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Abstract

We give conditions for a non-monotone system to preserve the usual vector order of solutions for
a subset of initial conditions. Our approach consists of separating terms that meet Kamke’s sign
conditions from other ones in the dynamics, and considering Picard iterations. These conditions
amount for the dynamics to preserve a partial order, which is not necessarily induced by a cone.
Examples illustrate the results.
Key-words. ordinary differential equations, solutions comparison, monotone systems, partial order.

1 Introduction

Monotone dynamical systems have received a great attention in the literature (see for instance the mono-
graph [9], the review [6] and the references herein). Let us recall that the semi-flows of monotone systems
preserve a vector order, and that their asymptotic behaviors present some strong properties (see [4, 5]).
In particular, systems ẋ = f(t, x) in Rn that are cooperative preserve the partial order relatively to the
positive orthant in Rn+:

y0 ≥ x0 ⇒ y(t) ≥ x(t), t ≥ t0 (1)

(where y(·), x(·) are solutions of the initial value problems y(t0) = y0, x(t0) = x0 and ≥ is considered
component-wise). The Kamke’s condition

∂fi
∂xj

(t, x) ≥ 0, i 6= j (2)

characterizes such systems from the single knowledge of the Jacobian matrix of f . This condition can
been extended to partial orders relatively to the other orthants of Rn, that are {x ∈ Rn; (−1)mixi ≥
0; i = 1 · · ·n} where mi ∈ {0, 1}

(−1)mi+mj
∂fi
∂xj

(t, x) ≥ 0, i 6= j

(see [9]), or for even more general positive cones P of Rn

λ

(
∂f

∂x
(t, x).y

)
≥ 0, y ∈ ∂P, λ ∈ Λ(P ) (3)

where Λ(P ) is the set of supporting linear forms of P (see [10]). More recently, the cooperativity property
with respect to cones has been characterized for non-smooth dynamics [1].

The preservation of vector order for solutions of dynamical systems has important implications in
several applications. In particular, this property is at the core of the interval observers techniques (see
for instance [2, 8]). However, in some practical problems, one may observe an order preservation of
trajectories (relatively to the positive orthant Rn+) for some subsets of initial conditions, while the system

∗Corresponding author
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is not cooperative. For instance, the anaerobic digestion model studied in [7] exhibits the monotone
property (1) of solutions for some realistic operating conditions and initial conditions when augmenting
the initial density of organic matter, while the dynamics is nowhere cooperative in the domain. This
property has a practical impact on the performance of the biogaz production of the system, when it is
increasing with respect to the initial organic matter (we refer the reader to [7] for further details). The
aim of the present work is to characterize theoretically such situations for a class of systems. For this
purpose, we shall consider a decomposition of the map f by isolating terms into a partial map h that
prevent the Kamke’s condition to be fulfilled, and give conditions on the maps f and h for the ordering
property (1) to hold for a subset of initial conditions. Note that in practice it is not always easy to
find a cone P that verify condition (3) (if it exists). This is also a motivation of our work to propose a
methodology that could facilitate this search.

For simplicity of the presentation, we shall consider autonomous dynamics only, but extension of the
results to non-autonomous ones does not present any particular difficulty and is left to the reader. The
paper is organized as follows. In Section 2, we define a partial order in the positive quadrant induced by
the decomposition of the dynamics, under some hypotheses, and give preliminaries results that will be
used in the following. Section 3 gives our main results about properties of the maps f and h that ensure
the preservation of the partial order. Finally, Section 4 illustrates the results and the methodology on
examples.

2 Hypotheses and preliminaries

Consider a dynamical system on a domain Ω ⊂ Rn

ẋ(t) = f(x(t)), t ≥ 0. (4)

We assume that f can be written as

f(x) = g(x, h(x)), x ∈ Ω (5)

where h a map from Ω to Rm such that the following hypotheses are satisfied.

H0. The maps g, h belong to C1(Ω× h(Ω),Rn), C1(Ω,Rm) respectively.

H1. For any continuous function φ : R+ 7→ h(Ω), Ω is positively invariant by the non-autonomous system

ẋ(t) = g(x(t), φ(t)), t ≥ 0 (6)

which is moreover forward complete.

