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Abstract
The BirdCLEF 2023 challenge focused on bird species classification in a dataset of Kenyan soundscape
recordings. Kenya is home to over 1,000 species of birds, covering a wide range of ecosystems, from the
savannahs of the Maasai Mara to the Kakamega rainforest, and even alpine regions on Kilimanjaro and
Mount Kenya. Tracking this vast number of species with ML can be challenging, especially with minimal
training data available for many species. This year the competition switched back to threshold-free
evaluation metric, and introduced a two-hour time limit on inference to ensure the practical usability of
models.
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1. Introduction

Passive acoustic monitoring (PAM), utilizing autonomous sound recorders to observe animals
and their habitats at ecologically relevant scales, has emerged as an indispensable survey
method in conservation [1]. The accessibility of inexpensive commercial off-the-shelf sound
recorders has made data collection a straightforward process for the community. Arrays of
sound recorders are frequently deployed over extended periods (weeks to months), generating
large amounts of data that offer valuable insights into the abundance and distribution of
vocalizing animals with high spatiotemporal resolution [2]. Nevertheless, several challenges
persist in PAM. It is not uncommon for data collection endeavors to produce tens of Terabytes
of acoustic data that must be efficiently managed, stored, and analyzed [3]. Particularly,
the analysis task, which involves reliably extracting relevant signals from often intricate
soundscapes, remains an active area of research. Furthermore, while common species typically
have ample representation in existing training datasets, data for rare, listed, or endangered
species is often limited, necessitating the development of novel and innovative algorithmic
approaches to monitor these species in need.

Eastern African species play a crucial role in both ecological systems and evolutionary
processes, making them of utmost importance for scientific research and conservation efforts
[4, 5]. This region is renowned for its exceptional biodiversity, particularly in terms of avian
species, which exhibit a remarkable diversity of vocalizations [6, 7]. The vocal signals produced
by Eastern African species are integral to their communication and social interactions and
serve as valuable indicators of their presence and behavior. However, despite their significance,
Eastern African bird species are often underrepresented in sound collections like Xeno-canto1

or Macaulay Library2. This lack of comprehensive acoustic data poses challenges for developing
and applying machine learning algorithms aimed at monitoring and studying these species.
Insufficient training data for these algorithms hinders their ability to detect and classify the
vocalizations of Eastern African species accurately, impeding advancements in automated
monitoring techniques. Consequently, addressing this issue and raising awareness is crucial
for facilitating the development of robust machine-learning algorithms and enabling effective
monitoring and conservation strategies for these important and underrepresented species.

The Bird Recognition Challenge (BirdCLEF) is part of LifeCLEF 2023 [8] and focuses on the
development of reliable analysis frameworks to detect and identify avian vocalizations in
continuous soundscape data. Launched in 2014, it has become one of the largest bird sound
recognition competitions in terms of dataset size and species diversity, with several tens of
thousands of recordings covering up to 1,500 species [9, 10]. The BirdCLEF 2023 competition
challenged participants to develop reliable analysis frameworks to detect and identify the
vocalizations of bird species in continuous Eastern African soundscapes, coping with limited
training data for many species.

1https://xeno-canto.org
2https://www.macaulaylibrary.org
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2. BirdCLEF 2023 Competition Overview

Recent advancements in the development of machine listening techniques for the identifica-
tion of animal vocalizations have enhanced our ability to analyze long-term acoustic datasets
comprehensively [11, 12]. However, generating analysis outputs with high precision and recall,
particularly when targeting a large number of species simultaneously, remains challenging.
Bridging the gap between high-quality training samples (focal recordings) and noisy test sam-
ples (soundscape recordings) is a difficult task in the field of acoustic event detection and
classification. The 2023 BirdCLEF competition addressed this intricate challenge and was hosted
on Kaggle3. This year’s edition focused on identifying which birds are calling in long recordings
made in Kenya. The competition was held in a "code competition" format, encouraging partici-
pants to share their code for the benefit of the community, especially scientists and practitioners
who monitor bird populations for conservation purposes in Kenya. In addition, submissions
were required to complete inference in less than 2 hours. We implemented this time constraint
to ensure that the developed models can run efficiently on modest compute resources available
to conservationists.

