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A RBA model for the chemostat modeling

The purpose of this paper is to show that it is possible to replace the Monod type model of a chemostat by a constraint based model of bacteria at the genome scale. This new model is an extension of the RBA model of bacteria developed in a batch mode to the chemostat. This new model, and the associated framework, leads to a dramatic improvement in the prediction capacities of the chemostat behaviour. Indeed, for example, the internal states of the bacteria are now part of the prediction outputs and the chemostat behaviour can now be predicted for any limiting source. Finally, the first interests of this new predictive method are illustrated on a set of classic situations where predictions are already close of the well-known biological observations about chemostat.

I. INTRODUCTION

The chemostat is a specific and popular experimental method introduced in the field of microbiology in the early 50s in [START_REF] Monod | La technique de culture continue: Théorie et applications[END_REF], [START_REF] Novick | Description of the chemostat[END_REF], [START_REF]Experiments with the chemostat on spontaneous mutations of bacteria[END_REF]. The chemostat consists in growing microorganisms in a culture vessel where a defined fresh medium is pumped from a reservoir into the culture vessel at a given flow rate (called the inflow or dilution rate). As the culture liquid is removed at the same flow rate than the inflow, the volume of culture remains constant. By providing essential substrates / nutrients in excess at the exception of a limiting one, the chemostat generally ensures the perpetual regeneration of the micro-organisms at the same growth rate controlled by the limiting nutrient (remember that a part of the micro-organisms is removed by the outflow). Experimental data have validated this general principle and shown that a chemostat inoculated with an unique microorganism reaches, after a transient phase, a steady-state regimen where the micro-organism population and all the substrates concentrations in the culture vessel are constant. This regimen, called a balanced regimen, is used to study the physiology of micro-organism(s) under stable and controlled conditions and for a wide range of flow rates, which coincides in a balanced regimen with the growth rate of the micro-organism population. For example, the chemostat is used to investigate if the micro-organism population uses energy for maintenance (at the growth rate close to 0) and if, more generally, the biomass production yield with respect to the limiting energy source is constant or not, see e.g. [START_REF] Marr | The maintenance requirement of escherichia coli[END_REF], [START_REF] Pirt | The maintenance energy of bacteria in growing cultures[END_REF], [START_REF]Introductory lecture. prospects and problems in continuous flow culture of micro-organisms[END_REF], [START_REF] Stouthamer | Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms: A reevaluation of the method for the determination of ATP production by measuring molar growth yields[END_REF], [START_REF] Russell | Comparison of Maintenance Energy Expenditures and Growth Yields Among Several Rumen Bacteria Grown on Continuous Culture[END_REF], [START_REF] Tempest | The status of y AT P and maintenance energy as biologically interpretable phenomena[END_REF], [START_REF] Verduyn | A theoretical evaluation of growth yields of yeasts[END_REF], [START_REF] Senn | The growth of escherichia coli in glucose-limited chemostat cultures: a reexamination of the kinetics[END_REF]. The chemostat is also useful for the experimental study of the evolution of living organisms, including the evolution and competition between genetic variants within a population (such an issue is already considered in [START_REF]Experiments with the chemostat on spontaneous mutations of bacteria[END_REF]) or even between populations of different micro-organism species, see e.g. M. Dinh and V. Fromion are with MaIAGE, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France, marc.dinh@inra.fr and vincent.fromion@inra.fr [START_REF] Stewart | Partitioning of resources and the outcome of interspecific competition: A model and some general considerations[END_REF], [START_REF] Hsu | A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms[END_REF], [START_REF] Veldkamp | Ecological studies with the chemostat[END_REF] and also the textbooks [START_REF] Waltman | Competition models in population biology[END_REF], [START_REF] Smith | The theory of the chemostat: Dynamics of microbial competition[END_REF]. Finally, the chemostat is widely used in biotechnology as a mean to continuously produce molecules of interest such as vitamins, see e.g. [START_REF] Dauner | Stoichiometric growth model for riboflavinproducing bacillus subtilis[END_REF], [START_REF] Dauner | Intracellular carbon fluxes in riboflavin-producing bacillus subtilis during growth on twocarbon substrate mixture[END_REF] and more generally [START_REF] Dochain | Bioprocess control[END_REF]. Another specific feature of the development of the chemostat is that it has been accompanied since its origin by the development of dedicated mathematical models describing how they work, see [START_REF] Monod | La technique de culture continue: Théorie et applications[END_REF], [START_REF]Experiments with the chemostat on spontaneous mutations of bacteria[END_REF], [START_REF] Herbert | The continuous culture of bacteria; a theoretical and experimental study[END_REF]. The phenomenological model developed in [START_REF] Monod | La technique de culture continue: Théorie et applications[END_REF] is nowadays known as Monod's model of the chemostat. More importantly from our point of view, the chemostat has stimulated interactions between the modeler / mathematical and biological communities, which have led to significant progresses on fundamental issues such as those related to the evolution and competition between populations of micro-organism species (including issues related to microbial ecology). However, the phenomenological nature of Monod-type models implies that some essential questions are currently beyond any theoretical investigation. In fact, to consider them, it is clearly necessary to have chemostat models functioning with extended predictive capabilities. This clearly requires a finer modeling of the micro-organism and in particular to have models of cells that would somehow and ideally predict the behaviour of cell regardless of the composition of the culture medium. This last claim is the origin of this work, since our aim is to investigate if and how the new constraint-based method called Resource Balance Analysis (RBA) introduced in [START_REF] Goelzer | Cell design in bacteria as a convex optimization problem[END_REF], [START_REF]Cell design in bacteria as a convex optimization problem[END_REF], which performs quantitative predictions of the behavior of cells at the infra-scale [START_REF] Goelzer | Quantitative prediction of genome-wide resource allocation in bacteria[END_REF], can be extended to the chemostat. We first recall that at the center of the RBA method is the concept of resource allocation between the cellular processes, see [START_REF] Goelzer | Resource allocation in living organisms[END_REF] for a review. RBA formalizes, as a set of linear constraints, the relationships defining the interactions and allocation of resources between the cellular processes in a balanced regimen. Actually, RBA predicts, for a given medium defined by a vector of substrate / nutrient concentrations, the (possibly empty) convex set of all feasible phenotypes that ensures either cell viability only (no growth) or growth at a given growth rate. For a given growth rate, each point of this set (when non empty) corresponds to a bacterial cell configuration compatible with the chosen growth rate. The bacterial cell configuration is mainly defined by the abundance of each molecular machine present within the cell, i.e. the enzymes catalyzing the metabolic reactions or the ribosomes producing the proteins to cite the two main sets of machines, and by the activity of all molecular machines, such as the metabolic fluxes associated to enzymes or the flow of protein production for the ribosomes.

