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We give conditions for a non-monotone system to preserve the usual vector order of solutions for a subset of initial conditions. Our approach consists of separating terms that meet Kamke's sign conditions from other ones in the dynamics, and considering Picard iterations. These conditions amount for the dynamics to preserve a partial order, which is not necessarily induced by a cone. Examples illustrate the results.

Introduction

Monotone dynamical systems have received a great attention in the literature (see for instance the monograph [START_REF] Smith | Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems[END_REF], the review [START_REF] Hirsch | Monotone Dynamical Systems[END_REF] and the references herein). Let us recall that the semi-flows of monotone systems preserve a vector order, and that their asymptotic behaviors present some strong properties (see [START_REF] Hirsch | Systems of differential equations which are competitive or cooperative I. Limit sets[END_REF][START_REF] Hirsch | Systems of differential equations that are competitive or cooperative II. Convergence almost everywhere[END_REF]). In particular, systems ẋ = f (t, x) in R n that are cooperative preserve the partial order relatively to the positive orthant in R n + : y 0 ≥ x 0 ⇒ y(t) ≥ x(t), t ≥ t 0

(where y(•), x(•) are solutions of the initial value problems y(t 0 ) = y 0 , x(t 0 ) = x 0 and ≥ is considered component-wise). The Kamke's condition

∂f i ∂x j (t, x) ≥ 0, i = j (2) 
characterizes such systems from the single knowledge of the Jacobian matrix of f . This condition can been extended to partial orders relatively to the other orthants of R n , that are {x ∈ R n ; (-1) mi x i ≥ 0; i = 1 • • • n} where m i ∈ {0, 1} (-1) mi+mj ∂f i ∂x j (t, x) ≥ 0, i = j

(see [START_REF] Smith | Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems[END_REF]), or for even more general positive cones P of R n λ ∂f ∂x (t, x).y ≥ 0, y ∈ ∂P, λ ∈ Λ(P ) [START_REF] Hairer | Solving Ordinary Differential Equations I Nonstiff Problems[END_REF] where Λ(P ) is the set of supporting linear forms of P (see [START_REF] Walcher | On cooperative systems with respect to arbitrary orderings[END_REF]). More recently, the cooperativity property with respect to cones has been characterized for non-smooth dynamics [START_REF] Gajardo | Cross-nonnegativity and monotonicity analysis of nonlinear dynamical systems[END_REF].

The preservation of vector order for solutions of dynamical systems has important implications in several applications. In particular, this property is at the core of the interval observers techniques (see for instance [START_REF] Gouzé | Interval observers for uncertain biological systems[END_REF][START_REF] Rapaport | Parallelotopic and practical observers for non-linear uncertain systems[END_REF]). However, in some practical problems, one may observe an order preservation of trajectories (relatively to the positive orthant R n + ) for some subsets of initial conditions, while the system is not cooperative. For instance, the anaerobic digestion model studied in [START_REF] Ouchtout | Analysis of an anaerobic digestion model in landfill with mortality term[END_REF] exhibits the monotone property (1) of solutions for some realistic operating conditions and initial conditions when augmenting the initial density of organic matter, while the dynamics is nowhere cooperative in the domain. This property has a practical impact on the performance of the biogaz production of the system, when it is increasing with respect to the initial organic matter (we refer the reader to [START_REF] Ouchtout | Analysis of an anaerobic digestion model in landfill with mortality term[END_REF] for further details). The aim of the present work is to characterize theoretically such situations for a class of systems. For this purpose, we shall consider a decomposition of the map f by isolating terms into a partial map h that prevent the Kamke's condition to be fulfilled, and give conditions on the maps f and h for the ordering property (1) to hold for a subset of initial conditions. Note that in practice it is not always easy to find a cone P that verify condition (3) (if it exists). This is also a motivation of our work to propose a methodology that could facilitate this search.

