Cell Wall-Related Mechanisms underlying Plant Cell Expansion
Herman Höfte, Kris Vissenberg

To cite this version:

HAL Id: hal-04372777
https://hal.inrae.fr/hal-04372777
Submitted on 4 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Cell Wall-Related Mechanisms underlying Plant Cell Expansion

Kris Vissenberg and Herman Höfte

Keywords:

Acid growth, auxin, cell expansion, diffuse growth, feedback regulation, history, pectin, tip growth, wall models, wall relaxation

Word count: 12522
Number of figures: 5
Boxes: 3
Abstract

A central question in plant biology is how plant cells can expand while maintaining a strong cell wall. Two main mechanisms have been proposed for irreversible wall expansion, intussusception and chemorheological growth. We discuss here the molecular nature of the cross-links and how their removal can contribute to growth of both tip-growing or diffusely-growing cells. We also discuss recent observations suggesting that at least in some cases processive intussusception may contribute to cell wall expansion in plants.

Introduction

The cells of prokaryotes, fungi, oomycetes, many protists, algae and plants are all surrounded by strong cell walls. A central question is how the walls of such cells manage to expand while resisting the force of the cell’s turgor pressure and preventing rupture. As nicely reviewed by Dumais (Dumais 2013), different solutions for this conundrum can be found in nature, two of which allow irreversible cell wall expansion (see Box 1): (i) growth by processive intussusception, which refers to cell wall area increase driven by the insertion of cell wall elements in a regularly arranged monolayer, as for instance observed in prokaryotes, and (ii) chemorheological growth, which is defined as the chemically-mediated flow of polymeric materials under stress. Here, the deformation of the wall depends on the rate of chemical reactions leading to the breakage of load-bearing cross-links within the network, as observed in plant cell walls.
The current consensus is that plant cell expansion is driven by the turgor pressure and limited by the extensibility of the cell wall, which relaxes through a chemorheological mechanism (see Box 1). This view has evolved over time. Early landmark publications (Nägeli 1864; Sachs 1874) proposed that primary cell walls grow by intussusception. An alternative view (Strasburger 1882) proposed that wall material is deposited through apposition onto the inner cell wall surface. Since such a mechanism on its own does not explain cell wall expansion, an additional process was needed to account for cell enlargement. During the same period there was the discovery of an ‘influence’, which moves from the site of light perception to the site of bending during phototropic bending of canary grass coleoptiles (Darwin 1880). This “influence” was later identified as auxin by Went (1928), which, together with observations by Cholodny (1926), led to the Cholodny-Went theory that states that during tropic responses, asymmetric distribution of auxin throughout the organ stimulates differential growth responses, which results in organ bending (Went and Thimann 1937). This in turn led to the formulation of the acid growth theory (Rayle and Cleland 1970), in which auxin triggers an acidification of the apoplast, promoting relaxation of the cell wall, supposedly through pH-sensitive cell wall hydrolytic activities (see Box 2). This was clearly in line with a chemorheological growth model, also adopted by Lockhart (1965), who formalized turgor-driven cell expansion, with the now famous formula $E = \varphi(P - Y)$, where E is the rate of extension, φ the plastic compliance, P the turgor pressure and Y the yield threshold and where Y drops and φ increases with decreasing pH. Finally, the identification of expansins, proteinaceous
agents responsible for acid-promoted relaxation of stretched cell wall preparations (McQueen-Mason et al. 1992), provided a biochemical correlate for φ and acid growth.

Box 1: Processive intussusception vs chemorheology

Processive intussusception is illustrated by the growth of the sacculus of gram-negative bacteria (Höltje 1998). This structure is a peptidoglycan monolayer with an extremely regular structure consisting of long glycan chains, which support circumferential stress, interconnected by short peptide chains, which support axial stress. Surface deformation is controlled by a protein complex that concomitantly removes peptide bonds, depolymerizes one template glycan chain and synthesizes three new glycan chains (Figure 1A). The regularity of the cell wall structure is such that the “shape” of the new material determines the deformation anisotropy of the cell wall (Figure 1B). The much less regular plant cell walls are thought to undergo chemorheological growth (Figure 1C), which differs from intussusception in that the deformation is dictated by the anisotropic relaxation (the anisotropy results from the anisotropy of both wall structure (Figure 1D) and the stresses that are exerted upon the wall (Figure 1E) upon the removal of load-bearing bonds. The newly inserted wall material is thought to be amorphous or sufficiently flexible to passively fill in the voids created by the removal of load-bearing cross-links, and thus does not contribute to orienting the deformation (Dumais 2013).
Box 2. Auxin-controlled cell expansion: an interplay between pH and cell wall modifications.