Like other constrained-based methods, see e.g. [START_REF] Varma | Stochiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wildtype Escherichia coli W3110[END_REF], [START_REF] Budinich | A multiobjective constraint-based approach for modeling genome-scale microbial ecosystems[END_REF], the RBA method calls the resolution of linear programming problems, and from this point of view, fulfills one of the central issues of the development of whole cell models, i.e. the capability to compute predictions efficiently despite the large model size. The prediction of the cell configuration for a large number of medium configurations, and thus the prediction of cell regulations such as the well-known catabolite repression or lesser known ones [START_REF] Tournier | Optimal resource allocation enables mathematical exploration of microbial metabolic configurations[END_REF], is then possible.

This article is another investigation on the potentialities of the RBA method which is now made easier to the community by the software RBApy [START_REF] Bulović | Automated generation of bacterial resource allocation models[END_REF]. Its main objective is to show that the method, introduced in batch mode in [START_REF] Goelzer | Cell design in bacteria as a convex optimization problem[END_REF], [START_REF]Cell design in bacteria as a convex optimization problem[END_REF] and experimentally validated in [START_REF] Goelzer | Quantitative prediction of genome-wide resource allocation in bacteria[END_REF], can be extended to the chemostat problem. The model being presented in Section II, it is shown in Section III that the problem of determining the balanced regimen of the chemostat can be obtained by solving by dichotomy (on the population variable) a series of convex optimization problems, under realistic and mild assumptions on the modeling of transporters. In order to show the interests of this new method, we compare in Section IV a first set of predictions with results available in the biological literature, and show the remarkable (qualitative) agreement with the known behaviour of bacteria in chemostat. Section V concludes the paper.

Notation. The symbol R, R ≥ and R > denote the set of real, non-negative real and positive real numbers respectively. R n and R m×n denote the set of real vectors of length n and real matrices of size m × n respectively. X denotes the transpose of X. For a vector x ∈ R n , x i denotes its i-th component. Finally, the symbol Δ = means "equal by definition".

