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Abstract

The issue of variance components testing arises naturally when building mixed-effects
models, to decide which effects should be modeled as fixed or random or to build parsimo-
nious models. While tests for fixed effects are available in R for models fitted with lme4,
tools are missing when it comes to random effects. The varTestnlme package for R aims
at filling this gap. It allows to test whether a subset of the variances and covariances cor-
responding to a subset of the random effects, are equal to zero using asymptotic property
of the likelihood ratio test statistic. It also offers the possibility to test simultaneously
for fixed effects and variance components. It can be used for linear, generalized linear
or nonlinear mixed-effects models fitted via lme4, nlme or saemix. Numerical methods
used to implement the test procedure are detailed and examples based on different real
datasets using different mixed models are provided. Theoretical properties of the used
likelihood ratio test are recalled.

Keywords: generalized mixed-effects models, nonlinear mixed-effects models, variance compo-
nents, likelihood ratio test, random effects, R.

1. Introduction

Mixed-effects models are widely used in many fields of applications, ranging from agronomy,
social science, medical science, to biology. One can distinguish three main types of mixed
models: linear mixed models (LMMs), generalized linear mixed models (GLMMs) and non-
linear mixed models (NLMMs). Several packages and software are available to fit these types
of model, for example the SAS (SAS Institute Inc. 2020) procedures MIXED and NLMIXED for
linear, generalized linear and nonlinear mixed models, or the dedicated software NONMEM
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(ICON plc 2022) and Monolix (Lixoft 2021) for nonlinear mixed models, with an emphasis
on pharmacodynamic and pharmacokinetic models for the former. In R (R Core Team 2023),
three main packages are available to deal with these models: lme4 (Bates, Mächler, Bolker,
and Walker 2015, for LMMs, GLMMs and NLMMs), nlme (Pinheiro, Bates, DebRoy, Sarkar,
and R Core Team 2022, for LMMs and NLMMs) and saemix (Comets, Lavenu, and Lavielle
2017, for LMMS and NLMMs). The way they handle nonlinear mixed models differs: both
lme4 and nlme rely on an approximation of the likelihood function based on a linearization
of the model, while saemix uses an EM-type algorithm to derive the maximum likelihood
estimate, without resorting to any approximation or linearization of the model.
When building a mixed-effects model, one is facing the delicate choice of which effects should
be modeled as random. The objective can be twofold: on the one hand, being able to compare
a simpler model with less random effects to a larger one can help choosing a parsimonious
model, on the other hand, it can help identifying the sources of variability. This is the case
for example in the context of nonlinear mixed-effect models applied to mechanistic models,
where the model parameters are considered as random variables. In plant growth modeling for
example (see Baey, Mathieu, Jullien, Trevezas, and Cournède 2018), identifying parameters
that vary across individuals or genotypes and those that are constant allows to identify key
biological processes exhibiting genotypic variability, the other being considered as species-
specific. Understanding this variability is crucial to enhance our knowledge of genotype by
environment interactions and then, to better understand plant adaptation to environmental
constraints.
This issue has been studied from both a theoretical and a practical point of view. On the
theoretical side, two main approaches have been explored. The first one follows the idea of
variable selection. Chen and Dunson (2003) focused on linear mixed models and proposed a
Bayesian formulation using mixture priors with a point mass at zero for the random effects.
More recently, Ibrahim, Zhu, Garcia, and Guo (2011); Groll and Tutz (2014) used a penal-
ized likelihood approach to simultaneously select fixed and random effects. Selection criteria
adapted to the context of mixed-effects models were also suggested by Vaida and Blanchard
(2005); Gurka (2006) and Delattre, Lavielle, and Poursat (2014). The second approach in-
volves hypothesis testing based on variance components, with the seminal work of Stram and
Lee (1994, 1995) in linear mixed models (see also the review by Molenberghs and Verbeke
2007). Recently, Baey, Cournède, and Kuhn (2019) exhibited the limiting distribution of the
likelihood ratio test (LRT) statistic, for testing that the variances of any subset of the random
effects are equal to zero.
On the practical side, several of the aforementioned methods have been implemented, e.g., in
R. Among others, we can cite for example the glmmLasso (Groll 2022) package, computing
an ℓ1-penalized maximum likelihood estimator in the context of generalized linear mixed
models, or the cAIC4 (Säfken, Rügamer, Kneib, and Greven 2021) package, implementing the
conditional AIC criterion. As far as hypothesis testing is concerned, most of the available tools
are designed for linear or generalized linear mixed-effects models, and are mostly adapted to
outputs from lme4 package. The lmerTest package (Kuznetsova, Brockhoff, and Christensen
2017) provides enhanced versions of functions anova() and summary() from lme4 package
by computing p values associated to the tests for fixed effects. It also implements both the
Satterthwaite’s and the Kenward-Roger’s approximations to correct p values in unbalanced
or small sample size situations. Finally, it provides a step() function to simplify the random
effects structure using a step-down approach. Each step is based on the computation of
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p values from the LRT for testing that the variance of each random effect is equal to zero.
However, the asymptotic distribution used to compute these p values is a χ2, with the degree of
freedom computed as the difference between the number of parameters under the alternative
hypothesis and the number of parameters under the null hypothesis. In the context of mean
components testing in linear and generalized linear models, the pbkrtest package (Halekoh
and Højsgaard 2014) provides two alternatives to the LRT in small sample size situations,
based either on the Kenward-Roger approximation or on parametric bootstrap. The two
aforementioned packages can only be used with models fitted with the lme4 package. The
RLRSim package (Scheipl, Greven, and Küchenhoff 2008) implements the tests proposed by
Crainiceanu and Ruppert (2004), based on the exact finite sample distribution of the LRT
statistic. It can be used with a larger variety of packages and can handle not only models fitted
from packages lme4 and nlme, but also from package gamm4 (Wood and Scheipl 2020) and
from function gamm of package mgcv (Wood 2017). However, only linear mixed models with
one single random effect are currently covered by this package. In SAS, the option COVTEST
can be used for linear mixed models in PROC MIXED and provides Wald tests for the variance
components. More recently, a SAS macro %COVTEST performing a bootstrap parametric test
has been proposed for linear mixed models.

To the best of our knowledge, there is no software or R package implementing the LRT for
variance components in LMMS, GLMMs and NLMMs, and for an arbitrary subset of variance
components corresponding to any subset of the random effects.

In this paper, we present the varTestnlme R package (Baey and Kuhn 2023) dedicated to test
that the variances of a subset of the random effects are equal to zero in LMMs, GLMMs and
NLMMs with one level of random effects, using models that were fitted using either lme4,
nlme or saemix. Moreover it is possible to test simultaneously mean and variance components.
The varTestnlme package takes as inputs the two competitor models, fitted with the same
package, and computes the asymptotic distribution of the LRT statistic associated with the
two nested models corresponding to the null and alternative hypotheses. It provides the
test statistic value, the limiting distribution and the associated p value. The theory behind
this test has been established in Baey et al. (2019). The purpose of the current paper is
to provide hints for a practical implementation and a complete description of the different
numerical methods used for the computation of each quantity involved. In particular, we
detailed the algorithms used to sample from the limiting χ̄2 distribution and to estimate
the weights of each component of the χ̄2 distribution. We also extend results of Baey et al.
(2019), where only the cases of a diagonal or full covariance matrix for the random effects
were exemplified, to the general case of a block-diagonal covariance matrix, covering a large
range of covariance structures. The package varTestnlme is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=varTestnlme.

