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Studying the interactions between humans, land-cover and biodiversity is necessary 
for the sustainable management of socio-ecosystems and requires long-term recon-
structions of past landscapes, improving the integration of slow processes. The main 
source of information on past vegetation is fossil pollen, but pollen data are biased by 
inter-taxonomic differential production and dispersal. The landscape reconstruction 
algorithm (LRA) approach is the most widely used to correct for these biases. The 
LOVE algorithm (LOcal Vegetation estimates), the second step in the LRA approach, 
also estimates the spatial extent of the local vegetation reconstruction zone (the rel-
evant source area of pollen, RSAP). While LRA estimates have already been integrated 
into certain past land-cover mapping approaches, none have been designed to allow 
the diachronic reconstruction of a land-cover mosaic over the long term combining 
the following points: the direct integration of LOVE estimates as a source of vari-
ability in the composition and distribution of pollen taxa, without multiple scenarios, 
and the integration of spatiotemporal autocorrelation in the taxa distribution between 
periods. Here, we propose an innovative approach for BACKward LAND-cover recon-
struction (BACKLAND), combining these points and estimating the past land-cover 
mosaic within a set of RSAPs. Based on three stages using parsimonious assumptions 
and easy-to-implement probabilistic and statistical tools, this approach requires LOVE 
estimates of sites close enough to each other for their RSAPs to overlap, botanical data, 
a digital elevation model and two recent land-cover maps. Developed and tested on a 
small study area within the mountain landscape of the Bassiès valley (French Pyrenees), 
BACKLAND achieved the reconstruction of a past land-cover map representing eight 
land-cover types at a spatial resolution of 20 m with a good level of accuracy. We show 
in this study the originality of this approach and discuss its potential for palaeoenvi-
ronmental studies, historical ecology and the management of socio-ecosystems.

Keywords: land-cover, landscape reconstruction, LOcal VEgetation estimates, 
multiple linear regression, relevant source area of pollen, validation, vegetation 
distribution

BACKLAND: spatially explicit and high-resolution pollen-based 
BACKward LAND-cover reconstructions

Clara Plancher ✉1, Florence Mazier1 , Thomas Houet 2 and Cédric Gaucherel3

1GEODE, UMR CNRS, Université Jean Jaurès. 5 Allées Antonio Machado, Maison de la Recherche, Toulouse, France 
2LETG-Rennes, UMR CNRS, Université Rennes 2. Place du Recteur Henri le Moal, Rennes, France 
3AMAP, UMR, INRAE, CIRAD, CNRS, IRD, Université de Montpellier, Montpellier, France

Correspondence: Clara Plancher (cl.pl@live.fr)

Research article

20

https://doi.org/10.1111/ecog.06853
http://orcid.org/0000-0002-3377-5502
http://orcid.org/0000-0003-2643-0925
http://orcid.org/0000-0001-5890-6145
mailto:cl.pl@live.fr
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fecog.06853&domain=pdf&date_stamp=2023-12-01


Page 2 of 20

Introduction

Within the framework of landscape ecology theory, land-
scapes are defined as heterogeneous land-cover mosaics 
covering a few hectares to several square kilometres (Turner 
1989, Kienast et al. 2007), and described by their composi-
tion (diversity and relative abundances of land-cover types) 
and configuration (shape, size and spatial arrangement of 
land-cover patches) (Forman 1995, Turner et al. 2001, 
Kienast et al. 2007). In this study, we adopt this definition 
without integrating its aesthetic and socio-cultural aspects.

Because of the close connections between societies, land-
scapes and biodiversity (Rosenzweig 1995, Duelli 1997, 
Wiens 2009), landscape-scale studies are particularly appro-
priate for implementing ecosystem management or protec-
tion measures (Turner 1989, Crooks and Sanjayan 2006, 
Fischer et al. 2011, Leite et al. 2013, Opdam et al. 2013, Wu 
2013). Landscape management would particularly benefit 
from fine-scale studies of the quantity, location and frequency 
of changes within landscapes, as they improve the under-
standing of the processes behind land-cover change, and of 
the impact of these changes on the environment (Houet et al. 
2010a). Reconstructing successions of fine-grained land-
cover maps over the long term would refine our understand-
ing of the legacy of past changes on our current environment 
(Pärtel et al. 2007, Bürgi et al. 2007, 2017, Gillet et al. 2016, 
Neumann et al. 2017, Garbarino et al. 2020, Le Provost et al. 
2020, Tappeiner et al. 2020), an approach advocated by 
the historical, ecological and paleoecological communities 
(Foster et al. 2003, Seddon et al. 2014, Dearing et al. 2015, 
Herrault et al. 2015).

However, mapping past land-cover at landscape scale 
remains challenging due to the loss of both spatial and classi-
fication resolution of land-cover types beyond the time extent 
of remote sensing data, i.e. before the late 20th century for 
satellite imagery and the 1950s for panchromatic historical 
aerial photographs. Cadastral maps and land-cover type sur-
veys may extend mapping back to the 19th century (e.g. the 
French Napoleonic Cadastre), but these are non-exhaustive 
in time and spatial coverage, which does not facilitate greater 
time-depth in landscape change studies (Fyfe et al. 2015). 
Moreover, historical land-cover maps focus on a limited num-
ber of land-cover types and are therefore incomplete represen-
tations of land-cover mosaics (Dahlström 2008). Historical 
or remote sensing land-cover maps are the result of a tradeoff 
between three types of resolution: classification detail, spa-
tial resolution and temporal resolution (Zimmermann et al. 
2007). Obtaining continuous multi-decadal records of land-
cover maps (Dearing et al. 2015) with these three resolutions 
in the finest possible degree would be helpful for an array of 
ecosystem purposes, but this is impossible to achieve today.

Long-term data using pollen analysis offer otherwise 
almost unachievable possibilities to reconstruct past vegeta-
tion. When suitable sediment archives are available for cor-
ing, it is possible to work at various temporal and spatial scales 
with pollen as the direct link to past vegetation. Though pol-
len analyses provide an opportunity for reconstructing the 

relative changes in vegetation composition as individual taxa 
or as land-cover types in a long-term perspective (Jolly et al. 
1998, Tarasov et al. 2007, 2009, Fyfe and Woodbridge 2012, 
Joannin et al. 2012, Giesecke et al. 2017), translation into 
land-cover is not a trivial exercise, especially if the reconstruc-
tion aims to be quantitative and spatially referenced rather 
than qualitative (Bunting et al. 2018). 

Over the last decades, advances in the theory of pollen 
analysis (Prentice 1985, 1988, Sugita 1993) coupled with 
an increase in computer power have led to the development 
of model-based reconstructions of land-cover composition 
such as the landscape reconstruction algorithm (LRA, Sugita 
2007a, b). The LRA effectively reduces the biases caused by 
the non-linear pollen–vegetation relationship due to differ-
ences in sedimentary archives, basin size, inter-taxonomic 
differences in pollen productivity and dispersal character-
istics, and spatial scales. Based on pollen extracted from 
sediments (lakes and bogs) and integrating pollen dispersal 
and deposition models (Prentice 1985, 1988, Sugita 1993, 
1994), the LRA uses two models, REVEALS (regional esti-
mates of vegetation abundance from large sites) and LOVE 
(local vegetation estimates), to translate pollen assemblages 
from a set of sedimentary sites into regional and local cover of 
plant taxa, respectively (Sugita 2007a, b). The LOVE model 
provides vegetation composition estimates expressed as dis-
tance-weighted plant abundance (DWPA) within a defined 
area, namely the relevant source area of pollen (RSAP, 0.1–3 
km, Nielsen and Sugita 2005, Sugita et al. 2010a, b, Hjelle 
and Sugita 2012, Li et al. 2018) defined as the smallest area 
for which vegetation abundance can be modelled using fossil 
pollen records (Sugita 2007b). The LRA algorithm has been 
used widely in many parts of Europe and elsewhere over the 
last decade with reasonable success, in both flat and moun-
tainous terrains (Cui et al. 2010, 2013, 2014, Gaillard et al. 
2010, Nielsen and Odgaard 2010, Sugita et al. 2010a, b, 
Fyfe et al. 2013, Hultberg et al. 2014, Poska et al. 2014, 
Hjelle et al. 2015, Mazier et al. 2015, Fredh et al. 2019, 
Marquer et al. 2020a, b, Prøsch-Danielsen et al. 2020, 
Plancher et al. 2022). Although LOVE estimates cannot 
inform on the spatial pattern of reconstructed taxa within 
the RSAP, they have been shown to perform better than raw 
pollen data at reconstructing spatial and temporal land-cover 
variability from neighboring sites (Overballe-Petersen et al. 
2013, Plancher et al. 2022).