Since the Cholodny-Went theory (Went and Thimann 1937), we now know that during tropic and other growth responses (Estelle 1996; Ma and Li 2019; Fendrych et al. 2016), auxin levels are positively correlated with cell elongation and auxin is redistributed through the action of different auxin transport proteins to the cells in the zone that will elongate (Friml et al. 2002; Noh et al. 2001; Rakusová et al. 2011).

Curiously however, auxin can also elicit opposite growth responses, depending on the organ or even the process within the same organ. For instance, in line with Cholodny-Went (Du et al. 2020), lower auxin content or signaling in mutant Arabidopsis roots correlates with shorter epidermal cells and higher cell wall pH (Barbez et al. 2017). In contrast, in the same roots during the gravitropic bending response, higher auxin levels correlate with the inhibition of cell elongation at the lower side of the root (Band et al. 2012). Similarly, external auxin supply inhibits cell elongation (Růžička et al. 2007; Swarup et al. 2007) and promotes surface alkalinization in the root’s elongation zone (Staal et al. 2011). Such opposite responses also occur within etiolated Arabidopsis hypocotyls, where auxin application within 20 min activates plasma membrane-localized H⁺-ATPases leading to cell wall acidification and increased cell elongation (Fendrych et al. 2016), but where, during apical hook formation, auxin accumulation correlates with the inhibition of cell elongation at the future inner side of the hook (Liao et al. 2015). It
should be noted, however, that no matter the growth response to auxin, cell elongation rate inversely correlates with the cell wall pH in accordance with the acid growth theory.

It thus seems that auxin, depending on the context, can trigger either acidification or alkanilization of the cell wall. Lin et al. (2021) recently explained this dual action by showing that two antagonistically acting auxin signalling pathways converge on the apoplastic pH: the cell surface-located TRANSMEMBRANE KINASE1 (TMK1), which interacts with and mediates the phosphorylation of plasma membrane H⁺-ATPases for apoplast acidification and the stronger intracellular canonical auxin signalling that promotes net cellular H⁺ influx and apoplast alkalinization. The picture is more complex, however, since TMK1 can also mediate slower transcriptional responses. Indeed, Cao et al. (2019) showed that the differential growth response during apical hook formation also depends on TMK1, where local auxin accumulation in cells at the inner side of the hook, leads to cleavage of the C-terminus of TMK1, which then stabilizes IAA32 and IAA34 proteins that are specific regulators of auxin signaling (by repressing auxin response transcription factor (ARF) activity).

The study of apical hook formation provided additional insights into the link between auxin levels, cell wall pH and cell expansion. Indeed, Jonsson et al. (2021) observed that higher auxin levels at the inner side of the hook correlate with higher methylesterification levels of the pectin homogalacturonan (HG). Using mutants and transgenics, the authors show that auxin prevents HG de-methylesterification, but interestingly, that changes in HG methylesterification alter the auxin response domain
through a so far unidentified feedback loop. We will discuss below the potential relevance of pectin de-methylesterification for the control of cell elongation. The same group also provided evidence that xyloglucan (XG) is required to limit cell growth rates at the inner side of the hook, and that XG is required for the auxin maxima in the inner side cells by transcriptional regulation of auxin transporters through ARF2 (Aryal et al. 2020). Auxin therefore controls apical hook formation through changes in cell wall chemistry, and in turn, the cell wall provides mechanochemical feedback towards auxin.