Mixed-effects models and the LRT procedure are recalled in Section 2. Practical implementa-
tions of the package are presented through various examples detailed in Section 3. Technical
tools for the identification of the limiting distribution of the LRT statistic are detailed in Sec-
tion 4. This section can be skipped if one is interested in the practical implementation of the
functions of the package. Finally, current limitations and possible extensions are discussed in
Section 5.

https://CRAN.R-project.org/package=varTestnlme
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2. Mixed-effects models and likelihood ratio test procedure

2.1. Description of the mixed-effects models
We consider the following nonlinear mixed-effects model (Davidian and Giltinan 1995, p. 98;
Pinheiro and Bates 2000, p. 306; Lavielle 2014, p. 24):

yi = g(φi, xi) + εi, (1)

where yi denotes the vector of observations of size m for individual i, 1 ≤ i ≤ n, g a nonlinear
function, φi the vector of individual parameters, xi the vector of covariates, and εi the random
error term. The vectors of individual parameters (φi)1≤i≤n are modeled as:

φi = Uiβ + Vibi , 1 ≤ i ≤ n, (2)

where β is the vector of fixed effects taking values in Rp, Ui and Vi are covariates matrices
of appropriate dimensions and bi is the centered vector of random effects. We assumed that
the random vectors (bi)1≤i≤n are independent and identically distributed centered Gaussian
vectors with covariance matrix Γ of size q × q , and that (εi)1≤i≤n are independent and
identically distributed centered Gaussian vectors with covariance matrix σ2Im, where Im is
the identity matrix of size m×m. Note that such models can handle non identically distributed
observations (yi), for example due to the presence of covariates as illustrated in Section 3.
However, multilevel random effects are not yet covered by the current version of the package.
Finally, we assume that the sequences (εi) and (bi) are mutually independent. We denote by
c the total number of parameters and by θ = (β, Γ, σ2) the vector of parameters taking value
in the set Θ = {θ ∈ Rc | β ∈ Rp, Γ ∈ Sq

+, σ2 > 0} where Sq
+ denotes the set of positive definite

matrices of size q.

2.2. Testing variance components
We consider general test hypotheses of the following form, to test for the nullity of r variances
among q:

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ, (3)
where Θ0 ⊂ Θ. Up to permutations of rows and columns of Γ, we can assume that we are
testing for the nullity of the last r variances. We then write Γ in blocks as follows:

Γ =
(

Γ1 Γ⊤
12

Γ12 Γ2

)
,

with Γ1 a (q − r) × (q − r) matrix, Γ2 a r × r matrix, Γ12 a r × (q − r) matrix and where A⊤

denotes the transposition of matrix A, for any matrix A.
We thus have:

Θ0 = {θ ∈ Rc | β ∈ Rp, Γ1 ∈ Sq−r
+ , Γ12 = 0r,q−r, Γ2 = 0r,r, σ2 > 0}

Θ = {θ ∈ Rc | β ∈ Rp, Γ ∈ Sq
+, σ2 > 0}.

(4)

The likelihood ratio test (LRT) statistic is defined by:

LRTn = −2 log
(

supθ∈Θ0 L(y1, . . . , yn; θ)
supθ∈Θ L(y1, . . . , yn; θ)

)
,
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where L(y1, . . . , yn; θ) is the likelihood function.
As shown in Baey et al. (2019), assuming conditions (C1) and (C2) required for Theorem
1 to hold are fulfilled, the limiting distribution of the LRT statistic associated with the two
hypotheses H0 and H1 defined in Equation 3 is:

LRTn −−−→
n→∞

χ̄2(I−1
∗ , T (Θ, θ∗) ∩ T (Θ0, θ∗)⊥), (5)

where I∗ is the Fisher information matrix, T (A, θ) is the tangent cone to space A at point θ,
and where χ̄2(V, C) denotes the χ̄2 distribution parametrized by the positive definite matrix
V and the cone C. The χ̄2 distribution is a mixture of χ2 distributions, where the degrees
of freedom and the weights involved in the mixture depend both on V and C. More details
about the computation of the χ̄2 distribution parameters are given in Section 4.

2.3. Testing simultaneously fixed effects and variance components

Results of the previous section can be extended to the case where one is testing simultaneously
that a subset of the mean parameters and a subset of the covariance parameters are null. In
this case, if we denote by If := {k1, . . . , krf

} the set of indices corresponding to the fixed
effects which means are tested equal to 0, the parameter space Θ0 is slightly modified as
follows:

Θ0 = {θ ∈ Rc | βk = 0, k ∈ If , βk ∈ R, k /∈ If , Γ1 ∈ Sq−r
+ , Γ12 = 0r,q−r, Γ2 = 0r,r, σ2 > 0} (6)

The theoretical result also holds in this test setting, leading to a χ̄2 distribution.

3. Practical implementation through examples
The varTestnlme package provides a unified framework for likelihood ratio tests of fixed and
random effects of a linear, generalized linear or nonlinear mixed-effects models fitted either
with the nlme, lme4 or saemix package. The main function varCompTest takes, in its simplest
form, two arguments: m1 the fitted model under the alternative hypothesis H1 and m0 the
fitted model under the null hypothesis H0. It gives as outputs the test statistic value, the
limiting distribution (i.e. the weights and degrees of freedom associated to each χ2 component
of the χ̄2 distribution), as well as the p value of the test.
In this section, we give an overview of how the package works, through three examples in-
volving linear, generalized linear and nonlinear mixed-effects models. These examples gather
cases where all the quantities characterising the limiting distribution can be obtained explic-
itly, as well as cases where the Fisher information matrix (FIM), but also the weights of the
χ̄2 distribution should be approximated. In the following, we describe the datasets used to
illustrate the package (Section 3.1), the different test hypotheses and the implementation of
the models under each hypothesis (Section 3.2), and finally the results obtained using the
varCompTest() function (Section 3.3). In Section 3.4, we illustrate the added-value of the
FIM estimation proposed by the package, on two examples based on a linear and a nonlinear
mixed models.
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Figure 1: Data from the orthodontal study: distance between the pituitary and the pterygo-
maxillary fissure as a function of age, by subject.

3.1. Data
For illustrative purposes, three datasets will be used throughout the paper, each of them
covering one of the three types of models that can be treated with the varTestnlme package.
These datasets are available in packages nlme, lme4 or datasets.

Orthodontal data
The first dataset comes from a study on dental growth (Potthoff and Roy 1964), where the
distance between the pituitary and pterygomaxillary fissure was recorded every two years
from the age of 8 to the age of 14, on 27 children, 16 boys and 11 girls (see Figure 1).

R> data("Orthodont", package = "nlme")

These data can be fitted using a linear mixed-effects model, with a random slope and a
random intercept. Let us denote by yij , 1 ≤ i ≤ 27, 1 ≤ j ≤ 4 the dental measurement of
child i of sex xi at age tj . Then the model can be written as:

yij = (β1 + β2xi + bi1) + (β3 + β4xi + bi2)tj + εij ,

εij ∼ N (0, σ2), (bi1, bi2)⊤ ∼ N (0, Γ) .
(7)

We denote by β = (β1, β2, β3, β4)⊤ the vector of fixed effects.

