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Abstract 

Climate projections predict major changes in alpine environments by the end of the 21st 

century. To avoid climate-induced maladaptation and extinction, many animal populations will 

either need to move to more suitable habitats or adapt in situ to novel conditions. Since 

populations of a species exhibit genetic variation related to local adaptation, it is important to 

incorporate this variation into predictive models to help assess the ability of the species to 

survive climate change. Here, we evaluate how the adaptive genetic variation of a mountain 

ungulate – the Northern chamois (Rupicapra rupicapra) – could be impacted by future global 

warming. Based on genotype-environment association analyses of 429 chamois using a 

ddRAD sequencing approach, we identified genetic variation associated with climatic 

gradients across the European Alps. We then delineated adaptive genetic units and projected 

the optimal distribution of these adaptive groups in the future. Our results suggest the 

presence of local adaptation to climate in Northern chamois with similar genetic adaptive 

responses in geographically distant but climatically similar populations. Furthermore, our 

results predict that future climatic changes will modify the Northern chamois adaptive 

landscape considerably, with various degrees of maladaptation risk. 

  

Keywords: Adaptive units, climate change, genotype-environment association, landscape 

genomics, Rupicapra rupicapra 
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INTRODUCTION 

Climate models predict accelerated climate change in the coming years (Hock et al., 2019; 

Pörtner et al., 2019; Arneth et al., 2019), and the negative effects of this change on biodiversity 

have already been reported for many ecosystems (Pecl et al., 2017; IPCC, 2019). Rapid 

climate change can significantly alter the distribution of suitable habitats, prompting 

populations and species to move to more suitable areas or to tolerate new environmental 

conditions (Bellard et al., 2012). These two responses are non-exclusive and potentially 

complementary. In the long term, species may also undergo genetic adaptation to novel 

environments in situ, which may prevent their decline and extinction (Parmesan, 2006; 

Hoffmann and Sgrò, 2011). Therefore, the response of a species to climate change will 

strongly depend on its dispersal ability, its degree of plasticity to adapt to the new climatic 

conditions and/or its capacity to evolve to track the new requirements of their local 

environments (Visser, 2008; Hoffmann and Sgrò, 2011).  

Local adaptation is common in both plants and animals (e.g., Leimu and Fischer, 2008; 

Hereford, 2009). It occurs when populations of the same species are exposed to different 

environmental conditions, which results in the selection of locally adaptive traits in each 

population that maximize individual fitness (Rehfeldt et al., 2002). This implies that local 

populations will perform better than foreigners in their native environment and, vice versa, will 

show reduced aptitude when placed in a foreign environment (Blanquart et al., 2013). In the 

context of climate change, evolvability is likely to be facilitated when ‘standing genetic 

variation’ (SGV) at various adaptive traits is already present in the populations or available 

from adjacent populations through dispersal and gene flow (Savolainen et al., 2013). Hence, 

SGV is one of the essential biodiversity variables (see Hoban et al., 2022) and could become 

a key element of the adaptive response of populations to environmental change (Orr and 

Betancourt, 2000; Hermisson and Pennings, 2005). Therefore, identification of SGV in natural 

populations and its association with climate gradients are critical to informing science-based 

management strategies. In this regard, incorporating intraspecific genetic variation into 
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predictive models that estimate the capacity of species to cope with future climate change is 

becoming increasingly popular (Waldvogel et al., 2020; Capblancq, Fitzpatrick, et al., 2020; 

Hoffmann et al., 2021; and see Lancaster et al., 2022 for a special issue). 

Until very recently, the potential impact of climate change on species’ distributions has 

principally been predicted at the species level using species distribution models (Guisan and 

Thuiller, 2005). These models assume that the species is homogeneous across the landscape 

and neglect the adaptive variation underlying local adaptation of populations (Alberto et al., 

2013). In fact, the impact of climate change on populations may vary depending on the spatial 

distribution of adaptive alleles and the potential for them to spread in neighboring populations 

(Rehfeldt et al., 2002; Razgour et al., 2019; Chen et al., 2021). Therefore, more recent studies 

have used knowledge of adaptive genetic variation to refine classic species distribution models 

and provide new insights into species conservation and management, for example by 

identifying populations at risk of local maladaptation (when a genotype does not produce an 

optimal phenotype in the local environment; Capblancq, Fitzpatrick, et al., 2020). Firstly, these 

studies have used various genotype-environment association (GEA) methods to identify 

genetic variation that correlates with environmental parameters, then modeled the genetic ~ 

environment relationship to predict the changes in genetic composition that would be required 

for the population to track local climate change (Capblancq, Fitzpatrick, et al., 2020) - the so-

called ‘genetic offset’ (Fitzpatrick and Keller, 2015). However, contrary to species distribution 

models, genetic offset does not give information on spatial distribution shifts or reshuffling of 

adaptive variation across the changing climatic landscape. Therefore, the application of this 

metric for management or conservation remained mostly theoretical so far. In conservation, 

identifying adaptive units, corresponding to groups of individuals sharing similar adaptive 

genetic composition, is a promising approach in a global change context (Barbosa et al., 2018; 

Hohenlohe et al., 2021). Predicting how these units would be affected by future variation in 

climate thus appears critical for integrating that major threat into assessments of species 

vulnerability (Razgour et al., 2019).  
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Here, we propose to bridge this gap using a landscape genomics approach that 

combines genotype-environment association methods with predictive models of adaptive 

potential, to determine the adaptive part of genetic variation, to identify the environmental 

factors that shape adaptive variation and to explore the capacity of a mountain ungulate, the 

Northern chamois (Rupicapra rupicapra), to adapt to climate change. Furthermore, by 

comparing the adaptive genetic composition of the Northern chamois under current and future 

conditions, our approach makes it possible to estimate a potential genetic offset (sensu 

Fitzpatrick and Keller, 2015), that populations would have to solve to avoid local extinction. 