Several methods have been proposed to produce spatially 
explicit reconstructions of past local land-cover using the 
LRA algorithm. Recently, O’Dwyer et al. (2021) used LOVE-
based land-cover estimates from multiple sites to create spa-
tially continuous reconstructions of land cover based on 
interpolation techniques between point data. Alternatively, 
the Multiple scenario approach was developed to simu-
late the pollen signal from hypothetical maps of past land 
cover at locations with existing palynological records. The 
results are then compared statistically with the actual pollen 
assemblages in order to identify likely past vegetation mosa-
ics (Middleton and Bunting 2004, Bunting and Middleton 
2005, Bunting et al. 2018). It is however difficult to propose 
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plausible scenarios of land-cover dynamics (Caseldine 2008, 
Bunting 2018) with these methods, as they do not incorpo-
rate spatial and temporal dependency in the distribution and 
composition of vegetation cover between successive periods. 
Incorporating this spatial and temporal dependence (hereaf-
ter named spatiotemporal autocorrelation) within a method 
for spatializing LOVE estimates would improve the plausibil-
ity of reconstructed land cover dynamics.

To our knowledge, none of the existing approaches for 
mapping long-term land-cover mosaics have combined 1) the 
finest possible spatiotemporal and land-cover type classifica-
tion resolutions and 2) the spatiotemporal autocorrelation 
in the distribution of vegetation over successional periods. 
Developing a new approach for producing plausible succes-
sions of landscape mosaics with the highest possible precision 
would allow us to propose successional land-cover trajectories 
for environmental management studies.

The Bassiès valley, in the French Pyrenees, represents a 
suitable case study for the development of a spatially explicit 
reconstruction of past land-cover mosaic based on LOVE 
estimates. It contains several small sedimentary sites for 
which pollen data at a high temporal resolution (10–20 years) 
have already been analysed and converted into DWPA by 
the LRA approach (Marquer et al. 2020a, b, Plancher et al. 
2022). Plancher et al. (2022) showed that LOVE estimates 
from multiple sites are variable from one site to another, 
despite their proximity and the overlap of their RSAPs. 
Because their RSAPs overlap, the LOVE estimates from the 
Bassiès sites contain a proportion of plant cover in common. 
We believe it is possible to use these overlapping RSAPs and 
redundant plant cover to produce taxon distributions over 
the study area. Furthermore, the distribution and composi-
tion of land-cover types in this valley are documented by two 
recent land-cover maps (1993, 2008; Houet et al. 2012) and 
modern floristic surveys (2015–2020; Marquer et al. 2020a, 
b, Mazier et al. 2022). 

In this paper, we propose a new approach for backward 
predicting past land-cover mosaic based on LOVE estimates 
and using probabilistic and statistical tools. We hypothesise 
that 1) LOVE estimates within overlapping RSAPs will enable 
us to access the past local distribution of individual taxa using 
probability density functions (PDFs, Kühl et al. 2002); that 
2) autocorrelation of the taxon distribution may be back-
ward computed with multiscale spatial analyses (Gaucherel 
2007) by combining recent land-cover maps (Houet et al. 
2012) and botanical surveys (Mazier et al. 2022); and that 
3) linear models (McCullagh 1984) should be able to statis-
tically explain land-cover type distributions based on taxon 
distributions and selected auxiliary environmental variables. 
Hereafter this approach named BACKward predicting past 
LAND-cover at fine scale will be referred to as BACKLAND. 

We focus on the methodological aspects of the 
BACKLAND approach, its implementation and evaluation 
on recent time windows to generate the past Bassiès land-
cover mosaic within a set of overlapping RSAPs of small 
sedimentary sites. The accuracy of the Bassiès land-cover esti-
mated using BACKLAND is assessed in comparison with a 

contemporary land-cover map. Finally, we draw conclusions 
on the possible implications of the BACKLAND approach 
on fossil pollen records for palaeoenvironmental studies, his-
torical ecology, and socio-ecosystem management. 

Materials

Due to the large number of abbreviations used throughout 
the article, a summary of the main ones and their meanings 
is given in Table 1.

Study zone characteristics

The Bassiès valley is located in the Vicdessos area within 
the Pyrenees mountain range (42°46’N, 01°26’E, Ariège, 
France, Fig. 1). It is a hanging glacial valley characterised by a 
flat bottom at around 1500 m of elevation on which wetlands 
have developed, surrounded by steep slopes culminating at 
2676 m (Pique Rouge). The average annual precipitation is 
1640 mm year−1, with one-third as snow from November-
December to April-May, and the average annual temperature 
is around 7°C (Quintana-Seguí et al. 2008). The dominant 
winds come mostly from the west and north-west; wind 
speed varies from 0 to 4 m s−1 (Szczypta et al. 2015). 

Our study area covers 9 km² in the Bassiès valley and its 
vicinity: it is delimited by a 1 km radius from each sedimentary 
site for which LOVE estimates are available (Plancher et al. 
2022). The northern part of our study area extends down 
the northern slopes towards the adjacent valleys (northeast, 
Fig. 1) to a minimum altitude of 1066 m. The southern part 
rises beyond Lake Sigriou (SIG) and represents the highest 
part, reaching an elevation of 2410 m.

The modern vegetation is dominated by heathlands 
(Rhododendron ferrugineum or Calluna vulgaris-dominated) 
with different-sized patches of grasslands Festuca eskia, 
Nardus stricta mainly distributed on slopes. Patches of forest 
are mainly found on the northern slopes, with beech-domi-
nated forests and clumps of Pinus uncinata mainly below and 
above 1600 m respectively.

Table 1. Abbreviations frequently used in the paper.

Acronym Meaning

BF Broadleaved forest
CH Calluna heathland
CMP Comparison map profile (Gaucherel et al. 2008)
FG Festuca grassland
MF Mixed forest
MH Mixed heathland
MHM Multiscale heterogeneity map (Gaucherel 2007)
NRMSE Normalized root mean square errors
OG Other grassland
PB Peatbogs (excluded from analysis)
PDFs Probability density functions
PF Pine forest
RH Rhododendron heathland
RSAP Relevant source area of pollen (Sugita 1998, 2007b)
TW Time window

 16000587, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06853 by C

IR
A

D
 - D

G
D

R
S - D

IST
, W

iley O
nline L

ibrary on [20/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Page 4 of 20

Datasets

The approach to reconstruct past land-cover maps requires 
pollen data from several nearby sites translated into dis-
tance weighted plant abundances (DWPAs) using the LRA 
approach (Sugita 2007a, b), as well as cartographic (digital 
elevation model and land-cover maps) and botanical data 
(section ‘LOVE-based estimates of local vegetation composi-
tion’ and ‘Cartographic and botanical data’ below). 

LOVE-based estimates of local vegetation composition
By taking into account the dispersal and deposition of pol-
len grains via the Gaussian plume model, the LRA approach 
considers that plants closer to the sampling point contrib-
ute more grains to the pollen assemblage than plants fur-
ther away (Sugita 2007b). The LOVE model thus provides 
DWPAs within the RSAP, the smallest spatial scale for which 
vegetation composition can be estimated by the model using 
a fossil pollen record. 

Details about the chronology of the sediment cores (210Pb, 
137Cs and 14C dates) and the LOVE estimates (Table 2) used 
in this study were published in Marquer et al. (2020a, b) and 
Plancher et al. (2022), including information on age-depth 
models, site selection, pollen sampling, pollen data, param-
eters used to run the LRA approach and RSAP calculation. 
Plancher et al. (2022) showed that the RSAP estimates varied 
from 250 to nearly 1000 m over the last 200 years, therefore 
the area within a 1 km radius (largest RSAP value) from each 
site was considered as appropriate and suitable for the local 
scale of reconstruction of vegetation in the area. 

