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Ecography Studying the interactions between humans, land-cover and biodiversity is necessary
. for the sustainable management of socio-ecosystems and requires long-term recon-
2023:e06853 . . . . . .
doi: 10.1111/ecoe.06853 structions of past landscapes, improving the integration of slow processes. The main
o & source of information on past vegetation is fossil pollen, but pollen data are biased by

Subject Editor: Kate Lyons inter-taxonomic differential production and dispersal. The landscape reconstruction
Editor-in-Chief: Miguel Aratjo algorithm (LRA) approach is the most widely used to correct for these biases. The
Accepted 6 October 2023 LOVE algorithm (LOcal Vegetation estimates), the second step in the LRA approach,

also estimates the spatial extent of the local vegetation reconstruction zone (the rel-
evant source area of pollen, RSAP). While LRA estimates have already been integrated
into certain past land-cover mapping approaches, none have been designed to allow
the diachronic reconstruction of a land-cover mosaic over the long term combining
the following points: the direct integration of LOVE estimates as a source of vari-
ability in the composition and distribution of pollen taxa, without multiple scenarios,
and the integration of spatiotemporal autocorrelation in the taxa distribution between
periods. Here, we propose an innovative approach for BACKward LAND-cover recon-
struction (BACKLAND), combining these points and estimating the past land-cover
mosaic within a set of RSAPs. Based on three stages using parsimonious assumptions
and easy-to-implement probabilistic and statistical tools, this approach requires LOVE
estimates of sites close enough to each other for their RSAPs to overlap, botanical data,
a digital elevation model and two recent land-cover maps. Developed and tested on a
small study area within the mountain landscape of the Bassi¢s valley (French Pyrenees),
BACKLAND achieved the reconstruction of a past land-cover map representing eight
land-cover types at a spatial resolution of 20 m with a good level of accuracy. We show
in this study the originality of this approach and discuss its potential for palacoenvi-
ronmental studies, historical ecology and the management of socio-ecosystems.

Keywords: land-cover, landscape reconstruction, LOcal VEgetation estimates,
multiple linear regression, relevant source area of pollen, validation, vegetation

distribution
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Introduction

Within the framework of landscape ecology theory, land-
scapes are defined as heterogeneous land-cover mosaics
covering a few hectares to several square kilometres (Turner
1989, Kienast et al. 2007), and described by their composi-
tion (diversity and relative abundances of land-cover types)
and configuration (shape, size and spatial arrangement of
land-cover patches) (Forman 1995, Turner et al. 2001,
Kienast et al. 2007). In this study, we adopt this definition
without integrating its aesthetic and socio-cultural aspects.

Because of the close connections between societies, land-
scapes and biodiversity (Rosenzweig 1995, Duelli 1997,
Wiens 2009), landscape-scale studies are particularly appro-
priate for implementing ecosystem management or protec-
tion measures (Turner 1989, Crooks and Sanjayan 20006,
Fischer et al. 2011, Leite et al. 2013, Opdam et al. 2013, Wu
2013). Landscape management would particularly benefit
from fine-scale studies of the quantity, location and frequency
of changes within landscapes, as they improve the under-
standing of the processes behind land-cover change, and of
the impact of these changes on the environment (Houet et al.
2010a). Reconstructing successions of fine-grained land-
cover maps over the long term would refine our understand-
ing of the legacy of past changes on our current environment
(Pirtel et al. 2007, Biirgi et al. 2007, 2017, Gillet et al. 2016,
Neumann et al. 2017, Garbarino et al. 2020, Le Provost et al.
2020, Tappeiner et al. 2020), an approach advocated by
the historical, ecological and paleoecological communities
(Foster et al. 2003, Seddon et al. 2014, Dearing et al. 2015,
Herrault et al. 2015).

However, mapping past land-cover at landscape scale
remains challenging due to the loss of both spatial and classi-
fication resolution of land-cover types beyond the time extent
of remote sensing data, i.e. before the late 20th century for
satellite imagery and the 1950s for panchromatic historical
aerial photographs. Cadastral maps and land-cover type sur-
veys may extend mapping back to the 19th century (e.g. the
French Napoleonic Cadastre), but these are non-exhaustive
in time and spatial coverage, which does not facilitate greater
time-depth in landscape change studies (Fyfe et al. 2015).
Moreover, historical land-cover maps focus on a limited num-
ber of land-cover types and are therefore incomplete represen-
tations of land-cover mosaics (Dahlstrom 2008). Historical
or remote sensing land-cover maps are the result of a tradeoff
between three types of resolution: classification detail, spa-
tial resolution and temporal resolution (Zimmermann et al.
2007). Obtaining continuous multi-decadal records of land-
cover maps (Dearing et al. 2015) with these three resolutions
in the finest possible degree would be helpful for an array of
ecosystem purposes, but this is impossible to achieve today.

Long-term data using pollen analysis offer otherwise
almost unachievable possibilities to reconstruct past vegeta-
tion. When suitable sediment archives are available for cor-
ing, it is possible to work at various temporal and spatial scales
with pollen as the direct link to past vegetation. Though pol-
len analyses provide an opportunity for reconstructing the
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relative changes in vegetation composition as individual taxa
or as land-cover types in a long-term perspective (Jolly et al.
1998, Tarasov et al. 2007, 2009, Fyfe and Woodbridge 2012,
Joannin et al. 2012, Giesecke et al. 2017), translation into
land-cover is not a trivial exercise, especially if the reconstruc-
tion aims to be quantitative and spatially referenced rather
than qualitative (Bunting et al. 2018).

Over the last decades, advances in the theory of pollen
analysis (Prentice 1985, 1988, Sugita 1993) coupled with
an increase in computer power have led to the development
of model-based reconstructions of land-cover composition
such as the landscape reconstruction algorithm (LRA, Sugita
2007a, b). The LRA effectively reduces the biases caused by
the non-linear pollen—vegetation relationship due to differ-
ences in sedimentary archives, basin size, inter-taxonomic
differences in pollen productivity and dispersal character-
istics, and spatial scales. Based on pollen extracted from
sediments (lakes and bogs) and integrating pollen dispersal
and deposition models (Prentice 1985, 1988, Sugita 1993,
1994), the LRA uses two models, REVEALS (regional esti-
mates of vegetation abundance from large sites) and LOVE
(local vegetation estimates), to translate pollen assemblages
from a set of sedimentary sites into regional and local cover of
plant taxa, respectively (Sugita 2007a, b). The LOVE model
provides vegetation composition estimates expressed as dis-
tance-weighted plant abundance (DWPA) within a defined
area, namely the relevant source area of pollen (RSAP, 0.1-3
km, Nielsen and Sugita 2005, Sugita et al. 2010a, b, Hjelle
and Sugita 2012, Li et al. 2018) defined as the smallest area
for which vegetation abundance can be modelled using fossil
pollen records (Sugita 2007b). The LRA algorithm has been
used widely in many parts of Europe and elsewhere over the
last decade with reasonable success, in both flat and moun-
tainous terrains (Cui et al. 2010, 2013, 2014, Gaillard et al.
2010, Nielsen and Odgaard 2010, Sugita et al. 2010a, b,
Fyfe et al. 2013, Hultberg et al. 2014, Poska et al. 2014,
Hjelle et al. 2015, Mazier et al. 2015, Fredh et al. 2019,
Marquer et al. 2020a, b, Presch-Danielsen et al. 2020,
Plancher et al. 2022). Although LOVE estimates cannot
inform on the spatial pattern of reconstructed taxa within
the RSAD, they have been shown to perform better than raw
pollen data at reconstructing spatial and temporal land-cover
variability from neighboring sites (Overballe-Petersen et al.
2013, Plancher et al. 2022).