Bovine pleuropneumonia
The second dataset comes from a study on contagious bovine pleuropneumonia (cbpp) (Lesnoff
et al. 2004), where the number of new serological cases occurring during a given time period
was recorded at 4 occasions, on 15 herds (see Figure 2).
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Figure 2: Data from the cbpp study: number of new cases per period, by herd.

R> data("cbpp", package = "lme4")

This data can be fitted using a generalized linear mixed-effects model and a logistic regression.
Let us denote by yij the number of serological cases in herd i and at time period tj . If we
denote by g the logit function, then the model is given by:

E(yij | bi) = g−1(bi + βtj),
bi ∼ N (0, Γ)

(8)

Loblolly pine trees
The third dataset comes from a study on Loblolly pine trees (Kung 1986), where the growth
of 14 trees was recorded on 6 occasions between the ages of 3 and 25 years (see Figure 3).

R> data("Loblolly", package = "datasets")

This data can be fitted using a nonlinear mixed-effects model. Let us denote by yij , 1 ≤ i ≤
14, 1 ≤ j ≤ 6 the height of tree i at age xj . We consider the following model:

yij = Asymi + (R0i − Asymi) exp(−elrcixj) + εij , εij ∼ N (0, σ2)
(Asymi, R0i, lrci)⊤ = β + bi, bi ∼ N3(0, Γ),

(9)

where Asymi, lrci and R0i are the individual parameters corresponding respectively to the
asymptote, the logarithm of the growth rate and the height at age 0 of tree i.
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Figure 3: Data from the loblolly study: height as a function of age, by tree.

3.2. Preliminary step: Fitting the models under H0 and H1

The first step of the analysis consists in specifying H0 and H1, the two hypotheses defining
the test. Then, one needs to fit the model under both hypotheses, using nlme, lme4 or saemix.
The varTestnlme package automatically detects the structure of the models under H0 and
H1.
Note that both models m1 and m0 should be fitted with the same package, except when there is
no random effects in m0 (see details below).

Linear model
We will consider three hypothesis testing configurations for the linear model presented in
Equation 7. We detail below the null and alternative hypotheses in each case, and the code
to fit the associated models.

1. Case 1: Testing that there is a random slope, in a model where the slope and the
intercept are correlated:

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ,

with

Θ0 = {β ∈ R4, Γ =
(

γ2
1 0
0 0

)
, σ2 > 0} and Θ = {β ∈ R4, Γ =

(
γ2

1 γ12
γ12 γ2

2

)
, σ2 > 0}.

The syntax using lme4 and nlme packages is:

R> lm1.h1.lme4 <- lmer(distance ~ 1 + Sex + age + age * Sex +
+ (1 + scale(age) | Subject), data = Orthodont, REML = FALSE)
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R> lm1.h0.lme4 <- lmer(distance ~ 1 + Sex + age + age * Sex +
+ (1 | Subject), data = Orthodont, REML = FALSE)
R> lm1.h1.nlme <- lme(distance ~ 1 + Sex + age + age * Sex,
+ random = ~ 1 + age | Subject, data = Orthodont, method = "ML")
R> lm1.h0.nlme <- lme(distance ~ 1 + Sex + age + age * Sex,
+ random = ~ 1 | Subject, data = Orthodont, method = "ML")

2. Case 2: Testing that there is a random slope, in a model where the slope and the
intercept are independent:

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ,

with

Θ0 = {β ∈ R4, Γ =
(

γ2
1 0
0 0

)
, σ2 > 0} and Θ = {β ∈ R4, Γ =

(
γ2

1 0
0 γ2

2

)
, σ2 > 0}

R> lm2.h1.lme4 <- lmer(distance ~ 1 + Sex + age + age * Sex +
+ (1 + age || Subject), data = Orthodont, REML = FALSE)
R> lm2.h0.lme4 <- lm1.h0.lme4
R> lm2.h1.nlme <- lme(distance ~ 1 + Sex + age + age * Sex,
+ random = list(Subject = pdDiag(~ 1 + age)), data = Orthodont,
+ method = "ML")
R> lm2.h0.nlme <- lm1.h0.nlme

3. Case 3: Testing for the presence of random effects, in a model where the slope and
the intercept are independent:

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ,

with

Θ0 = {β ∈ R4, Γ =
(

0 0
0 0

)
, σ2 > 0} and Θ = {β ∈ R4, Γ =

(
γ2

1 0
0 γ2

2

)
, σ2 > 0}

R> lm3.h1.lme4 <- lm2.h1.lme4
R> lm3.h1.nlme <- lm2.h1.nlme
R> lm3.h0 <- lm(distance ~ 1 + Sex + age + age * Sex, data = Orthodont)

Generalized linear model

In the model considered in Equation 8, there is only one random effect. We will then consider
the following test:

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ,

with
Θ0 = {β ∈ R, Γ = 0} and Θ = {β ∈ R, Γ ≥ 0}.

The corresponding code using lme4 is:
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R> glm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),
+ family = binomial, data = cbpp)
R> glm0 <- glm(cbind(incidence, size - incidence) ~ period,
+ family = binomial, data = cbpp)

Nonlinear model

Let us consider the nonlinear model defined in Equation 9. Here we will carry out the following
test:

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ,

with

Θ0 = {β ∈ R3, Γ =

 γ2
1 0 0
0 0 0
0 0 0

 , σ2 > 0} and Θ = {β ∈ R3, Γ =

 γ2
1 0 0
0 γ2

2 0
0 0 γ2

3

 , σ2 > 0},

i.e., that only the asymptote is random.
The corresponding code using nlme and lme4 is:

R> start <- c(Asym = 103, R0 = -8.5, lrc = -3.2)
R> nlm1.nlme <- nlme(height ~ SSasymp(age, Asym, R0, lrc),
+ fixed = Asym + R0 + lrc ~ 1, random = pdDiag(Asym + R0 + lrc ~ 1),
+ start = start, data = Loblolly)
R> nlm0.nlme <- nlme(height ~ SSasymp(age, Asym, R0, lrc),
+ fixed = Asym + R0 + lrc ~ 1, random = pdDiag(Asym ~ 1),
+ start = start, data = Loblolly)
R> nlm1.lme4 <- nlmer(height ~ SSasymp(age, Asym, R0, lrc)
+ ~ (0 + Asym + R0 + lrc || Seed), start = start, data = Loblolly)
R> nlm0.lme4 <- nlmer(height ~ SSasymp(age, Asym, R0, lrc)
+ ~ (0 + Asym | Seed), start = start, data = Loblolly)

Using saemix, the syntax is given by:

R> modelSSasymp <- function(psi, id, xidep) {
+ Asym <- psi[id, 1]
+ R0 <- psi[id, 2]
+ lrc <- psi[id, 3]
+ age <- xidep[, 1]
+ ypred <- Asym + (R0 - Asym) * exp( - exp(lrc) * age)
+ return(ypred)
+ }
R> psi0 <- matrix(start, ncol = 3,
+ dimnames = list(NULL, c("Asym", "R0", "lrc")))
R> saemix.modelH1 <- saemixModel(model = modelSSasymp,
+ description = "Asymptotic regression", psi0 = psi0,
+ transform.par = c(0, 0, 0), covariance.model = diag(3),
+ omega.init = 10 * diag(3), error.model = "constant")
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R> saemix.modelH0 <- saemixModel(model = modelSSasymp,
+ description = "Asymptotic regression", psi0 = psi0,
+ transform.par = c(0, 0, 0), covariance.model = diag(c(1, 0, 0)),
+ omega.init = 10 * diag(3), error.model = "constant")
R> saemix.data <- saemixData(name.data = Loblolly,
+ name.group = "Seed", name.predictors = "age", name.response = "height")
R> ctrl <- saemixControl(print = FALSE, save = FALSE, save.graphs = FALSE)
R> nlm1.saemix <- saemix(saemix.modelH1, saemix.data, ctrl)
R> nlm0.saemix <- saemix(saemix.modelH0, saemix.data, ctrl)

3.3. Variance component testing
Once the models have been fitted using lme4, nlme or saemix, the test can be run using the
varCompTest() function of the varTestnlme package. The main function is:

R> varCompTest(m1, m0,
+ control = list(M = 5000, parallel = FALSE, nbcores = 1, B = 1000),
+ fim = "extract", pval.comp = "bounds", output = TRUE)

where:

• m1 is the model fitted under H1, i.e., an object of class ‘merMod’, ‘glmerMod’, ‘lme’,
‘nlme’ or ‘SaemixObject’.