H2. The dynamics ẋ = g(x, z) is cooperative on Ω, for any fixed z ∈ h(Ω) i.e. the Kamke’s condition
(2) is fulfilled

∂gj
∂xk

(x, z) ≥ 0, j 6= k, x ∈ Ω.

H3. The map z 7→ g(x, z) is monotone (i.e. component-wise non-decreasing) on h(Ω), for any x ∈ Ω i.e.

z, z̄ ∈ h(Ω), z̄ ≥ z ⇒ g(x, z̄) ≥ g(x, z).

H4. The components of h have no critical point in Ω i.e.

∇hj(x) 6= 0, j = 1 · · ·m, x ∈ Ω.

Remark 1. When the dynamics (4) is not cooperative but satisfy H2 and H3, the map h is necessarily
non monotone.

We then consider a partial order � on Ω, defined as follows

Definition 1. For x, y in Ω,

y � x ⇐⇒ y ≥ x and h(y) ≥ h(x) (component-wise).
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Let us underline that this partial order is not necessarily induced by a cone when the function h is not
homogeneous (see for instance examples in Section 4.1 and 4.2). Otherwise, when h is for instance linear,
h(x) = Ax where A is a m×n matrix, the partial order � is induced by the cone C := {x ∈ Rn+; Ax ≥ 0}
and y � x amounts exactly to write y − x ∈ C.

As the partial order � is not necessarily induced by a cone, we shall use a different technique than
the usual one based on the Jacobian matrix of f [9, 10]. For a given time interval [0, T ], we associate to
x0, x̄0 in Ω the sequence of functions φi, i = 0, 1, · · · defined as follows

1. the function φ0 is given by
φ0(t) = h(x(t)), t ∈ [0, T ]

where x(·) is the solution of (4) for the initial condition x(0) = x0,

2. the functions φi for i = 1, · · · are given recursively by

φi = O[φi−1], i = 1, · · ·

where O is the operator defined on the set Φ of continuous functions φ : [0, T ] 7→ h(Ω) as

O[φ](t) := h(xφ(t)), t ∈ [0, T ]

and xφ is the solution of (6) for the initial condition x(0) = x̄0.

We shall denote by x̄(·) the solution of (4) for the initial condition x(0) = x̄0, and the corresponding
function φ̄(t) = h(x̄(t)) for t ∈ [0, T ].

Remark 2. For sake of simplicity of the presentation, we have assumed completeness of the system. As
we consider comparison of solutions on a finite time interval, this assumption can be relaxed considering
a time interval [0, T ] on which solutions x(·), x̄(·) are defined.

Note that the sequence of solutions xφi
which alternates the integration of the g dynamics for a fixed

function φi and the update of the function φi is in a spirit similar to numerical schemes for computing
approximate solutions of differential equations (see for instance [3]), but our purpose here is purely
theoretical. One has the following property about this sequence of solutions.

Lemma 1. Assume Hypotheses H0-H1 are fulfilled. The sequence (xφi , φi+1) converges uniformly to
(x̄, φ̄) on [0, T ].

Proof. Let ε > 0. The map h being continuous, one has

M := sup
x∈B(x̄0,ε))

||h(x)|| < +∞.

For T0 > 0, consider the set

E := {x(·) ∈ C([0, T0],Ω); x(0) = x̄0, ||x(t)− x̄0|| ≤ ε, t ∈ [0, T ]}.

For x(·) ∈ E, we define A[x](·) as the solution of ẏ = g(y, h(x(t))), y(0) = x̄0 for t ∈ [0, T0] (note that
the solution y(·) of this Cauchy problem is unique and well defined thanks to Hypotheses H0 and H1).
One has then

y(t) = x̄0 +

∫ t

0

g(y(τ), h(x(τ))dτ, t ∈ [0, T0].