II. RBA MODEL FOR THE BACTERIA IN A CHEMOSTAT

A. The chemostat model

When the chemostat is well-stirred, its dynamical model can be described (see e.g. [START_REF] Bastin | On-line estimation and adaptive control of bioreactors[END_REF], [START_REF] Dochain | Bioprocess control[END_REF] for details) by this following system of differential equations:

dX(t)/dt = [μ(S(t)) -D] X(t) dS i (t)/dt = D Si -S i (t) -X(t)κ i (S(t)), i ∈ S (1) 
where

• X(t) ∈ R ≥ denotes the concentration of the cell popu- lation in the chemostat (g DW /L) 1 ; • D ∈ R ≥ denotes the dilution rate of the chemostat, more
precisely it is the percentage of the chemostat volume that is replaced per unit of time (h -1 );

• S(t) ∈ R n s
≥ denotes the vector of concentration of the n s substrates in the chemostat medium (mmol/L). The set of indices of substrates is denoted by S :

S Δ = {1, . . . , n s }; • S ∈ R n s
≥ denotes the vector of concentration of the n s substrates in the chemostat inflow (mmol/L); 1 g DW denotes grams of cell dry weight. and where

• μ is a function defined from R n s ≥ into R ≥ which provides the value of the growth rate (in h -1 ) of the population for a given vector of substrate concentration S;

• κ is a function defined form R n s ≥ into R n s which provides the vector of exchange fluxes per unit of cell population (mmol/(g DW h)). By convention, the i-th component of the vector κ is non-negative when the cell imports the i-th substrate.

We associate to the chemostat model this first problem.

Problem 1: For given D > 0, X > 0 and vector of inflow concentrations S ∈ R n s ≥ , find if there exists a vector

S * ∈ R n s ≥ such that the system of equalities μ(S * ) = D D( Si -S * i ) = Xκ i (S *
), for all i ∈ S holds.

B. Monod's type chemostat model

Monod's chemostat model derived in [START_REF] Monod | La technique de culture continue: Théorie et applications[END_REF] corresponds to experimental set-ups where the concentration of one substrate / nutrient is chosen to be limiting and the other ones are chosen to be largely in excess or are being controlled [START_REF] Sauer | Physiology and metabolic fluxes of wild-type and riboflavin-producing bacillus subtilis[END_REF], [START_REF] Dauner | Stoichiometric growth model for riboflavinproducing bacillus subtilis[END_REF], [START_REF] Dauner | Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture[END_REF], [START_REF] Dauner | Intracellular carbon fluxes in riboflavin-producing bacillus subtilis during growth on twocarbon substrate mixture[END_REF]. That led J. Monod to develop a model where only the limiting substrate is considered, i.e. to the case n s Δ = 1. Furthermore, the experimental data indicates that there exists an empirical relationship between the growth rate function μ and the uptake function κ when they are considered as functions of the limiting substrate, i.e., μ(S)

Δ = μ max S K S + S and κ(S) Δ = 1 Y S μ max K S + S
where μ max corresponds the maximum specific growth rate, K S is the saturation constant and Y S is a coefficient defined by Monod as an efficiency constant, which is nowadays referred to the biomass production yield with respect to the limiting resource S. It is also shown in [START_REF] Monod | La technique de culture continue: Théorie et applications[END_REF] (see also [START_REF] Herbert | The continuous culture of bacteria; a theoretical and experimental study[END_REF]) that the obtained chemostat model has an unique stable equilibrium point (X * , S * ) when D < μ max (and implicitly also when D is greater to some minimal value greater than 0) and that this equilibrium is such that X * Δ = Y S ( S -S * ) and μ(S * ) Δ = D. The latter relation is well-known and indicates that, in a balanced regimen, the micro-organism population in the chemostat have a growth rate equal to the dilution rate. Finally, straightforward computations lead to the explicit expressions of the equilibrium components:

S * Δ = K S D μ max -D X * Δ = Y S ( S -S * ) = Y S S -K S D μ max -D .
The functions μ and κ represent the cell population behaviour. The purpose of the next section is to present a more detailed way, namely the RBA method, to represent this behaviour, allowing a large set of substrates as well as complex behaviors.