Mountain biodiversity, from species and populations to their underlying gene pool, is 

particularly sensitive to ongoing climate change (Parmesan, 2006). In the European Alps, 

changes have already been observed for abiotic parameters such as temperature, snow 

cover, glacier extent or avalanche risk (Gobiet et al., 2014), with consequences for alpine 

animal species including direct biological effects, loss of suitable habitats, and/or upslope 

shifts (Pauli et al., 1996; Engler et al., 2011). Animal populations inhabiting mountain habitats 

are particularly vulnerable to climate change because, even if suitable climates are still 

available at higher altitudes, these habitats are predicted to be restricted to ever smaller areas 

in the future (La Sorte and Jetz, 2010; White et al., 2018). Therefore, species adapted to cold 

and extreme environment may be forced to move and/or adapt to new local conditions (Chen 

et al., 2011). At the species scale, the Northern chamois occupies a large diversity of habitat 

types, from low-elevation forested areas to high-altitude Alpine meadows, or where the terrain 

is steep and rocky (Reiner et al., 2021; Corlatti et al., 2022). Chamois distribution currently 

covers a wide geographic gradient from the Mediterranean to the Black Sea and spans 

altitudes mainly ranging from 500 m to over 3,000 m a.s.l. (Corlatti et al., 2011, 2022; 

Anderwald et al., 2021). Nevertheless, the species is considered morphologically and 

physiologically adapted to cold environments (Ascenzi et al. 1993).  

 

A recent study determined that the reduction of body mass in Northern chamois, an 

important indicator of ungulate fitness (Gaillard et al., 2000), was due to the direct effect of 
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climate warmings (Mason, Apollonio, et al., 2014). The direct effect of rising temperatures 

could induce increases in the intensity of competition and decreases in time spent foraging 

(Mason, Apollonio, et al., 2014), but indirect effects on fitness through effects on resource 

productivity or phenology have been documented on alpine herbivores, such as ibex, Capra 

ibex (Aublet et al., 2009). Behavioral response to recent environmental changes has already 

been observed in chamois populations, where individuals select colder forest habitat to 

counteract the impacts of climate change (Reiner et al., 2021). Therefore, behavioral 

adaptation, e.g., change in habitat selection, could buffer the effects of summer warmings for 

alpine ungulates. In a recent study, Leugger et al., (2022) investigated how climate variation 

during the last millennia shaped the current distribution of the Northern chamois in Europe and 

influenced the species contemporary neutral genetic variation across the Alps. Yet, the 

potential evolutionary responses of the species to environmental change, and in particular 

mechanisms of local adaptation to climatic conditions, remain unexplored. This is all the more 

relevant because previous studies have found indications of selection for alpine environments 

in ungulates, for example in Dall sheep (Ovis dalli dalli) on genes involved in immune and 

disease-regulating functions or respiratory health (Roffler et al., 2016). 

 

In this study, we aim to: (i) investigate whether climatic variables drive genetic 

differentiation of chamois populations along the European Alps and Dinaric Mountains; (ii) 

uncover genetic variation strongly associated with large climatic gradients, signaling local 

adaptation; (iii) use these signals of climate adaptation to delineate adaptive units; and (iv) 

model the maladaptation risk of adaptive units in a context of climate change. To achieve 

these objectives, we first used two different GEA approaches applied to a single-nucleotide 

polymorphism (SNP) data set obtained from double-digest restriction-site associated DNA 

sequencing (ddRADseq), to investigate the association between genetic variation and 

environmental gradient(s) across the Northern chamois distribution range. Second, using the 

set of putatively adaptive markers, we delineated four adaptive units along the Alps and 

Dinaric Mountains, distinguishing individuals genetically adapted to Mediterranean conditions 
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from those adapted to more alpine environments. Finally, projecting the geographical 

distribution of adaptive units into the future, we predicted that the adaptive landscape of the 

northern chamois will change considerably, with varying degrees of maladaptation risk for this 

mountain mammal in the coming decades. 

MATERIAL AND METHODS 

Genetic data 

Samples of 465 Northern chamois (Rupicapra rupicapra) were obtained from the continuous 

range of the species in the European Alps and Dinaric Mountains (Figure 1), thanks to a 

network of collaborators (e.g., hunting administrations and associations, non-governmental 

organizations, national parks, biobanks; see Acknowledgements). The species' range extends 

beyond this geographical area, and isolated populations occupy territories at lower altitudes 

and on plains elsewhere e.g., in France, Germany, the Czech Republic and the Balkans 

(Corlatti et al., 2022). We did not take these populations into account in this study, which 

focused on alpine areas characterized by a strong environmental gradient. A genetic dataset 

of 30,970 SNPs was generated for these individuals using a double-digest Restriction-site 

Associated DNA sequencing approach (ddRADSeq; Peterson et al., 2012).  

The procedure regarding ddRADSeq library construction, sequencing and data processing is 

detailed in Leugger et al., (2022), and provided in the Supplementary Materials. Briefly, we 

used STACKS v2.4 (Catchen et al., 2011, 2013) to demultiplex data, build a de novo SNP 

catalog, and call genotypes. SNPs were filtered if they were genotyped for less than 85% of 

the samples, when the SNP error rate was greater than 2.5% based on the analysis of 

replicates (~12.5% of the samples, n=81; Figures S2-S7), when the minor allele frequency 

(MAF) was lower than 1% (i.e., fewer than 8 allelic copies; Lowry et al., 2017a) and when 

sequencing read depth was lower than 10X or greater than 25X (equals to mean + 4 * 

sqrt(mean), see Supplementary Materials). The final dataset only included samples that were 
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genotyped for > 75% of all SNPs. From the initial sample set, we removed the isolated 

populations of Slovakia and Switzerland (Ticino), because they showed extreme genetic 

discontinuity with the rest of the sampling (see Roques, 2021; Leugger et al., 2022), potentially 

biasing the detection of selection in the genome (Foll and Gaggiotti, 2008). The final data used 

for subsequent analyses included 429 samples and 20,904 SNPs (only one SNP was 

randomly selected from each RAD-fragment, Figure S8). Missing data were imputed with the 

median genotype. 

Overall genetic differentiation among individuals 

We inferred genetic units based on overall genetic differentiation, i.e., using all 20,904  SNPs 

(e.g., Barbosa et al., 2018; Hohenlohe et al., 2021) using a principal component analysis 

(PCA) implemented in the adegenet R-package (Jombart, 2008), using all 20,904 SNPs. 