For simplicity of the presentation, we shall consider autonomous dynamics only, but extension of the results to non-autonomous ones does not present any particular difficulty and is left to the reader. The paper is organized as follows. In Section 2, we define a partial order in the positive quadrant induced by the decomposition of the dynamics, under some hypotheses, and give preliminaries results that will be used in the following. Section 3 gives our main results about properties of the maps f and h that ensure the preservation of the partial order. Finally, Section 4 illustrates the results and the methodology on examples.

Hypotheses and preliminaries

Consider a dynamical system on a domain Ω ⊂ R n ẋ(t) = f (x(t)), t ≥ 0. (4) 
We assume that f can be written as

f (x) = g(x, h(x)), x ∈ Ω (5) 
where h a map from Ω to R m such that the following hypotheses are satisfied.

H0. The maps g, h belong to

C 1 (Ω × h(Ω), R n ), C 1 (Ω, R m ) respectively.
H1. For any continuous function φ : R + → h(Ω), Ω is positively invariant by the non-autonomous system ẋ(t) = g(x(t), φ(t)), t ≥ 0 [START_REF] Hirsch | Monotone Dynamical Systems[END_REF] which is moreover forward complete.

H2. The dynamics ẋ = g(x, z) is cooperative on Ω, for any fixed z ∈ h(Ω) i.e. the Kamke's condition (2) is fulfilled

∂g j ∂x k (x, z) ≥ 0, j = k, x ∈ Ω.
H3. The map z → g(x, z) is monotone (i.e. component-wise non-decreasing) on h(Ω), for any x ∈ Ω i.e.

z, z ∈ h(Ω), z ≥ z ⇒ g(x, z) ≥ g(x, z).
H4. The components of h have no critical point in Ω i.e.

∇h j (x) = 0, j = 1 • • • m, x ∈ Ω.
Remark 1. When the dynamics (4) is not cooperative but satisfy H2 and H3, the map h is necessarily non monotone.

We then consider a partial order on Ω, defined as follows Definition 1. For x, y in Ω, y x ⇐⇒ y ≥ x and h(y) ≥ h(x) (component-wise).

Let us underline that this partial order is not necessarily induced by a cone when the function h is not homogeneous (see for instance examples in Section 4.1 and 4.2). Otherwise, when h is for instance linear, h(x) = Ax where A is a m × n matrix, the partial order is induced by the cone C := {x ∈ R n + ; Ax ≥ 0} and y x amounts exactly to write y -x ∈ C.

As the partial order is not necessarily induced by a cone, we shall use a different technique than the usual one based on the Jacobian matrix of f [START_REF] Smith | Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems[END_REF][START_REF] Walcher | On cooperative systems with respect to arbitrary orderings[END_REF]. For a given time interval [0, T ], we associate to x 0 , x0 in Ω the sequence of functions φ i , i = 0, 1, • • • defined as follows 1. the function φ 0 is given by φ 0 (t) = h(x(t)), t ∈ [0, T ] where x(•) is the solution of (4) for the initial condition x(0) = x 0 , 2. the functions φ i for i = 1, • • • are given recursively by

φ i = O[φ i-1 ], i = 1, • • •
where O is the operator defined on the set Φ of continuous functions φ : [0, T ] → h(Ω) as

O[φ](t) := h(x φ (t)), t ∈ [0, T ]
and x φ is the solution of (6) for the initial condition x(0) = x0 .

We shall denote by x(•) the solution of ( 4) for the initial condition x(0) = x0 , and the corresponding function φ

(t) = h(x(t)) for t ∈ [0, T ].
Remark 2. For sake of simplicity of the presentation, we have assumed completeness of the system. As we consider comparison of solutions on a finite time interval, this assumption can be relaxed considering a time interval [0, T ] on which solutions x(•), x(•) are defined.

Note that the sequence of solutions x φi which alternates the integration of the g dynamics for a fixed function φ i and the update of the function φ i is in a spirit similar to numerical schemes for computing approximate solutions of differential equations (see for instance [START_REF] Hairer | Solving Ordinary Differential Equations I Nonstiff Problems[END_REF]), but our purpose here is purely theoretical. One has the following property about this sequence of solutions.