C. The RBA model of bacteria in the chemostat context

The problem described below is obtained with the following assumptions: for each substrate in the medium, 1) there is one and only one transporter in the cell; 2) it is either imported or exported but not both. The set of imported substrate is denoted S i while the set of exported one is denoted S e ; 3) if it is imported, the transporter efficiency is described by a Michaelis-Menten function; 4) if it is exported, the transporter efficiency is a constant. These assumptions are actually realistic as shown by the validation results of Section IV and as argued in a discussion that is removed in this version of the paper due to space limitation (the discussion can be found in [START_REF] Dinh | A RBA model for the chemostat modeling[END_REF]). The RBA problem can then be formulated as the following linear programming problem.

Problem 2: For given μ > 0 and S ∈ R n s ≥ , find E ∈ R n E ≥ , T ∈ R n T ≥ , R ≥ 0, C ≥ 0, η ∈ R n E and ν ∈ R n T
such that the following constraints hold:

(C 1 ) Mass conservation: a) μ C p E E +C p T T +C p R R +C p C C +C p G P G -S p v f = 0, b) μ Xc -S c v f = 0, c) μ C r E E +C r T T +C r R R +C r C C +C r G P G + S r v f = 0, b) S i v f = 0; (C 2 )
Translation apparatus and chaperon folding capacity:

a) μ C R E E +C R T T +C R R R +C R C C +C R G P G ≤ k T R, b) α c μ C R E E +C R T T +C R R R +C R C C +C R G P G ≤ k C C; (C 3 ) Cytoplasm (density) and membrane (surface) occu- pancy: a) C D E E +C D R R +C D C C +C D G P G ≤ D D , b) C S T T +C S R R +C S C C +C S G P G ≤ D S ; (C 4 ) (Internal) enzymatic capacity: -k i E i ≤ η i ≤ k i E i , for all i ∈ E ; (C 5 ) Transporters capacity: a) 0 ≤ ν i ≤ V i S i K i +S i T i , for all i ∈ S i , with V i > 0 and K i > 0, b) 0 ≤ -ν i ≤ V i T i , for all i ∈ S e , with V i > 0;
where v f Δ = ν , η and where E denotes the set of internal enzymes, that is the set of enzymes that are not transporters.

The decision variables E, T , R and C are the concentrations of internal enzymes, transporters, ribosome and chaperon (mmol/g DW ); ν and η are (transporter and internal) fluxes per unit of cell population (mmol/(g DW h)). For the purpose of this paper, we stress that the constraint (C 5-a ) is a finer description of the constraint (C 4 ) for the import transporters. Needed for the proofs, we also notice that all the data in (C 3 ) are by definition non-negative, meaning that the entities actually take some place in the cytosol or the membrane.

For notational convenience, we introduce the variable P Δ = T , E , R,C and Lin RBA (P, v f ; μ) which consists in the constraints from (C 1 ) to (C 4 ) and (C 5-b ). Problem 2 then reads: for given μ > 0 and S ∈ R n s ≥ , find P ∈ R n E +n T +2 ≥ and v f ∈ R n E +n T such that Lin RBA (P, v f ; μ) and (C 5-a ) hold.

D. A RBA model in a chemostat

We then reformulate Problem 1 in the RBA framework.

Problem 3: For given D > 0, X > 0 and vector of inflow concentrations S ∈ R n s ≥ , find if there exist vectors

S * ∈ R n s ≥ , P * ∈ R n E +n T +2 ≥ and v * f ∈ R n E +n T such that the following constraints:        D( Si -S * i ) = Xν * i , for all i ∈ S 0 ≤ D( Si -S * i ) ≤ X V i S * i K i + S * i T * i , for all i ∈ S i Lin RBA (P * , v * f ; D) (2) 
hold.

III. RESOLUTION OF THE CHEMOSTAT PROBLEM

In this section, we prove that Problem 3 is a convex problem. We first prove that the resolution of Problem 3 can only include the transporters where Si > 0 with i ∈ S i .

Proposition 1: Assume that Problem 3 is feasible and let (S * , P * , v * f ) be a solution of Problem 3. Then for every i ∈ S i , we have

Si = 0 ⇒ S * i = 0 Si > 0 ⇒ S * i ∈ (0, Si ] .
Proof. Let us assume that Si Δ = 0 for an i ∈ S i . We have 0 ≤ -DS * i . But since S * i is non negative and D > 0, S * i is necessary null. The proof of S * i > 0 is performed by contradiction: assume Si > 0 and S * i = 0 for some i ∈ S i . It then implies 0 ≤ D Si ≤ 0, that is Si = 0 since D > 0, which is a contradiction. Finally, S * i ≤ Si comes from 0 ≤ D( Si -S * i ) together with D > 0.