Several methods have been proposed to produce spatially
explicit reconstructions of past local land-cover using the
LRA algorithm. Recently, O’ Dwyer et al. (2021) used LOVE-
based land-cover estimates from multiple sites to create spa-
tially continuous reconstructions of land cover based on
interpolation techniques between point data. Alternatively,
the Multiple scenario approach was developed to simu-
late the pollen signal from hypothetical maps of past land
cover at locations with existing palynological records. The
results are then compared statistically with the actual pollen
assemblages in order to identify likely past vegetation mosa-
ics (Middleton and Bunting 2004, Bunting and Middleton
2005, Bunting et al. 2018). It is however difficult to propose
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plausible scenarios of land-cover dynamics (Caseldine 2008,
Bunting 2018) with these methods, as they do not incorpo-
rate spatial and temporal dependency in the distribution and
composition of vegetation cover between successive periods.
Incorporating this spatial and temporal dependence (hereaf-
ter named spatiotemporal autocorrelation) within a method
for spatializing LOVE estimates would improve the plausibil-
ity of reconstructed land cover dynamics.

To our knowledge, none of the existing approaches for
mapping long-term land-cover mosaics have combined 1) the
finest possible spatiotemporal and land-cover type classifica-
tion resolutions and 2) the spatiotemporal autocorrelation
in the distribution of vegetation over successional periods.
Developing a new approach for producing plausible succes-
sions of landscape mosaics with the highest possible precision
would allow us to propose successional land-cover trajectories
for environmental management studies.

The Bassi¢s valley, in the French Pyrenees, represents a
suitable case study for the development of a spatially explicit
reconstruction of past land-cover mosaic based on LOVE
estimates. It contains several small sedimentary sites for
which pollen data at a high temporal resolution (10-20 years)
have already been analysed and converted into DWPA by
the LRA approach (Marquer et al. 2020a, b, Plancher et al.
2022). Plancher et al. (2022) showed that LOVE estimates
from multiple sites are variable from one site to another,
despite their proximity and the overlap of their RSAPs.
Because their RSAPs overlap, the LOVE estimates from the
Bassies sites contain a proportion of plant cover in common.
We believe it is possible to use these overlapping RSAPs and
redundant plant cover to produce taxon distributions over
the study area. Furthermore, the distribution and composi-
tion of land-cover types in this valley are documented by two
recent land-cover maps (1993, 2008; Houet et al. 2012) and
modern floristic surveys (2015-2020; Marquer et al. 2020a,
b, Mazier et al. 2022).

In this paper, we propose a new approach for backward
predicting past land-cover mosaic based on LOVE estimates
and using probabilistic and statistical tools. We hypothesise
that 1) LOVE estimates within overlapping RSAPs will enable
us to access the past local distribution of individual taxa using
probability density functions (PDFs, Kiihl et al. 2002); that
2) autocorrelation of the taxon distribution may be back-
ward computed with multiscale spatial analyses (Gaucherel
2007) by combining recent land-cover maps (Houet et al.
2012) and botanical surveys (Mazier et al. 2022); and that
3) linear models (McCullagh 1984) should be able to statis-
tically explain land-cover type distributions based on taxon
distributions and selected auxiliary environmental variables.
Hereafter this approach named BACKward predicting past
LAND-cover at fine scale will be referred to as BACKLAND.

We focus on the methodological aspects of the
BACKLAND approach, its implementation and evaluation
on recent time windows to generate the past Bassi¢s land-
cover mosaic within a set of overlapping RSAPs of small
sedimentary sites. The accuracy of the Bassies land-cover esti-
mated using BACKLAND is assessed in comparison with a

contemporary land-cover map. Finally, we draw conclusions
on the possible implications of the BACKLAND approach
on fossil pollen records for palacoenvironmental studies, his-
torical ecology, and socio-ecosystem management.

Materials

Due to the large number of abbreviations used throughout
the article, a summary of the main ones and their meanings
is given in Table 1.

Study zone characteristics

The Bassies valley is located in the Vicdessos area within
the Pyrenees mountain range (42°46’N, 01°26’E, Ariege,
France, Fig. 1). Itis a hanging glacial valley characterised by a
flat bottom at around 1500 m of elevation on which wetlands
have developed, surrounded by steep slopes culminating at
2676 m (Pique Rouge). The average annual precipitation is
1640 mm year™', with one-third as snow from November-
December to April-May, and the average annual temperature
is around 7°C (Quintana-Segui et al. 2008). The dominant
winds come mostly from the west and north-west; wind
speed varies from 0 to 4 m s (Szczypta et al. 2015).

Our study area covers 9 km? in the Bassi¢s valley and its
vicinity: itis delimited by a 1 km radius from each sedimentary
site for which LOVE estimates are available (Plancher et al.
2022). The northern part of our study area extends down
the northern slopes towards the adjacent valleys (northeast,
Fig. 1) to a minimum altitude of 1066 m. The southern part
rises beyond Lake Sigriou (SIG) and represents the highest
part, reaching an elevation of 2410 m.

The modern vegetation is dominated by heathlands
(Rhododendron ferrugineum or Calluna vulgaris-dominated)
with different-sized patches of grasslands Festuca eskia,
Nardus stricta mainly distributed on slopes. Patches of forest
are mainly found on the northern slopes, with beech-domi-
nated forests and clumps of Pinus uncinata mainly below and
above 1600 m respectively.

Table 1. Abbreviations frequently used in the paper.

Acronym Meaning

BF Broadleaved forest

CH Calluna heathland

CMP Comparison map profile (Gaucherel et al. 2008)
FG Festuca grassland

MF Mixed forest

MH Mixed heathland

MHM Multiscale heterogeneity map (Gaucherel 2007)
NRMSE Normalized root mean square errors

OG Other grassland

PB Peatbogs (excluded from analysis)

PDFs Probability density functions

PF Pine forest

RH Rhododendron heathland

RSAP Relevant source area of pollen (Sugita 1998, 2007b)
T™W™W Time window
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Corine Land-Cover 2012
Il Discontinuous urban area

Permanent grassland for agricultural use

Complex cropping systems and land parcels

Mainly agricultural areas, interrupted by significant natural areas
Broadleaved forests

.| Il Coniferous forests

Mixed forests

Natural grasslands and pastures
Heathland and scrubs

Changing forest and shrub vegetation
Bare rocks

Sparse vegetation

Water body

Figure 1. Location of the study zone (black line) and the targeted sedimentary sites with available TW1995 LOVE estimates of vegetation
composition within 1 km RSAP (Plancher et al. 2022). Abbreviations: EM, Etang Mort, ESC: Escale; FOUZ: Fouzés; LEG, Legunabens;
OT: Orry de Théo; SIG: Sigriou. Characteristics of the sites are given in Table 2.

Datasets

The approach to reconstruct past land-cover maps requires
pollen data from several nearby sites translated into dis-
tance weighted plant abundances (DWPAs) using the LRA
approach (Sugita 2007a, b), as well as cartographic (digital
elevation model and land-cover maps) and botanical data
(section ‘LOVE-based estimates of local vegetation composi-
tion’ and ‘Cartographic and botanical data’ below).

LOVE-based estimates of local vegetation composition

By taking into account the dispersal and deposition of pol-
len grains via the Gaussian plume model, the LRA approach
considers that plants closer to the sampling point contrib-
ute more grains to the pollen assemblage than plants fur-
ther away (Sugita 2007b). The LOVE model thus provides
DWPAs within the RSAD, the smallest spatial scale for which
vegetation composition can be estimated by the model using
a fossil pollen record.

Details about the chronology of the sediment cores (*'°Pb,
137Cs and C dates) and the LOVE estimates (Table 2) used
in this study were published in Marquer et al. (2020a, b) and
Plancher et al. (2022), including information on age-depth
models, site selection, pollen sampling, pollen data, param-
eters used to run the LRA approach and RSAP calculation.
Plancher et al. (2022) showed that the RSAP estimates varied
from 250 to nearly 1000 m over the last 200 years, therefore
the area within a 1 km radius (largest RSAP value) from each
site was considered as appropriate and suitable for the local
scale of reconstruction of vegetation in the area.