Lemma 1. Assume Hypotheses H0-H1 are fulfilled. The sequence (x φi , φ i+1 ) converges uniformly to (x, φ) on [0, T ].

Proof. Let > 0. The map h being continuous, one has

M := sup x∈B(x0, )) ||h(x)|| < +∞.
For T 0 > 0, consider the set

E := {x(•) ∈ C([0, T 0 ], Ω); x(0) = x0 , ||x(t) -x0 || ≤ , t ∈ [0, T ]}. For x(•) ∈ E, we define A[x](•) as the solution of ẏ = g(y, h(x(t))), y(0) = x0 for t ∈ [0, T 0 ] (note
that the solution y(•) of this Cauchy problem is unique and well defined thanks to Hypotheses H0 and H1). One has then

y(t) = x0 + t 0 g(y(τ ), h(x(τ ))dτ, t ∈ [0, T 0 ].
The map g being C 1 , there exists a number C > 0 such that

||y(t) -x0 || ≤ t 0 ||g(y(τ ), h(x(τ ))||dτ ≤ t 0 C(1 + ||y(τ )|| + ||h(x(τ )||)dτ, t ∈ [0, T 0 ]
and one gets

||y(t) -x0 || ≤ t 0 C(1 + ||y(τ )|| + M )dτ = C(1 + ||x 0 || + M )t + C t 0 ||y(τ ) -x0 ||dτ. With Gronwall's Lemma, one obtains ||y(t) -x0 || ≤ C(1 + ||x 0 || + M )te Ct ≤ C(1 + ||x 0 || + M )T 0 e CT0 .
For T 0 > 0 small enough, one has C(1 + ||x 0 || + M )T 0 e CT0 ≤ and thus y(•) = A[x](•) belongs to E. A is then well defined as an operator on E.

Take two elements x(•), x(•) in E. One can write for any t ∈ [0, T 0 ]

||A[x](t) -A[x](t)|| ≤ t 0 ||g(A[x](τ ), h(x(τ ))) -g(A[x](τ ), h(x(τ )))||dτ ≤ t 0 L g (||A[x](τ ) -A[x](τ )|| + ||h(x(τ )) -h(x(τ ))||)dτ
where L g is the Lipschitz constant of the map g on B(x 0 , ) × h(B(x 0 , )). One has also

||A[x](t) -A[x](t)|| ≤ t 0 L g (||A[x](τ ) -A[x](τ )||)dτ + T 0 L g L h ||x -x|| T0
where L h is the Lipschitz constant of h on B(x 0 , )) and || || T0 denotes the infinity norm on [0, T 0 ]. With Gronwall's Lemma, one can write

||A[x](t) -A[x](t)|| ≤ T 0 L g L h e LgT0 ||x -x|| T0 , t ∈ [0, T 0 ].
One has T 0 L g L h e LgT0 < 1 for T 0 small enough, and we conclude that the operator A is a contraction mapping on E for the || || T0 norm. By the Banach's fixed point theorem, we deduce that the Picard's iterations

x φi+1 (•) := A[x φi ](•)), i = 0, • • • where x φ0 (•) is the solution of ẋ = g(x, φ 0 (t)) with x(0) = x0 , converges uniformly to the unique fixed point x(•) of A, that is the solution of ẋ = g(x, h(x)) = f (x), x(0) = x0 on [0, T 0 ]. By continuity of h, the sequence φ i+1 (•) = h(x φi (•)) converges uniformly to φ(•) = h(x(•)).
If T 0 < T , one can reproduce the same arguments for the initial condition (T 0 , x(T 0 )) on a time interval [T 0 , T 1 ] and then on [T 1 , T 2 ] and so on.... One gets an increasing sequence T i , i = 0 • • • . If this sequence is bounded, it converges to a certain T ∞ < +∞, and one obtains the uniform convergence of the sequence (x φi (•), φ i+1 (•)) to (x(•), φ(•)) on the time interval [0, T ∞ ), where x(T ∞ ) exists from Hypothesis H1. If T ∞ < T , one can apply again the same arguments for the initial condition (T ∞ , x(T ∞ )) until one obtains the uniform convergence of the sequence (x φi (•), φ i+1 (•)) on the time interval [0, T ].