For this paper, we used the LOVE estimates for 18 major 
taxa available for the 1990–2000 cal. AD time window, fur-
ther referred to as TW1995. Ten tree taxa (Abies, Betula, 
Corylus, Fagus, Fraxinus, Picea, Pinus, Quercus, Salix and 
Tilia), three shrub taxa (C. vulgaris, Ericaceae and Juniperus), 
and five grass taxa (Asteraceae Sub-Family Cichorioideae, 
Cyperaceae, Poaceae, Plantago lanceolata and Potentilla-type) 
were considered. These 18 taxa represent between 72 and 

95% of the total pollen count of the targeted time window. 
i,kThe LOVE outputs are expressed in proportions of the 
total cumulative sum of distance weighted plant abundance 
at the 1 km-RSAP around each of the seven cores. Hereafter, 
these DWPAs will be referred to as LOVE estimates. LOVE 
estimates range from 0 to 1; 0 means that the plant species 
is absent, and 1 that the DWPA within the RSAP is 100%. 
The LOVE estimate for taxa i at site k will be written LOVEi,k 
hereafter and the 18 taxa estimates sum up to 100% of the 
vegetation composition.

As the study sites are close to each other (between 352 
and 1728 m), the RSAP of each site overlaps with at least 
one (SIG with ESC) and up to four sites (EM with OT, 
FOUZ, W1652 and LEG). By showing large inter-site varia-
tions despite this proximity, these LOVE estimates represent 
a strong potential for spatializing pollen-based vegetation 
reconstructions (Plancher et al. 2022). According to LOVE 
estimates at TW1995, the vegetation cover within 1 km radii 
is dominated by Ericaceae around SIG, LEG and FOUZ and 
W1652, by C. vulgaris around ESC, by Cyperaceae around 
EM, and by Poaceae around OT (Table 2, Plancher et al. 
2022). Tree taxa represent between 9% (W1652) and 41% 
(LEG) of the local vegetation, shrubs between 0.1% (OT) 
and 91% (W1652) and grass taxa between 0% (LEG) and 
88% (EM).

Cartographic and botanical data
A digital elevation model and two recent land-cover maps 
(1993 and 2008, Houet et al. 2012) were used in this paper. 
The digital elevation model was used to estimate auxiliary 
environmental variables. These auxiliary variables were inte-
grated in the models to take into account the effects of the 
environmental variability of the Bassiès landscape on its veg-
etation distribution. The 1993 and 2008 land-cover maps are 
based on true color (RGB) and false color (near infrared) aer-
ial images, classified using a geographic object-based image 
analysis combining visual interpretation and automatic clas-
sification (Houet et al. 2012, Sheeren et al. 2012). 

Figure 1. Location of the study zone (black line) and the targeted sedimentary sites with available TW1995 LOVE estimates of vegetation 
composition within 1 km RSAP (Plancher et al. 2022). Abbreviations: EM, Etang Mort, ESC: Escale; FOUZ: Fouzès; LEG, Legunabens; 
OT: Orry de Théo; SIG: Sigriou. Characteristics of the sites are given in Table 2.
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These maps were resampled into a 20 m resolution raster 
grid by averaging the digital elevation model values and by 
assigning the dominant land-cover type with the largest cover 
area to each pixel (Fig. 2). Preliminary tests showed that a 20 
m resolution is a reasonable compromise, as it enables even 
rare land-cover types to be integrated while having a reason-
able computing time. BACKLAND is based on a simplified 
version of the land-cover type nomenclature, excluding from 
analysis and calculations both non-pollen producing areas 
(i.e. mineral surfaces, roads, buildings and water surfaces) 
and peatbogs which are assumed to be constant (PB, Fig. 2). 

Eight land-cover types were used, comprising three tree 
forest types (Pine forest, PF; Broadleaved forest, BF; Mixed 

forest, MF), three heathland types (Rhododendron heathland, 
RH; Calluna heathland, CH; Mixed heathland, MH), and 
two grassland types (Festuca grassland, FG; Other grasslands, 
OG). The proportions of each type vary slightly between 
1993 and 2008. RH (27.0–28.2% of the vegetated sur-
faces of the study area in 1993–2008), MH (15.7–15.6%) 
and CH (24.8–25.2%) are distributed respectively over the 
southern, central and northern parts of the study area, form-
ing the main matrix of vegetation in which other land-cover 
types are immersed. Types FG (4.1–3.5%) and OG (13.0–
11.3%) are concentrated mainly on the slopes to the western 
part of the study area. PF (3.3–4.2%) forms small scattered 
stands on the steep northern slopes separating SIG from the 

Table 2. Sites’ characteristics and LOVE estimates of local 18 taxa-based vegetation composition (from Plancher et al. 2022).

Sites characteristics

Name Legunabens Sigriou
Etang 
mort Escale Fouzes

Orry de 
Théo W1652a

Acronym LEG SIG EM ESC FOUZ OT W1652
Elevation (m) 1680 2000 1670 1630 1720 1680 1660
Radius (m) 58 66 36 40 13 31 6
Type Lake Lake Bog Bog Bog Bog Bog
LOVE estimates (%, DWPA; Plancher et al. 2022)
Trees Abies 2.54 0.91 – 0.20 0.22 0.02 0.03

Betula 1.65 – 2.20 7.47 2.15 0.79 2.29
Corylus 4.35 6.36 4.36 3.89 5.03 2.97 1.91
Fagus 14.32 – 0.14 10.31 1.57 0.95 1.73
Fraxinus 0.08 – – 2.90 1.19 2.25 –
Picea 0.71 0.02 – 0.03 0.03 0.15 0.07
Pinus 14.49 2.80 3.74 6.22 9.58 3.22 1.91
Quercus 2.36 – 0.63 5.14 2.74 1.69 1.35
Salix 0.04 0.21 – 0.12 0.02 0.36 –
Tilia 0.61 0.71 0.30 0.29 – – –

Shrubs Calluna vulgaris 4.78 – – 45.92 10.50 – 41.42
Ericaceae 49.45 51.28 0.29 6.15 41.07 – 49.29
Juniperus 0.79 0.20 0.05 – – 0.14 –

Grasses Comp. SF Cichorioideae 2.37 11.00 3.29 – 0.16 5.20 –
Cyperaceae – 1.96 54.02 – – 23.77 –
Plantago lanceolata 1.46 1.31 0.95 – 0.47 4.71 –
Poaceae – 23.25 24.63 11.36 23.57 50.57 –
Potentilla-type – – 5.37 – 1.69 3.22 –

Figure 2. Land-cover maps used for backward spatiotemporal autocorrelation of taxa distributions (2008) and for models learning (1993). 
Adapted from Houet et al. (2012). White areas: non-vegetated areas (water, mineral). PF: Pine forest; BF: Broadleaved forest; MF: Mixed for-
est; CH: Calluna heathland; MH: Mixed heathland; RH: Rhododendron heathland; FG: Festuca grassland; OG: Other grasslands; PB: Peatbogs.
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other sites. The type BF (9.5%) is essentially characterized by 
a homogeneous unit northwest of LEG, in the slope leading 
to the adjacent valley, while MF (0.30–0.34%) forms a few 
small patches in the north-north-east of the study area.

The vegetation composition of these land-cover types 
is based on modern botanical surveys including 125 plots 
described by 116 vascular plants (Mazier et al. 2022). Plant 
taxa were grouped according to the 18 pollen morphological 
types for which Plancher et al. (2022) computed past LOVE 
estimates. The vegetation data (percentage cover from field 
survey) were recalculated on the sum of the 18 selected taxa 
(Table 3). Land-cover types are characterised by seven to 15 
of these 18 taxa. Grasslands and heathlands are mainly com-
posed of ubiquitous taxa, present in at least six land-cover 
types. PF and heathlands are the only types containing Pinus, 
which represents less than 2% in heathlands against 32.4% 
in PF. BF and MF are the only types containing beech Fagus, 
representing 49.5 and 55% of the vegetation cover respec-
tively, while BF is composed of more than 20% of taxa pres-
ent exclusively in this type (Corylus, Fraxinus, Picea, Quercus 
and Tilia). The percentage cover of plant taxa for each land-
cover type is assumed to be constant over time.

Methods

The BACKLAND method for backward modelling land-
cover mosaics required three stages: 1) a preliminary stage 
(Fig. 3a) generating two intermediate results: taxon distribu-
tions based on the 2008 map and taxon distributions based 
on the LOVE estimates of TW1995. These distributions were 
used in the second stage to 2) integrate spatiotemporal auto-
correlation into the estimated taxon distribution at TW1995, 
constituting the explanatory variables of the TW1995 land-
cover type distributions with a set of environmental vari-
ables (Fig. 3b). Finally, 3) multiple linear models were used 
to estimate a statistical link between the land-cover type 

distributions and this set of explanatory variables, ultimately 
leading to the backward prediction of a land-cover map at 
TW1995 (Fig. 3c).