The map g being C1, there exists a number C > 0 such that

||y(t)− x̄0|| ≤
∫ t

0

||g(y(τ), h(x(τ))||dτ ≤
∫ t

0

C(1 + ||y(τ)||+ ||h(x(τ)||)dτ, t ∈ [0, T0]

and one gets

||y(t)− x̄0|| ≤
∫ t

0

C(1 + ||y(τ)||+M)dτ = C(1 + ||x̄0||+M)t+ C

∫ t

0

||y(τ)− x̄0||dτ.
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With Gronwall’s Lemma, one obtains

||y(t)− x̄0|| ≤ C(1 + ||x̄0||+M)teCt ≤ C(1 + ||x̄0||+M)T0e
CT0 .

For T0 > 0 small enough, one has C(1 + ||x̄0||+M)T0e
CT0 ≤ ε and thus y(·) = A[x](·) belongs to E. A

is then well defined as an operator on E.
Take two elements x(·), x̃(·) in E. One can write for any t ∈ [0, T0]

||A[x̃](t)−A[x](t)|| ≤
∫ t

0

||g(A[x̃](τ), h(x̃(τ)))− g(A[x](τ), h(x(τ)))||dτ

≤
∫ t

0

Lg(||A[x̃](τ)−A[x](τ)||+ ||h(x̃(τ))− h(x(τ))||)dτ

where Lg is the Lipschitz constant of the map g on B(x̄0, ε)× h(B(x̄0, ε)). One has also

||A[x̃](t)−A[x](t)|| ≤
∫ t

0

Lg(||A[x̃](τ)−A[x](τ)||)dτ + T0LgLh||x̃− x||T0

where Lh is the Lipschitz constant of h on B(x̄0, ε)) and || ||T0
denotes the infinity norm on [0, T0]. With

Gronwall’s Lemma, one can write

||A[x̃](t)−A[x](t)|| ≤ T0LgLhe
LgT0 ||x̃− x||T0

, t ∈ [0, T0].

One has T0LgLhe
LgT0 < 1 for T0 small enough, and we conclude that the operator A is a contraction

mapping on E for the || ||T0
norm. By the Banach’s fixed point theorem, we deduce that the Picard’s

iterations
xφi+1(·) := A[xφi ](·)), i = 0, · · ·

where xφ0
(·) is the solution of ẋ = g(x, φ0(t)) with x(0) = x̄0, converges uniformly to the unique fixed

point x̄(·) of A, that is the solution of

ẋ = g(x, h(x)) = f(x), x(0) = x̄0

on [0, T0]. By continuity of h, the sequence φi+1(·) = h(xφi(·)) converges uniformly to φ̄(·) = h(x̄(·)).

If T0 < T , one can reproduce the same arguments for the initial condition (T0, x̄(T0)) on a time
interval [T0, T1] and then on [T1, T2] and so on.... One gets an increasing sequence Ti, i = 0 · · · . If this
sequence is bounded, it converges to a certain T∞ < +∞, and one obtains the uniform convergence of the
sequence (xφi(·), φi+1(·)) to (x̄(·), φ̄(·)) on the time interval [0, T∞), where x̄(T∞) exists from Hypothesis
H1. If T∞ < T , one can apply again the same arguments for the initial condition (T∞, x̄(T∞)) until one
obtains the uniform convergence of the sequence (xφi

(·), φi+1(·)) on the time interval [0, T ].

3 Comparison of solutions

We first give a result concerning the comparison of the solutions for the partial order �.

Lemma 2. Assume Hypotheses H0-H3 are satisfied. If x̄0 � x0 and the sequence φi is non decreasing
i.e. φi+1(t) ≥ φi(t) (component-wise) for any t ∈ [0, T ] and i = 0, 1, · · · then one has

x̄(t) � x(t), t ∈ [0, T ].

Proof. Remark first that the solution x(·) is also solution of the non autonomous system

ẋ = g(x, φ0(t)) (7)

for the initial condition x(0) = x0.

Let xφ0(·) be the solution of (7) for the initial condition x(0) = x̄0. From Hypothesis H2, the non-
autonomous dynamics (7) is cooperative and consequently one has xφ0

(t) ≥ x(t) for any t ∈ [0, T ].