• m0 is the model fitted under H0 using the same package as for m1, except when no
random effects are present under H0 (when testing for the absence of random effects).
In this case, m0 should be fitted using lm() for linear, glm() for generalized linear, and
nls() for nonlinear models (these functions are available in the stats package).

• control is a list with: M, the Monte Carlo sample size for the computation of the χ̄2

weights (5000 by default, see Algorithm 1); parallel a boolean to specify whether
the Monte Carlo sampling should be done in parallel (FALSE by default); nbcores the
number of cores to be used with parallel computing (1 by default); and B the size of the
bootstrap sample used to estimate the Fisher information matrix (1000 by default).

• fim could be either "extract" (the default) if the FIM should be extracted from the
fitted model m1; "compute" if it should be computed using parametric bootstrap im-
plemented in the package (see Section 4.1 for more details on the method); or FIM a
user-defined matrix to be used as the Fisher information matrix.

• pval.comp specifies the way the p value of the test is computed, and could be either
"bounds" (the default), in which case only bounds on the true p value are computed
(see Section 4.5 for more details), "approx", in which case a Monte Carlo estimation
of the exact p value is provided (see Section 4.4 for more details), or "both" for a
combination of both approaches. In the case where the weights are known explicitly, no
approximation is made and the exact weights are return.

• output is a boolean indicating if any outputs should be printed out in the console. The
default value is TRUE, in which case it displays information about the fitted models and
the results of the test.
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Note that the χ̄2 weights approximation can be time consuming, especially when the Monte
Carlo sampling size is high, or when the number of components in the χ̄2 distribution increases.
It is recommended to first run the function using the default setting, i.e., with pval.comp =
"bounds", and to possibly re-run it with pval.comp = "approx" if more precision is needed.
The function returns an object of classes ‘htest’ and ‘vctest’ and as such, can be printed us-
ing the provided print() function of varTestnlme or the print.htest() function of package
EnvStats (Millard 2013). In particular, it contains the following slots:

• null.value: The value of the tested parameters under the null hypothesis.

• alternative: The value of the parameters under the alternative hypothesis.

• statistic: The value of the LRT statistic.

• method: The name of the statistical test.

• parameters: A list with the χ̄2 distribution parameters: df the degrees of freedom,
weights the weights associated with each component of the limiting χ̄2 distribution,
sdWeights the standard deviation associated with the estimation of each weights (equal
0 if exact weights are available) and FIM the estimate of the Fisher information matrix.

• pvalue: A named numeric vector with four elements: pvalue.weights, the p value
obtained using Equation 17 (equals NA if weights were not computed, e.g., if option
pval.comp was set to "bounds"), pvalue.sample: the p value obtained using Equa-
tion 18 (equals NA if weights were not computed or if exact weights were available and
no sampling was done), pvalue.lowerbound and pvalue.upperbound the bounds on
the p value, obtained from Equation 19.

We describe in the following subsections the practical implementation of the tests defined in
Section 3.2 and detail the outputs obtained in each case.

Linear model

Case 1: Testing that the variance of age is null, in a model with two correlated random
effects. We first run the function with the default arguments.

R> vt <- varCompTest(lm1.h1.lme4, lm1.h0.lme4)
R> print(vt)

Variance components testing in mixed effects models
Testing that the variance of the random effect associated to scale(age)
is equal to 0
Likelihood ratio test statistic:

LRT = 0.8331072

p-value from exact weights: 0.5103454

Using the summary() function, we get the following output:

R> summary(vt)
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Variance components testing in mixed effects models
Testing that:
variance of the random effect associated to scale(age) is equal to 0

against the alternative that:
variance of the random effect associated to scale(age) > 0

Likelihood ratio test statistic:
LRT = 0.8331072

Limiting distribution:
mixture of 2 chi-bar-square distributions with degrees of freedom 1 2
associated (exact) weights: 0.5 0.5

p-value of the test:
from exact weights: 0.5103454

The LRT statistic is computed, and the asymptotic distribution is identified as a mixture
between two χ2 distributions with degrees of freedom 1 and 2. In this case we can compute
the exact weights of the χ̄2 distribution and hence the exact p value. Using the EnvStats, it
is possible to print the results of the test using function print.htest().
R> library("EnvStats")
R> print.htestEnvStats(vt)

Results of Hypothesis Test
--------------------------

Null Hypothesis: variance of the random effect associated to
scale(age) = 0

Alternative Hypothesis: variance of the random effect associated to
scale(age) > 0

Test Name: Likelihood ratio test for variance components
in mixed effects models

Data:

Test Statistic: LRT = 0.8331072

Test Statistic Parameters: df = 1, 2
weights = 0.5, 0.5
sdweights = 0, 0
FIM = NA

P-values: pvalue.weights = 0.5103454
pvalue.sample = NA
pvalue.lowerbound = 0.5103454
pvalue.upperbound = 0.5103454



14 varTestnlme: Variance Components Testing in Mixed-Effects Models in R

If we re-run the function with the option pval.comp = "both", we get the same results since
the weights are explicit in this example. This time, we run the function with fits from nlme
to show that results are identical.

R> vt <- varCompTest(lm1.h1.nlme, lm1.h0.nlme)
R> summary(vt)

Variance components testing in mixed effects models
Testing that:
variance of the random effect associated to age is equal to 0

against the alternative that:
variance of the random effect associated to age > 0

Likelihood ratio test statistic:
LRT = 0.8331072

Limiting distribution:
mixture of 2 chi-bar-square distributions with degrees of freedom 1 2
associated (exact) weights: 0.5 0.5

p-value of the test:
from exact weights: 0.5103454

Case 2: Testing that the variance of age is null in a model with two independent random
effects. The number of components in the mixture is the same as in Case 1, but the degrees
of freedom have been shifted downward. Note that the weights also have simple analytical
expressions in this case, as well as the p value. Results are presented using the lme4 package,
but similar results are obtained with the nlme package.

R> vt <- varCompTest(lm2.h1.lme4, lm2.h0.lme4)
R> summary(vt)

Variance components testing in mixed effects models
Testing that:
variance of the random effect associated to age is equal to 0

against the alternative that:
variance of the random effect associated to age > 0

Likelihood ratio test statistic:
LRT = 0.5304106

Limiting distribution:
mixture of 2 chi-bar-square distributions with degrees of freedom 0 1
associated (exact) weights: 0.5 0.5

p-value of the test:
from exact weights: 0.2332171
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Case 3: Testing the presence of randomness in the model, i.e., testing that the variances of
age and of the intercept are null, in a model with two independent random effects.