We can then now present the main result of the paper. Proposition 2: Problem 3 is a convex feasibility problem.

Proof. By virtue of Proposition 1, only the transporters associated to non-zero Si with i ∈ S i have to be considered. Looking to the remaining constraints, only the constraints

D( Si -S i ) ≤ X V i S i K i + S i T i
, for all i ∈ S i such that Si > 0 are potentially non-convex, being the only ones which are nonlinear. Thus if these constraints are actually convex, the overall problem is convex. The result follows from the fact that in this case, the decision variable S i associated to an i ∈ S i such that Si > 0 belong to (0, +∞) which is a convex set. For every S i ∈ (0, +∞), the previous constraint can be rewritten as

D Si K i S i -S i + ( Si -K i ) -XV i T i ≤ 0
which is a convex constraint as the left hand side function is convex being the sum of convex functions.

Actually, it is interesting to characterize the set of values of X such that Problem 3 remains feasible. To do so, we introduce the following optimization problem.

Problem 4: For a given D > 0 and a vector of inflow concentrations S ∈ R n s ≥ , the chemostat with RBA maximization problem is defined by sup

X X∈R ≥ , S * ∈R ns ≥ , P * ∈R n E +n T +2 ≥ , v * f ∈R n E +n T
such that the constraints (2) hold.

The next result indicates that this problem has a maximum and that this maximum can be obtained by performing a dichotomy on X.

Proposition 3: Assume that Problem 4 is feasible and let X * denote the supremum. Then the following statement holds:

(i) the supremum of Problem 4 is a maximum;

(ii) for every X such that 0 ≤ X ≤ X * , Problem 3 is feasible.

The proof is omitted due to space limitation and it can be found in [START_REF] Dinh | A RBA model for the chemostat modeling[END_REF] or a similar one in [START_REF]Cell design in bacteria as a convex optimization problem[END_REF].

IV. QUALITATIVE VALIDATION OF RBA PREDICTION Since we have already shown in [START_REF] Goelzer | Quantitative prediction of genome-wide resource allocation in bacteria[END_REF] that the predictions made by the RBA method are consistent with the experimental data when the concentration of substrates in the culture medium is known, the purpose of this section is to illustrate the potential of the RBA approach to capture some well established behaviours observed through experiences with chemostats. All illustrations are then made by adapting to the chemostat problem the RBA model of Bacillus subtilis developed and calibrated in [START_REF] Goelzer | Quantitative prediction of genome-wide resource allocation in bacteria[END_REF]. Finally, we note that the RBA predictions reported in the following are those that correspond to the resolution of Problem 4 where the bacteria population is maximized.

A. Chemostat in glucose-limited conditions

We consider the experimental conditions defined in [START_REF] Dauner | Stoichiometric growth model for riboflavinproducing bacillus subtilis[END_REF] where the limited nutrient is the glucose. Following [START_REF] Dauner | Stoichiometric growth model for riboflavinproducing bacillus subtilis[END_REF], we assume that the input concentration of glucose is 34 mmol/L. Our first question is whether we obtain, when we change the chemostat dilution rate, the classic characteristic of the growth rate as a function of the concentration of the limiting substrate. This curve is the one that was adjusted by Monod to develop his model. In fact, the resulting curve described in Fig. 1 has the expected characteristics. We have furthermore depicted on Fig. 2 the evolution of the glucose import and acetate export fluxes as a function of the dilution rate. The increasing nature of the glucose import and the existence of a switch on the acetate production is consistent with experimental data presented in [START_REF] Dauner | Stoichiometric growth model for riboflavinproducing bacillus subtilis[END_REF], [START_REF] Dauner | Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture[END_REF] even if the predicted switch appears for a dilution rate between 0.3 and 0.4 h -1 but experimentally between 0.2 and 0.3 h -1 (see Fig. 5D in [START_REF] Dauner | Stoichiometric growth model for riboflavinproducing bacillus subtilis[END_REF]). This switch highly depends on the respiratory system whose parameter calibration may lack of precision due to the lack of data on the membraneous proteins. More generally, since we have access to the internal states of the bacterial cell, it is possible to observe on the prediction that the switch for acetate production is associated to a modification of the TCA cycle enzyme concentrations (see Fig. 3). This last observation is in accordance with experimental data and with the status of the catabolite repression in chemostat (see e.g. [START_REF] Dauner | Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture[END_REF] and [START_REF] Death | Between feast and famine: endogenous inducer synthesis in the adaptation of escherichia coli to growth with limiting carbohydrates[END_REF]). It is expected that the concentration of the glucose in the culture medium is increasing as a function of the dilution rate (see Fig. 4). Indeed, since the glucose is the limiting substrate and since the transporter efficiency is a Michaelis-Menten function, a higher transporter efficiency is obtained by a higher glucose concentration in the culture medium. The acetate concentration confirms the computed export rate, it is low below 0.3 h -1 of dilution rate whereas it is high above 0.4 h -1 . It is surprising however that the acetate concentration decreases above a dilution 0.4 h -1 : actually the increase in export does not compensate for the higher dilution rate. Here again, there is a change in behavior with a decrease of population between 0.3 and 0.4. This decrease is related to the export of acetate and the change of the biomass production yield, change that cannot be predicted by Monod-type models. Indeed, a part of the carbon flux, imported through the glucose in the cell, is exported via acetate instead of being used for the biomass or energy production: the yield is necessarily lower when acetate is produced.