Let xφ1(·) be the solution of
ẋ = g(x, φ1(t)) (8)
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for the initial condition x(0) = x̄0. If φ1 ≥ φ0, then by Hypothesis H3, one has g(x, φ1(t)) ≥ g(x, φ0(t)) for
any x ∈ Ω and t ∈ [0, T ]. Let us recall that the solutions of two differential equations, whose right-hand
sides are component-wise ordered, and one of the equations is cooperative, are ordered (see for instance
[11]). The dynamics (7) being cooperative, one then gets xφ1(t) ≥ xφ0(t) for any t ∈ [0, T ].

Recursively, one obtains xφi+1
(t) ≥ xφi

(t) for i = 1, · · · and t ∈ [0, T ]. Then one gets from Lemma 1

x̄(t) = lim
i→+∞

xφi(t) ≥ xφ0(t) ≥ x(t), t ∈ [0, T ].

In the same way, one has

φ̄(t) = h(x̄(t)) = lim
i→+∞

φi(t) ≥ φ0(t) = h(x(t)), t ∈ [0, T ].

We are now ready to give our main results.

3.1 Main result

Proposition 1. Assume Hypotheses H0-H4 are satisfied. If the maps g and h satisfy for any j = 1 · · ·m
the condition

x, y ∈ Ω, z ∈ h(Ω), y ≥ x, h(y) ≥ h(x) ≥ z,
hj(y) = hj(x) ⇒ Dj(x, y, z) := ∇hj(y).g(y, h(x))−∇hj(x).g(x, z) ≥ 0

(9)

then having x̄0 � x0 in Ω implies x̄(t) � x(t) for any t ∈ [0, T ].

Proof. Let us consider the set
S := {(x, y) ∈ Ω2, h(y) ≥ h(x)}.

Under Hypothesis H4, the outer normal to this set is given by the following expression

NS(x, y) =
∑

j, hj(y)=hj(x)

R+

(
∇hj(x)
−∇hj(y)

)
, (x, y) ∈ ∂S.

We proceed recursively to show that the sequence φi is non decreasing (component-wise).

For i = 0, one has xφ0(t) ≥ x(t) for any t ∈ [0, T ] (see the proof of Lemma 2). Note that one has
h(xφ0(0)) = h(x̄0) ≥ h(x0) = h(x(0)) i.e. (x(0), xφ0(0)) ∈ S. We show that the solution (x(·), xφ0(·))
remains in S. If there exists t > 0 such that for some j ∈ {1, · · · ,m} one has hj(xφ0

(t)) = hj(x(t)) with
hk(xφ0

(t)) ≥ hk(x(t)) for k 6= j, one has(
∇hj(x(t))
−∇hj(xφ0

(t))

)
.

(
g(x(t), φ0(t))
g(xφ0

(t), φ0(t))

)
= ∇hj(x(t)).g(x(t), h(x(t))−∇hj(xφ0

(t)).g(xφ0
(t), h(x(t))

= −Dj(x(t), xφ0(t), h(x(t)).

Under condition (9), one then obtains the inward pointing property

(x(t), xφ0(t)) ∈ ∂S ⇒ v.

(
g(x(t), φ0(t))
g(xφ0

(t), φ0(t))

)
≤ 0, v ∈ NS(x(t), xφ0(t))

which implies that the set S is invariant for (x(·), xφ0
(·)) (see for instance [12]). We deduce that φ1(t)−

φ0(t) = h(xφ0
(t))− h(x(t))) remains non-negative for any t ∈ [0, T ].

Assume that one has xφi(t) ≥ xφi−1(t) and φi+1(t) ≥ φi(t) for any t ∈ [0, T ] and i ≤ n.

For i = n + 1, the recurrence property φn+1(.) ≥ φn(.) with xφn+1
(0) = xφn

(0) = x̄0 implies as
before, from the properties of the map g (Hypotheses H2 and H3), that one has xφn+1

(t) ≥ xφn
(t) for
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any t ∈ [0, T ]. Note that one has h(xφn+1
(0)) = h(x̄0) = h(xφn

(0)) i.e. (xφn
(0), xφn+1

(0)) belongs to S.
As previously, we write(

∇hj(xφn
(t))

−∇hj(xφn+1
(t))

)
.