Preliminary stage: map-inferred taxon distributions 
in 2008 and LOVE-inferred taxon distributions at 
TW1995

A general characteristic of ecological systems is that their 
geographical proximity is correlated with their similarity, i.e. 
they have a positive spatial autocorrelation (Tobler 1970, 
Legendre and Fortin 1989, Gaucherel et al. 2016). In the 
absence of a major disturbance, we can also assume a tempo-
ral autocorrelation of the vegetation composition and config-
uration between two successive time windows. The objective 
of this stage was to produce two intermediate taxa distribu-
tion maps, later used for backward integrating spatiotempo-
ral autocorrelation into the distribution of taxa at TW1995: 
their recent distribution inferred from the 2008 land-cover 
map and their past distribution inferred from LOVE esti-
mates at TW1995.

Map-inferred taxa distributions in 2008
Recent taxon distributions were obtained from the 2008 
land-cover map and the 18 taxa-based botanical composi-
tions of the land-cover types (Fig. 3a), based on the following 
Eq. 1:

MID
LC LC

LC

LC LC

LC

LC

LCi

i

N

i

N

i

I

D P

D P

=

´

´

=

==

å

åå

,

,

1

11

  (1)

where MIDi represents the map inferred taxa distribution of a 
taxon i expressed as a proportion of the total vegetation, NLC 

Table 3. Land-cover type botanical composition based on the 18 LOVE taxa (from botanical surveys by Mazier et al. 2022).

Pollen taxa PF BF MF CH MH RH FG OG

Trees Abies 4.70 22.24 1.28 × 10−3

Betula 3.22 × 10−3 4.31 1.19 0.01
Corylus 12.38
Fagus 49.51 55.04
Fraxinus 4.48
Picea 0.22
Pinus 32.39 0.18 1.97 3.45 × 10−3

Quercus 0.05
Salix 8.79 × 10−4

Tilia 3.27
Shrubs Calluna vulgaris 15.34 2.51 × 10−3 53.33 22.59 10.70 6.06 4.29

Ericaceae 43.90 8.97 16.54 15.99 14.02 72.49 4.95 7.22
Juniperus 6.33 0.02 4.10 0.75 0.84 0.90

Herbs Comp. SF. Cichorioideae 0.03 0.01 0.27 0.62 0.03 0.02 2.28 0.01
Cyperaceae 0.06 1.65 2.68 4.45 42.16 1.98 2.75 26.76
Plantago lanceolata 8.79 × 10−4 1.45 × 10−3

Poaceae 1.93 8.77 2.03 19.14 17.19 12.15 79.68 60.61
Potentilla-t 0.01 1.66 2.18 1.29 1.82 3.37 1.12
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is the number of land-cover types (eight), Pi,LC the botani-
cal proportion of the taxon i in the land-cover type, I the 
total number of taxa (18), and DLC their multi-scale density. 
Preliminary analyses showed that the use of quantitative and 
continuous densities is preferable to the presence/absence of 
land-cover types for several steps in the processing chain. In 
this step, the use of multiscale densities was motivated by the 
need to take into account both the heterogeneity of land-
cover types and the fuzziness of their boundaries – due to 
their permeability to dispersal and colonisation by ubiqui-
tous taxa. We used the Multiscale heterogeneity map software 
(MHM; Gaucherel 2007, Pavageau et al. 2017) to produce a 
multi-scale density map for each land-cover type. These maps 
represent the average proportion of each type in their neigh-
bourhood, on observation scales ranging from 40 to 280 
m, every 40 m, in order to reduce and homogenise possible 
biases due to scale choices. 

LOVE-Inferred taxa distributions at TW-1995
This step corresponds to the translation of point LOVE esti-
mates into LOVE-inferred taxa distribution maps (Fig. 3a). 
First, we assumed that the probability of the presence of a 
taxon i around each pollen site ( )P ipresence  follows a bivari-
ate normal PDF (Kühl et al. 2002). This choice was con-
sistent with the working hypotheses of the LRA algorithms, 

considering that the atmospheric dispersion of pollen follows 
a Gaussian distribution (Prentice 1985, Sugita 1993, 1994, 
2007b). Moreover, it had the advantage of requiring few 
parameters to be estimated, allowing a simple estimation of 
probability densities:

P Nipresence PDF, with PDF~ = å( )m,   (2)

where µ = [µx, µy] and µx and µy correspond to the lon-
gitude and latitude of the site respectively, and where  
∑ = (σxρxyρyxσy) = (σ 0 0 σ) the variance-covariance matrix, 
assuming directional independence and considering a rea-
sonable isotropic bivariate normal distribution. The standard 
deviation σ of the PDF around µx and µy is linked with the 
1 km radius of the RSAP (Sugita 1994), assumed to be con-
stant over time (Plancher et al. 2022). As the LRA algorithm 
does not provide a measure of uncertainty for RSAP (Sugita 
2007b), it was assumed that each taxon is present within 
RSAP with a 99.9% probability. Then,

P im m* * .- < < +( ) =RSAP Presence RSAP 0 999   (3)

where Presencei is the geographic coordinate of a pixel where 
taxon i presence probability is estimated. Here, µ* represents 

Figure 3. Backward land-cover reconstruction (BACKLAND), a three-stage approach: (a) preliminary stage for taxon distributions (section 
‘Preliminary stage: map-inferred taxon distributions in 2008 and LOVE-inferred taxon distributions at TW1995’); (b) variables used by the 
BACKLAND approach (section ‘Variables used by the BACKLAND approach’); (c) BACKLAND modelling (section ‘Backward landscape 
modelling’). LCT: land-cover type; green: explained variables; blue: explanatory variables; red: final result; dotted arrows: learning and 
cross-validation steps, repeated for each sub-model; plain arrows: step processed once for each LCT.
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µx or µy, as Eq. 3 is valid in both directions of space. According 
to the tables of quantiles of the normal distribution,

P im s m s

s

* *. . . ,

.

- ´ < < + ´( ) =

=

3 09 3 09 0 999

3 09

Presence

and then RSAP   (4)

LOVE estimates represent the composition of vegetation 
as reflected by pollen assemblages, incorporating dispersal/
deposition biases and thus the fact that more distant emitting 
plants contribute less to the pollen assemblage than nearby 
plants (distance-weighted plant abundance, Sugita 2007b). It 
therefore makes sense to combine these LOVE estimates with 
bivariate Gaussian PDFs of taxon presence centered on the 
sampling points. For each taxon, the PDF around each site 
was therefore weighted by its corresponding LOVE estimate. 
As the PDFs are continuous and thus overlapping, a taxon 
LOVE-inferred distribution is the weighted sum of the seven 
PDFs of each site, obtained as follows:

LID
PDF LOVE

PDF LOVE
i

k i k

k

K

k i k

k

K

i

I=

´

´

=

==

å

åå

,

,

1

11

  (5)

where LIDi is the LOVE-inferred distribution of the taxon 
i, K and I are the total number of sites and taxa included, 
respectively (i.e. seven and 18 in this case), and PDFk is the 
probability density of a taxon’s presence around site k. PDFs 
and LOVE-inferred distribution calculations were coded in R 
(www.r-project.org). 

Variables used by the BACKLAND approach

Land-cover distributions at TW1995
The explained variables, representative of the land-cover 
type distribution at TW1995, were the multiscale densities 
of each land-cover type on the 1993 map, computed with 
MHM with the same settings as those used for the map-
inferred distributions (section ‘Map-inferred taxa distribu-
tions in 2008’). Models based on presence/absence maps of 
each land-cover type were tested, but using the multiscale 
density maps improved the goodness of fit of the models (not 
shown).

Explanatory variables
Two types of variables were used in the models to explain the 
TW1995 land-cover type densities: the estimated taxon dis-
tributions at TW1995 and environmental variables. First, the 
estimated taxon distributions were obtained by averaging the 
2008 map-inferred distributions and the TW1995 LOVE-
inferred distributions. Estimated distributions at TW1995 
thus take into account backward spatiotemporal autocor-
relation, yet assuming a similar influence of map-inferred 

distributions and LOVE-inferred distributions. The residual 
autocorrelation of the models (Crase et al. 2012) was previ-
ously considered but produced too strong a constraint in the 
models (not shown).