Individual scores along the first two axes of this PCA (PC1 and PC2; Figure S9) were then 

used as a proxy of genetic structure to condition the search for selection in the genome (see 

variance partitioning section). We also investigated overall population structure using a 

discriminant analysis of principal components (DAPC; Jombart et al., 2010) implemented in 

the package adegenet. Without prior information, we used the function find.cluster to 

determine the optimal number of clusters; more precisely, we ran successive K-means 

clustering with an increasing number of clusters ranging from K=2 to K=6 (based on previous 

inspection of values of BIC versus number of clusters). We then performed a stratified cross-

validation analysis to identify the optimal number of principal components (PCs) to retain in 

the DAPC analysis. This cross-validation procedure was carried out using the function 

xvalDapc, with 100 replicates for each number of PCA axes retained and using 90% of the 

data for training and the remaining 10% for validation. Because several runs conducted with 

the same number of clusters K showed different results, we performed 10 independent runs 

for each K and selected the run with the highest assignment success mean after cross-

validation. 
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Environmental variables selection 

To explore the environmental factors that influence chamois genetic variation, we considered 

the 19 bioclimatic variables available from Worldclim 2 database (Fick and Hijmans, 2017). 

The set of variables are frequently used in similar studies (e.g., Thuiller et al., 2014; Bay et al., 

2018; Rochat et al., 2021) and are already known to influence chamois distribution (Thuiller et 

al., 2018). We extracted the value of the bioclimatic variables within a 1500 m buffer radius 

around each sampling location (i.e., in area of ~ 5 km² in agreement with home range size and 

dispersal patterns observed in chamois; Loison et al., (1999a), Loison et al., (2008), Nesti et 

al., (2010), Seigle-Ferrand et al., (2022), based on raster with a spatial resolution of 30 

seconds (~1 km at the equator; Fick and Hijmans, 2017). To avoid collinearity among 

variables, we included only uncorrelated variables (based on a principal component analysis) 

and favored seasonal variables, because these better reflect climatic variation among 

sampling locations in comparison with variables measured on shorter (i.e., monthly) or longer 

(i.e., annual) time periods. In this way, 12 out of 19 bioclimatic variables were selected (Figure 

S12). Next, we wanted to select only variables that were significantly correlated with genetic 

variation for subsequent analyses. To identify these, we used a forward selection procedure 

based on Redundancy Analysis (RDA; Blanchet et al., 2008) during which the standardized 

variables that explained most of the model variance were added sequentially to a null model, 

until the addition of any remaining variable did not increase the global model R² (Capblancq 

and Forester, 2021). This procedure was performed using the function ordiR2step from the R-

package vegan (Oksanen et al., 2019). Finally, we retained the 12 variables during the forward 

selection because they all explained a significant and independent component of genetic 

variation (Table S3).  

 

Variance partitioning 

To disentangle the relative contribution of environment, geographic distance, and evolutionary 

history in explaining genetic variation across chamois populations, we used partial redundancy 
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analysis (pRDA). Partitioning variance using pRDAs allows an estimation of the proportion of 

genetic variation explained by a particular group of variables (e.g., climate) while considering 

the effect of other variables (e.g., geography and/or overall population structure). If some of 

them are spatially correlated on a large scale, pRDAs can help disentangling their relative 

contribution to genetic variation. We followed Capblancq and Forester (2021) and considered 

3 different sets of independent variables potentially influencing the distribution of genetic 

variation: 1) geography: derived from individual spatial coordinates (longitude and latitude); 2) 

evolutionary history: expressed as proxies of overall population structure (i.e., PC1 and PC2 

from the PCA conducted above), and 3) environment: represented by the 12 bioclimatic 

variables retained during the forward variable selection (Table S3). We ran four models with 

individual genotypes as dependent variables (using the complete genetic dataset), one model 

for each set of variables (e.g., a pure climate model using the 12 bioclimatic variables as 

explanatory variables and either longitude, latitude, PC1 or PC2 as conditioning variables) and 

the full model using all variables. To estimate the independent contribution of each set of 

variables and their confounded effect with the other sets, we compared the sum of variance 

explained by each pRDA model. The procedure was conducted using the function rda of the 

R-package vegan and default parameters (Oksanen et al., 2019) and we used anova for 

significance testing (i.e., 999 permutations) 

Genotype-environment association 

To identify genetic variants that covary with environmental predictors (i.e., putatively linked to 

local adaptation), we used two genotype-environment association (GEA) approaches 

commonly used in the recent literature: a univariate method – or latent factor mixed models 

(LFMM; Frichot et al., 2013), and a multivariate method – or redundancy analysis (RDA; 

Forester et al., 2018; Capblancq et al., 2018). Both approaches use linear regressions to 

identify loci associated with environmental variation, with individual genotypes as response 

variables and environmental data as explanatory variables, while also considering the past 

evolutionary history of the populations. LFMM, executed using the lfmm_ridge and lfmm_test 

functions from the R-package lfmm (Caye et al., 2019), estimates the correlation between 
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environmental and genetic variation considering one environmental variable at a time. 

Population structure is modeled during the procedure using latent factors and we used K=4 

latent factors, as suggested by the results of the genetic PCA (Figure S13). RDA, performed 

using the function rda of the R-package vegan (Oksanen et al., 2019), detects adaptive 

variation by considering multiple environmental predictors together and identifies the 

environmental gradients that are the most correlated with adaptive variation. We used PC1 

and PC2 from the genetic PCA conducted above to condition the RDA model and account for 

overall population genetic structure. We then used the first five RDA axes (based on the 

screeplot shown in Figure S14) to compute Mahalanobis distances and identify outliers. For 

both methods, we estimated corrected p-values for multiple non-independent tests (i.e., later 

termed q-value) using the qvalue function implemented in the qvalue R-package (Dabney and 

Storey, 2011). Outliers were then detected using a q-value threshold of 0.05, which 

corresponds to a false discovery rate (FDR) of 5% (Steane et al., 2014; Forester et al., 2018; 

González-Serna et al., 2020). Finally, we retained the outliers identified with both LFMM and 

RDA for subsequent analysis. 

Adaptive unit delineation 

To explore the distribution of adaptive genetic variation across chamois natural range, we first 

used RDA to identify groups of individuals sharing a similar adaptive genetic composition (i.e., 

sharing similar alleles) by considering only loci that were detected as putatively under selection 

for climate (i.e., outliers). We then used an “adaptively enriched” RDA space (sensu Steane 

et al., 2014) created using these adaptive loci and the 12 environmental variables to predict 

the turnover of adaptive genetic composition across the species climate landscape. To do so, 

we followed the formula from Steane et al. (2014):	 

𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒	𝑖𝑛𝑑𝑒𝑥	 =.𝑎!𝑏!