2.1. Goal and Evaluation Protocol

This year’s competition featured two major changes compared to the previous few years: A
new metric was used for evaluation (padded class-averaged mean-average precision, or pcmAP)
and a time-limit of two CPU hours was placed on inference.

2.2. Metric

The cmAP metric was used in BirdCLEF competitions before the move to Kaggle, which previous
to this year could not support cmAP. As a result, the competition in 2020, 2021, 2022, have used
variants of F1 score. The downside to F1 is that it requires choosing a binary label for species in
each inference window. There are numerous ways to reduce a model’s output probabilities to
a binary decision, which has led to substantial effort in recent years to find clever threshold
selection techniques. Unfortunately, this makes it hard to evaluate the base model quality. In
practice, correct selection of thresholds depends on the goals of the end-user (eg, according to
preference in trading off precision and recall), so there is some preference for threshold-free
evaluation of model quality.

This year, Kaggle added support for custom metrics, which allowed the competition to use
the cmAP score, which is defined as:

𝑐𝑚𝐴𝑃 :=

∑︀𝐶
𝑐=1𝐴𝑣𝑒𝑃 (𝑐)

𝐶

where 𝐶 is the number of target classes, and 𝐴𝑣𝑒𝑃 (𝑐) is the average precision for the 𝑐th
species, computed as:

𝐴𝑣𝑒𝑃 (𝑐) =

∑︀𝑁
𝑘=1 𝑃 (𝑘)× 𝑟𝑒𝑙(𝑘)

𝑛𝑟𝑒𝑙(𝑐)

3https://www.kaggle.com/c/birdclef-2023
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where k is the rank of an item in the list of examples containing class 𝑐, 𝑃 (𝑘) is the precision at
cut-off 𝑘 in the list, 𝑟𝑒𝑙(𝑘) is an indicator function indicating whether class 𝑐 is present in the
𝑘th example, and 𝑛𝑟𝑒𝑙(𝑐) is the total number of examples containing class 𝑐.

cmAP computes the per-class mean average precision (treating each model output as an
independent binary classifier), and then averages over all classes. An advantage of cmAP is that
all species are weighted equally, regardless of the number of examples in the inference set. A
disadvantage is that for species with very few examples in the dataset, the individual species
MAP can be quite noisy, which in turn is reflected in the overall cmAP score.

To deal with this, we proposed a modification of 𝑐𝑚𝐴𝑃 metric called padded cmAP, or pcmAP,
in which 𝑝 ‘free’ examples are added to the top of each class. This limits the dynamic range of
the per-species MAP scores, reducing the impact of noise in species with very few labels. For
the competition, we used 𝑝 = 5.

2.3. Time Limits

Competitors were limited to two hours of inference time on CPU. This ensures that models
are cost-effective for real-world usage. A side effect is reducing the impact of ensembling, a
common Kaggle tactic which also obscures underlying model quality.

2.4. Dataset

2.4.1. Training Data

As in previous editions, training data was provided by the Xeno-Canto community and consisted
of more than 16,900 recordings covering 264 species. Participants were allowed to use metadata
to develop their systems, and were also allowed to gather more recordings from Xeno-Canto.
Most notably, we provided detailed information on where and when focal and soundscape
recordings were made, allowing participants to account for spatiotemporal occurrence patterns
of bird species.

2.4.2. Test Data

As in previous years on Kaggle, the test data was completely hidden from participants. Hidden
test data consisted of 191 soundscapes of 10-minute duration and were recorded at multiple
locations west and southwest of Lake Baringo in Baringo County, Kenya (see figure 1). Sound-
scapes were expertly annotated by local expert Francis Cherutich who provided 10,294 labels
for 176 species.

3. Results

This year, we had 1,189 teams and nearly 1,400 competitors, and 21,519 total submissions. As in
other recent years, two-thirds of the test data was used for the private leaderboard, and one
third for the public leaderboard. The padded cmAP metric yielded a fairly high baseline score.
A baseline using BirdNET 2.2 with no modifications gave a score of 0.771 on the public board
and 0.664 on the private leaderboard. The overall winner achieved a public score of 0.844 and a



(a) (b)
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Figure 1: Pictures illustrating the different habitat types in Kenya where the soundscape recordings
were collected. Photos Francis Cherutich.

private score of 0.764. There was relatively little ‘shake-up’ in the results — the top public entry
dropped to third, and otherwise the top five maintained their order on the private leaderboard.
This stability may be due to better cross-validation practices in recent competitions.