Comparison of solutions

We first give a result concerning the comparison of the solutions for the partial order . Lemma 2. Assume Hypotheses H0-H3 are satisfied. If x0

x 0 and the sequence φ i is non decreasing i.e. φ i+1 (t) ≥ φ i (t) (component-wise) for any t ∈ [0, T ] and i = 0, 1, • • • then one has

x(t) x(t), t ∈ [0, T ].
Proof. Remark first that the solution x(•) is also solution of the non autonomous system ẋ = g(x, φ 0 (t)) [START_REF] Ouchtout | Analysis of an anaerobic digestion model in landfill with mortality term[END_REF] for the initial condition x(0) = x 0 .

Let x φ0 (•) be the solution of [START_REF] Ouchtout | Analysis of an anaerobic digestion model in landfill with mortality term[END_REF] for the initial condition x(0) = x0 . From Hypothesis H2, the nonautonomous dynamics [START_REF] Ouchtout | Analysis of an anaerobic digestion model in landfill with mortality term[END_REF] is cooperative and consequently one has x φ0 (t) ≥ x(t) for any t ∈ [0, T ].

Let x φ1 (•) be the solution of ẋ = g(x, φ 1 (t)) [START_REF] Rapaport | Parallelotopic and practical observers for non-linear uncertain systems[END_REF] for the initial condition x(0) = x0 . If φ 1 ≥ φ 0 , then by Hypothesis H3, one has g(x, φ 1 (t)) ≥ g(x, φ 0 (t)) for any x ∈ Ω and t ∈ [0, T ]. Let us recall that the solutions of two differential equations, whose right-hand sides are component-wise ordered, and one of the equations is cooperative, are ordered (see for instance [START_REF] Walter | Differential and Integral Inequalities[END_REF]). The dynamics [START_REF] Ouchtout | Analysis of an anaerobic digestion model in landfill with mortality term[END_REF] being cooperative, one then gets x φ1 (t) ≥ x φ0 (t) for any t ∈ [0, T ].

Recursively, one obtains x φi+1 (t) ≥ x φi (t) for i = 1, • • • and t ∈ [0, T ]. Then one gets from Lemma 1

x(t) = lim i→+∞ x φi (t) ≥ x φ0 (t) ≥ x(t), t ∈ [0, T ].
In the same way, one has

φ(t) = h(x(t)) = lim i→+∞ φ i (t) ≥ φ 0 (t) = h(x(t)), t ∈ [0, T ].
We are now ready to give our main results.

Main result

Proposition 1. Assume Hypotheses H0-H4 are satisfied. If the maps g and h satisfy for any j = 1

• • • m the condition x, y ∈ Ω, z ∈ h(Ω), y ≥ x, h(y) ≥ h(x) ≥ z, h j (y) = h j (x) ⇒ D j (x, y, z) := ∇h j (y).g(y, h(x)) -∇h j (x).g(x, z) ≥ 0 ( 9 
)
then having x0 x 0 in Ω implies x(t) x(t) for any t ∈ [0, T ].
Proof. Let us consider the set

S := {(x, y) ∈ Ω 2 , h(y) ≥ h(x)}.
Under Hypothesis H4, the outer normal to this set is given by the following expression

N S (x, y) = j, hj (y)=hj (x)
R + ∇h j (x) -∇h j (y) , (x, y) ∈ ∂S.

We proceed recursively to show that the sequence φ i is non decreasing (component-wise).