"

!#$

	

where a is the value of the standardized bioclimatic variable at the focal location, b is the RDA 

score of the bioclimatic variable for the concerned axis, and i corresponds to the different 
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bioclimatic variables used in the RDA model. Adaptive indices were estimated for the two first 

RDA axes (based on the screeplot shown in Figure S17) and for each raster cell of the 

geographic range of the species. We considered here the IUCN geographic range of the 

species (Anderwald et al., 2021) at a 30-seconds spatial resolution (Figure 1). Subsequently, 

the indices were not weighted by their contribution to its associated RDA axis model (i.e., 

eigenvalues) because each index represents a potential genetic adaptation linked to the 

environment and we decided to avoid favoring one adaptation over another. These indexes 

were then used to group the cells through a clustering procedure using the function clara of 

the R-package cluster (Kaufman and Rousseeuw, 1990), this function is an extension to k-

medoids (PAM) methods to deal with data containing a large number of objects. To select the 

appropriate number of clusters to be produced, the Elbow method was computed using the 

function fviz_nbclust from the R-package factoextra (Kassambara and Mundt, 2020). These 

units were mapped to illustrate the species’ adaptive landscape (for an example, see 

Capblancq, Morin, et al., 2020).  

Future predictions and genetic offset 

The adaptive genetic units identified above were used to investigate the potential mismatch 

between their current distribution and that forecasted in the coming decades under predicted 

climatic conditions. We considered the MIROC-ES2L global climate models (GCM) and two 

shared socio-economic pathways (SSP), i.e., SSP2-4.5 and SSP5-8.5), available for 

Worldclim 2 bioclim variables (Fick and Hijmans, 2017). The moderate SSP2-4.5 scenario 

corresponds to a “middle of the road” world where trends broadly follow their historical 

patterns, and the extreme SSP5-8.5 scenario corresponds to a world of rapid and 

unconstrained growth in economic output and energy use (Riahi et al., 2017). 

We projected the adaptive genetic indices estimated from the adaptively enriched RDA (see 

above) for the 2021-2100 time-period. To allow comparison between current and future 

environments, the values of future bioclimatic variables were standardized using the same 

standardization parameters (i.e., mean and standard deviation) previously used for the current 
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bioclimatic variables (see Breed et al., 2019 for a similar approach). Each value was also 

weighted by the percentage of variance explained by each RDA axis. Based on RDA1 and 

RDA2 adaptive genetic indexes, each pixel of the bioclimatic raster was assigned to a cluster 

from the adaptive units defined in the present time. If future RDA scores were outside of the 

current RDA score range, the adaptive unit was assigned to a new group called ‘Outsider’. In 

other words, the environmental conditions predicted for these locations were not experienced 

by Northern chamois within its current range, so we decided not to infer an optimal genetic 

composition for these climate conditions, because they were outside our model training space. 

Finally, we estimated the evolution of the spatial distribution of each of the chamois adaptive 

units in the Alps depending on different climatic scenarios, measuring changes in surface area 

and elevation for each adaptive unit over time. 

In parallel to exploring spatial changes for each adaptive unit, we identified the regions 

that would be the most severely affected by a change in climatic conditions through the 

estimation of genetic offset (Fitzpatrick and Keller, 2015; Bay et al., 2018; Capblancq, 

Fitzpatrick, et al., 2020). Genetic offset, also known as genetic vulnerability, is defined here 

as a distance between the current and future optimal genetic compositions depending on the 

change between current and future climatic conditions. Therefore, genetic offset is a predictive 

measure of how much the distribution of locally adapted alleles will be perturbed by the shift 

between current and future environmental conditions (Fitzpatrick and Keller, 2015). We 

estimated a rate of adaptive score change for each climatic cell included in the current range 

of chamois in the Alps. To do this, we calculated the Euclidean distance between each cell’s 

RDA score in the present and in the future. Only the first two axes (RDA1 and RDA2) of the 

adaptively enriched RDA were used for this estimation. 

RESULTS 

Global genetic variation  
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We conducted a discriminant analysis of principal components (DAPC) to characterize global 

genetic variation in Northern chamois (Figure 3B). At the highest hierarchical level (i.e., K=2), 

we observed genetic differentiation among individuals from the western and eastern Alps, with 

a transition located approximately along the France-Switzerland border (see “2 clusters” panel; 

Figure S10). From K=2 to K=6, there were additional genetic groups identified in the western 

Alps (i.e., from south-eastern France to eastern Switzerland), splitting the eastern Alps in two 

groups along a longitudinal gradient (Figure S10 with 6 clusters). Using the BIC criterion, we 

concluded that the most likely number of independent genetic clusters in the study area was 

four (see adaptive landscape section for details): two clusters in the western Alps, and two in 

the east. The genetic clusters are structured geographically, with the two most distant clusters 

on the first axis of the DAPC plot also the most distant across the Alps (i.e., clusters 3 and 4 

in Figure 3B). 

Variance partitioning 

The full RDA model that included climatic variation, geography and genetic structure variables 

explained 12% of the total genetic variability (Table 1). The significant results from the four 

pRDAs showed that 37.4% of this explainable genetic variance was linked to climatic variation 

(p < 0.001), 6.2% was associated with geographic variation (geographic coordinates; p < 

0.001), 11.0% was associated with overall genetic structure (p < 0.001), and 45.4% was not 

specifically attributable to any of these groups of variables. The high proportion of variance 

that was not attributable to specific predictors (i.e., confounded) suggested substantial 

covariation between environmental gradients, latitude and/or longitude and overall genetic 

variation across the species range. That result support the use of covariables to correct the 

GEA scans for the potential confounding effect of demographic history. 

Genotype-environment association 

The LFMM genome scan, using K=5 latent factors, retained 536 loci as outliers among the 

20,904 SNPs tested (Figure S15). Those outliers were only associated with 7 of the 12 
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selected variables: Bio3, Bio4, Bio9, Bio15, Bio16, Bio17 and Bio18. Most of the outliers are 

associated with Bio9 (n = 214 outliers) and Bio18 (n = 354 outliers), which correspond to the 

mean temperature of the driest quarter and the precipitation of the warmest quarter, 

respectively (Figure S15). The RDA-based genome scan procedure retained 2205 loci as 

outliers (Figure S16). The intersection of the two outlier sets, i.e., the outliers that overlapped 

according the two approaches yielded 275 unique outlier loci. These 275 loci (out of 20,904 

SNPs, i.e., 1.3% of all SNPs) were considered as markers of genomic regions putatively 

associated with environmental adaptation in Northern chamois. 