(
g(xφn

(t), φn(t))
g(xφn+1

(t), φn+1(t))

)
= ∇hj(xφn

(t)).g(xφn
(t), h(xφn−1

(t))−∇hj(xφn+1
(t)).g(xφn+1

(t), h(xφn
(t))

= −Dj(xφn
(t), xφn+1

(t), h(xφn−1
(t))

where h(xφn
(t))−h(xφn−1

(t)) = φn+1(t)−φn(t) ≥ 0. If hj(xφn+1
(t))−hj(xφn

(t)) = 0 with hk(xφn+1
(t))−

hk(xφn
(t)) ≥ 0, k 6= j for some j and some t ∈ [0, T ], we get Dj(xφn

(t), xφn+1
(t), h(xφn−1

(t)) ≥ 0 from
condition (9). One has then, as before, the inward pointing property

(xφn
(t), xφn+1

(t)) ∈ ∂S ⇒ v.

(
g(xφn(t), φn(t))

g(xφn+1
(t), φn+1(t))

)
≤ 0, v ∈ NS(xφn

(t), xφn+1
(t))

from which we deduce that the solution (xφn(·), xφn+1(·)) remains in S, and thus the function φn+2(·)−
φn+1(·) = h(xφn+1(·))− h(xφn(·)) is non-negative, q.e.d.

Finally, the result follows from Lemma 2.

Let us make some comments about conditions of Proposition 1. Condition (9) has some similarities
with condition (3) on the boundary of the cone, but is adapted to the context of a partial order that is
not induced by a cone. There are m scalar conditions to check, because the cooperative property of g
with respect to x is already exploited. Note that the general formulation (5) allows to have terms hj(x)
(j = 1 · · ·m) in common in several equations of the dynamics, and is thus of particular interest when the
number m is relatively small (even when the partial order � defined from h is induced by a cone, this
condition can be convenient to check compared to condition (3)). When h is scalar, condition (9) takes
the simpler form

x, y ∈ Ω, z ∈ h(Ω), y ≥ x, h(y) = h(x) ≥ z ⇒ ∇h(y).f(y)−∇h(x).g(x, z) ≥ 0.

On practical problems, this condition can be quite easy to check, while checking the cooperative property
of g with its Jacobian matrix is usually immediate (see for instance examples in Sections 4.1 and 4.2).

Remark 3. Note that this result has some interests from a control view point when one deals with a
control system ẋ = f(x, u) that is cooperative for open-loop controls u(·), and one looks for feedback
controls u = h(x) such that some monotony properties of the closed-loop system are preserved.

3.2 The separate case

We focus now on a way to rewrite the dynamics f for which we can derive simpler conditions to check.
This is illustrated on examples of Sections 4.2 and 4.3.

Definition 2. The formulation (5) is in a separate form if there exists maps g̃, h̃ from Ω to Rn such
that

f(x) = g̃(x) + h̃(x), x ∈ Ω (10)

where h̃ has m non-identical null components h̃j for j in a subset J of {1, · · · , n}.

Then, we replace the former hypotheses H0-H5 by the following ones.

H0s. The maps g̃ and h̃ are C1 on Ω.

H1s. For any continuous function φ : R+ 7→ h(Ω), Ω is positively invariant by the non-autonomous system

ẋ = g̃(x) + φ(t), t ≥ 0, x ∈ Ω

which is forward complete.

H2s. The map g̃ satisfies the Kamke’s condition on Ω.

H4s. For any j ∈ J , h̃j has no critical point in Ω.

6



We have the following conditions to ensure monotony with respect to �.

Corollary 1. Assume Hypotheses H0s-H2s and H4s are satisfied when f is written in the form (10). If
the maps g̃ and h̃ satisfy the property

x, y ∈ Ω, y � x, h̃j(y) = h̃j(x) ⇒ ∂h̃j
∂xk

(y) ≥ ∂h̃j
∂xk

(x) ≥ 0, j, k ∈ J (11)

then, the conclusion of Proposition 1 holds when the condition

x, y ∈ Ω, y � x, h̃j(y) = h̃j(x) ⇒ D̃j(x, y) := ∇h̃j(y).g̃(y)−∇h̃j(x).g̃(x) ≥ 0, j ∈ J (12)

is verified.