For i = 0, one has x φ0 (t) ≥ x(t) for any t ∈ [0, T ] (see the proof of Lemma 2). Note that one has h(x φ0 (0)) = h(x 0 ) ≥ h(x 0 ) = h(x(0)) i.e. (x(0), x φ0 (0)) ∈ S. We show that the solution (x(•), x φ0 (•)) remains in S. If there exists t > 0 such that for some j ∈ {1, • • • , m} one has h j (x φ0 (t)) = h j (x(t)) with h k (x φ0 (t)) ≥ h k (x(t)) for k = j, one has ∇h j (x(t)) -∇h j (x φ0 (t))

. g(x(t), φ 0 (t)) g(x φ0 (t), φ 0 (t)) = ∇h j (x(t)).g(x(t), h(x(t)) -∇h j (x φ0 (t)).g(x φ0 (t), h(x(t))

= -D j (x(t), x φ0 (t), h(x(t)).

Under condition [START_REF] Smith | Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems[END_REF], one then obtains the inward pointing property

(x(t), x φ0 (t)) ∈ ∂S ⇒ v. g(x(t), φ 0 (t)) g(x φ0 (t), φ 0 (t)) ≤ 0, v ∈ N S (x(t), x φ0 (t))
which implies that the set S is invariant for (x(•), x φ0 (•)) (see for instance [START_REF] Walter | Ordinary Differential Equations[END_REF]). We deduce that φ 1 (t)φ 0 (t) = h(x φ0 (t)) -h(x(t))) remains non-negative for any t ∈ [0, T ].

Assume that one has x φi (t) ≥ x φi-1 (t) and φ i+1 (t) ≥ φ i (t) for any t ∈ [0, T ] and i ≤ n.

For i = n + 1, the recurrence property φ n+1 (.) ≥ φ n (.) with x φn+1 (0) = x φn (0) = x0 implies as before, from the properties of the map g (Hypotheses H2 and H3), that one has x φn+1 (t) ≥ x φn (t) for any t ∈ [0, T ]. Note that one has h(x φn+1 (0)) = h(x 0 ) = h(x φn (0)) i.e. (x φn (0), x φn+1 (0)) belongs to S. As previously, we write ∇h j (x φn (t)) -∇h j (x φn+1 (t))

. g(x φn (t), φ n (t)) g(x φn+1 (t), φ n+1 (t)) = ∇h j (x φn (t)).g(x φn (t), h(x φn-1 (t)) -∇h j (x φn+1 (t)).g(x φn+1 (t), h(x φn (t)) = -D j (x φn (t), x φn+1 (t), h(x φn-1 (t))

where h(x φn (t))-h(x φn-1 (t)) = φ n+1 (t)-φ n (t) ≥ 0. If h j (x φn+1 (t))-h j (x φn (t)) = 0 with h k (x φn+1 (t))h k (x φn (t)) ≥ 0, k = j for some j and some t ∈ [0, T ], we get D j (x φn (t), x φn+1 (t), h(x φn-1 (t)) ≥ 0 from condition [START_REF] Smith | Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems[END_REF]. One has then, as before, the inward pointing property

(x φn (t), x φn+1 (t)) ∈ ∂S ⇒ v. g(x φn (t), φ n (t)) g(x φn+1 (t), φ n+1 (t)) ≤ 0, v ∈ N S (x φn (t), x φn+1 (t))
from which we deduce that the solution (x φn (•), x φn+1 (•)) remains in S, and thus the function

φ n+2 (•) - φ n+1 (•) = h(x φn+1 (•)) -h(x φn (•)) is non-negative, q.e.d.
Finally, the result follows from Lemma 2.

Let us make some comments about conditions of Proposition 1. Condition ( 9) has some similarities with condition (3) on the boundary of the cone, but is adapted to the context of a partial order that is not induced by a cone. There are m scalar conditions to check, because the cooperative property of g with respect to x is already exploited. Note that the general formulation (5) allows to have terms h j (x) (j = 1 • • • m) in common in several equations of the dynamics, and is thus of particular interest when the number m is relatively small (even when the partial order defined from h is induced by a cone, this condition can be convenient to check compared to condition (3)). When h is scalar, condition (9) takes the simpler form

x, y ∈ Ω, z ∈ h(Ω), y ≥ x, h(y) = h(x) ≥ z ⇒ ∇h(y).f (y) -∇h(x).g(x, z) ≥ 0.
On practical problems, this condition can be quite easy to check, while checking the cooperative property of g with its Jacobian matrix is usually immediate (see for instance examples in Sections 4.1 and 4.2).