Adaptive landscape 

The adaptively enriched RDA was conducted using the 275 outlier SNPs (Figures S18 and 

S20). Most of the adaptive genetic variance was explained by the first two RDA axes (i.e., 

46.6% and 24.38%, respectively; Figures 2A and S17). RDA1 was correlated with temperature 

seasonality (Bio4) and mean temperature of the warmest quarter (Bio10; Figure 2A). RDA2 

was correlated with most of the environmental variables used in the analysis but principally 

with mean temperature of driest quarter (i.e., Bio9), and precipitation of the warmest quarter 

(i.e., Bio18; Figure 2A). We present allele and genotype frequency changes for the most 

significant association between outlier SNPs and climate variables in supplementary materials 

(Figures S18 to S21). 

We extrapolated adaptive genetic turnover across the Alps and Dinaric Mtns by estimating 

RDA1 and RDA2 scores for the entire range of chamois in the study area (Figure 2). The RDA1 index 

seemed to represent an altitudinal gradient (Figure 2B). The RDA2 index mainly followed a latitudinal 

gradient with higher values in the south-east, south-west and western front of the Alps, and lower 

values in the central and north-eastern Alps (Figure 2C). We then used those two indices to delineate 

different adaptive units across the species distribution range (from two to six clusters, Figure S19). 

According to the clustering procedure, the most parsimonious number of clusters was four (Figure 

S20). South-eastern France and Croatia were always included in the same adaptive unit as a small 
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part in the Alps representing the Ticino region (cluster 1; Figure 3A). Similarly, Slovenia and the center 

of Switzerland were grouped together (cluster 2; Figure 3A), grouping areas located between the 

southern-western Alps (cluster 1; Figure 3A) and the northern Alps (clusters 2, 3 and 4; Figure 3A). 

This latter area was also characterized by higher mean temperatures and mean precipitation of the 

wettest quarter, low mean temperatures of the driest quarter and high mean precipitation of the 

warmest quarter. The difference between clusters 2, 3 and 4 was mostly linked to altitudinal gradient 

and temperature seasonality. Moreover, clusters 2 and 3 differed according to the mean precipitation 

of the warmest and wettest quarters (i.e., Bio18 and Bio16, respectively; Table S3). 

Global versus adaptive genetic unit delineation 

We observed a clear distinction between global and adaptive genetic units (Figure 3): the 

spatial distribution systematically differed between global and adaptive genetic clustering, 

regardless of the number of clusters (Figures S10 and S22). Adaptive genetic units clustered 

individuals associated with the same environmental conditions even if these were 

geographically distant from one another, such as south-eastern France and Croatia (Figure 

3A, Cluster 1), whereas global genetic units clearly group individuals from the same 

geographic area (Figure 3B). Therefore, the most likely number of genetic units was four for 

adaptive genetic variation (Figure S23), that we compare with the four global genetic units 

obtained with all markers using DAPC. Even if the pRDAs highlighted an effect of geography 

and past demographic history on chamois genetic variation, we were able to delineate multiple 

genetic units associated with specific environmental conditions along the European Alps and 

Dinaric Mountains. 

Future predictions and genetic offset 

The spatial projection of the four adaptive genetic units differed substantially depending on 

the time-period and the SSP scenarios considered. Overall, and as expected, changes were 

more substantial for the SSP5-8.5 than for the SSP2-4.5 scenario. For both scenarios, we 

predicted an increase in mean habitat elevation for all four adaptive units by the end of the 
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century (Figure 4). The maximum difference between current and future elevations was 503 

m, predicted for cluster 3 using SSP5-8.5, while the minimum difference was 124 m, predicted 

for cluster 1 for the SSP2-4.5 scenario (Table 2). We predicted an overall decrease in suitable 

habitat, especially for clusters 3 and 4 (Figure 4 and Table 2). Conversely, cluster 2 will expand 

its distribution, up to 94% according to the SSP5-8.5 extreme scenario (Figure 4 and Table 2). 

Approximately 30% of the study area will no longer be suitable according to our model based 

on SSP5-8.5 (Figure 5 and Table 2). These future unsuitable areas represent climatic 

conditions that are either not currently experienced by the chamois we sampled and thus may 

represent climatic combinations that are not suitable for the Northern chamois of the study 

area, or for which we lack information about the species adaptive potential. 

Estimates of genetic offset calculated using the differences between current and future 

climates in species ranges, identified areas where important genetic changes (i.e., changes in 

allele frequency) would need to occur for populations to track climate change. Overall, 

Switzerland and Slovenia were the regions with the highest required adaptive change (Figure 

6). Changes were widespread throughout the study area, but more pronounced in the 

Mediterranean region. 
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DISCUSSION 

Evidence of association between genetic and environmental variation 

Exploring the effects of environment, geography, and evolutionary history on Northern 

chamois genetic variation, we found that climatic factors played a significant role in driving 

population genetic differentiation. We identified putative signatures of selection linked to 

climate variation in the species genome, suggesting the presence of local adaptation across 

the global distribution of the species. According to our results, this adaptation seems to be 

mainly driven by temperature and precipitation during the summer months (i.e., mean 

temperature of the driest quarter and the precipitation of the warmest quarter). The Northern 

chamois exhibits physical, behavioral, and ecological adaptations to mountain life (Corlatti et 

al., 2022) and is known to be particularly sensitive to heat during the spring-summer period, 

with important effects reported on life-history traits, directly or indirectly linked to fitness related 

traits (Rughetti and Festa-Bianchet, 2012; Mason, Apollonio, et al., 2014). Summer 

temperatures are known to influence the physiology and behavior of many ungulates, from 

northern regions (van Beest and Milner, 2013) to the Mediterranean (Marchand et al., 2015) 

and at high elevations (Semenzato et al., 2021). Therefore, variability in chamois sensitivity to 

thermal stressors during summer may be due to genetic adaptation to the local environment. 