In fact, when the dilution rate changes, the distribution of carbon between biomass, respiration and overflow changes dramatically as shown in Fig. 6. We stress the importance of maintenance cost at a low dilution rate in the distribution of carbon. Indeed the energy requirements for cell maintenance lead to an increase in the proportion of glucose used to produce energy at the expense of biomass when the dilution rate is decreasing. The initial Monod model was modified to integrate this maintenance cost [START_REF] Pirt | The maintenance energy of bacteria in growing cultures[END_REF] but its existence was debated during a long time due to the difficulty of measuring it.

Fig. 6. Glucose-limited conditions: carbon end-product (from left to right, dilution rate: 0.1, 0.3, 0.4 and 0.6 h -1 ). The circle radius is proportional to the uptake of glucose.

B. Sulfate-limited conditions

As seen in the previous section, the prediction of bacterial cell behavior towards a limited-carbon source leads to complex behaviors due to the dual role of the carbon source in growth, i.e. as a precursor of biomass but also as a source of cell energy. In order to obtain a less complex behavior, it is sufficient to take, as limiting source, a substrate that has only a role in the formation of biomass. We consider that the inflow medium is the same than in the previous section except that the sulfate is now the limiting nutrient. To this end, its initial and non-limiting concentration was reduced from 47 to a limiting concentration around 0.1 mmol/L. As expected, the behaviour of the bacterial cell as a function of the dilution rate is much more regular in this case. Fig. 7 shows once again Monod's curve related to sulphate-limited conditions. As shown in Fig. 8, the fluxes of glucose and sulphate are both increasing almost linearly as a function of the dilution rate of the chemostat. The slight nonlinearity is due to the modification of the bacterial cell composition through the increase in the number of ribosomes needed for supporting "higher" growth rate. 
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C. Switch of limiting substrate

These illustrations of the interest of using the RBA approach for the chemostat are concluded by considering a scenario where the limiting nutrient in the inflow changes. This experience is classic and consists in changing the inflow composition at a given dilution rate. The results illustrate that the RBA approach recovers the behavior of the chemostat for a so-called dual limitation, defined between carbon and nitrogen substrates in [START_REF] Egli | On multiple-nutrient-limited growth of microorganisms, with special reference to dual limitation by carbon and nitrogen substrates[END_REF], here between glucose and sulfate (see Fig. 9 and Fig. 10). 
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Glucose Sulfate (and the variants) by an RBA type model. As in the case of the RBA method in batch mode, we have proved in this article that the chemostat problem is also a convex problem under realistic assumptions. This implies that the problem which involves a few hundred of decision variables can be easily handled (as it is the case here, where our RBA model contains more than one thousand decision variables). Finally, the first tests of this new method show surprising matches with experimental observations in qualitative terms for a wild-type strain; these matches are impossible to obtain with Monod' type model because of its intrinsic simplicity. In addition, it has been demonstrated in [START_REF] Goelzer | Quantitative prediction of genome-wide resource allocation in bacteria[END_REF] that the RBA method also has predictive capabilities for modified strains so that the proposed model can certainly and advantageously be used in a biotechnological context.

Finally, we thank Anne Goelzer for her work on the RBA model and providing us with it. We also thank the reviewers for their useful comments.
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