R> vt <- varCompTest(lm3.h1.nlme, lm3.h0)
R> summary(vt)

Variance components testing in mixed effects models
Testing that:
covariance matrix of Intercept and age is equal to 0

against the alternative that:
covariance matrix of Intercept and age > 0

Likelihood ratio test statistic:
LRT = 50.13311

Limiting distribution:
mixture of 3 chi-bar-square distributions with degrees of freedom 0 1 2

p-value of the test:
bounds on p-value: lower 7.18311e-13 upper 7.215163e-12

Bounds based on the smallest and biggest degrees of freedom of the chi-bar-
square distribution components. Re-run with option 'pval.comp="both" or
pval.comp="comp" to approximate the weights of each chi-bar-square component
and the p-value.

A message is printed in addition to the results, to give some explanation about the bounds
on the p value. In this case, using the provided upper bound we see that the exact p value
is smaller than 10−11, which is enough in practice to reject the null hypothesis without
computing the χ̄2 weights and the associated p value. It is also possible to compute the
weights using the option pval.comp = "both". In that case, the weights are explicit but
depend on the FIM. Since we are dealing with a linear mixed-effects model, the FIM has an
analytical expression and can be extracted from nlme or lme4 packages using the option fim
= "extract". This is the default behaviour of varCompTest function. Note that results can
differ between packages since the methods used to compute the likelihood and hence the FIM
is not the same in nlme and lme4.
Using nlme package:

R> vt <- varCompTest(lm3.h1.nlme, lm3.h0, pval.comp = "both")
R> summary(vt)

Variance components testing in mixed effects models
Testing that:
covariance matrix of Intercept and age is equal to 0

against the alternative that:
covariance matrix of Intercept and age > 0
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Likelihood ratio test statistic:
LRT = 50.13311

Limiting distribution:
mixture of 3 chi-bar-square distributions with degrees of freedom 0 1 2
associated (exact) weights: 0.3767598 0.5000000 0.1232402

p-value of the test:
from exact weights: 2.319657e-12
bounds on p-value: lower 7.18311e-13 upper 7.215163e-12

Using lme4 package:

R> vt <- varCompTest(lm3.h1.lme4, lm3.h0, pval.comp = "both")
R> summary(vt)

Variance components testing in mixed effects models
Testing that:
covariance matrix of (Intercept) and age is equal to 0

against the alternative that:
covariance matrix of (Intercept) and age > 0

Likelihood ratio test statistic:
LRT = 50.13311

Limiting distribution:
mixture of 3 chi-bar-square distributions with degrees of freedom 0 1 2
associated (exact) weights: 0.3839687 0.5000000 0.1160313

p-value of the test:
from exact weights: 2.225988e-12
bounds on p-value: lower 7.18311e-13 upper 7.215163e-12

To compute the FIM using parametric bootstrap (see Section 4.1 for more details on the
method), one should use the option fim = "compute". The default bootstrap sample size is
B = 1000, but it can be changed using the control argument.
Using nlme package:

R> vt <- varCompTest(lm3.h1.nlme, lm3.h0, pval.comp = "both",
+ fim = "compute")
R> summary(vt)

Variance components testing in mixed effects models
Testing that:
covariance matrix of Intercept and age is equal to 0

against the alternative that:
covariance matrix of Intercept and age > 0
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Likelihood ratio test statistic:
LRT = 50.13311

Limiting distribution:
mixture of 3 chi-bar-square distributions with degrees of freedom 0 1 2
associated (exact) weights: 0.3493855 0.5000000 0.1506145

p-value of the test:
from exact weights: 2.675351e-12

bounds on p-value: lower 7.18311e-13 upper 7.215163e-12

Using lme4 package:

R> vt <- varCompTest(lm3.h1.lme4, lm3.h0, pval.comp = "both",
+ fim = "compute")
R> summary(vt)

Variance components testing in mixed effects models
Testing that:
covariance matrix of (Intercept) and age is equal to 0

against the alternative that:
covariance matrix of (Intercept) and age > 0

Likelihood ratio test statistic:
LRT = 50.13311

Limiting distribution:
mixture of 3 chi-bar-square distributions with degrees of freedom 0 1 2
associated (exact) weights: 0.3609427 0.5000000 0.1390573

p-value of the test:
from exact weights: 2.525181e-12

bounds on p-value: lower 7.18311e-13 upper 7.215163e-12

Generalized linear model

Results from the test of the null hypothesis that there is no random effect associated with
the herd are given by:

R> vt <- varCompTest(glm1, glm0)
R> summary(vt)

Variance components testing in mixed effects models
Testing that:
variance of the random effect associated to (Intercept) is equal to 0

against the alternative that:
variance of the random effect associated to (Intercept) > 0
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Likelihood ratio test statistic:
LRT = 14.00527

Limiting distribution:
mixture of 2 chi-bar-square distributions with degrees of freedom 0 1
associated (exact) weights: 0.5 0.5

p-value of the test:
from exact weights: 9.114967e-05

Nonlinear model

Results from the test of the null hypothesis that only the asymptote is random against the
alternative hypothesis of a diagonal covariance matrix between the random effects, using nlme
and lme4, are given by:

R> vt <- varCompTest(nlm1.nlme, nlm0.nlme)
R> summary(vt)

Variance components testing in mixed effects models
Testing that:
covariance matrix of R0 and lrc is equal to 0

against the alternative that:
covariance matrix of R0 and lrc > 0

Likelihood ratio test statistic:
LRT = 2.519869

Limiting distribution:
mixture of 3 chi-bar-square distributions with degrees of freedom 0 1 2

p-value of the test:
bounds on p-value: lower 0.05620995 upper 0.1980462

R> vt <- varCompTest(nlm1.lme4, nlm0.lme4)
R> summary(vt)

Variance components testing in mixed effects models
Testing that:
covariance matrix of R0 and lrc is equal to 0

against the alternative that:
covariance matrix of R0 and lrc > 0

Likelihood ratio test statistic:
LRT = 2.456656
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Limiting distribution:
mixture of 3 chi-bar-square distributions with degrees of freedom 0 1 2

p-value of the test:
bounds on p-value: lower 0.05851384 upper 0.2049047

Depending on the desired level of the test, more precision may be needed on the p value.
For models fitted with nlme, this can be obtained using the options pval.comp = "both"
or pval.comp = "approx" and fim = "extract" to use the FIM computed by nlme, or fim
= "compute" to approximate the FIM using parametric bootstrap, with a default bootstrap
sample size of 1000.

R> vt <- varCompTest(nlm1.nlme, nlm0.nlme, pval.comp = "both",
+ fim = "compute")
R> summary(vt)

Variance components testing in mixed effects models
Testing that:
covariance matrix of R0 and lrc is equal to 0

against the alternative that:
covariance matrix of R0 and lrc > 0

Likelihood ratio test statistic:
LRT = 2.519869

Limiting distribution:
mixture of 3 chi-bar-square distributions with degrees of freedom 0 1 2
associated (exact) weights: 0.2450473 0.5000000 0.2549527

p-value of the test:
from exact weights: 0.128533
bounds on p-value: lower 0.05620995 upper 0.1980462

Here again, the weights are exact once the FIM is known. For information purposes, the
above code took approximatively 175 seconds on a laptop with a 8 cores Intel(R) Core(TM)
i5-8250U CPU @ 1.60GHz processor.
For nonlinear models fitted with lme4, to the best of our knowledge no method is available
to extract the FIM (although merDeriv, Wang and Merkle 2018, provides the FIM for linear
and generalized linear models fitted via lme4). Only the option fim = "compute" can then
be used. We get the following results, which are very similar to the ones obtained with the
nlme package. However the code was a bit longer to run, and took 430 seconds.