Similarly, signatures of local adaptation to cold environments have also been reported in the 

mountain goat Oreamnos americanus (Martchenko et al., 2020). Analyzing the relationship 

between genetics and environment across the European Alps, we also detected a strong 

collinearity between environmental gradients, geographic distances and variables reflecting 

the recent evolutionary history of the species. The variance partitioning analysis identified that 

46.6% of the explainable genetic variation was confounded among these three factors (Table 

1) and it was not possible to totally differentiate their relative influence. It confirms the difficulty 

of entirely untangling the impact of the environment from the influence of past demographic 

processes and/or isolation by distance when exploring the drivers of intraspecific genetic 

variation (Frichot et al., 2015; Capblancq and Forester, 2021). 
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We mapped the outlier loci found under putative selection for the environment against 

the well-annotated goat reference genome (Capra hircus, ID ARS1; BioSample: 

SAMN03863711) in the Ensembl project (https://www.ensembl.org/). We found that some of 

the outliers fell in the vicinity of genes involved in skin properties such as CDH2 which was 

also involved in local adaptation to climate in domestic goats (Alimperti and Stelios, 2015; 

Rochat and Joost, 2019). However, we must also acknowledge that our genotyping method – 

ddRAD sequencing – produced a reduced representation of the Northern chamois’ large 

genome, which is probably ~2.5 Gbp long, similarly to close relatives (Martchenko et al., 2020). 

Considering this genome size, the 20,9048,829 genotyped SNPs are, on average, 280,000 bp 

apart from each other. Such a low density of markers is not optimal to identify all the genes 

responsible for local adaptation (Lowry et al., 2017b) but likely some of them, as described 

above. Genome-wide diversity, estimated using a genotyping-by-sequencing approach, was 

also found a good indicator for adaptive variation and for predicting evolutionary responses, 

and better than the population history reflected by the inbreeding level (Ørsted et al., 2019). 

Overall, we believe our data were good enough to differentiate multiple SNPs putatively 

constrained (or linked to genomic regions putatively constrained) by selection for climate 

variations and then strongly differing from the neutral genetic pattern.  

Identifying adaptive genetic units 

Once the putative adaptive genetic component was identified, we were able to project the 

underlying genetic variation across the species range to characterize patterns of intraspecific 

adaptive divergence across the climate landscape (Steane et al., 2014; Fitzpatrick and Keller, 

2015). This type of approach is increasingly used to visualize spatial gradients of genetic 

turnover (i.e., changes in adaptive allele frequency) associated with local adaptation to climate 

(Bay et al., 2018; Ruegg et al., 2018). In Northern chamois, this turnover was mainly driven 

by variation in high temperature and low precipitation (i.e., high mean temperature of the driest 

quarter and low precipitation of the warmest quarter). The adaptive gradient differentiates 

southern from northern parts of the Alps, irrespective of longitude. We also found adaptive 

https://www.ncbi.nlm.nih.gov/biosample/SAMN03863711/
https://www.ensembl.org/
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variation to be related to a gradient of precipitation during the wettest quarter and temperature 

seasonality. Rochat and Joost (2019) already found adaptive alleles associated with 

precipitation of the warmest quarter in domestic goats (Capra hircus) from several breeds in 

Morocco and Europe, for genes related to properties of the cornea and skin, possibly 

conferring adaptations to drought conditions such as high UV-radiation.  

When looking for coherent groups along these adaptive gradients we were able to 

delineate four adaptive genetic units that greatly differed from inferred global genetic 

populations. Most prominently, two populations, one from south-eastern France and the other 

from Croatia were grouped into the same adaptive unit while being 700 km apart from each 

other and assigned to two well-differentiated global genetic clusters, suggesting different 

evolutionary histories. These two populations most likely clustered together because they 

experienced a similar climate and were probably subject to similar selective pressures. Further 

analyses would help to determine whether this clustering is an example of parallel evolution 

or more likely result from past evolutionary history of adaptation and shared ancestral 

polymorphism among regions. Finally, additional investigations, probably with denser genomic 

data from an annotated reference genome would be required to determine if the same genes 

are involved in local adaptation in Northern chamois and to confirm the influence of bioclimatic 

variables on genetic divergence in mountain ungulates. 

 

Future of the Northern chamois in the Alps 

Major environmental changes are predicted by the end of the century, especially changes in 

temperature and precipitation (Hoegh-Guldberg et al., 2018), with dramatic consequences on 

mountain ecosystems (Gobiet et al., 2014; Hoegh-Guldberg et al., 2018). Previous studies on 

alpine ungulates (e.g., the mountain goat; White et al., 2018) and more specifically on chamois 

(Thuiller et al., 2018; Lovari et al., 2020) predicted an important contraction of the future 

distribution ranges. Using a species distribution model approach, Mason et al. (2014) 

predicted an elevational shift of 15 to 30 meters up-slope by the year 2100 for chamois in the 

Gran Paradiso National Park, in Italy. However, using an integrative approach, Thuiller et al. 
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(2018) found that the inclusion of biotic interactions in species distribution models (i.e., plant 

resources) produced more optimistic predictions than models based on climate only. Using 

the relationship between intraspecific genetic variation and climate, we went a step further 

than previous models and predicted a shrinking of the range for all but one adaptive unit, 

together with an elevation shift towards higher altitudes. By the end of the 21st century, the 

mean elevation inhabited by all four adaptive units of chamois is predicted to rise, on average, 

by 200 m. This altitudinal shift is also predicted to lead to the disappearance of the adaptive 

unit already living at high elevation. 

By including intraspecific genetic variation in future projections, we were able to 

evaluate the impact of climate change on local adaptation equilibrium in Northern chamois. 

Overall, the integration of adaptive variation into predictive models may improve our estimation 

of species dynamics under scenarios of environmental changes (Waldvogel et al., 2020). 

Interestingly, in Northern chamois, it is not the Mediterranean region that is predicted to 

experience the strongest disruption of the adaptive equilibrium (i.e., genetic offset), but the 

central part of the species range, in Switzerland and Slovenia. Potentially because population 

in these areas currently have intermediate allele frequencies but will have to specialized 

toward the warmer end of the adaptive gradient in the future. The genetic offset metric is very 

complementary to the projection of shift in distribution of adaptive genetic units. Indeed, 

change in the distribution of adaptive units showed their future optimal location based on 

current genetic adaptation, while genetic offset highlighted the location where extreme 

adaptive genetic changes would be required to track the change in climate. In that sense, even 

where genetic offset is low, the future climate can be beyond the adaptive range of the current 

units (e.g., south-eastern France or Croatia). On the other hand, a high estimate of genetic 

offset for a particular unit could result in its replacement by another genetic group when such 

a group is already present nearby (i.e., central Switzerland). 