Remark 3. Note that this result has some interests from a control view point when one deals with a control system ẋ = f (x, u) that is cooperative for open-loop controls u(•), and one looks for feedback controls u = h(x) such that some monotony properties of the closed-loop system are preserved.

The separate case

We focus now on a way to rewrite the dynamics f for which we can derive simpler conditions to check. This is illustrated on examples of Sections 4.2 and 4.3.

Definition 2. The formulation (5) is in a separate form if there exists maps g, h from

Ω to R n such that f (x) = g(x) + h(x), x ∈ Ω ( 10 
)
where h has m non-identical null components hj for j in a subset J of {1, • • • , n}.

Then, we replace the former hypotheses H0-H5 by the following ones.

H0s. The maps g and h are C 1 on Ω.

H1s. For any continuous function φ : R + → h(Ω), Ω is positively invariant by the non-autonomous system ẋ = g(x) + φ(t), t ≥ 0, x ∈ Ω which is forward complete.

H2s. The map g satisfies the Kamke's condition on Ω.

H4s. For any j ∈ J, hj has no critical point in Ω.

We have the following conditions to ensure monotony with respect to .

Corollary 1. Assume Hypotheses H0s-H2s and H4s are satisfied when f is written in the form [START_REF] Walcher | On cooperative systems with respect to arbitrary orderings[END_REF]. If the maps g and h satisfy the property

x, y ∈ Ω, y x, hj (y) = hj (x) ⇒ ∂ hj ∂x k (y) ≥ ∂ hj ∂x k (x) ≥ 0, j, k ∈ J (11)
then, the conclusion of Proposition 1 holds when the condition

x, y ∈ Ω, y x, hj (y) = hj (x) ⇒ Dj (x, y) := ∇ hj (y).g(y) -∇ hj (x).g(x) ≥ 0, j ∈ J

is verified.

Proof. For j ∈ J, the function D j defined in (9) of Proposition 1 can be written as

D j (x, y, z) := ∇ hj (y).g(y) -∇ hj (x).g(x) + ∇ hj (y). h(y) -∇ hj (x).z .
The expression in the first brackets is non-negative under condition [START_REF] Walter | Ordinary Differential Equations[END_REF], while the second verifies under condition ( 11)

∇ hj (y). h(y) -∇ hj (x).z = k∈J ∂ hj ∂x k (y). hk (y) - ∂ hj ∂x k (x).z k ≥ k∈J ∂ hj ∂x k (x).( hk (y) -z k ) ≥ 0.
For j / ∈ J, one has clearly D j (x, y, z)=0. Condition (9) of Proposition 1 is thus fulfilled.

Condition [START_REF] Walter | Differential and Integral Inequalities[END_REF] can be interpreted as a kind of matching condition: the functions hj have to be nondecreasing only with respect to variables x k whose dynamics does not satisfy the cooperativity condition (i.e. ∂f k ∂x l (x) < 0 for some l = k and x ∈ Ω).

Remark 4. When the map h is linear h(x) = Ax, the conditions of Corollary 1 take the simple form

A jk ≥ 0, j, k ∈ J,
x, y ∈ Ω, y ≥ x, A j (x -y) ≥ 0 ⇒ Dj (x, y) = A j (g(y) -g(x))) ≥ 0, j ∈ J.

This is illustrated on the example of Section 4.3.

Examples

We present three examples corresponding to the various situations discussed in Section 3.