R> vt <- varCompTest(nlm1.lme4, nlm0.lme4, pval.comp = "both",
+ fim = "compute")
R> summary(vt)

Variance components testing in mixed effects models
Testing that:
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covariance matrix of R0 and lrc is equal to 0
against the alternative that:
covariance matrix of R0 and lrc > 0

Likelihood ratio test statistic:
LRT = 2.456656

Limiting distribution:
mixture of 3 chi-bar-square distributions with degrees of freedom 0 1 2
associated (exact) weights: 0.2648237 0.5000000 0.2351763

p-value of the test:
from exact weights: 0.1273691
bounds on p-value: lower 0.05851384 upper 0.2049047

Using the saemix package and the option fim = "extract", we get the following results,
which are consistent with those obtained with lme4 and nlme (note that the likelihood value
is different since saemix uses an important sampling approach to estimate the likelihood when
lme4 and nlme rely on a linearization of the likelihood):

R> vt <- varCompTest(nlm1.saemix, nlm0.saemix, pval.comp = "both",
+ fim = "extract")
R> summary(vt)

Variance components testing in mixed effects models
Testing that:
covariance matrix of omega2.R0 and omega2.lrc is equal to 0

against the alternative that:
covariance matrix of omega2.R0 and omega2.lrc > 0

Likelihood ratio test statistic:
LRT = 1.983014

Limiting distribution:
mixture of 3 chi-bar-square distributions with degrees of freedom 0 1 2
associated (exact) weights: 0.2805023 0.5000000 0.2194977

p-value of the test:
from exact weights: 0.160974
bounds on p-value: lower 0.07953661 upper 0.2650452

3.4. Comparison using different FIM estimates

To evaluate the performance of the FIM estimation via parametric bootstrap implemented in
varTestnlme, we compared the empirical coverages of the nominal 95% confidence intervals
based on the asymptotic normality property of the MLE obtained using the FIM extracted
from packages nlme, lme4 and saemix, and our estimate.
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Parameter
Extracted Boostrap

nlme lme4 using nlme estimates using lme4 estimates
B = 100 B = 300 B = 100 B = 300

β1 0.939 0.938 0.932 0.928 0.952 0.934
β2 0.949 0.949 0.910 0.856 0.952 0.948
γ2

1 0.944 0.942 0.930 0.916 0.938 0.930
γ2

2 0.851 0.916 0.918 0.926 0.908 0.912
γ1,2 0.978 0.931 0.934 0.930 0.932 0.932
σ2 0.949 1.000 0.938 0.950 0.956 0.948

Table 1: Empirical coverage of the 95% asymptotic confidence intervals according to the type
of FIM estimate, in a linear mixed-effect model with two correlated random effects, computed
on 500 repetitions.

A linear mixed-effects model with two correlated random effects was fitted to 500 simulated
datasets of size n = 100.

yij = β1 + β2tj + bi1 + bi2tj + εij , i = 1, . . . , n, j = 1, . . . , m(
bi1
bi2

)
∼ N

((
0
0

)
,

(
γ2

1 γ12
γ12 γ2

2

))
, εij ∼ N (0, σ2)

We took β1 = 5, β2 = 7, γ1 = 0.8, γ2 = 1, γ12 = 0.4 and σ2 = 1.22. The FIM was extracted and
estimated for each of the simulated datasets, with a bootstrap sample size B ∈ {100, 300}.
Results are given in Table 1. Note that small discrepancies can be observed for the nlme
package when running the replication material, due to different versions of the linear algebra
library and the way it handles matrix multiplication. Results show that good results are
obtained for small values of B. Interestingly, the bootstrap estimate lead to better coverages
than the extracted estimate obtained using lme4, for variance components. This is crucial
since the FIM components involved in the χ̄2 weights computation are those corresponding
to the variance components.

4. Tools for the identification of the limiting distribution

In this section, we detail the technical tools used to identify the key quantities characterizing
the limiting χ̄2 distribution, which is a mixture of χ2 distributions. These quantities are
the degrees of freedom and the associated weights of the χ2 distributions in the mixture and
depend on the FIM and on the tangent cone. Note that an exact expression of the tangent cone
can always be derived in the general case of a block-diagonal covariance matrix Γ. However
the FIM is not always available in a closed form, especially for nonlinear mixed-effects models.
In Section 4.1, we present the parametric bootstrap procedure used to estimate the FIM, in
Section 4.2, we give details on how to identify the tangent cone T (Θ, θ∗) ∩ T (Θ0, θ∗)⊥, and in
Section 4.3 we describe the Monte Carlo algorithm used to compute the weights of each χ2

distribution. We also explain how the p value of the test can be computed, and how bounds
can be obtained.
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4.1. Estimation of the Fisher information matrix

In linear mixed-effects models, the FIM can be computed exactly. However this is not the
case for nonlinear mixed-effects models. The existing R packages provide in some cases
an approximation of the FIM based for example on a linearisation of the model, or on a
block-diagonal approximation of the FIM where a zero correlation is assumed between fixed
effects and variance components. Nevertheless, in general the FIM is not block-diagonal.
Moreover these estimates are in general only valid for large samples, leading to possible
wrong conclusions when considering small samples. Specific tools have to be developed for
such settings.
In the varTestnlme package, we provide three options for the FIM. The first option is specif-
ically adapted to small samples, and is more accurate in this setting albeit more time con-
suming. It consists in building an estimate of the FIM via parametric bootstrap. Let us
denote by θ̂1 the estimate of θ obtained for the alternative model under H1, with lme4, nlme
or saemix. We generate B bootstrap samples (φu,∗

i , yu,∗
i ), 1 ≤ i ≤ n, 1 ≤ u ≤ B from the

alternative model, using the parameter value θ̂1 and Equations 1-2. Then, for each of these
bootstrap samples, we compute the associated estimate θ̂∗

u. The bootstrap estimate of the
FIM is then given by the empirical covariance matrix between the bootstrap estimates:

Î∗ = 1
B

B∑
u=1

θ̂∗
u(θ̂∗

u)⊤ − ¯̂
θ∗(¯̂

θ∗)⊤, (10)

where ¯̂
θ∗ = 1

B

∑B
u=1 θ̂∗

u.
The second option consists in using the FIM estimate provided by the package that was
used to fit the models, when this estimate is available. Finally, the third option relies on a
user-defined positive semi-definite matrix which should be an estimate of the FIM. It can be
for example computed using the R package PFIM 4.0 (Dumont et al. 2018) based on Monte
Carlo tools or by implementing the method presented in Delattre and Kuhn (2019) based on
stochastic approximation tools.