Proof. For j ∈ J , the function Dj defined in (9) of Proposition 1 can be written as

Dj(x, y, z) :=
[
∇h̃j(y).g̃(y)−∇h̃j(x).g̃(x)

]
+
[
∇h̃j(y).h̃(y)−∇h̃j(x).z

]
.

The expression in the first brackets is non-negative under condition (12), while the second verifies under
condition (11)

∇h̃j(y).h̃(y)−∇h̃j(x).z =
∑
k∈J

∂h̃j
∂xk

(y).h̃k(y)− ∂h̃j
∂xk

(x).zk ≥
∑
k∈J

∂h̃j
∂xk

(x).(h̃k(y)− zk) ≥ 0.

For j /∈ J , one has clearly Dj(x, y, z)=0. Condition (9) of Proposition 1 is thus fulfilled.

Condition (11) can be interpreted as a kind of matching condition: the functions h̃j have to be non-
decreasing only with respect to variables xk whose dynamics does not satisfy the cooperativity condition
(i.e. ∂fk

∂xl
(x) < 0 for some l 6= k and x ∈ Ω).

Remark 4. When the map h̃ is linear h(x) = Ax, the conditions of Corollary 1 take the simple form

Ajk ≥ 0, j, k ∈ J,

x, y ∈ Ω, y ≥ x, Aj(x− y) ≥ 0 ⇒ D̃j(x, y) = Aj(g̃(y)− g̃(x))) ≥ 0, j ∈ J.

This is illustrated on the example of Section 4.3.

4 Examples

We present three examples corresponding to the various situations discussed in Section 3.

4.1 Non separated dynamics and non cone-induced order

Consider the system on the domain Ω = R+ × R× R+
ẋ1 = (−α+ x1 + 2x2 − x2

3)x1 + βx2
3

ẋ2 = γx1 − δx2
3

ẋ3 =
(

1− e−x2+x2
3

)
x3 − δx3

(13)

where α, β, δ, γ are positive parameters. One can easily check that the set Ω is forwardly invariant by
this dynamics. The Jacobian matrix is written as? 2x1 2(βx3 − x1)

γ ? −2δx3

0 e−x2+x3x3 ?


and thus the system is not monotone on Ω. Let us write now the system as follows

ẋ1 = −αx1 + (1− γ
δ )x2

1 + βx2
3 + 1

δh(x)x1

ẋ2 = −2δx2 + h(x)

ẋ3 =
(

1− e−x2+x2
3

)
x3 − δx3

7



where
h(x) = γx1 + δ(2x2 − x2

3).

This dynamics is in the form (5) but is not separated. We thus consider the non-autonomous dynamics

ẋ = g(x, φ(t)) =

−αx1 + (1− γ
δ )x2

1 + βx2
3 + 1

δφ(t)x1

−2δx2 + φ(t)(
1− e−x2+x2

3

)
x3 − δx3

 .

One can straightforwardly check that set Ω is also forwardly invariant whatever is the function φ and
that the system is cooperative and monotone in φ on Ω. Moreover, the gradient of h is always non
null. Hypotheses H0-H1-H2-H3-H4 are fulfilled. Note that for this function h, the partial order � given
in Definition 1 is not induced by a cone (because h(x) ≥ 0 does not necessarily implies h(τx) ≥ 0 for
any τ ≥ 0). To apply Proposition 1, we have to consider for x, y in Ω, z ∈ h(Ω) with y ≥ x and
h(y) = h(x) ≥ z the quantity

D(x, y, z) =
∂h

∂x
(y).g(y, h(x))− ∂h

∂x
(x).g(x, z)

= γ
(
− α(y1 − x1) + (1− γ

δ )(y2
1 − x2

1) + β(y2
3 − x2

3) + 1
δ (h(y)y1 − zx1)

)
+ 2δ

(
− 2δ(y2 − x2) + h(y)− z

)
− 2δ

((
1− e−y2+y23 − δ

)
y2

3 −
(
1− e−x2+x2

3 − δ
)
x2

3

)
.