For this paper, we used the LOVE estimates for 18 major
taxa available for the 1990-2000 cal. AD time window, fur-
ther referred to as TW1995. Ten tree taxa (Abies, Betula,
Corylus, Fagus, Fraxinus, Picea, Pinus, Quercus, Salix and
Tilia), three shrub taxa (C. vulgaris, Ericaceae and Juniperus),
and five grass taxa (Asteraceae Sub-Family Cichorioideae,
Cyperaceae, Poaceae, Plantago lanceolata and Potentilla-type)
were considered. These 18 taxa represent between 72 and
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95% of the total pollen count of the targeted time window.
i,kThe LOVE outputs are expressed in proportions of the
total cumulative sum of distance weighted plant abundance
at the 1 km-RSAP around each of the seven cores. Hereafter,
these DWPAs will be referred to as LOVE estimates. LOVE
estimates range from 0 to 1; 0 means that the plant species
is absent, and 1 that the DWPA within the RSAP is 100%.
The LOVE estimate for taxa 7 at site # will be written LOVE,,
hereafter and the 18 taxa estimates sum up to 100% of the
vegetation composition.

As the study sites are close to each other (between 352
and 1728 m), the RSAP of each site overlaps with at least
one (SIG with ESC) and up to four sites (EM with OT,
FOUZ, W1652 and LEG). By showing large inter-site varia-
tions despite this proximity, these LOVE estimates represent
a strong potential for spatializing pollen-based vegetation
reconstructions (Plancher et al. 2022). According to LOVE
estimates at TW1995, the vegetation cover within 1 km radii
is dominated by Ericaceae around SIG, LEG and FOUZ and
W1652, by C. vulgaris around ESC, by Cyperaceae around
EM, and by Poaceae around OT (Table 2, Plancher et al.
2022). Tree taxa represent between 9% (W1652) and 41%
(LEG) of the local vegetation, shrubs between 0.1% (OT)
and 91% (W1652) and grass taxa between 0% (LEG) and
88% (EM).

Cartographic and botanical data

A digital elevation model and two recent land-cover maps
(1993 and 2008, Houet et al. 2012) were used in this paper.
The digital elevation model was used to estimate auxiliary
environmental variables. These auxiliary variables were inte-
grated in the models to take into account the effects of the
environmental variability of the Bassi¢s landscape on its veg-
etation distribution. The 1993 and 2008 land-cover maps are
based on true color (RGB) and false color (near infrared) aer-
ial images, classified using a geographic object-based image
analysis combining visual interpretation and automatic clas-
sification (Houet et al. 2012, Sheeren et al. 2012).
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Table 2. Sites’ characteristics and LOVE estimates of local 18 taxa-based vegetation composition (from Plancher et al. 2022).

Sites characteristics

Etang Orry de
Name Legunabens Sigriou mort Escale Fouzes Théo W1652a
Acronym LEG SIG EM ESC FOUZ oT W1652
Elevation (m) 1680 2000 1670 1630 1720 1680 1660
Radius (m) 58 66 36 40 13 31 6
Type Lake Lake Bog Bog Bog Bog Bog
LOVE estimates (%, DWPA; Plancher et al. 2022)
Trees Abies 2.54 0.91 - 0.20 0.22 0.02 0.03
Betula 1.65 - 2.20 7.47 2.15 0.79 2.29
Corylus 4.35 6.36 4.36 3.89 5.03 2.97 1.91
Fagus 14.32 - 0.14 10.31 1.57 0.95 1.73
Fraxinus 0.08 - - 2.90 1.19 2.25 -
Picea 0.71 0.02 N 0.03 0.03 0.15 0.07
Pinus 14.49 2.80 3.74 6.22 9.58 3.22 1.91
Quercus 2.36 - 0.63 5.14 2.74 1.69 1.35
Salix 0.04 0.21 - 0.12 0.02 0.36 -
Tilia 0.61 0.71 0.30 0.29 - - -
Shrubs Calluna vulgaris 4.78 - - 45.92 10.50 - 41.42
Ericaceae 49.45 51.28 0.29 6.15 41.07 - 49.29
Juniperus 0.79 0.20 0.05 - - 0.14 -
Grasses Comp. SF Cichorioideae 2.37 11.00 3.29 - 0.16 5.20 -
Cyperaceae - 1.96 54.02 - - 23.77 -
Plantago lanceolata 1.46 1.31 0.95 - 0.47 4.71 -
Poaceae - 23.25 24.63 11.36 23.57 50.57 -
Potentilla-type - - 5.37 - 1.69 3.22 -

These maps were resampled into a 20 m resolution raster
grid by averaging the digital elevation model values and by
assigning the dominant land-cover type with the largest cover
area to each pixel (Fig. 2). Preliminary tests showed that a 20
m resolution is a reasonable compromise, as it enables even
rare land-cover types to be integrated while having a reason-
able computing time. BACKLAND is based on a simplified
version of the land-cover type nomenclature, excluding from
analysis and calculations both non-pollen producing areas
(i.e. mineral surfaces, roads, buildings and water surfaces)
and peatbogs which are assumed to be constant (PB, Fig. 2).

Eight land-cover types were used, comprising three tree
forest types (Pine forest, PF; Broadleaved forest, BF; Mixed

forest, MF), three heathland types (Rhododendron heathland,
RH; Calluna heathland, CH; Mixed heathland, MH), and
two grassland types (Feszuca grassland, FG; Other grasslands,
OG). The proportions of each type vary slightly between
1993 and 2008. RH (27.0-28.2% of the vegetated sur-
faces of the study area in 1993-2008), MH (15.7-15.6%)
and CH (24.8-25.2%) are distributed respectively over the
southern, central and northern parts of the study area, form-
ing the main matrix of vegetation in which other land-cover
types are immersed. Types FG (4.1-3.5%) and OG (13.0-
11.3%) are concentrated mainly on the slopes to the western
part of the study area. PF (3.3-4.2%) forms small scattered
stands on the steep northern slopes separating SIG from the

Figure 2. Land-cover maps used for backward spatiotemporal autocorrelation of taxa distributions (2008) and for models learning (1993).
Adapted from Houet et al. (2012). White areas: non-vegetated areas (water, mineral). PF: Pine forest; BF: Broadleaved forest; MF: Mixed for-
est; CH: Calluna heathland; MH: Mixed heathland; RH: Rbododendron heathland; FG: Festuca grassland; OG: Other grasslands; PB: Peatbogs.
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other sites. The type BF (9.5%) is essentially characterized by
a homogeneous unit northwest of LEG, in the slope leading
to the adjacent valley, while MF (0.30-0.34%) forms a few
small patches in the north-north-east of the study area.

The vegetation composition of these land-cover types
is based on modern botanical surveys including 125 plots
described by 116 vascular plants (Mazier et al. 2022). Plant
taxa were grouped according to the 18 pollen morphological
types for which Plancher et al. (2022) computed past LOVE
estimates. The vegetation data (percentage cover from field
survey) were recalculated on the sum of the 18 selected taxa
(Table 3). Land-cover types are characterised by seven to 15
of these 18 taxa. Grasslands and heathlands are mainly com-
posed of ubiquitous taxa, present in at least six land-cover
types. PF and heathlands are the only types containing Pinus,
which represents less than 2% in heathlands against 32.4%
in PE BF and MF are the only types containing beech Fagus,
representing 49.5 and 55% of the vegetation cover respec-
tively, while BF is composed of more than 20% of taxa pres-
ent exclusively in this type (Corylus, Fraxinus, Picea, Quercus
and 7ilia). The percentage cover of plant taxa for each land-
cover type is assumed to be constant over time.

Methods
The BACKLAND method for backward modelling land-

cover mosaics required three stages: 1) a preliminary stage
(Fig. 3a) generating two intermediate results: taxon distribu-
tions based on the 2008 map and taxon distributions based
on the LOVE estimates of TW1995. These distributions were
used in the second stage to 2) integrate spatiotemporal auto-
correlation into the estimated taxon distribution at TW1995,
constituting the explanatory variables of the TW1995 land-
cover type distributions with a set of environmental vari-
ables (Fig. 3b). Finally, 3) multiple linear models were used
to estimate a statistical link between the land-cover type

distributions and this set of explanatory variables, ultimately
leading to the backward prediction of a land-cover map at

TW1995 (Fig. 3).