4.2. Computation of the tangent cone

The identification of the tangent cone is crucial since it allows to identify the number of
components in the χ̄2 distribution, and the degrees of freedom associated to each of these
components. Indeed, results from Shapiro (1985) state that, provided that one can found
the largest linear subspace contained in the tangent cone, and the smallest linear subspace
containing the tangent cone, then the degrees of freedom of the χ2 components take values
between the dimensions of these two subspaces. In this section, we give the exact expression of
the tangent cone, and we identify the dimensions of the two aforementioned linear subspaces
in the general case of a block-diagonal covariance matrix Γ.
In Baey et al. (2019), it was highlighted that the limiting distribution of the LRT statistic
depends on the structure of Γ and its expression was exhibited in two common cases, when
Γ was either diagonal or full. In the general case, Γ can always be written in the following
block-diagonal form:

Γ =


Γ1 0 . . . 0
0 Γ2 . . . 0
... . . . . . . ...
0 . . . 0 ΓK

 , (11)
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where K ∈ N∗, and for all 1 ≤ k ≤ K, Γk is a positive semi-definite matrix of size rk × rk

with ∑K
1 rk = q. In the sequel, we assume that the blocks Γ1, . . . , ΓK are full i.e., all the

covariances inside these blocks are non-null. This is how the covariance matrix of random
effects is implemented in package lme4 (Bates et al. 2015, p. 7, Section 2.2). In the appendix
of their paper, the authors mentioned that more general structures for the covariance matrix
Γ could be implemented using modularized functions of the lme4 package. Nevertheless these
functionalities are not currently treated in the varTestnlme package. In nlme, more sophisti-
cated covariance structures can be used, and in saemix, no specific restriction is imposed on
the covariance matrix structure. However in varTestnlme we restrict ourselves to the block-
diagonal case with full blocks. This restriction allows for a simple block-diagonal structure of
the covariance matrix and eases the computation.

When the covariance matrix Γ is block-diagonal, three cases can arise when testing that a
subset of variances are null: i) we are testing that R blocks among the K blocks Γ1, . . . , ΓK

are null, ii) we are testing that R sub-blocks of the K blocks Γ1, . . . , ΓK are null, or iii) a
mixture of i) and ii). Let us denote by ℓ0 the number of blocks where covariances are tested
equal to 0 without testing that the corresponding variances are equal to 0 (only testing non-
diagonal elements), by ℓ1 the number of blocks which are tested entirely equal to 0, and by
ℓ2 the number of blocks where sub-blocks are tested equal to 0. By sub-block, we mean that
we are testing a sub-matrix which is strictly smaller than the block matrix from which it was
extracted. We assume that 0 ≤ ℓ0 ≤ K, 0 ≤ ℓ1 ≤ K, 0 ≤ ℓ2 ≤ K and 1 ≤ ℓ0 + ℓ1 + ℓ2 ≤ K.

Without loss of generality, and up to a permutation of rows and columns of Γ, we can assume
that the blocks are in the following order: first, the blocks which are not tested, then the
blocks where only covariances are tested, next the blocks which are tested entirely equal to
zero, and finally the blocks where diagonal sub-blocks are tested equal to zero. Then, the null
and alternative hypotheses in Equation 3 can be written as:

Θ0 = {θ ∈ Rc | βk = 0, k ∈ If , βk ∈ R, k /∈ If ,

∀k = 1, . . . , K − (ℓ0 + ℓ1 + ℓ2), Γk ∈ Srk
+ ,

∀k = K − (ℓ0 + ℓ1 + ℓ2) + 1, . . . , K − (ℓ1 + ℓ2), Γk ∈ Srk
+ , with tk covariances null,

∀k = K − (ℓ1 + ℓ2) + 1, . . . , K − ℓ2, Γk = 0,

∀k = K − ℓ2 + 1, . . . , K, Γk =
(

Γ̃k 0
0 0

)
, with Γ̃k ∈ Srk−sk

+ ,

σ2 > 0}

Θ = {θ ∈ Rc | β ∈ Rp, Γk ∈ Srk
+ , σ2 > 0}

From the general expressions of Θ0 and Θ in Equation 4, we can derive the expressions of
T (Θ, θ∗) and T (Θ0, θ∗) using the results of Hiriart-Urruty and Malick (2012), and conse-
quently the expression of the closed convex cone C := T (Θ, θ∗) ∩ T (Θ0, θ∗)⊥, involved in the
χ̄2 distribution in Equation 5.
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We obtain:

C = {0}a × Rrf︸︷︷︸
tested

fixed effects

×
K−(ℓ1+ℓ2)∏

k=K−(ℓ0+ℓ1+ℓ2)+1
Rtk

︸ ︷︷ ︸
covariances tested without testing

the corresponding variances

×
K−ℓ2∏

k=K−(ℓ1+ℓ2)+1
Srk

+︸ ︷︷ ︸
fully tested blocks

×
K∏

k=K−ℓ2+1
{Rsk(rk−sk) × Ssk

+ }

︸ ︷︷ ︸
sub-blocks tested

,

(12)

where

a = p − rf︸ ︷︷ ︸
non tested

fixed effects

+
K−(ℓ0+ℓ1+ℓ2)∑

k=1

rk(rk − 1)
2︸ ︷︷ ︸

non tested blocks

+
K∑

k=K−ℓ2+1

(rk − sk)(rk − sk + 1)
2︸ ︷︷ ︸

untested sub-blocks in blocks
where a sub-block is tested

+ 1︸︷︷︸
residual
variance

. (13)

To identify the components of the χ̄2 mixture, i.e., the degrees of freedom and the weights of
all the χ2 distributions involved in the mixture, we can use the properties enounced by Shapiro
(1985), stating that if C contains a linear space of dimension d1, the first d1 weights of the
mixture are null, and if C is included in a linear space of dimension d2, the last (c−d2) weights
of the mixture are null. The χ̄2 distribution χ̄2(I−1

∗ , C) is then a mixture of (d2 − d1 + 1) χ2

distributions with degrees of freedom varying between d1 and d2.
According to the general formulation of the cone C given in Equation 12, we have:

d1 = rf +
K−(ℓ1+ℓ2)∑

k=K−(ℓ0+ℓ1+ℓ2)+1
tk +

K∑
k=K−ℓ2+1

sk(rk − sk),

d2 = c − a.

(14)

In particular, if only blocks of variances are tested (i.e., if rf = 0, ℓ0 = 0 and ℓ2 = 0), then
d1 = 0 and there is a Dirac mass at 0 in the mixture.
From Equations 13 and 14, we can see that the number of elements in the χ2 mixture only
depends on the number of variances being tested, and on the structure of the covariance
matrix. When rf fixed effects are tested simultaneously with a set of variance components,
the number of elements in the mixture is the same as in the case where only the set of variance
components is tested, but the degrees of freedom of each element in the χ2 mixture is shifted
upward by rf .
As an example, let us consider a model with 3 random effects, with φi = β + bi, bi ∼ N (0, Γ),
εi ∼ N (0, σ2Im) with Γ a positive definite covariance matrice and σ2 > 0. Let us consider
the following hypotheses:

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ, (15)
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with

Θ0 = {β ∈ R3, Γ =

 Γ2
1 0 0

0 0 0
0 0 0

 , σ2 > 0}

Θ = {β ∈ R3, Γ =

 Γ2
1 Γ12 Γ13

Γ12 Γ2
2 Γ23

Γ13 Γ23 Γ2
3

 , σ2 > 0}.