Note that h(y) = h(x) implies

2δ(y2 − x2) = δ(y2
3 − x2

3)− γ(y1 − x1) and (y2
3 − y2)− (x2

3 − x2) =
γ

δ
(y1 − x1) + y2 − x2 ≥ 0.

Then, by rearranging terms (and using h(y) ≥ z), one obtains the inequality

D(x, y, z) ≥ γ(2δ − α+ z
δ )(y1 − x1) + γ(1− γ

δ )(y2
1 − x2

1) + (γβ − 2δ)(y2
3 − x2

3).

On the other hand, a straightforward computation gives

h = 0 ⇒ ḣ ≥ γ(2δ − α)x1 + γ(1− γ
δ )x2

1 + (γβ − 2δ)x2
3.

Therefore, when the parameters satisfy the inequalities

γβ ≥ 2δ ≥ α and δ ≥ γ (14)

the set Ω̃ = {x ∈ Ω, h(x) ≥ 0} is forwardly invariant, and one has D(x, y, z) ≥ 0 for z ∈ h(Ω̃). The
conclusions of Proposition 1 follow when applied to Ω̃.

We have run numerical simulations for values of the parameters α = 0.8, β = 3, δ = 0.5, γ = 0.4 (for
which one can check that condition (14) is satisfied) and the three initial conditions x0 = (0.1, 0, 1, 0, 2)>,
x̄a0 = (0.1, 0.1, 0.5)>, x̄b0 = (0.1, 0.2, 0.3)>. One computes h(x0) = 0.2, h(x̄a0) = 0.095, h(x̄b0) = 0.275.
Clearly, x0, x̄a0 , x̄b0 belong to Ω̃ with x̄a0 ≥ x0 and x̄b0 ≥ x0. However, corresponding solutions x(·), x̄a(·)
are not ordered, while x(·), x̄b(·) are (see Figure 1). This is in accordance with Proposition 1 because
one has x̄b0 � x0 but not x̄a0 � x0.

4.2 Separated dynamics and non cone-induced order

We simplify the dynamics (13) of the former example as follows
ẋ1 = −αx1 + βx2

3

ẋ2 = γx1 − δx2
3

ẋ3 =
(

1− e−x2+x2
3

)
x3 − δx3

(15)

which is also non-monotone on the same invariant domain Ω = R+ × R × R+. We write this system as
follows 

ẋ1 = −αx1 + βx2
3

ẋ2 = −2δx2 + h̃2(x)

ẋ3 =
(

1− e−x2+x2
3

)
x3 − δx3

8



Figure 1: Comparison of solutions x(·), x̄a(·), x̄b(·)) of system (13)

where
h̃2(x) = γx1 + δ(2x2 − x2

3).

This dynamics is in the separated form (10) with J = {2}. One has ∂h̃2

∂x2
= 2δ ≥ 0 and condition (11) is

thus verified. Clearly Hypotheses H0s-H2s and H4s are satisfied. One has then just to check condition
(12) to apply Corollary 1, where

D̃2(x, y) =
∂h̃2

∂x
(y).g̃(y)− ∂h̃2

∂x
(x).g̃(x)

= γ
(
− α(y1 − x1) + β(y2

3 − x2
3)
)

+ 2δ
(
− 2δ(y2 − x2)

)
−2δ

(
y2

3

(
1− e−y2+y23 − δ

)
− x2

3

(
1− e−x2+x2

3 − δ
))
.

Computations are similar to those in the former example but simpler because there is no z variable here.
For x, y in Ω with y ≥ x and h̃2(y) = h̃2(x), one simply gets

D̃2(x, y) ≥ γ(2δ − α)(y1 − x1) + (γβ − 2δ)(y2
3 − x2

3)

and we conclude that the condition D̃2(x, y) ≥ 0 is verified when the parameters verify the inequalities

γβ ≥ 2δ ≥ α. (16)

Then, Corollary 1 applies on the whole domain Ω.

