areas in the north of the map (assumed to be at the
top of the figure) where the controls are less present. Cases
located in the south of the map are relatively less concentrated.
Note that plotting the density of cases in that example would
lead to a very different conclusion, as the controls are not ho-
mogeneously distributed. The density map is given in section
1.4 of the appendix.

3. Empirical application on Parisian trees

3.1 Motivation
To illustrate the potential of our method, we test an ecologi-
cal hypothesis on a Parisian park, Parc Omnisport Suzanne
Lenglen (POSL) located in the 15th arrondissement. Trees are
subject to contagious fungal diseases. In ecology, an abun-
dant body of literature addresses the effect of the level of
biodiversity on the severity of such diseases. For example,
an extensive study by Nguyen et al. (2016) conducted on
16 tree species in European forests confirms the hypothesis
that biodiversity (measured as the number of tree species)
decreased the incidence of disease in conifers. Rutten et al.
(2021) showed that increased local biodiversity decreased the
foliar fungal pathogen infestation rate in subtropical forests,
while Saadani et al. (2021) confirmed that severity decreased.
The main mechanism was the dilution of host species in the
local neighborhood, i.e., a smaller relative concentration of
potential host trees at short distance.

Recently, some maple trees in the POSL were contam-
inated with sooty bark disease caused by the fungus Cryp-
tostroma corticale3. Only maples were infested. 23 maples
among the 1,472 trees (including 529 maples) in the park
were logged to eliminate infested trees and limit the contagion.
By opportunity, 25 decaying trees (including 3 non-infested
maples) were logged at the same time. In what follows, we
investigate whether the local spatial concentration of maples

3Personal communication from the crew of the park.

spreads the contagion. A map of the relative concentration
of maple trees and the location of logged trees is informative
on two points. We can test for (i) whether infested trees were
located in areas with high concentration of maple trees and
(ii) whether or not decaying trees followed the same pattern.

3.2 Data and study area
Our data is extracted from "Paris open data", available at:
https://opendata.paris.fr.4

The positions and the characteristics of trees located in
the city of Paris are given. The online database is very large:
more than 200,000 trees are inventoried. Our empirical work
is conducted on a park located in the south of Paris. The
"Parc Omnisport Suzanne Lenglen" (POSL) in the 15th ar-
rondissement is particularly suitable for our analysis. Firstly,
a pathogen agent affects only one species (maple trees) among
numerous located in the park. Secondly, the presence of sports
facilities (rugby, football, basketball, tennis etc.) and paths
gives little support to the hypothesis of a homogeneous space
for the distribution of trees in this park. In our empirical study,
we use the geolocation of trees i.e., the exact geographical
position of trees), their genus, species and circumference. The
latter characteristic enables the calculation of the basal area
of trees (taken as their weight). We complete this database
with another source, also available via Paris Open Data, pro-
viding data relating to trees felled and the reasons they were
cut down.

The distribution of the trees in the POSL in February 2021
is given in figure 2. Coordinates on both axis are in meters
(Lambert 93 projection).5 The non-homogeneous distribution
of trees is evident. Different species are present but the most
frequent one is maples (Acer spp.). Among the 1,472 trees
in the POSL, 48 were logged. Only two reasons are given
for cutting down POSL trees. The first is an irreversible
decline. The second is the presence of a pathogen agent:
infested maples must be logged to avoid contagion by the
Cryptostroma corticale fungus (Koukol et al., 2015).

3.3 Are infested maples located in areas where the
relative spatial concentration of maples is high?

Our empirical work aims to answer the following question:
are infested maples located more frequently around maples?

To answer this question, firstly we need to evaluate the
relative spatial concentration of maples in the park: empirical
results will confirm whether or not there is a spatial concen-
tration of maples and at what scale of observation it occurs.
This helps us to choose the pertinent distance for mapping
the local spatial concentration estimates a second time. All
details are given in the appendix as well as the R code.

4The two databases are: Arbres, Direction des Espaces Verts et de
l’Environnement - Ville de Paris, 7 February 2022, under license ODbL
and Arbres à abattre pour raison sanitaires et essence de remplacement, Di-
rection des Espaces Verts et de l’Environnement - Ville de Paris, 3 February
2022, under license ODbL.

5For improved readability in figure 2, the visualization of trees is mag-
nified. The area of the points is proportional to the the basal area of the
trees.
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Figure 2. Spatial distribution of trees in the POSL in 2021
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The M plot of the relative spatial concentration of maples
around maples is shown in figure 3 (prior to any felling carried
out). The maximum distance considered is 30 meters, 1,000
simulations were generated for the confidence interval and
the associated risk level is 5%. M detects a relative spatial
concentration of maples around maples for all distances up to
30 meters. We then follow the mapping technique developed
in section 2.2. We chose a distance of 15 meters to map the
M results as per the literature on contagion among trees that
focuses on immediate neighbors (Hantsch et al., 2014), with
this distance appearing to be a good candidate according to
the M local estimates6. The answer of our first research ques-
tion seems to be that almost all infested maples are located
in the areas where maples are relatively the most spatially
concentrated. This result is in line with a contagion disease.

In section 2.3 of the appendix, we provide a complemen-
tary analysis to test more directly the dilution effect. Our
approach is to focus on the relative proportion of maples in
the neighborhood of infested trees (Hantsch et al., 2014). The
intertype M function is used to map it. The conclusion is the
same as that of our first question above.

This example underlines the usefulness of distance-based
methods within that framework. Firstly, because the contagion
may appear at very small scales: this is confirmed by the
M plot in figure 3. Secondly, and without doubt, aggregate
data mask interactions. The shapes of the contour lines of
spatial concentration call for a precise analysis of the area and

6For sake of transparency, in the appendix we also provide the M lo-
cal results for different distances. Results systematically corroborate our
conclusion.

the use of appropriate statistical methods that may correctly
reveal the underlying spatial structures. Finally, one can say
that a limit of our analysis is that we focus only on trees
located in the park and we do not take into account trees
positioned for instance at the border of the park (e.g., in the
surrounding streets etc.). This is with no doubt an edge-effect,
but we consider it of secondary importance in our case, namely
because the distance of interest (r = 15m) is small.

Conclusion and ways of research

This paper provides evidence on the relevance of plotting
spatial concentration results in continuous space. Its attention
is focused on relative spatial concentration and on a new
methodological development with available data and R code
for reproducible research.

Future research could be developed in both directions.
Firstly, the empirical analysis proposed in this article comes
from the field of ecology. In economics, estimates resulting
from local mapping would be of great interest: as we out-
lined, the M function has been deployed in studies into the
location of activities. Local mapping in continuous space
will undoubtedly be useful for the precise identification of
industrial clustering (e.g., shapes of agglomerations and inten-
sity of interactions). This could encourage deeper analysis in
these particular areas in the spirit of the article by Kerr and
Kominers (2015). The second possible research avenue is to
compare the effects of local spatial concentration to that of
local spatial diversity. Whatever the field of research, an inter-
esting development could be achieved by theoretically linking
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Figure 3. M function plot for POSL’s maples
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Figure 4. Map of the M local values of the POSL’s maple trees with the location of logged trees

Lecture: Black points indicate the position of infested maples while the irreversibly decaying trees are represented with green crosses. Cold to hot colors
represent the increasing level of the relative local concentration within a distance of 15 meters.

two concepts: the propagation effect relative to the level of
spatial concentration and the dilution effect relative to local
diversity. Mechanisms at work should then be disentangled or
perhaps unified as per the work carried out by Marcon (2019).

Appendix
R code is available at the following address:
https://ericmarcon.github.io/JSPE-D-23-00002
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