Preliminary stage: map-inferred taxon distributions
in 2008 and LOVE-inferred taxon distributions at
TW1995

A general characteristic of ecological systems is that their
geographical proximity is correlated with their similarity, i.e.
they have a positive spatial autocorrelation (Tobler 1970,
Legendre and Fortin 1989, Gaucherel et al. 2016). In the
absence of a major disturbance, we can also assume a tempo-
ral autocorrelation of the vegetation composition and config-
uration between two successive time windows. The objective
of this stage was to produce two intermediate taxa distribu-
tion maps, later used for backward integrating spatiotempo-
ral autocorrelation into the distribution of taxa at TW1995:
their recent distribution inferred from the 2008 land-cover
map and their past distribution inferred from LOVE esti-
mates at TW1995.

Map-inferred taxa distributions in 2008

Recent taxon distributions were obtained from the 2008
land-cover map and the 18 taxa-based botanical composi-
tions of the land-cover types (Fig. 3a), based on the following
Eq. 1:

NiLC
ZDLC X Pic
MID, = LC-1 (1)

I Nic

Z Dicx Pic

i=1 LC=1

where MID, represents the map inferred taxa distribution of a
taxon 7 expressed as a proportion of the total vegetation, V.

Table 3. Land-cover type botanical composition based on the 18 LOVE taxa (from botanical surveys by Mazier et al. 2022).

Pollen taxa PF BF MF CH MH RH FG OG
Trees Abies 4.70 22.24 1.28x 107°
Betula 3.22x 102 4.31 1.19 0.01
Corylus 12.38
Fagus 49.51 55.04
Fraxinus 4.48
Picea 0.22
Pinus 32.39 0.18 1.97 3.45x 107
Quercus 0.05
Salix 8.79 x 10~
Tilia 3.27
Shrubs  Calluna vulgaris 15.34 2.51 x 107 53.33 22.59 10.70 6.06 4.29
Ericaceae 43.90 8.97 16.54 15.99 14.02 72.49 4.95 7.22
Juniperus 6.33 0.02 4.10 0.75 0.84 0.90
Herbs Comp. SF. Cichorioideae 0.03 0.01 0.27 0.62 0.03 0.02 2.28 0.01
Cyperaceae 0.06 1.65 2.68 4.45 42.16 1.98 2.75 26.76
Plantago lanceolata 8.79 x 10~ 1.45x 107
Poaceae 1.93 8.77 2.03 19.14 17.19 12.15 79.68 60.61
Potentilla-t 0.01 1.66 2.18 1.29 1.82 3.37 1.12
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Figure 3. Backward land-cover reconstruction (BACKLAND), a three-stage approach: (a) preliminary stage for taxon distributions (section
‘Preliminary stage: map-inferred taxon distributions in 2008 and LOVE-inferred taxon distributions at TW1995); (b) variables used by the
BACKLAND approach (section ‘Variables used by the BACKLAND approach’); (c) BACKLAND modelling (section ‘Backward landscape
modelling’). LCT: land-cover type; green: explained variables; blue: explanatory variables; red: final result; dotted arrows: learning and
cross-validation steps, repeated for each sub-model; plain arrows: step processed once for each LCT.

is the number of land-cover types (eight), P, the botani-
cal proportion of the taxon 7 in the land-cover type, 7 the
total number of taxa (18), and D, their multi-scale density.
Preliminary analyses showed that the use of quantitative and
continuous densities is preferable to the presence/absence of
land-cover types for several steps in the processing chain. In
this step, the use of multiscale densities was motivated by the
need to take into account both the heterogeneity of land-
cover types and the fuzziness of their boundaries — due to
their permeability to dispersal and colonisation by ubiqui-
tous taxa. We used the Multiscale heterogeneity map software
(MHM; Gaucherel 2007, Pavageau et al. 2017) to produce a
multi-scale density map for each land-cover type. These maps
represent the average proportion of each type in their neigh-
bourhood, on observation scales ranging from 40 to 280
m, every 40 m, in order to reduce and homogenise possible
biases due to scale choices.

LOVE-Inferred taxa distributions at TW-1995

This step corresponds to the translation of point LOVE esti-
mates into LOVE-inferred taxa distribution maps (Fig. 3a).
First, we assumed that the probability of the presence of a
taxon 7 around each pollen site (Pyesence;) follows a bivari-
ate normal PDF (Kiihl et al. 2002). This choice was con-
sistent with the working hypotheses of the LRA algorithms,

considering that the atmospheric dispersion of pollen follows
a Gaussian distribution (Prentice 1985, Sugita 1993, 1994,
2007b). Moreover, it had the advantage of requiring few
parameters to be estimated, allowing a simple estimation of
probability densities:

ijresencei ~PDF, with PDF = N(M, Z) (2)

where p=/[p, py] and p, and B, correspond to the lon-
gitude and latitude of the site respectively, and where
2=(0,p,p,0)=(c 00 ) the variance-covariance matrix,
assuming directional independence and considering a rea-
sonable isotropic bivariate normal distribution. The standard
deviation 6 of the PDF around p, and p, is linked with the
1 km radius of the RSAP (Sugita 1994), assumed to be con-
stant over time (Plancher et al. 2022). As the LRA algorithm
does not provide a measure of uncertainty for RSAP (Sugita
2007b), it was assumed that each taxon is present within
RSAP with a 99.9% probability. Then,

P(u* — RSAP < Presence; < p+ + RSAP) =0.999 (3)

where Presence, is the geographic coordinate of a pixel where
taxon 7 presence probability is estimated. Here, p. represents
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porp,as Eq. 3is valid in both directions of space. According
to the tables of quantiles of the normal distribution,

P(p- —3.09x 6 < Presence; < pi- +3.09x6)=0.999,

RSAP (4)
3.09

and then 6 =

LOVE estimates represent the composition of vegetation
as reflected by pollen assemblages, incorporating dispersal/
deposition biases and thus the fact that more distant emitting
plants contribute less to the pollen assemblage than nearby
plants (distance-weighted plant abundance, Sugita 2007b). It
therefore makes sense to combine these LOVE estimates with
bivariate Gaussian PDFs of taxon presence centered on the
sampling points. For each taxon, the PDF around each site
was therefore weighted by its corresponding LOVE estimate.
As the PDFs are continuous and thus overlapping, a taxon
LOVE-inferred distribution is the weighted sum of the seven
PDFs of each site, obtained as follows:

K
ZPDF,e x LOVE,
LID, =+ 5)

1 K

Z Z PDE, x LOVE, ;

=1 k=l

where LID; is the LOVE-inferred distribution of the taxon
i, K and [ are the total number of sites and taxa included,
respectively (i.e. seven and 18 in this case), and PDF, is the
probability density of a taxon’s presence around site #. PDFs
and LOVE-inferred distribution calculations were coded in R
(www.r-project.org).

Variables used by the BACKLAND approach

Land-cover distributions at TW1995

The explained variables, representative of the land-cover
type distribution at TW1995, were the multiscale densities
of each land-cover type on the 1993 map, computed with
MHM with the same settings as those used for the map-
inferred distributions (section ‘Map-inferred taxa distribu-
tions in 2008’). Models based on presence/absence maps of
each land-cover type were tested, but using the multiscale
density maps improved the goodness of fit of the models (not
shown).

Explanatory variables

Two types of variables were used in the models to explain the
TW1995 land-cover type densities: the estimated taxon dis-
tributions at TW1995 and environmental variables. First, the
estimated taxon distributions were obtained by averaging the
2008 map-inferred distributions and the TW1995 LOVE-
inferred distributions. Estimated distributions at TW1995
thus take into account backward spatiotemporal autocor-
relation, yet assuming a similar influence of map-inferred
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distributions and LOVE-inferred distributions. The residual
autocorrelation of the models (Crase et al. 2012) was previ-
ously considered but produced too strong a constraint in the
models (not shown).

Environmental variables were included for calculating the
effect of auxiliary explanatory variables on the vegetation dis-
tribution. Average values for elevation, exposure, slope and
curvature were estimated from the digital elevation model. In
order to obtain a north—south gradient, the exposure values
were set between 0° (north) and 180° (south). The distance
from the centre of each cell to the nearest water point (i.e.
stream, lake) was derived from the original 2008 land-cover
map (Houet et al. 2012).