Environmental variables were included for calculating the 
effect of auxiliary explanatory variables on the vegetation dis-
tribution. Average values for elevation, exposure, slope and 
curvature were estimated from the digital elevation model. In 
order to obtain a north–south gradient, the exposure values 
were set between 0° (north) and 180° (south). The distance 
from the centre of each cell to the nearest water point (i.e. 
stream, lake) was derived from the original 2008 land-cover 
map (Houet et al. 2012).

Backward landscape modelling

Finally the BACKLAND approach for landscape backward 
prediction involves (section ‘Land-cover types multiple lin-
ear regressions’) learning and applying the models to the set 
of variables in order to then (section ‘Estimated land-cover 
map prediction and evaluation’) backward-model a land-
cover map and assess its similarity with the observed data 
(Fig. 3c).

Land-cover types multiple linear regressions
The relationship between land-cover type densities and explan-
atory variables (estimated taxon distributions and environ-
mental variables) was explored by ordinary multiple linear 
regressions, commonly used in statistical analysis of spatial 
data to predict distribution maps (Guisan and Zimmermann 
2000). One linear regression was built for each land-cover 
type, assuming that their densities follow a Gaussian distribu-
tion and respond linearly to the explanatory variables. Since 
we considered the composition of a land-cover type to be con-
stant, the model of a given type contains only the estimated 
distributions of taxa whose presence in this type was attested 
by the botanical data. The purpose of this supervision was to 
help the models produce a relevant statistical link. Then, a step-
wise regression was applied to each model as a first analysis, in 
order to select only the estimated distributions and the envi-
ronmental variables that significantly explained the variance of 
the studied land-cover type density (p < 0.05). The models 
and stepwise regressions were computed using the ‘stats’ and 
‘MASS’ packages (www.r-project.org, Ripley et al. 2013).

In order to estimate the prediction errors of the models, a 
K-fold cross-validation was implemented for the learning of 
each model (Hastie et al. 2009, Bennett et al. 2013). For each 
land-cover type, the response variable (land-cover type den-
sity) and the selected explanatory variables were divided into 
ten random groups (the same for all land-cover type models), 
each comprising 2100 pixels. Then, ten different sub-models 
were run, each time removing a different group of pixels to 
perform the training on the other nine groups (18 900 pixels) 
and the prediction of the density of the land-cover type in 
question on the excluded group. The normalized root mean 
square errors (NRMSE, Shcherbakov et al. 2013) were then 
used to estimate the prediction error of each land-cover type 
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sub-model and to compare the predictive power of the differ-
ent models with each other:

NRMSE RMSE
obs

obs pred

obs
= =

-å
D

D D
N

D

( )2

  (6)

with Dobs the observed density of a land-cover type in a pixel, 
Dpred the density predicted by the corresponding sub-model on 
this pixel, and N the number of observations (2100 pixels). We 
chose to normalise the RMSE to avoid the scale dependency 
between land-cover type models (Shcherbakov et al. 2013).

Estimated land-cover map prediction and evaluation
Finally, the densities of each land-cover type were predicted 
over the whole study area using the best sub-model, selected 
on the basis of the minimum NRMSE, pinpointing the model 
with the best predictive power. Using the sub-model with the 
best goodness of fit (largest fitted R2) or the complete models 
before cross-validation did not significantly change the pre-
diction of the models. At each pixel, the land-cover type cor-
responding to the highest predicted density value is chosen, 
ultimately producing pixel-by-pixel the land-cover mosaic of 
the past landscape. The similarity between the TW1995 pre-
dicted map and the observed 1993 map was evaluated using 
the comparison map profile software (CMP, Gaucherel et al. 
2008, 2018), calculating the Cohen’s Kappa index (Cohen 
1960) at the same observation scales as those used by the 
MHM software to calculate land-cover type densities (section 
‘Map-inferred taxa distributions in 2008’). CMP produces 
a multi-scale comparison map, thus reducing scaling biases 
too, where the average Kappa value at each pixel quantifies 
the average similarity between the two maps in the vicinity of 
that pixel. An average Kappa higher than 0.6 reflects a strong 
similarity between observed and estimated datasets (Cohen 
1960, Landis and Koch 1977). Using the same method, 
we also evaluated the similarity between the BACKLAND 
map at TW1995 and the 2008 map integrated into the 
BACKLAND estimation with the map-inferred taxon distri-
butions. This was done in order to test the influence of the 
2008 map on the final TW1995 BACKLAND result. These 
comparisons finally enabled the overall quality of the pro-
posed method to be assessed. In order to test for a potential 
bias related to the different spatial configurations of the land-
cover types, a Pearson correlation coefficient was calculated 
between their average patch density on the observed 1993 
land-cover map and the average Kappa index between their 
observed and BACKLAND-estimated distributions.

Results

Intermediate maps and estimated taxa distributions

The LOVE-inferred distributions showed gradients in veg-
etation composition (Fig. 4b) following the variability of 
the LOVE estimates between the seven sedimentary sites at 
TW1995 (Table 2). By integrating the 2008 map-inferred 

(Fig. 4a) and the TW1995 LOVE-inferred distributions with 
equal weights, the estimated taxa distributions at TW1995 
kept the gradients associated with the LOVE-inferred dis-
tributions while being constrained by the map-inferred dis-
tributions (Fig. 4c), thus incorporating the spatiotemporal 
autocorrelation in a straightforward manner.

According to the estimated distributions, the areas that 
were the most represented by grass taxa during the TW1995 
were the northern and western parts of the study area, 
concentrating the highest percentages of Cyperaceae and 
Poaceae, reaching up to 42 and 52% respectively (Fig. 4c). 
The southern part of the study area was mainly associated 
with the dominance of Ericaceae, with percentages greater 
than 50% over most of the studied area, and reaching 61% 
of the estimated vegetation. Their abundance estimated by 
the TW1995 LOVE-inferred distributions in the north-east 
part was largely mitigated by the map-inferred distributions 
constraint, as the broadleaved forest present at this location 
on the 2008 land-cover map contains only a small amount 
of Ericaceae (Table 3). The other two shrub taxa (C. vulgaris 
and Juniperus), mainly present in the central and northern 
parts, were more disparately distributed throughout the study 
area, with a strong predominance of C. vulgaris (up to 43%) 
over Juniperus (less than 3%). Finally, the eastern part was 
associated with the dominance of tree taxa, mainly Fagus in 
the northeast, whose percentages reached 32% in places, and 
Pinus, more to the southeast, representing around 15% of the 
vegetation (Fig. 4c).

Land-cover models

Variables selection and cross-validation
The land-cover type densities from the 1993 land-cover map 
were related to the taxon distributions estimated at TW1995 
and the environmental variables using multiple linear mod-
els. The stepwise regression did not change the composition 
of the linear predictors based on the land-cover type botanical 
composition, with the exception of the exclusion of Quercus, 
and Tilia estimated distributions from the broadleaved forest 
(BF) predictor (Table 4). All environmental variables were 
also used by the stepwise regression. Slope, elevation and dis-
tance to the nearest water point were significant in the lin-
ear models for all land-cover types, while only Rhododendron 
heathland (RH) was not significantly associated with expo-
sure. Terrain curvature was only significantly explanatory for 
the Festuca grassland (FG) distribution (positive influence), 
while the other environmental variables were significant for 
all land-cover types, except distance to water for mixed heath-
lands (MH).

All linear models performed with K-fold cross-validation 
were significant (p < 0.05). The goodness of fit of each sub-
model was not greatly influenced by the random sampling, 
as adjusted R2 appear stable across sub-models with small 
standard deviations (less than 0.002) (Fig. 5a). BF had the 
highest average fitted R2 (0.99), followed by mixed forests 
(MF, 0.91). Pine forest (PF) had an average fitted R2 of 0.83, 
and mixed (MH), Rhododendron (RH) and Calluna heath-
lands (CH) had fitted R2 of 0.76, 0.88 and 0.89, respectively. 
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Grasslands showed the lowest fitted R2, with averages of 0.43 
and 0.63 for FG and other grasslands (OG).

NRMSEs indicate differences in the quality of model 
predictions (Fig. 5b). The model with the highest predictive 
power was the BF model. The three heathlands and PF mod-
els had intermediate predictive abilities, with the CH model 
being the best of the three heathlands, followed by RH, MH 
and PF. The MF and FG models had significantly higher 
NRMSEs than the others, with higher standard deviations, 
indicating a higher sensitivity to random sampling.