Non separated dynamics and non cone-induced order

Consider the system on the domain

Ω = R + × R × R +      ẋ1 = (-α + x 1 + 2x 2 -x 2 3 )x 1 + βx 2 3 ẋ2 = γx 1 -δx 2 3 ẋ3 = 1 -e -x2+x 2 3 x 3 -δx 3 (13) 
where α, β, δ, γ are positive parameters. One can easily check that the set Ω is forwardly invariant by this dynamics. The Jacobian matrix is written as

  2x 1 2(βx 3 -x 1 ) γ -2δx 3 0 e -x2+x3 x 3  
and thus the system is not monotone on Ω. Let us write now the system as follows ). This dynamics is in the separated form [START_REF] Walcher | On cooperative systems with respect to arbitrary orderings[END_REF] with J = {2}. One has ∂ h2 ∂x2 = 2δ ≥ 0 and condition ( 11) is thus verified. Clearly Hypotheses H0s-H2s and H4s are satisfied. One has then just to check condition [START_REF] Walter | Ordinary Differential Equations[END_REF] to apply Corollary 1, where

     ẋ1 = -αx 1 + (1 -γ δ )x 2 1 + βx 2 3 + 1 δ h(x)x 1 ẋ2 = -2δx 2 + h(x) ẋ3 = 1 -e -x2+x 2 3 x 3 -δx 3
D2 (x, y) = ∂ h2 ∂x (y).g(y) - ∂ h2 ∂x (x).g(x) = γ -α(y 1 -x 1 ) + β(y 2 3 -x 2 3 ) + 2δ -2δ(y 2 -x 2 ) -2δ y 2 3 1 -e -y2+y 2 3 -δ -x 2 3 1 -e -x2+x 2 3 -δ .
Computations are similar to those in the former example but simpler because there is no z variable here. For x, y in Ω with y ≥ x and h2 (y) = h2 (x), one simply gets

D2 (x, y) ≥ γ(2δ -α)(y 1 -x 1 ) + (γβ -2δ)(y 2 3 -x 2 3 )
and we conclude that the condition D2 (x, y) ≥ 0 is verified when the parameters verify the inequalities

γβ ≥ 2δ ≥ α. (16) 
Then, Corollary 1 applies on the whole domain Ω.

We have run numerical simulations for α = 1, β = 1, δ = 0.55, γ = 1.2 (which satisfy (16)) and the initial conditions x 0 = (0.1, 0, 1, 1) , xa 0 = (0.1, 0.1, 3) , xb 0 = (0.6, 0.6, 1.5) (see Figure 2). One computes h(x a 0 ) -h(x 0 ) = -8δ < 0, h(x b 0 ) -h(x 0 ) = 0.5γ -0.25δ > 0. As before, we obtain that x(•), xa (•) are not ordered, while x(•), xb (•) are. 

Separated dynamics and cone-induced order

We replace the x 2 3 terms by x 3 in the expression (15) of the previous dynamics, which gives the system

     ẋ1 = -αx 1 + βx 3 ẋ2 = γx 1 -δx 3 ẋ3 = 1 -e -x2+x3 x 3 -δx 3 (17) 
This example is similar to the model studied in [START_REF] Ouchtout | Analysis of an anaerobic digestion model in landfill with mortality term[END_REF] but presented here in a different set of coordinates for simplicity of exposition. It can be written

     ẋ1 = -αx 1 + βx 3 ẋ2 = -δx 2 + h2 (x) ẋ3 = 1 -e -x2+x3 x 3 -δx 3 with the linear function h2 (x) = γx 1 + δ(x 2 -x 3 ) = a.x
where a = [γ, δ, -δ] . As h is linear, the partial order is induced by a cone and one can use condition (3) to check the monotony of the solutions with respect to . However, following Remark 4, we show that conditions of Corollary 1 are indeed very simple. One has a 2 = δ ≥ 0 and

D2 (x, y) = a.(g(y) -g(x)) = γ -α(y 1 -x 1 ) + β(y 3 -x 3 ) -δ 2 (y 2 -x 2 ) +δ (δ -1)(y 3 -x 3 ) + e -y2+y3 y 3 -e -x2+x3 x 3 which gives D2 (x, y) ≥ (δ -α)(y 1 -x 1 ) + (γβ -δ)(y 3 -x 3 )
for y ≥ x in Ω such that a.(y -x) = 0. Conditions of Corollary 1 are then fulfilled when one has

γβ ≥ δ ≥ α. (18) 
We have run numerical simulations for α = 1, β = 1, δ = 1.1, γ = 1.2 that satisfy (18)) and the initial conditions x 0 = (1, 1, 0.1) , xa 0 = (1, 1, 1.1) , xb 0 = (1.3, 2, 1.1) (see Figure 3). One has xb 0 ≥ xa 0 ≥ x 0 with xb 0 x 0 but not xa 0 x 0 , and one can see as before that solutions are ordered for initial conditions that verify the partial order . 