Backward landscape modelling

Finally the BACKLAND approach for landscape backward
prediction involves (section ‘Land-cover types multiple lin-
ear regressions’) learning and applying the models to the set
of variables in order to then (section ‘Estimated land-cover
map prediction and evaluation’) backward-model a land-
cover map and assess its similarity with the observed data

(Fig. 3¢).

Land-cover types multiple linear regressions

The relationship between land-cover type densities and explan-
atory variables (estimated taxon distributions and environ-
mental variables) was explored by ordinary multiple linear
regressions, commonly used in statistical analysis of spatial
data to predict distribution maps (Guisan and Zimmermann
2000). One linear regression was built for each land-cover
type, assuming that their densities follow a Gaussian distribu-
tion and respond linearly to the explanatory variables. Since
we considered the composition of a land-cover type to be con-
stant, the model of a given type contains only the estimated
distributions of taxa whose presence in this type was attested
by the botanical data. The purpose of this supervision was to
help the models produce a relevant statistical link. Then, a step-
wise regression was applied to each model as a first analysis, in
order to select only the estimated distributions and the envi-
ronmental variables that significantly explained the variance of
the studied land-cover type density (p < 0.05). The models
and stepwise regressions were computed using the ‘stats’ and
‘MASS’ packages (www.r-project.org, Ripley et al. 2013).

In order to estimate the prediction errors of the models, a
K-fold cross-validation was implemented for the learning of
each model (Hastie et al. 2009, Bennett et al. 2013). For each
land-cover type, the response variable (land-cover type den-
sity) and the selected explanatory variables were divided into
ten random groups (the same for all land-cover type models),
each comprising 2100 pixels. Then, ten different sub-models
were run, each time removing a different group of pixels to
perform the training on the other nine groups (18 900 pixels)
and the prediction of the density of the land-cover type in
question on the excluded group. The normalized root mean
square errors (NRMSE, Shcherbakov et al. 2013) were then
used to estimate the prediction error of each land-cover type
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sub-model and to compare the predictive power of the differ-
ent models with each other:

\/ (Dobs - Dprcd )2
NRMSE = RMSE _ N (©)
% Dobs

with D, the observed density of a land-cover type in a pixel,
D, the density predicted by the corresponding sub-model on
this pixel, and N the number of observations (2100 pixels). We
chose to normalise the RMSE to avoid the scale dependency
between land-cover type models (Shcherbakov et al. 2013).

Estimated land-cover map prediction and evaluation

Finally, the densities of each land-cover type were predicted
over the whole study area using the best sub-model, selected
on the basis of the minimum NRMSE, pinpointing the model
with the best predictive power. Using the sub-model with the
best goodness of fit (largest ficted R?) or the complete models
before cross-validation did not significantly change the pre-
diction of the models. At each pixel, the land-cover type cor-
responding to the highest predicted density value is chosen,
ultimately producing pixel-by-pixel the land-cover mosaic of
the past landscape. The similarity between the TW1995 pre-
dicted map and the observed 1993 map was evaluated using
the comparison map profile software (CMP, Gaucherel et al.
2008, 2018), calculating the Cohen’s Kappa index (Cohen
1960) at the same observation scales as those used by the
MHM software to calculate land-cover type densities (section
‘Map-inferred taxa distributions in 2008’). CMP produces
a multi-scale comparison map, thus reducing scaling biases
too, where the average Kappa value at each pixel quantifies
the average similarity between the two maps in the vicinity of
that pixel. An average Kappa higher than 0.6 reflects a strong
similarity between observed and estimated datasets (Cohen
1960, Landis and Koch 1977). Using the same method,
we also evaluated the similarity between the BACKLAND
map at TWI1995 and the 2008 map integrated into the
BACKLAND estimation with the map-inferred taxon distri-
butions. This was done in order to test the influence of the
2008 map on the final TW1995 BACKLAND result. These
comparisons finally enabled the overall quality of the pro-
posed method to be assessed. In order to test for a potential
bias related to the different spatial configurations of the land-
cover types, a Pearson correlation coeflicient was calculated
between their average patch density on the observed 1993
land-cover map and the average Kappa index between their
observed and BACKLAND-estimated distributions.

Results

Intermediate maps and estimated taxa distributions

The LOVE-inferred distributions showed gradients in veg-
etation composition (Fig. 4b) following the variability of
the LOVE estimates between the seven sedimentary sites at
TW1995 (Table 2). By integrating the 2008 map-inferred

(Fig. 4a) and the TW1995 LOVE-inferred distributions with
equal weights, the estimated taxa distributions at TW1995
kept the gradients associated with the LOVE-inferred dis-
tributions while being constrained by the map-inferred dis-
tributions (Fig. 4c), thus incorporating the spatiotemporal
autocorrelation in a straightforward manner.

According to the estimated distributions, the areas that
were the most represented by grass taxa during the TW1995
were the northern and western parts of the study area,
concentrating the highest percentages of Cyperaceae and
Poaceae, reaching up to 42 and 52% respectively (Fig. 4c).
The southern part of the study area was mainly associated
with the dominance of Ericaceae, with percentages greater
than 50% over most of the studied area, and reaching 61%
of the estimated vegetation. Their abundance estimated by
the TW1995 LOVE-inferred distributions in the north-east
part was largely mitigated by the map-inferred distributions
constraint, as the broadleaved forest present at this location
on the 2008 land-cover map contains only a small amount
of Ericaceae (Table 3). The other two shrub taxa (C. vulgaris
and Juniperus), mainly present in the central and northern
parts, were more disparately distributed throughout the study
area, with a strong predominance of C. vulgaris (up to 43%)
over Juniperus (less than 3%). Finally, the eastern part was
associated with the dominance of tree taxa, mainly Fagus in
the northeast, whose percentages reached 32% in places, and
Pinus, more to the southeast, representing around 15% of the
vegetation (Fig. 4¢).

Land-cover models

Variables selection and cross-validation

The land-cover type densities from the 1993 land-cover map
were related to the taxon distributions estimated at TW1995
and the environmental variables using multiple linear mod-
els. The stepwise regression did not change the composition
of the linear predictors based on the land-cover type botanical
composition, with the exception of the exclusion of Quercus,
and 77lia estimated distributions from the broadleaved forest
(BF) predictor (Table 4). All environmental variables were
also used by the stepwise regression. Slope, elevation and dis-
tance to the nearest water point were significant in the lin-
ear models for all land-cover types, while only Rbododendron
heathland (RH) was not significantly associated with expo-
sure. Terrain curvature was only significantly explanatory for
the Festuca grassland (FG) distribution (positive influence),
while the other environmental variables were significant for
all land-cover types, except distance to water for mixed heath-
lands (MH).

All linear models performed with K-fold cross-validation
were significant (p < 0.05). The goodness of fit of each sub-
model was not greatly influenced by the random sampling,
as adjusted R? appear stable across sub-models with small
standard deviations (less than 0.002) (Fig. 5a). BF had the
highest average fitted R* (0.99), followed by mixed forests
(ME 0.91). Pine forest (PF) had an average ficted R* of 0.83,
and mixed (MH), Rhododendron (RH) and Calluna heath-
lands (CH) had fitted R? 0of 0.76, 0.88 and 0.89, respectively.
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Figure 4. Taxon distribution maps. (a) Map-inferred taxon distribu-
tions based on 2008 land-cover map. (b) LOVE-inferred taxon dis-
tributions based on TW1995 LOVE estimates. (c) Estimated taxon
distributions obtained by averaging (a) and (b). Only seven taxa are
shown here.

Grasslands showed the lowest ficted R?, with averages of 0.43
and 0.63 for FG and other grasslands (OG).

NRMSEs indicate differences in the quality of model
predictions (Fig. 5b). The model with the highest predictive
power was the BF model. The three heathlands and PF mod-
els had intermediate predictive abilities, with the CH model
being the best of the three heathlands, followed by RH, MH
and PE The MF and FG models had significantly higher
NRMSEs than the others, with higher standard deviations,
indicating a higher sensitivity to random sampling.