Composition of predictors
The linear predictors of land-cover type densities contained 
between six (FG) and 12 (BF) estimated taxa distributions, 
and between three (RH) and five (FG) environmental vari-
ables. The linear predictors of the two grassland types were 
composed of ten common explanatory variables (six estimated 

distributions and four environmental variables). But only 
four of these ten common variables had the same sign of 
coefficient, indicating opposite effects of most variables on 
grassland type density. The taxa that most influenced the dis-
tribution of FG were Juniperus and Potentilla-type (negatively 
and positively, respectively). Conversely, the density of OG 
was the most negatively influenced by the estimated distri-
bution of Potentilla-type, and the most positively by that of 
P. lanceolata. Both grassland types are denser at lower eleva-
tions and away from water, but FG is favoured by a rather 
flat terrain with a northern exposure, while OG is favoured 
by slope and southern exposure. FG is the only land-cover 
type influenced by curvature, with a positive effect indicating 
a positive influence of a curved terrain favouring rainwater 
runoff. Regarding the three heathland types, the CH predic-
tor differed from both MH and RH in terms of the influence 
of the estimated distributions. With seven estimated distri-
butions having the same sign coefficient, MH and RH had 
the most similar predictors, MH differing only by a positive 
influence of Abies and Cyperaceae. The patches of CH and 
RH are denser on the slopes, whatever the exposure for RH 
but preferentially south for CH, closer to water points and 
at lower altitude for RH and far from water points and at 
higher altitude for CH. The density of MH is disadvantaged 
by slope, but is favoured by southern exposures and altitude.

The three tree-covered types were positively influenced 
by the estimated distributions of Cyperaceae, Ericaceae and 
Poaceae. Fagus estimated distribution was associated with the 
largest coefficient of BF, while MF was mostly influenced by 
Abies, and PF by Juniperus. Regarding the influence of the 
environmental variables, the densities of the three forest types 
are favoured by steep slopes and the proximity to water points. 
PF and MF are denser on northern slopes and altitude has a 
negative influence on the density of their patches, unlike BF.

Predicted land-cover map
The 1993 land-cover map and its BACKLAND estimate 
for TW1995 were highly similar (Fig. 6), with an average 
multiscale Kappa of 0.65 (> 0.6, Landis and Koch 1977). 
However, the mean Kappa is higher between the estimated 
TW1995 map and the 2008 map (0.71), integrated into the 
BACKLAND estimate by map-inferred distribution as a rep-
resentation of spatio-temporal autocorrelation.

The average multiscale similarity differed according to the 
predicted land-cover type (Fig. 6) and was positively corre-
lated with the average multiscale patch density of each type 
(Fig. 7). The land-cover type associated with the best pre-
diction was Deciduous forest, which also had the densest 
patches, while Festuca grassland was the least well predicted 
type, although pine and mixed forest patches showed lower 
mean multiscale densities (Fig. 7).

Discussion

In this study, we succeeded in reconstructing a continuous 
land-cover mosaic by combining LOVE estimates around 

Figure 4. Taxon distribution maps. (a) Map-inferred taxon distribu-
tions based on 2008 land-cover map. (b) LOVE-inferred taxon dis-
tributions based on TW1995 LOVE estimates. (c) Estimated taxon 
distributions obtained by averaging (a) and (b). Only seven taxa are 
shown here.
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nearby sedimentary sites and recent cartographic and botani-
cal data. The proposed BACKLAND approach ‘BACKward 
reconstruction of LAND-cover mosaics’ was implemented 
on a recent time-window (TW1995, 1990–2000) to test 

its robustness and reliability. In the Bassiès study area, we 
achieved high levels of accuracy in terms of both land-cover 
types (eight) and spatial resolution (20 m). To our knowl-
edge, this is the first past land-cover map reconstruction 
derived from pollen data with such a detailed vegetation 
composition and spatial resolution. BACKLAND integrates 
one of the most important properties of land cover and 
land-cover change, i.e. its strong dependence over space and 
time (i.e. spatial autocorrelation and temporal dependence). 
For this purpose, the reconstruction requires a three-stage 
approach (Intermediate taxon distributions, land-cover and 
explanatory variables estimation, and land-cover backward 
modelling) detailed in the following section. After a discus-
sion of the advantages and weaknesses of the BACKLAND 
approach, it is compared to other existing pollen-based 
land-cover reconstruction approaches. Finally, we present its 
potential in the fields of historical ecology, landscape ecology 
and habitat management.

BACKLAND approach

Application conditions and required data
The BACKLAND approach relies on past estimates of local 
vegetation composition estimated by the LRA approach 
(REVEALS and LOVE, Sugita 2007a, b). The use of LOVE 
estimates of vegetation composition is motivated by the char-
acterisation of the spatial extent of the reconstruction using 

Figure 5. Estimation of model fit by K-fold cross-validation. (a) 
Sub-models fitted R2 and (b) sub-models normalized root mean 
square errors (NRMSE).

Figure 6. Observed 1993 and BACKLAND-estimated TW1995 land-cover maps and their corresponding multiscale comparison map.
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the relevant source areas of pollen (RSAPs), which is essential 
for the BACKLAND approach and cannot be identified with 
raw pollen data, and because they allow a more accurate recon-
struction than the latter (Hellman et al. 2008, Sugita et al. 
2010b, Overballe-Petersen et al. 2013, Mazier et al. 2015, 
Marquer et al. 2020b, Plancher et al. 2022). However, cer-
tain conditions are necessary for the application of the LRA 
approach (Sugita 2007b), and therefore for the application of 
BACKLAND. In particular, it is necessary to have the input 
parameters of the LRA, including pollen fall speeds, estimates 
of the relative pollen productivity of key taxa and their stan-
dard errors. These values exist for a large number of African, 
Asiatic and European plant taxa (Duffin and Bunting 2008, 
Bunting et al. 2013, Li et al. 2018, Wieczorek and Herzschuh 
2020, Gaillard et al. 2021, Githumbi et al. 2022), although 
the data are currently mainly provided for central/northern 
European and Chinese plant taxa (Wieczorek and Herzschuh 
2020). Furthermore, the BACKLAND approach relies on 
the redundancy of information between LOVE estimates to 
provide continuous maps of LOVE-inferred taxa distribu-
tion. It is therefore necessary to target a study area comprising 
sedimentary sites that are sufficiently close to each other so 
that their RSAPs overlap as much as possible. Therefore areas 
with a dense network of lakes and peat bogs, such as moun-
tain areas with a bedrock of magmatic rocks or boreal regions 
(Peiry 2015), should be particularly suitable if well-preserved 
sediments and reliable chronologies are available. 

In addition, BACKLAND requires a pair of recent and 
past land-cover maps characterising the land-cover mosaic of 
the studied landscape with the same land-cover type classi-
fication. The past land-cover map must be within the time-
window of the LOVE estimates. The spatial resolution and 
classification of land-cover types achieved by BACKLAND 
reconstructions depends on their definition on the land-cover 
maps used for training. Moreover, the more the landscape 
contains rare or highly fragmented land-cover types, the 
finer the spatial resolution required to integrate these types 
into the models, which can generate excessive computation 
times. In this study, a spatial resolution of 20 m was a reason-
able compromise between number of land-cover types and 
computation times. Additional maps may also be needed to 

extract auxiliary variables depending on the studied land-
scapes and the environmental constraints influencing their 
vegetation distribution. A digital elevation model was used 
here to extract altitude, exposure, slope and curvature vari-
ables. The distance to the nearest water point, a significant 
auxiliary variable for all land-cover types here, was extracted 
from the recent land-cover map, but other sources providing 
information on the hydrographic network can be considered.

Finally, botanical data should provide information on the 
recent floristic composition of the land-cover types. The spe-
cies reported by these inventories must be converted accord-
ing to the key pollen taxa modelled by LOVE, which are 
considered to represent 100% of the vegetation cover. These 
data are then combined in different steps by several simple 
methods to produce the backward landscape prediction, 
detailed in the next section.