Illustration of the methodology

To illustrate our approach, we have computed the sequence φ i for x 0 and x0 = xb 0 , and the corresponding solutions x φi , as defined in Section 2. On Figures 4,5,6, one can observe the monotonic behavior of these functions and their convergence to φ and x.

Figure 4: Iterations of φ i and solutions x φi for system (13) (in blue) Figure 5: Iterations of φ i and solutions x φi for system (15) (in blue) Figure 6: of φ i and solutions x φi for system (17) (in blue)

Conclusion

In this note, we have provided conditions for a partial order stronger than the usual vector order in R n to be preserved by the flow of a dynamical system. We have shown that this property can be related to the monotonic behavior of some Picard iterations, which does not require the partial order to be necessarily induced by a cone. Our approach is based on a separation of terms that satisfy the Kamke's condition from other ones, in the expression of the dynamics. For practical problems, it might be difficult to find a partial order for which the dynamics exhibit a monotony property. Our approach facilitates this search, as we have shown with examples. However, several ways of making such a separation are possible. The study of the best way, in terms of the less restrictive conditions or the largest partially order subset in R n , could be the matter of a future work. Extension of this work with respect to other vector order in R n could be also subject of investigation.

Figure 1 :

 1 Figure 1: Comparison of solutions x(•), xa (•), xb (•)) of system (13)

2 :

 2 Comparison of solutions x(•), xa (•), xb (•)) of system (15)

Figure 3 :

 3 Figure 3: Comparison of solutions x(•), xa (•), xb (•)) of system (17)
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where h(x) = γx 1 + δ(2x 2 -x 2

3 ). This dynamics is in the form (5) but is not separated. We thus consider the non-autonomous dynamics ẋ = g(x, φ(t))

One can straightforwardly check that set Ω is also forwardly invariant whatever is the function φ and that the system is cooperative and monotone in φ on Ω. Moreover, the gradient of h is always non null. Hypotheses H0-H1-H2-H3-H4 are fulfilled. Note that for this function h, the partial order given in Definition 1 is not induced by a cone (because h(x) ≥ 0 does not necessarily implies h(τ x) ≥ 0 for any τ ≥ 0). To apply Proposition 1, we have to consider for x, y in Ω, z ∈ h(Ω) with y ≥ x and h(y) = h(x) ≥ z the quantity

Then, by rearranging terms (and using h(y) ≥ z), one obtains the inequality

3 ).

On the other hand, a straightforward computation gives

Therefore, when the parameters satisfy the inequalities

the set Ω = {x ∈ Ω, h(x) ≥ 0} is forwardly invariant, and one has D(x, y, z) ≥ 0 for z ∈ h( Ω). The conclusions of Proposition 1 follow when applied to Ω.

We have run numerical simulations for values of the parameters α = 0.8, β = 3, δ = 0.5, γ = 0.4 (for which one can check that condition (14) is satisfied) and the three initial conditions x 0 = (0.1, 0, 1, 0, 2) , xa 0 = (0.1, 0.1, 0.5) , xb 0 = (0.1, 0.2, 0.3) . One computes h(x 0 ) = 0.2, h(x a 0 ) = 0.095, h(x b 0 ) = 0.275. Clearly, x 0 , xa 0 , xb 0 belong to Ω with xa 0 ≥ x 0 and xb 0 ≥ x 0 . However, corresponding solutions x(•), xa (•) are not ordered, while x(•), xb (•) are (see Figure 1). This is in accordance with Proposition 1 because one has xb 0 x 0 but not xa 0 x 0 .

Separated dynamics and non cone-induced order

We simplify the dynamics (13) of the former example as follows