Our results also suggest that the Northern chamois is currently genetically adapted to 

environments that are predicted to be no longer available in the future (by 2100), especially at 

higher elevation (> 1000 m; see Figure 5). Conversely, at lower elevation (< 800 m), our model 
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predicted a change in environmental conditions that would push the climate conditions beyond 

the adaptive space currently occupied by the species, potentially making these areas 

climatically unsuitable for Northern chamois in a near future. It is important to note here that 

this result does not necessarily mean that the Northern chamois will go extinct at low elevation, 

but we are currently unable to infer genome-environment association for climatic conditions 

that the samples we considered in this study does not currently experience. Depending on the 

predicted scenario, these unsuitable climatic areas represent up to approximately 50% of the 

chamois current distribution range across the Alps (e.g, for the SSP5-8.5 scenario). The lower 

elevation areas, especially Mediterranean areas such as south-eastern France and Croatia, 

would be the most impacted and populations would require strong genetic change (i.e., 

change in allele frequency) to cope with future climatic conditions. Because our projections 

are relatively short term (i.e., 60 to 80 years), and considering the comparatively long 

generation time of Northern chamois (i.e., ~6 years; Loison et al., 1999b), beneficial mutations 

may not arise for evolutionary rescue (Bell, 2013) and spread fast enough to enable the 

populations to adapt to the changing climates (Barrett and Schluter, 2008), although 

adaptation may still be possible in such a short period of time, if sufficient standing genetic 

variation (SGV) is already present in the populations (Epstein et al., 2016; Lai et al., 2019; 

Bitter et al., 2019). Interestingly, Roques (2021) has shown that the areas that were predicted 

to experience the most marked changes here (i.e., south-eastern France) are also those with 

the highest global genetic diversity, giving some raw material for selection to filter and shape 

new patterns of adaptive variation. 

Although our models can explore the current climatic niche of the species using 

observable adaptive variability and predict its potential future disruption, we cannot predict to 

what extent the species will react to these changes. In particular, the dispersal capacities of 

chamois could help them track suitable climates over long distances and behavioral changes 

could locally mitigate the impact of global warming. Our predictions also suffer from potential 

shortcomings. Firstly, we did not assess the strength of the relationship between adaptive 

genetic variability and environment, and its quantitative effects on Northern chamois fitness. 
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Validating the negative correlation between genetic offset and fitness is critical to do in the 

future if one wants to use such framework to inform conservation. That would require acquiring 

more data on fitness related traits and potentially set up common garden experiments (Browne 

et al., 2019; Fitzpatrick et al., 2021), which is not easily done with wild large mammals. 

Secondly, the current spatial distribution of Northern chamois across the Alps is also 

influenced by past and current human activities, such as hunting, farming, tourism, and habitat 

fragmentation, which may have pushed the species towards higher elevations during the last 

millennia, as well as other components of the environment including topography and edaphic 

factors, and not only climate. This could have artificially reduced the extent of the species' 

realized climatic niche that we can measure and led to missing a section of the adaptive 

gradient with our models. For example, the species occupied low to mid-altitude mountain 

areas of Western Europe, e.g., in the Jura Mountain, the Vosges Mountain, the Massif Central 

(Corlatti et al., 2022), and, the species appears to be continuously expanding its range into 

the lowlands and forested habitats, e.g., in France (Deinet et al., 2013) and also in 

Poland/Slovakia (Ciach and Pęksa, 2019), suggesting that the species can quickly adapt to 

warmer habitats by moving into forests. Thirdly, the Northern chamois has already evolved 

behavioral strategies to cope with climate fluctuations and resource availability, such as 

seasonal vertical migration to avoid heat stress (Papaioannou et al., 2015). In this study, we 

did not consider the ability of the species to react to environmental change via plastic 

responses, which could possibly mitigate our evolutionary predictions, especially at low 

elevations (Chirichella et al., 2021). Indeed, recent investigations suggest that the future of 

chamois will not only depend on how the species adapts to changing climatic conditions, but 

also on the plasticity of the species (e.g., Reiner et al., 2021), in relation to a range of factors, 

e.g., climate change (Lovari et al., 2020), resource availability (Thuiller et al., 2018), 

competition (Corlatti et al., 2019) or even disease outbreaks (Rossi et al., 2019). 

Conservation and management implications 
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Identifying adaptive units can be directly applied to the planning and execution of conservation 

and management programs (e.g., Flanagan et al., 2018; Hoban et al., 2020). For example, if 

translocations are used to restore or reinforce populations, considering source populations 

belonging to the same adaptive unit would help prevent the introduction of maladapted 

individuals and the deleterious effect of outbreeding depression (Aitken and Whitlock, 2013). 

In that sense, landscape genomics is a promising framework for translating knowledge of 

global and adaptive genetic diversity into guidelines for conservation policy and management 

strategies (Hohenlohe et al., 2021). However, it is quite difficult in practical situations to use 

continuous proxies of adaptation such as the ones presented in Figure 3. Often, it is more 

efficient to delineate discrete units of management, based on neutral genetic variation in the 

field of conservation (Funk et al., 2012) or seed or breeding zones in forestry (O’Neill and 

Aitken, 2004). Here we propose what we believe is the first use of RDA to delineate such types 

of units and a framework to identify adaptive genetic groups within a species. Although, 

Fernandez-Fournier et al., (2021) recently questioned the need to “identify adaptive genetic 

variation when prioritizing populations for conservation” considering standing genetic variation 

can be used as a proxy for the adaptive genetic variation, Funk et al., (2012) and others 

(Hohenlohe et al., 2021) stressed the necessity to use both global and adaptive markers to 

make optimal management decisions (e.g., see Barbosa et al., 2018 for an empirical 

application). We believe that information on species’ evolutionary potential offers important 

new insights that can help refining conservation strategies and management policies (Borrell 

et al., 2020; Hohenlohe et al., 2021). It is worth noting, however that, in practice, in a rapidly 

changing and uncertain environment, we cannot totally rule out the importance of considering 

genome-wide genetic variation as an indicator of evolutionary potential in management 

strategies (Flanagan et al., 2018; Fernandez-Fournier et al., 2021; Hoban et al., 2022), 

because the foundations of adaptive variation are complex and not fully understood, it is 

currently impossible to make a definitive dichotomy between adaptive and neutral variation 