Originality and assumptions of the BACKLAND approach
In stage A of the approach (Fig. 3a; section ‘Preliminary stage: 
map-inferred taxon distributions in 2008 and LOVE-inferred 
taxon distributions at TW1995’), the recent land-cover map 
and botanical data are combined into map-inferred taxon dis-
tributions (Fig. 4a) with the Multiscale heterogeneity map 
software (MHM, Gaucherel 2007). MHM density analysis 
takes into account the heterogeneity and the multiscale dis-
tribution of species (Chen et al. 2005, Gaucherel et al. 2007, 
Lemly and Cooper 2011, Dray et al. 2012, Viers et al. 2012). 
In Bassiès, plant taxa are mainly ubiquitous and are found 
in various proportions in several land-cover types, thus jus-
tifying the use of a multiscale tool. By combining botanical 
data and multiscale density maps, we assume that land-cover 
densities influence linearly and with equal weight the taxon 
proportion for the production of map-inferred taxon distri-
butions. In the absence of any contradictory evidence, this 
seems to be a reasonable assumption. These map-inferred 
distributions form one of the two categories of intermedi-
ate taxon distribution maps and are used in stage B of the 
BACKLAND approach to retroactively integrate spatiotem-
poral autocorrelation into the distribution of taxa estimated 
at the past time window. The other category of intermedi-
ate distribution maps is LOVE-inferred taxon distributions 
(Fig. 4b), which are a main originality of the BACKLAND 
approach. They are formed by the combination of PDFs 
(Kühl et al. 2002) with LOVE estimates from nearby sedi-
mentary sites. For this step, we assumed a bivariate Gaussian 
distribution of taxon occurrence probability around pollen 
sites, with 99% probability that a taxon is present within the 
RSAPs. While elevation co-kriging has been advocated for 
the spatial interpolation of LRA estimates beyond RSAPs 
(O’Dwyer et al. 2021), these two assumptions in line with 
the Gaussian dispersion of pollen grains around the study 
sites (Prentice 1985) make the method proposed here both 
more parsimonious and more suitable for LOVE spatialisa-
tion when RSAPs overlap. Moreover, this method revealed 
smooth LOVE compositional gradients, which would have 
been difficult with kriging as the latter performs poorly when 
it is necessary to extrapolate estimates beyond the sedimentary 

Figure 7. Correlation between the 1993 observed land-cover aver-
age densities and their BACKLAND-estimated distribution accu-
racy (average multiscale Kappa between the 1993 observed and the 
BACKLAND-estimated TW1995 land-cover maps).
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sites over the entire study area (not shown). PDFs are already 
used in palaeoecology at regional to continental scales to infer 
broad and long-term vegetation changes based on pollen 
percentage data (Hély and Lézine 2014, Ledru et al. 2016). 
Here, they allowed the construction of distribution maps of 
pollen taxa whose abundance gradients are determined both 
by variations in their LOVE estimates between each site and 
by their probability of occurrence within the 9 km² study 
area, taking into account the overlapping RSAPs. Such local 
gradients would not have been revealed using raw pollen 
percentages that show less spatial variability than the LOVE 
estimates (Plancher et al. 2022). The LOVE-inferred distri-
butions are intermediate results that could also be of interest 
for studies on past plant distributions. 

In stage B (Fig. 3b; section ‘Variables used by the 
BACKLAND approach’), we used MHM density maps to 
smooth past (1993) land-cover distributions and make their 
spatial variability comparable to continuous explanatory vari-
ables (Fig. 3b). The land-cover explanatory variables included 
environmental variables as well as a set of estimated taxa 
distributions at TW1995, according to the botanical com-
position of each land-cover type. The choice of auxiliary envi-
ronmental variables depends on the study area and it could be 
relevant to integrate others, such as pedological data not avail-
able in our area. The TW1995 estimated taxon distributions 
are the result of averaging TW1995 LOVE-inferred distri-
butions and 2008 Map-inferred distributions to incorporate 
the land-cover spatiotemporal autocorrelation directly into 
explanatory variables. This straightforward and exploratory 
way to integrate spatiotemporal autocorrelation resulted in 
estimated distributions consistent with 2008 taxon distri-
butions and that revealed TW1995 LOVE-based gradients 
(Fig. 4c), while using residual autocorrelation (Crase et al. 
2012) would drive the results towards the sole landscape 
autocorrelation, preventing LOVE-based variations from 
being revealed (not shown). The production of estimated 
taxon distributions is based on two assumptions. First, due 
to the integration of map-inferred distributions, it is assumed 
that the same land-cover types were present during the study 
period and that their composition remained constant. This 
imposes a limited temporal perspective on the application of 
BACKLAND, since the older the time window targeted, the 
less reasonable this assumption is. Then, the incorporation of 
spatiotemporal autocorrelation in the estimated taxon distri-
butions assumes an influence of equal weight between 2008 
map-inferred and TW1995 LOVE-inferred distributions 
through averaging. The relative influence of map-inferred 
and LOVE-inferred distributions could be estimated based 
on independent data indicating environmental or societal 
changes that may have sharply modified vegetation composi-
tion and/or patterns, and thus the influence of autocorrela-
tion between two target periods (e.g. proxies related to local 
fire events or grazing activities). There is currently no way of 
estimating such weighting factors, so their use would require 
additional assumptions about the stationarity of taxon distri-
butions over time. Our approach, although involving a strong 
and arbitrary hypothesis, remains parsimonious. In our case 

study in particular, the recent land-cover maps used to imple-
ment BACKLAND are very similar (Fig. 2), so it is unlikely 
that the integration of spatial autocorrelation with the 2008 
map-inferred distribution would have a strong impact on the 
BACKLAND estimate of TW1995. It would be interesting 
to implement the BACKLAND approach on study areas 
that have recently undergone significant landscape changes, 
and which are informed by land-cover maps, in order to 
assess the influence of the integration of map-inferred taxon 
distributions. 

In stage C (Fig. 3c, section ‘Backward landscape model-
ling’), traditional and easy-to-use multiple linear models 
were employed for the backward modelling of a TW1995 
land-cover map. We therefore assumed a linear relationship 
between land-cover type densities and explanatory vari-
ables. Such conditions are not fully met in our datasets, but 
large sample sizes limit departures from this assumption. 
Transforming the data or using more complex and non-
linear models (e.g. generalized additive models, Hastie and 
Tibshirani 1987) did not change the quality of the results (not 
shown). Untransformed land-cover type densities, as well as 
linear models less prone to overfitting to the training data 
than other less straightforward or non-linear models, were 
therefore preferred, especially since they revealed a good fit 
to the predictors and an overall high accuracy (Fig. 5). First, 
the stepwise regression and cross-validation training of the 
linear models identified statistically significant relationships 
between all 1993 land-cover density maps and explanatory 
variables (Table 4). The estimation of negative coefficients 
associated with some estimated taxon distributions, despite 
their integration on a botanical basis, is evidence of the taxon 
distribution heterogeneity, as most taxa are found in all types 
in varying proportions (Table 4). The significant influence of 
environmental variables on the distribution of all land-cover 
types reflects the environmental constraints in the Bassiès 
vegetation distribution. Nevertheless, the signs of these 
environmental influences must be interpreted with caution, 
as statistical relationships can be estimated by the models 
through interactions with other variables not included in the 
models. Here, the positive influence of altitude and southern 
exposure on the broadleaved forest (BF) patch density could 
be due to the presence of scree (a non-pollen-producing area 
excluded from analyses) located on the northern slope under-
lying LEG, thus reducing the density of the forest patch 
mainly in its lowest part. The variability in prediction accu-
racy between land-cover types revealed a weakness in model-
ling the most heterogeneous and rarest ones in the study area 
(here mixed forest, pine forest and Festuca grasslands, Fig. 5b, 
6–7). The greater difference in spatial variability between 
explanatory variables and rare land-cover type distributions 
(which have low densities across the whole landscape) made it 
more difficult to establish a linear relationship between them 
than for the more abundant types in the study area. We thus 
expect BACKLAND to have difficulty representing the rarest 
and most fragmented land-cover types. This difficulty could 
explain why the TW1995 BACKLAND-estimated map is 
more similar to the 2008 map than to the 1993 map. Indeed, 
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the main difference between the two remote-sensed maps is 
the reduction in the patch of Festuca grassland to the north of 
the study area (Fig. 2). Since BACKLAND performs poorly 
in representing this type of land-cover, the map estimated at 
TW1995 is slightly more similar to the 2008 map. 