Since no fixed effect is tested, we have rf = 0. We can consider Γ as a block-diagonal matrix
with only K = 1 block. In this block of size 3 × 3, we are testing that a sub-block of size
2 × 2 is equal to 0. Using the above notations, we have ℓ0 = 0, ℓ1 = 0, ℓ2 = 1, r1 = 3, s1 = 2
and c = 10. We thus have: a = 3 − 0 + 0 + (3−2)(3−2+1)

2 + 1 = 5, d1 = 0 + 1(3 − 1) = 2 and
d2 = 10−5 = 5. The limiting distribution of the LRT associated to the two above hypotheses
is then a mixture of d2 − d1 + 1 = 4 χ2 distributions with degrees of freedom 2, 3, 4 and 5.

4.3. Computation of the χ̄2 weights

In some simple cases, the χ̄2 weights have an analytical expression, which may depends on
the FIM. In general however, the weights are non explicit and have to be estimated via Monte
Carlo techniques as described in Algorithm 1.
In varTestnlme, when the weights of the χ̄2 distribution are not available in a closed form,
they are estimated according to the procedure proposed by Silvapulle and Sen (2011), using
an estimate of the FIM. The general idea relies on the simulation of M i.i.d. realizations
X1, . . . , XM from the limiting chi-bar-square distribution using its definition as the norm of
the projection of a multivariate Gaussian random variable on a closed convex cone. More
precisely, let C be a closed convex cone of Rc, V a positive definite matrix of size c × c and
Z ∼ N (0, V ). Then, the random variable X defined below follows a χ̄2 distribution with
parameters V and C as detailed in Silvapulle and Sen (2011):

X = Z⊤V −1Z − min
θ∈C

(Z − θ)⊤V −1(Z − θ). (16)

The algorithm first simulate M realizations of a multivariate Gaussian distributions, Z1, . . . , ZM ,
and then computes each term of Equation 16 using quadratic programming when necessary to
get the projection on C. This gives M realizations X1, . . . , XM following the χ̄2 distribution
χ̄2(V, C). Since the number of components in the χ̄2 mixture and the associated degrees of
freedom are known, the weights of each χ2 component can be retrieved by defining a system
of linear equations in w, the vector of weights. More details are given in Algorithm 1.

4.4. Computation of the p value

Let Fd be the cumulative distribution function (CDF) of the χ2 distribution with d degrees
of freedom. The p value of the test can then be estimated in two different ways, both of them
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Algorithm 1 Estimation of the weights of the χ̄2 distribution using Monte Carlo simulations.
Note that due to the (pseudo-)randomness of the sequence (Zi), results will differ from one
run of the algorithm to the other. For reproducible results, one might want to fix the seed
beforehand.

1: Define Î−1 an estimate of the inverse of the FIM under H1, and let cd1+2 < · · · < cd2 be
a sequence of non-negative increasing numbers (see Figure 4).

2: for i = 1, . . . , M do
1. simulate Zi ∼ N (0, Î−1)
2. compute

Xi := Z⊤
i Î−1Zi − min

θ∈C
(Zi − θ)⊤Î−1(Zi − θ),

using quadratic programming when C is the non-negative orthant Rc′ , for some c′ ≤ c,
and using general nonlinear optimization tools otherwise. In varTestnlme, we use
respectively the quadprog (Turlach, Weingessel, and Moler 2019) and the alabama
(Varadhan 2022) packages.

3: end for
4: Compute matrix A of size (d2 − d1 + 1) × (d2 − d1 + 1):

A =


1 1 1 . . . 1 1
1 0 1 . . . 1 0

Fd1(cd1+2) Fd1+1(cd1+2) Fd1+2(cd1+2) . . . Fd2−1(cd1+2) Fd2(cd1+2)
...

...
... · · ·

...
...

Fd1(cd2) Fd1+1(cd2) Fd1+2(cd2) . . . Fd2−1(cd2) Fd2(cd2)

 ,

where Fi is the cumulative distribution function of a χ2 distribution with i degrees of
freedom.
N.B. The expression of A given above corresponds to the case where (d2 − d1 + 1) is even.
In the case where (d2 − d1 + 1) is odd, the last column has a ‘1’ in the second row, instead
of a ‘0’.

5: Compute vector κ̂ of size (d2 − d1 + 1) :

κ̂ =



1
1/2

1
M

∑M
i=1 1Xi≤cd1+2

...
1

M

∑M
i=1 1Xi≤cd2


6: Estimate the weights of the χ̄2 distribution by solving the system:

Aŵ = κ̂ ⇔ ŵ = A−1κ̂

7: Estimate the covariance matrix of the weights by:

VAR(ŵ) = A−1 VAR(κ̂) (A−1)⊤
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Figure 4: Illustration of the choice of the non-increasing sequence cd1+2 < · · · < cd2 used in
Algorithm 1 to approximate the χ̄2 weights.

being computed in the varTestnlme:

p̂1 =
d2∑

j=d1

ŵj (1 − Fj(LRTn)), (17)

p̂2 = 1
M

M∑
i=1

1Xi≥LRTn , (18)

where ŵj is the estimated weight associated to the χ2 distribution with j degrees of free-
dom, and where X1, . . . , XM are simulated according to the limiting χ̄2 distribution (see
Algorithm 1 for more details on the notations).
Note that for very small values of the real p value, a very large sample size M would be
needed in order to get a non-zero estimate p̂2.

4.5. Bounds on p values

Since the simulation of X1, . . . , XM can be time consuming, and since Fi(c) ≥ Fj(c) for i < j,
it is possible to compute bounds on the p value of the test. Indeed, since the sum of all the
weights is equal to 1, and the sum of even (resp. odd) weights is equal to 1/2, natural bounds
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are given for the p value by Silvapulle and Sen (2011):

1 − Fd1(LRTn) + Fd1+1(LRTn)
2 ≤ p ≤ 1 − Fd2−1(LRTn) + Fd2(LRTn)

2 . (19)

Even if those bounds can be crude, they are available in closed form and might bring enough
information in some cases to support or reject the null hypothesis. By default, the varTestnlme
package returns these bounds, and if more precision is needed by the user, it is possible to
re-run the analysis in order to estimate the weights of the limiting distribution.

5. Summary and discussion
In this paper, we present the R package varTestnlme, which provides a unified framework for
variance components testing in linear, generalized linear and nonlinear mixed-effects models
fitted with nlme, lme4 and saemix. The main function varCompTest() performs the compar-
ison of two nested models m1 and m0. It is thus possible to test that the variances of a subset
of random effects is null, taking into account correlation between them, in a model with one
level of random effects. It is also possible to test that one or several correlations are null, and
to test simultaneously if some fixed effects are null. The tests are performed using likelihood
ratio test and rely on the asymptotic properties of the LRT statistic. Additional tools are
provided to approximate the Fisher information matrix when it is needed to compute the
limiting distribution of the LRT statistic.
Possible future developments of the package include in particular the consideration of more
than one level of random effects, to account for multiple nested random effects. Another
perspective would be to allow for more general structures for the covariance matrix Γ of
the random effects. This would encompass for example parametric structures such as com-
pound symmetry, auto-regressive or with spatial correlation, as proposed in the nlme package.
Another interesting development would be the generalisation to models with non-Gaussian
random effects, for example using heavy-tailed distributions. Specific tools would be needed
to extend the theoretical results to other families of distributions. Finally, it would be useful
to derive non-asymptotic results allowing to apply the test to small sample sizes.
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