Composition of predictors

The linear predictors of land-cover type densities contained
between six (FG) and 12 (BF) estimated taxa distributions,
and between three (RH) and five (FG) environmental vari-
ables. The linear predictors of the two grassland types were
composed of ten common explanatory variables (six estimated
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distributions and four environmental variables). But only
four of these ten common variables had the same sign of
coeflicient, indicating opposite effects of most variables on
grassland type density. The taxa that most influenced the dis-
tribution of FG were Juniperus and Potentilla-type (negatively
and positively, respectively). Conversely, the density of OG
was the most negatively influenced by the estimated distri-
bution of Potentilla-type, and the most positively by that of
P lanceolata. Both grassland types are denser at lower eleva-
tions and away from water, but FG is favoured by a rather
flat terrain with a northern exposure, while OG is favoured
by slope and southern exposure. FG is the only land-cover
type influenced by curvature, with a positive effect indicating
a positive influence of a curved terrain favouring rainwater
runoff. Regarding the three heathland types, the CH predic-
tor differed from both MH and RH in terms of the influence
of the estimated distributions. With seven estimated distri-
butions having the same sign coeflicient, MH and RH had
the most similar predictors, MH differing only by a positive
influence of Abies and Cyperaceae. The patches of CH and
RH are denser on the slopes, whatever the exposure for RH
but preferentially south for CH, closer to water points and
at lower altitude for RH and far from water points and at
higher altitude for CH. The density of MH is disadvantaged
by slope, but is favoured by southern exposures and altitude.

The three tree-covered types were positively influenced
by the estimated distributions of Cyperaceae, Ericaceae and
Poaceae. Fagus estimated distribution was associated with the
largest coeflicient of BE while MF was mostly influenced by
Abies, and PF by Juniperus. Regarding the influence of the
environmental variables, the densities of the three forest types
are favoured by steep slopes and the proximity to water points.
PF and MF are denser on northern slopes and altitude has a
negative influence on the density of their patches, unlike BE

Predicted land-cover map

The 1993 land-cover map and its BACKLAND estimate
for TW1995 were highly similar (Fig. 6), with an average
muldiscale Kappa of 0.65 (> 0.6, Landis and Koch 1977).
However, the mean Kappa is higher between the estimated
TW1995 map and the 2008 map (0.71), integrated into the
BACKLAND estimate by map-inferred distribution as a rep-
resentation of spatio-temporal autocorrelation.

The average multiscale similarity differed according to the
predicted land-cover type (Fig. 6) and was positively corre-
lated with the average multiscale patch density of each type
(Fig. 7). The land-cover type associated with the best pre-
diction was Deciduous forest, which also had the densest
patches, while Festuca grassland was the least well predicted
type, although pine and mixed forest patches showed lower
mean multiscale densities (Fig. 7).

Discussion

In this study, we succeeded in reconstructing a continuous
land-cover mosaic by combining LOVE estimates around
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Figure 5. Estimation of model fit by K-fold cross-validation. (a)
Sub-models fitted R?* and (b) sub-models normalized root mean
square errors (NRMSE).

nearby sedimentary sites and recent cartographic and botani-
cal data. The proposed BACKLAND approach ‘BACKward
reconstruction of LAND-cover mosaics’ was implemented

on a recent time-window (TW1995, 1990-2000) to test

1993 observed
land-cover map

its robustness and reliability. In the Bassi¢s study area, we
achieved high levels of accuracy in terms of both land-cover
types (eight) and spatial resolution (20 m). To our knowl-
edge, this is the first past land-cover map reconstruction
derived from pollen data with such a detailed vegetation
composition and spatial resolution. BACKLAND integrates
one of the most important properties of land cover and
land-cover change, i.e. its strong dependence over space and
time (i.e. spatial autocorrelation and temporal dependence).
For this purpose, the reconstruction requires a three-stage
approach (Intermediate taxon distributions, land-cover and
explanatory variables estimation, and land-cover backward
modelling) detailed in the following section. After a discus-
sion of the advantages and weaknesses of the BACKLAND
approach, it is compared to other existing pollen-based
land-cover reconstruction approaches. Finally, we present its
potential in the fields of historical ecology, landscape ecology
and habitat management.

BACKLAND approach

Application conditions and required data

The BACKLAND approach relies on past estimates of local
vegetation composition estimated by the LRA approach
(REVEALS and LOVE, Sugita 2007a, b). The use of LOVE
estimates of vegetation composition is motivated by the char-
acterisation of the spatial extent of the reconstruction using

TW1995 BACKLAND-estimated

land-cover map
Land- cover types

Il Fr
[BF
[IwMF
B cH
B vH
[ IrRH
[ 1FG
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Figure 6. Observed 1993 and BACKLAND-estimated TW1995 land-cover maps and their corresponding multiscale comparison map.
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Figure 7. Correlation between the 1993 observed land-cover aver-
age densities and their BACKLAND-estimated distribution accu-
racy (average multiscale Kappa between the 1993 observed and the
BACKLAND-estimated TW1995 land-cover maps).

the relevant source areas of pollen (RSAPs), which is essential
for the BACKLAND approach and cannot be identified with
raw pollen data, and because they allow a more accurate recon-
struction than the latter (Hellman et al. 2008, Sugita et al.
2010b, Overballe-Petersen et al. 2013, Mazier et al. 2015,
Marquer et al. 2020b, Plancher et al. 2022). However, cer-
tain conditions are necessary for the application of the LRA
approach (Sugita 2007b), and therefore for the application of
BACKLAND. In particular, it is necessary to have the input
parameters of the LRA, including pollen fall speeds, estimates
of the relative pollen productivity of key taxa and their stan-
dard errors. These values exist for a large number of African,
Asiatic and European plant taxa (Duflin and Bunting 2008,
Bunting etal. 2013, Li et al. 2018, Wieczorek and Herzschuh
2020, Gaillard et al. 2021, Githumbi et al. 2022), although
the data are currently mainly provided for central/northern
European and Chinese plant taxa (Wieczorek and Herzschuh
2020). Furthermore, the BACKLAND approach relies on
the redundancy of information between LOVE estimates to
provide continuous maps of LOVE-inferred taxa distribu-
tion. It is therefore necessary to target a study area comprising
sedimentary sites that are sufficiently close to each other so
that their RSAPs overlap as much as possible. Therefore areas
with a dense network of lakes and peat bogs, such as moun-
tain areas with a bedrock of magmatic rocks or boreal regions
(Peiry 2015), should be particularly suitable if well-preserved
sediments and reliable chronologies are available.

In addition, BACKLAND requires a pair of recent and
past land-cover maps characterising the land-cover mosaic of
the studied landscape with the same land-cover type classi-
fication. The past land-cover map must be within the time-
window of the LOVE estimates. The spatial resolution and
classification of land-cover types achieved by BACKLAND
reconstructions depends on their definition on the land-cover
maps used for training. Moreover, the more the landscape
contains rare or highly fragmented land-cover types, the
finer the spatial resolution required to integrate these types
into the models, which can generate excessive computation
times. In this study, a spatial resolution of 20 m was a reason-
able compromise between number of land-cover types and
computation times. Additional maps may also be needed to

extract auxiliary variables depending on the studied land-
scapes and the environmental constraints influencing their
vegetation distribution. A digital elevation model was used
here to extract altitude, exposure, slope and curvature vari-
ables. The distance to the nearest water point, a significant
auxiliary variable for all land-cover types here, was extracted
from the recent land-cover map, but other sources providing
information on the hydrographic network can be considered.

Finally, botanical data should provide information on the
recent floristic composition of the land-cover types. The spe-
cies reported by these inventories must be converted accord-
ing to the key pollen taxa modelled by LOVE, which are
considered to represent 100% of the vegetation cover. These
data are then combined in different steps by several simple
methods to produce the backward landscape prediction,
detailed in the next section.