The ideal landscape on which this approach could be 
applied would be a land-cover mosaic with high equitability 
and aggregation indexes, thus avoiding representation biases 
that disadvantage the sparsest or most fragmented land-cover 
types. Nevertheless, all things considered, BACKLAND 
produced a land-cover map representing the eight targeted 
land-cover types with a strong similarity with the refer-
ence map of 1993 (average Kappa = 0.65 > 0.6, Landis and 
Koch 1977), attesting the potential of this approach for the 
reconstruction of past land-cover mosaics. Such precision in 
terms of nomenclature and spatial resolution together with 
simple and parsimonious working assumptions make the 
BACKLAND method original and fully complementary to 
previous attempts at pollen-based spatially explicit land-cover 
reconstructions. 

Finally, uncertainties arising from both the datasets used 
(botanical data, LOVE estimates, maps) and the methods 
employed (PDFs, linear models) are present at each stage 
of the learning process and will accumulate when applying 
BACKLAND on past time-windows. This methodological 
development should be completed by an uncertainty propa-
gation analysis in order to be able to assess the uncertainty of 
the estimated land-cover maps.

Comparison with previous pollen-based land-cover 
maps

Based on LOVE estimates of local vegetation composition, 
using a combination of simple probabilistic and statistical tools, 
and relying on reasonable assumptions, the BACKLAND 
method represents a new way of exploring past land-cover 
mosaics that is complementary to existing approaches. Other 
approaches proposed land-cover maps based on pollen data and 
pollen dispersal and deposition. With the multiple scenario 
approach (MSA, Bunting and Middleton 2009, Bunting et al. 
2018, HUMPOL, Middleton and Bunting 2004, Bunting 
and Middleton 2005), plausible landscape scenarios are 
selected on the basis of the best similarities between mod-
elled and empirical pollen data: LOVE data are therefore not 
used directly for vegetation spatialization, despite their poten-
tial to reflect inter-site variations (Overballe-Petersen et al. 
2013, Plancher et al. 2022), and map successions do not take 
account of spatiotemporal autocorrelation in taxon distribu-
tion. Due to the multiplicity of plausible scenarios, the analy-
sis of landscape dynamics proposed by the MSA is complex. In 
BACKLAND, LOVE estimates are used directly in the pro-
duction of taxon distribution maps. LOVE estimates therefore 
play a role in both the estimation of land-cover composition 
and the distribution of land-cover types estimated by the 
models, thus limiting the assumptions on taxon location, and 
spatiotemporal autocorrelation ensures plausible continuity in 
the estimated landscape dynamics. Although LOVE estimates 

have previously been used to directly produce taxon distribu-
tion maps via interpolation techniques (O’Dwyer et al. 2021), 
BACKLAND has the advantage of basing taxon distributions 
on Gaussian PDFs of taxon occurrence consistent with the 
LRA assumptions (Prentice 1985, Sugita 2007b). Compared 
with the smooth distributions produced by interpolation 
techniques (O’Dwyer et al. 2021), and because BACKLAND 
integrates spatiotemporal autocorrelation, taxon distribution 
maps estimated by BACKLAND are both more spatially het-
erogeneous (and thus more realistic) and less impacted by 
potential pollen biases persisting after LRA modelling – which 
may, for example, be due to changes in the structure of the 
vegetation close to the sites rather than in the composition 
(Sugita et al. 2010a). The use of multiple linear models results 
in the production of a single land-cover map, greatly facilitat-
ing the interpretability of the results, particularly for future 
BACKLAND applications for long-term land-cover mosaic 
successions, which is difficult when multiple scenarios are 
proposed (Caseldine et al. 2008, Bunting et al. 2018). Finally, 
using linear models does not constrain the direction of pos-
sible transitions between land-cover types from one period to 
another, unlike the use of Markov chain models also used for 
the reconstruction of a spatially explicit landscape within a 
lake RSAP (Poska et al. 2008). 

Implications for environmental sciences

BACKLAND has an interesting potential to reconstruct 
long-term land-cover mosaic dynamics in anthropogenic 
contexts, where reverse transitions to natural vegetation 
succession can occur. Indeed, once BACKLAND has been 
implemented over a recent period, it is intended to be easily 
applied retroactively and step-by-step to produce a succession 
of land-cover maps based on pollen data (as long as the study 
area meets the conditions outlined in section ‘Application 
conditions and required data’). Retroactive application only 
requires 1) estimating the new map-inferred taxon distribu-
tions from the recent land-cover map and 2) calculating the 
LOVE-inferred taxon distributions corresponding to the 
targeted past time period to 3) obtain their corresponding 
estimated distributions. Obtaining the new estimated distri-
butions, associated with the explanatory environmental vari-
ables, thus appears to be sufficient to predict the land-cover 
mosaic of the targeted past period. In theory, this process can 
be repeated step-by-step to produce a temporal atlas of land 
cover spanning several centuries (Plancher et al. unpubl.). 
By producing a continuous series of maps using the same 
approach, it offers the possibility to study long-term land-
cover composition and configuration changes without the 
issues of nomenclature changes and resolution degradation. 

The BACKLAND approach is a static modeling approach, 
and the integrated explanatory variables do not include socio-
economic, ecological or climatic drivers whose variation can 
influence the land-cover spatial and temporal variability. 
However, by integrating and spatialising the LOVE estimates, 
BACKLAND indirectly integrates the effect of these drivers 
on vegetation composition and configuration. Future studies 
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would be needed to compare the outputs of this static dia-
chronic approach with those of other types of pattern-based 
(Houet et al. 2012a, b) or process-based (Gaucherel and 
Pommereau 2019, Gaucherel et al. 2020, Cosme et al. 2022) 
modeling approaches, in order to evaluate and interpret the 
convergences and divergences of the modeled trajectories. 
Such comparisons will allow a better overall understanding 
of the Bassiès socio-ecosystem dynamics (Houet et al. 2010b, 
Gritti et al. 2013).

Better understanding and managing cultural landscapes, 
characterizing their ecosystem service dynamics, being able 
to predict their trajectories following land-use and land-
cover changes, and improving their management strategies 
are research priorities involving a close connection between 
ecology and palaeoecology (Rull 2014, Seddon et al. 2014). 
Indeed, the few decades covered by ecological studies are not 
enough to fully integrate ecological processes (Jeffers et al. 
2015). Unlike ecology, paleoecology allows the integration 
of slow processes, but palaeoecologists must make an effort 
to ensure that paleoecological data are suited to the needs 
of ecologists, especially in terms of spatial resolution and 
extent of reconstructions (Rull 2014, Birks 2019). Ecological 
processes evolve over time under the influence of the spatial 
context in which they operate (Ricklefs 1987, Leibold et al. 
2004), but there are still few approaches that are capable of 
integrating both the temporal and spatial aspects of ecosys-
tem dynamics over the long term (White et al. 2010). This 
study represents progress in the conciliation between paleo-
ecology and general ecology. By increasing the temporal 
extent of landscape change studies as well as their precision 
in terms of nomenclature and spatial resolution of land-cover 
reconstructions, BACKLAND will help to improve our 
understanding of the legacy of land-cover change on biodi-
versity at several scales (alpha, beta diversities; Rosenzweig 
1995, Duelli 1997, Wiens 2009, Zimmermann et al. 2010, 
Tscharntke et al. 2012, Woodbridge et al. 2020), to assess 
the responses and feedbacks of vegetation to global change 
(Turner 1994, Turner et al. 2007), and to refine studies on 
species autecology (Abraham et al. 2023).

Conclusion

Maps of past land-cover mosaic provide essential informa-
tion related to the ecological state of land areas and how they 
have been modified by humans. Hence, accurate informa-
tion related to past land cover is essential both for managing 
natural resources and for understanding society’s ecological, 
biophysical, and resource management footprint. In this 
paper we describe a new approach based on LOVE estimates 
of neighbouring sites with overlapping RSAPs, cartographic 
and botanical data, and parsimonious statistical tools, to 
backward estimate land-cover maps with a 20 m spatial reso-
lution. The approach has been tested on a well-documented 
area in terms of available pollen and cartographic data. Its 
accuracy was assessed on a recent time window, revealing a 
high similarity between the observed and estimated maps. 

It makes BACKLAND a promising approach to provide fine-
grained reconstruction of heterogeneous land-cover mosaics. 
By integrating spatiotemporal autocorrelation in estimated 
taxon distributions, BACKLAND is suitable for exploring 
long-term land-cover dynamics. Moving forward, we will 
apply the method to fossil pollen data from consecutive time 
windows over the last 200 years in the Bassiès area. 
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