(Harrisson et al., 2014). 
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 One management action that is gaining interest recently is the translocation of pre-

adapted individuals to either genetically reinforce populations that will suffer from climate 

change - assisted gene flow - or colonize a previously unoccupied habitat that became suitable 

since the climate started to change - assisted colonization (Aitken and Whitlock, 2013; Aitken 

and Bemmels, 2016; Browne et al., 2019; Segelbacher et al., 2022). As far as we know, such 

actions have not yet been implemented in nature, but they could facilitate the establishment 

of adaptive alleles and help species with long generation times or low dispersal capacities to 

adapt to future climatic conditions. (Rellstab et al., 2016; Capblancq, Fitzpatrick, et al., 2020; 

Seaborn et al., 2021). It should be noted that other studies have warned of the risks and 

limitations of assisted migration in conservation management (Park and Talbot, 2012; Montwé 

et al., 2018). Translocation and reintroduction programs are already common management 

strategies for chamois throughout its range (Soorae, 2010; Apollonio et al., 2014), without any 

consideration of their genetic composition, and even more their adaptive genetic background. 

The results of the present study can help refine the selection of individual genotypes for 

management programs and maximize future reintroduction success. 

CONCLUSIONS 

Using a combination of landscape genomic approaches, our study sheds light on the 

association between genetic and climate variation in a mountain ungulate, the Northern 

chamois, across the European Alps and the Dinaric Mts. We developed an approach that 

makes use of RDA to identify adaptive groups from genetic and climatic data and allow us to 

spatially investigate the potential response of the species to future climate changes. Our 

projections highlight that genetic change could be required in Northern chamois populations 

to be able to track climate change, especially if they cannot easily disperse, although the 

species may also take advantage of its behavioral plasticity to adapt to such changes. Current 

adaptive units are predicted to undergo a major shift in distribution, both spatially (a decrease 
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in area and a change in location) and altitudinally, and some populations will need to adapt to 

new climate conditions. Considering our results, accounting for intraspecific adaptive genetic 

variation in management strategies appears important for future conservation efforts (Aitken 

and Whitlock, 2013; Hoffmann et al., 2021), and our approach could be a pertinent tool for 

such purpose. 
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Figures  

Figure 1. (A) Northern chamois sampling (n=429) in the Northern chamois distribution range 

along the Alps and Dinaric Mts. The bluish contours on the map show the contemporary 

distribution range of Northern chamois (Anderwald et al., 2021). (B) Location of study area in 

Central Europe. Black lines on the maps correspond to the country borders. The maps are 

projected in the world geodetic system 1984 (WGS 84) Black lines on the maps correspond 

to the country borders. The maps are projected in the world geodetic system 1984 (WGS 

84). 

Figure 2. (A) Projection of bioclimatic variables (in black) and outlier SNP markers (in 

orange) into the adaptively enriched genetic RDA space and (B, C) spatial extrapolation of 

RDA1 and RDA2 gradients, respectively, in the Northern chamois distribution range along 

the Alps and Dinaric Mts for the current climatic conditions. See Table S3 for a description of 

the bioclimatic variables. 
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Figure 3. (A) the four adaptive units delineated in the adaptively enriched RDA genetic 

space (left) and spatially mapped (right) across the species distribution range, and (B) the 

four evolutionary significant units defined by the DAPC (left) and spatially mapped (right), 
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Figure 4. Representation of the four adaptive genetic units across the current distribution 

range of Northern chamois along the Alps and Dinaric Mts. (A) in the present and (B, C) in 

the future (2081-2100) for the SSP5-8.5 scenario. The left panels show the projection into 

the adaptively enriched RDA space (and the right panels show the same on a map of the 

Alps and Dinaric Mts. In gray, the new group called “Outsider” depends on a bioclimatic 

gradient which does not currently exist meaning it is outside the current adaptive range 

observed for Northern chamois. 
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Figure 5. (A) Surface area change and (B) mean elevation shift of the four adaptive genetic 

clusters over time from 1970 to 2100 according the two scenarios SSP2-4.5 and SSP5-8.5. 

 

 

Figure 6. Representation of genetic offset between current and future climatic conditions for 

the two scenarios SSP2-4.5 and SSP5-8.5 for Northern chamois along the Alps and Dinaric 

Mtns.
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Table 1. Decomposition of the influence of climate (i.e., clim.), geography (i.e., geo.) and 1 

global population genetic structure (i.e., anc.) on genetic variation using partial redundancy 2 

analyses. For each model, we calculated its statistical significance, the percentage of 3 

explained genetic variance compared to the variance explained by the full model and 4 

compared to the total variance present in the data set. 5 

Partial RDA models Inertia R2 P(>F) 
Proportion of 
explainable 

variance 

Proportion of 
total variance 

Full model : F ~ clim. + anc. + geo. 208.01 0.118 0.001*** 1.00 0.118 

Pure climate : F ~ clim. | (anc. + geo.) 77.84 0.044 0.001*** 0.374 0.044 

Pure geography : F ~ geo. | (anc. + clim.) 12.84 0.007 0.001*** 0.062 0.007 
Pure ancestry : F ~ anc. | (geo. + clim.) 22.90 0.013 0.001*** 0.110 0.013 

Confounded climate/geography/ancestry 94.43   0.454 0.054 

Total unexplained 1553.18    0.882 
Total inertia 1761.19    1.000 

 6 

  7 
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Table 2. Changes in the area and elevation for each adaptive genetic unit from 1970-2000 to 8 

2081-2100. The group called “Outsider” corresponds to individuals predicted to occupy 9 

bioclimatic gradient which does not currently exist, meaning it is outside the current adaptive 10 

range observed for Northern chamois in the study area. 11 

 12 

SSP Cluster Area change range rate (%) Elevation difference (m) 

SSP2-4.5 

Cluster 1 8.28 124.1 

Cluster 2 37.27 185.18 
Cluster 3 -31.94 154 

Cluster 4 -44.39 116.95 

Outsider 326.65 184.63 

SSP5-8.5 

Cluster 1 4.28 377.46 

Cluster 2 94.67 473.27 

Cluster 3 -83.38 503.45 
Cluster 4 -81.39 198.09 

Outsider 880.33 302.82 

 13 