Originality and assumptions of the BACKLAND approach

In stage A of the approach (Fig. 3a; section ‘Preliminary stage:
map-inferred taxon distributions in 2008 and LOVE-inferred
taxon distributions at TW1995’), the recent land-cover map
and botanical data are combined into map-inferred taxon dis-
tributions (Fig. 4a) with the Multiscale heterogeneity map
software (MHM, Gaucherel 2007). MHM density analysis
takes into account the heterogeneity and the multiscale dis-
tribution of species (Chen et al. 2005, Gaucherel et al. 2007,
Lemly and Cooper 2011, Dray et al. 2012, Viers et al. 2012).
In Bassi¢s, plant taxa are mainly ubiquitous and are found
in various proportions in several land-cover types, thus jus-
tifying the use of a multiscale tool. By combining botanical
data and multiscale density maps, we assume that land-cover
densities influence linearly and with equal weight the taxon
proportion for the production of map-inferred taxon distri-
butions. In the absence of any contradictory evidence, this
seems to be a reasonable assumption. These map-inferred
distributions form one of the two categories of intermedi-
ate taxon distribution maps and are used in stage B of the
BACKLAND approach to retroactively integrate spatiotem-
poral autocorrelation into the distribution of taxa estimated
at the past time window. The other category of intermedi-
ate distribution maps is LOVE-inferred taxon distributions
(Fig. 4b), which are a main originality of the BACKLAND
approach. They are formed by the combination of PDFs
(Kiihl et al. 2002) with LOVE estimates from nearby sedi-
mentary sites. For this step, we assumed a bivariate Gaussian
distribution of taxon occurrence probability around pollen
sites, with 99% probability that a taxon is present within the
RSAPs. While elevation co-kriging has been advocated for
the spatial interpolation of LRA estimates beyond RSAPs
(O’Dwyer et al. 2021), these two assumptions in line with
the Gaussian dispersion of pollen grains around the study
sites (Prentice 1985) make the method proposed here both
more parsimonious and more suitable for LOVE spatialisa-
tion when RSAPs overlap. Moreover, this method revealed
smooth LOVE compositional gradients, which would have
been difficult with kriging as the latter performs poorly when
it is necessary to extrapolate estimates beyond the sedimentary
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sites over the entire study area (not shown). PDFs are already
used in palacoecology at regional to continental scales to infer
broad and long-term vegetation changes based on pollen
percentage data (Hély and Lézine 2014, Ledru et al. 2016).
Here, they allowed the construction of distribution maps of
pollen taxa whose abundance gradients are determined both
by variations in their LOVE estimates between each site and
by their probability of occurrence within the 9 km? study
area, taking into account the overlapping RSAPs. Such local
gradients would not have been revealed using raw pollen
percentages that show less spatial variability than the LOVE
estimates (Plancher et al. 2022). The LOVE-inferred distri-
butions are intermediate results that could also be of interest
for studies on past plant distributions.

In stage B (Fig. 3b; section “Variables used by the
BACKLAND approach’), we used MHM density maps to
smooth past (1993) land-cover distributions and make their
spatial variability comparable to continuous explanatory vari-
ables (Fig. 3b). The land-cover explanatory variables included
environmental variables as well as a set of estimated taxa
distributions at TW1995, according to the botanical com-
position of each land-cover type. The choice of auxiliary envi-
ronmental variables depends on the study area and it could be
relevant to integrate others, such as pedological data not avail-
able in our area. The TW1995 estimated taxon distributions
are the result of averaging TW1995 LOVE-inferred distri-
butions and 2008 Map-inferred distributions to incorporate
the land-cover spatiotemporal autocorrelation directly into
explanatory variables. This straightforward and exploratory
way to integrate spatiotemporal autocorrelation resulted in
estimated distributions consistent with 2008 taxon distri-
butions and that revealed TW1995 LOVE-based gradients
(Fig. 4c), while using residual autocorrelation (Crase et al.
2012) would drive the results towards the sole landscape
autocorrelation, preventing LOVE-based variations from
being revealed (not shown). The production of estimated
taxon distributions is based on two assumptions. First, due
to the integration of map-inferred distributions, it is assumed
that the same land-cover types were present during the study
period and that their composition remained constant. This
imposes a limited temporal perspective on the application of
BACKLAND, since the older the time window targeted, the
less reasonable this assumption is. Then, the incorporation of
spatiotemporal autocorrelation in the estimated taxon distri-
butions assumes an influence of equal weight between 2008
map-inferred and TW1995 LOVE-inferred distributions
through averaging. The relative influence of map-inferred
and LOVE-inferred distributions could be estimated based
on independent data indicating environmental or societal
changes that may have sharply modified vegetation composi-
tion and/or patterns, and thus the influence of autocorrela-
tion between two target periods (e.g. proxies related to local
fire events or grazing activities). There is currently no way of
estimating such weighting factors, so their use would require
additional assumptions about the stationarity of taxon distri-
butions over time. Our approach, although involving a strong
and arbitrary hypothesis, remains parsimonious. In our case
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study in particular, the recent land-cover maps used to imple-
ment BACKLAND are very similar (Fig. 2), so it is unlikely
that the integration of spatial autocorrelation with the 2008
map-inferred distribution would have a strong impact on the
BACKLAND estimate of TW1995. It would be interesting
to implement the BACKLAND approach on study areas
that have recently undergone significant landscape changes,
and which are informed by land-cover maps, in order to
assess the influence of the integration of map-inferred taxon
distributions.

In stage C (Fig. 3¢, section ‘Backward landscape model-
ling’), traditional and easy-to-use multiple linear models
were employed for the backward modelling of a TW1995
land-cover map. We therefore assumed a linear relationship
between land-cover type densities and explanatory vari-
ables. Such conditions are not fully met in our datasets, but
large sample sizes limit departures from this assumption.
Transforming the data or using more complex and non-
linear models (e.g. generalized additive models, Hastie and
Tibshirani 1987) did not change the quality of the results (not
shown). Untransformed land-cover type densities, as well as
linear models less prone to overfitting to the training data
than other less straightforward or non-linear models, were
therefore preferred, especially since they revealed a good fit
to the predictors and an overall high accuracy (Fig. 5). First,
the stepwise regression and cross-validation training of the
linear models identified statistically significant relationships
between all 1993 land-cover density maps and explanatory
variables (Table 4). The estimation of negative coeflicients
associated with some estimated taxon distributions, despite
their integration on a botanical basis, is evidence of the taxon
distribution heterogeneity, as most taxa are found in all types
in varying proportions (Table 4). The significant influence of
environmental variables on the distribution of all land-cover
types reflects the environmental constraints in the Bassiés
vegetation distribution. Nevertheless, the signs of these
environmental influences must be interpreted with caution,
as statistical relationships can be estimated by the models
through interactions with other variables not included in the
models. Here, the positive influence of altitude and southern
exposure on the broadleaved forest (BF) patch density could
be due to the presence of scree (a non-pollen-producing area
excluded from analyses) located on the northern slope under-
lying LEG, thus reducing the density of the forest patch
mainly in its lowest part. The variability in prediction accu-
racy between land-cover types revealed a weakness in model-
ling the most heterogeneous and rarest ones in the study area
(here mixed forest, pine forest and Festuca grasslands, Fig. 5b,
6-7). The greater difference in spatial variability between
explanatory variables and rare land-cover type distributions
(which have low densities across the whole landscape) made it
more difficult to establish a linear relationship between them
than for the more abundant types in the study area. We thus
expect BACKLAND to have difficulty representing the rarest
and most fragmented land-cover types. This difficulty could
explain why the TW1995 BACKLAND-estimated map is
more similar to the 2008 map than to the 1993 map. Indeed,
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the main difference between the two remote-sensed maps is
the reduction in the patch of Festuca grassland to the north of
the study area (Fig. 2). Since BACKLAND performs poorly
in representing this type of land-cover, the map estimated at
TW1995 is slightly more similar to the 2008 map.