We have run numerical simulations for α = 1, β = 1, δ = 0.55, γ = 1.2 (which satisfy (16)) and
the initial conditions x0 = (0.1, 0, 1, 1)>, x̄a0 = (0.1, 0.1, 3)>, x̄b0 = (0.6, 0.6, 1.5)> (see Figure 2). One
computes h(x̄a0) − h(x0) = −8δ < 0, h(x̄b0) − h(x0) = 0.5γ − 0.25δ > 0. As before, we obtain that x(·),
x̄a(·) are not ordered, while x(·), x̄b(·) are.

Figure 2: Comparison of solutions x(·), x̄a(·), x̄b(·)) of system (15)
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4.3 Separated dynamics and cone-induced order

We replace the x2
3 terms by x3 in the expression (15) of the previous dynamics, which gives the system

ẋ1 = −αx1 + βx3

ẋ2 = γx1 − δx3

ẋ3 =
(

1− e−x2+x3

)
x3 − δx3

(17)

This example is similar to the model studied in [7] but presented here in a different set of coordinates for
simplicity of exposition. It can be written

ẋ1 = −αx1 + βx3

ẋ2 = −δx2 + h̃2(x)

ẋ3 =
(

1− e−x2+x3

)
x3 − δx3

with the linear function
h̃2(x) = γx1 + δ(x2 − x3) = a.x

where a = [γ, δ,−δ]>. As h̃ is linear, the partial order � is induced by a cone and one can use condition
(3) to check the monotony of the solutions with respect to �. However, following Remark 4, we show
that conditions of Corollary 1 are indeed very simple. One has a2 = δ ≥ 0 and

D̃2(x, y) = a.(g̃(y)− g̃(x))
= γ

(
− α(y1 − x1) + β(y3 − x3)

)
− δ2(y2 − x2)

+δ
(

(δ − 1)(y3 − x3) + e−y2+y3y3 − e−x2+x3x3

)
which gives

D̃2(x, y) ≥ (δ − α)(y1 − x1) + (γβ − δ)(y3 − x3)

for y ≥ x in Ω such that a.(y − x) = 0. Conditions of Corollary 1 are then fulfilled when one has

γβ ≥ δ ≥ α. (18)

We have run numerical simulations for α = 1, β = 1, δ = 1.1, γ = 1.2 that satisfy (18)) and the initial
conditions x0 = (1, 1, 0.1)>, x̄a0 = (1, 1, 1.1)>, x̄b0 = (1.3, 2, 1.1)> (see Figure 3). One has x̄b0 ≥ x̄a0 ≥ x0

with x̄b0 � x0 but not x̄a0 � x0, and one can see as before that solutions are ordered for initial conditions
that verify the partial order �.

Figure 3: Comparison of solutions x(·), x̄a(·), x̄b(·)) of system (17)

4.4 Illustration of the methodology

To illustrate our approach, we have computed the sequence φi for x0 and x̄0 = x̄b0, and the corresponding
solutions xφi , as defined in Section 2. On Figures 4, 5, 6, one can observe the monotonic behavior of
these functions and their convergence to φ̄ and x̄.
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Figure 4: Iterations of φi and solutions xφi for system (13) (in blue)

Figure 5: Iterations of φi and solutions xφi
for system (15) (in blue)

Figure 6: Iterations of φi and solutions xφi for system (17) (in blue)

5 Conclusion

In this note, we have provided conditions for a partial order stronger than the usual vector order in Rn to
be preserved by the flow of a dynamical system. We have shown that this property can be related to the
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monotonic behavior of some Picard iterations, which does not require the partial order to be necessarily
induced by a cone. Our approach is based on a separation of terms that satisfy the Kamke’s condition
from other ones, in the expression of the dynamics. For practical problems, it might be difficult to find a
partial order for which the dynamics exhibit a monotony property. Our approach facilitates this search,
as we have shown with examples. However, several ways of making such a separation are possible. The
study of the best way, in terms of the less restrictive conditions or the largest partially order subset in
Rn, could be the matter of a future work. Extension of this work with respect to other vector order in
Rn could be also subject of investigation.
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