A few common themes emerged in the top solutions.
First, the top competitors went out of their way to obtain more data and ensure that the

data they were working with was clean. The pre-packaged Xeno-Canto data was limited to 500
samples per species to keep file sizes manageable; multiple top competitors went back to XC and
downloaded the additional data. The second-place competitor also noticed some inconsistencies
in converting the XC scientific names to the ebird codes used in previous-year test data; this
may be due to subsequent changes in both the ebird and IOC taxonomy used by Xeno-Canto,
but in any case reinforces the need for careful data handling.

Second, the top competitors took advantage of model optimization tools, managing to make en-
sembles of up to seven(!!) models run in the specified time limit. ONNX, a platform-independent
model format, was particularly popular. A few competitors also saw large speed gains with
OpenVINO, an Intel-specific model optimizer and inference library. Particularly creative: The
third-place competitor (long-time BirdCLEF participant Mario Lasseck) built a large ensemble



Figure 2: Top 25 private leaderboard scores achieved by the best systems evaluated within the primary
bird identification task of LifeCLEF 2023. Public and private test data were split randomly, private scores
remained hidden until the submission deadline. Participants were able to optimize the recognition
performance of their systems based on public scores, which likely explains some differences in scores.

and used a timer to stop inference before time ran out. They also report that OpenVino only
gave noticeable speedups over ONNX at small batch sizes. (This makes some sense: The primary
tool for speeding up inference on CPU is SIMD computation. A kernel implementation which
uses SIMD over the batch dimension will under-perform on small batch sizes.)

This year, many of the test-sets from previous years were released on Zenodo, though these
datasets have minimal overlap with this year’s African species list. Many top competitors used
the Zenodo data, but most only used it to find no-call segments for augmentation and training.

The top competitors generally trained models from scratch from the Xeno-Canto data, first
using a pre-training phase and then fine-tuning to the particular species in the competition
list. Competitors mostly restricted pre-training to the 250 species appearing in previous
competitions.

We accepted five working notes for the proceedings.

Miyaguchi, et al. [13]: This team experimented with using unsupervised source separation
models for pseudo-labeling training data. They also included some UMAP plots of the model
embedding space, which provide insight into the linear separability of the classes.

Mario Lasseck [14]: A clear write-up from a long-standing BirdCLEF competitor using a
combination of methods (energy measurement and pseudo-labels) to combat the weak-label
problem in the training data. Lasseck also found benefit from a new reverb augmentation and
applying SED attention over time.

Lihang Hong [15]: The second-place entry used OpenVINO to get a full seven models running
in an ensemble, while still meeting the two-hour inference time limit.

Paul Nussbaum [16]: Presents a method for measuring data loss as features develop in the
classification network. By applying pseudo-inverse techniques to the activations at each layer,
one can try to recover the original inputs and measure corruption.

Mihai Minut et al. [17]: An early effort from a new competitor, this write-up summarizes
previous BirdCLEF results and presents experiments with data pre-processing and model
architectures. They had more success with pre-trained ImageNet weights than with custom
CNNs.



Notable excerpts from individual contributors who did not submit working notes:

• The fourth-place competitor, atfujita, used knowledge distillation, directly applying the
techniques in (Knowledge distillation: A good teacher is patient and consistent) to distill
the Google Bird Vocalizations model into a faster model.

• The fist-place competitor, Volodymyr, emphasized over-sampling low-data classes during
training. They sampled each class according to the distribution which balances the
training data distribution.

• Volodymyr also addressed around the ‘weak-labels’ problem in Xeno-Canto by training
on longer 30-second segments and using an attention layer to aggregate the features.
Since the attention-aggregated features are a weighted sum over the time dimension, the
same model which is trained on 30 seconds of audio can then be applied to 5-second
segments.

4. Conclusions and Lessons Learned

Thanks to the new metric and inference time limit, we saw a proliferation of new ideas this
year, moving beyond the threshold tuning of the previous few years. The top entries included
three approaches that we might call strong on Kaggle fundamentals, one entry which leveraged
OpenVino to get a particularly large solution, and one entry which used model distillation to
transfer strong pre-trained embeddings. We also saw more experimentation with modeling
approaches overall.
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