The ideal landscape on which this approach could be
applied would be a land-cover mosaic with high equitability
and aggregation indexes, thus avoiding representation biases
that disadvantage the sparsest or most fragmented land-cover
types. Nevertheless, all things considered, BACKLAND
produced a land-cover map representing the eight targeted
land-cover types with a strong similarity with the refer-
ence map of 1993 (average Kappa=0.65 > 0.6, Landis and
Koch 1977), attesting the potential of this approach for the
reconstruction of past land-cover mosaics. Such precision in
terms of nomenclature and spatial resolution together with
simple and parsimonious working assumptions make the
BACKLAND method original and fully complementary to
previous attempts at pollen-based spatially explicit land-cover
reconstructions.

Finally, uncertainties arising from both the datasets used
(botanical data, LOVE estimates, maps) and the methods
employed (PDFs, linear models) are present at each stage
of the learning process and will accumulate when applying
BACKLAND on past time-windows. This methodological
development should be completed by an uncertainty propa-
gation analysis in order to be able to assess the uncertainty of
the estimated land-cover maps.

Comparison with previous pollen-based land-cover
maps

Based on LOVE estimates of local vegetation composition,
using a combination of simple probabilistic and statistical tools,
and relying on reasonable assumptions, the BACKLAND
method represents a new way of exploring past land-cover
mosaics that is complementary to existing approaches. Other
approaches proposed land-cover maps based on pollen dataand
pollen dispersal and deposition. With the multiple scenario
approach (MSA, Bunting and Middleton 2009, Bunting et al.
2018, HUMPOL, Middleton and Bunting 2004, Bunting
and Middleton 2005), plausible landscape scenarios are
selected on the basis of the best similarities between mod-
elled and empirical pollen data: LOVE data are therefore not
used directly for vegetation spatialization, despite their poten-
tial to reflect inter-site variations (Overballe-Petersen et al.
2013, Plancher et al. 2022), and map successions do not take
account of spatiotemporal autocorrelation in taxon distribu-
tion. Due to the multiplicity of plausible scenarios, the analy-
sis of landscape dynamics proposed by the MSA is complex. In
BACKLAND, LOVE estimates are used directly in the pro-
duction of taxon distribution maps. LOVE estimates therefore
play a role in both the estimation of land-cover composition
and the distribution of land-cover types estimated by the
models, thus limiting the assumptions on taxon location, and
spatiotemporal autocorrelation ensures plausible continuity in
the estimated landscape dynamics. Although LOVE estimates

have previously been used to directly produce taxon distribu-
tion maps via interpolation techniques (O’Dwyer et al. 2021),
BACKLAND has the advantage of basing taxon distributions
on Gaussian PDFs of taxon occurrence consistent with the
LRA assumptions (Prentice 1985, Sugita 2007b). Compared
with the smooth distributions produced by interpolation
techniques (O’Dwyer et al. 2021), and because BACKLAND
integrates spatiotemporal autocorrelation, taxon distribution
maps estimated by BACKLAND are both more spatially het-
erogeneous (and thus more realistic) and less impacted by
potential pollen biases persisting after LRA modelling — which
may, for example, be due to changes in the structure of the
vegetation close to the sites rather than in the composition
(Sugita et al. 2010a). The use of multiple linear models results
in the production of a single land-cover map, greatly facilitat-
ing the interpretability of the results, particularly for future
BACKLAND applications for long-term land-cover mosaic
successions, which is difficult when multiple scenarios are
proposed (Caseldine et al. 2008, Bunting et al. 2018). Finally,
using linear models does not constrain the direction of pos-
sible transitions between land-cover types from one period to
another, unlike the use of Markov chain models also used for

the reconstruction of a spatially explicit landscape within a
lake RSAP (Poska et al. 2008).

Implications for environmental sciences

BACKLAND has an interesting potential to reconstruct
long-term land-cover mosaic dynamics in anthropogenic
contexts, where reverse transitions to natural vegetation
succession can occur. Indeed, once BACKLAND has been
implemented over a recent period, it is intended to be easily
applied retroactively and step-by-step to produce a succession
of land-cover maps based on pollen data (as long as the study
area meets the conditions outlined in section ‘Application
conditions and required data’). Retroactive application only
requires 1) estimating the new map-inferred taxon distribu-
tions from the recent land-cover map and 2) calculating the
LOVE-inferred taxon distributions corresponding to the
targeted past time period to 3) obtain their corresponding
estimated distributions. Obtaining the new estimated distri-
butions, associated with the explanatory environmental vari-
ables, thus appears to be sufficient to predict the land-cover
mosaic of the targeted past period. In theory, this process can
be repeated step-by-step to produce a temporal atlas of land
cover spanning several centuries (Plancher et al. unpubl.).
By producing a continuous series of maps using the same
approach, it offers the possibility to study long-term land-
cover composition and configuration changes without the
issues of nomenclature changes and resolution degradation.
The BACKLAND approach is a static modeling approach,
and the integrated explanatory variables do not include socio-
economic, ecological or climatic drivers whose variation can
influence the land-cover spatial and temporal variability.
However, by integrating and spatialising the LOVE estimates,
BACKLAND indirectly integrates the effect of these drivers

on vegetation composition and conﬁguration. Future studies
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would be needed to compare the outputs of this static dia-
chronic approach with those of other types of pattern-based
(Houet et al. 2012a, b) or process-based (Gaucherel and
Pommereau 2019, Gaucherel et al. 2020, Cosme et al. 2022)
modeling approaches, in order to evaluate and interpret the
convergences and divergences of the modeled trajectories.
Such comparisons will allow a better overall understanding
of the Bassiés socio-ecosystem dynamics (Houet et al. 2010b,
Gritti et al. 2013).

Better understanding and managing cultural landscapes,
characterizing their ecosystem service dynamics, being able
to predict their trajectories following land-use and land-
cover changes, and improving their management strategies
are research priorities involving a close connection between
ecology and palacoecology (Rull 2014, Seddon et al. 2014).
Indeed, the few decades covered by ecological studies are not
enough to fully integrate ecological processes (Jeffers et al.
2015). Unlike ecology, paleoecology allows the integration
of slow processes, but palacoecologists must make an effort
to ensure that paleoecological data are suited to the needs
of ecologists, especially in terms of spatial resolution and
extent of reconstructions (Rull 2014, Birks 2019). Ecological
processes evolve over time under the influence of the spatial
context in which they operate (Ricklefs 1987, Leibold et al.
2004), but there are still few approaches that are capable of
integrating both the temporal and spatial aspects of ecosys-
tem dynamics over the long term (White et al. 2010). This
study represents progress in the conciliation between paleo-
ecology and general ecology. By increasing the temporal
extent of landscape change studies as well as their precision
in terms of nomenclature and spatial resolution of land-cover
reconstructions, BACKLAND will help to improve our
understanding of the legacy of land-cover change on biodi-
versity at several scales (alpha, beta diversities; Rosenzweig
1995, Duelli 1997, Wiens 2009, Zimmermann et al. 2010,
Tscharntke et al. 2012, Woodbridge et al. 2020), to assess
the responses and feedbacks of vegetation to global change
(Turner 1994, Turner et al. 2007), and to refine studies on
species autecology (Abraham et al. 2023).

Conclusion

Maps of past land-cover mosaic provide essential informa-
tion related to the ecological state of land areas and how they
have been modified by humans. Hence, accurate informa-
tion related to past land cover is essential both for managing
natural resources and for understanding society’s ecological,
biophysical, and resource management footprint. In this
paper we describe a new approach based on LOVE estimates
of neighbouring sites with overlapping RSAPs, cartographic
and botanical data, and parsimonious statistical tools, to
backward estimate land-cover maps with a 20 m spatial reso-
lution. The approach has been tested on a well-documented
area in terms of available pollen and cartographic data. Its
accuracy was assessed on a recent time window, revealing a
high similarity between the observed and estimated maps.

Page 16 of 20

It makes BACKLAND a promising approach to provide fine-
grained reconstruction of heterogencous land-cover mosaics.
By integrating spatiotemporal autocorrelation in estimated
taxon distributions, BACKLAND is suitable for exploring
long-term land-cover dynamics. Moving forward, we will
apply the method to fossil pollen data from consecutive time
windows over the last 200 years in the Bassiés area.
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