Chemorheological cell wall expansion

As also discussed in chapters ULVSKOV and DOBLIN in this book, much of the literature is focused on the nature of the cross-links and on how they are broken to allow relaxation of the network. In the most advanced model, in terms of experimental validation and modeling, the load-bearing network of the primary cell wall consists of cellulose microfibrils, which make lateral contacts at a small number of locations (Zhang et al. 2021). Recent studies, using AFM (atomic force microscopy), cryo-focused ion beam milling and cryo-electron tomography (Nicolas et al. 2022), provided new insights into the cell wall architecture. These studies used the outer epidermal cell walls of onion bulbs as a model, which are up to 7 µm thick and consist of multiple lamellae, each ~40 nm thick. Each lamella consists of fields of aligned microfibrils, the overall orientation of which alternates in the successive lamellae between -45° and + 45° relative to the cell's long axis. The fibrils are surrounded by a reticulated matrix, referred to by the authors as « meshing », which consists primarily of homogalacturonan pectins. This meshing forms patches with no preferential orientation as well as segments in between the aligned fibers. Meshing was most abundant at the inner surface of the cell wall, and levels
abruptly dropped off around 1 µm into the wall. AFM combined with coarse grain modeling on walls before and after stretching, showed that tensile mechanics of the cell wall are dominated by complex movements of cellulose microfibrils (bundling, sliding), with no significant contribution from the matrix (Zhang et al. 2021). At least a subset of the lateral contact sides between microfibrils are thought to be sandwiched together by tightly-bound XG chains (at least in non-Commelinoid species) (see chapter DOBLIN for a description of the cell wall polysaccharides). The latter cross-links were referred to as “biomechanical hotspots” (Cosgrove 2018). The existence of a XG fraction closely associated with cellulose was shown by Pauly et al. (1999) and later by Vissenberg et al. (2005), who used an in vivo XG-endotransglycosylase (XET) assay, in which fluorescently labelled XG-oligosaccharides are covalently incorporated into existing XG by XET action. Upon removal of these incorporated XG-oligosaccharides by a XG-specific β-endoglucanase (XEG), a substantial portion of the XG remained in the cell wall, suggesting that they were in close contact with cellulose and hence protected against XEG enzyme action. The existence of such hybrid XG-cellulose structures, recalcitrant to XEG-treatment, was later confirmed by the discovery of a class of specialized fungal β-endoglucanases (members of the glycosyl hydrolase family 12, which is absent in plants) that specifically removes these structures while leaving the bulk of the “unprotected” XG intact (Park and Cosgrove 2012). If pathogenic fungi have evolved such highly specialized enzymes, one can expect that the structures that they target have some critical role in the cell wall’s architecture. Interestingly, Cosgrove and colleagues indeed showed that this class of β-endoglucanases caused a sustained deformation (creep) of isolated cell walls in an extensometer, which was not the case for XEGs (Park and Cosgrove 2012), such as those used by Vissenberg et al. (2005). In an elegant series of experiments using AFM, they could also show at the
nanoscale that these fungal enzymes promoted the relaxation of stressed walls by removing connections between individual microfibrils (Zhang et al. 2017). The same group also identified expansins as endogenous creep-promoting proteins, suggesting that they also disrupt these biomechanical hotspots, but through a poorly understood, non-enzymatic mechanism (McQueen-Mason et al. 1992; Wang et al. 2013). Interestingly, expansin activity requires low pH (≤ 5), consistent with the acid growth theory. Expansins also promote cell expansion of intact cells (see references in (Marowa et al. 2016)), as shown by ectopic administration on tomato apical meristems (Pien et al. 2001) or by overexpression in Arabidopsis stems and rosettes (Cho and Cosgrove 2000; Goh et al. 2014). An essential in vivo role for expansins in cell elongation was pinpointed by the demonstration that root hair growth was reduced in loss-of-function mutants for the root hair-specific expansin OsEXPA17 in rice (ZhiMing et al. 2011) or in RNAi lines for AtEXPA7 in Arabidopsis (Lin et al. 2011), that leaves and petioles were smaller and often twisted in antisense lines for AtEXPA10 (Cho and Cosgrove 2000), that pollen tube growth was reduced in double atexpa4/atexpb5 mutants and that the root meristem size was reduced in a mutant for AtEXPA4 (Liu et al. 2021).

It should be noted that creep measurements in general are carried out on isolated and often heat-inactivated fragments from cucumber or Arabidopsis hypocotyls, mungbean epicotyls, oat coleoptiles or the above mentioned onion peels (Suslov and Vissenberg 2018). The cells in these tissues are unique in that cell expansion occurs uncoupled from cell wall deposition, perhaps as an adaptation allowing rapid growth. Indeed, the
outer epidermal cell walls of young cells are multilayered and very thick (> 1µm, up to 7 µm for onion cell walls) (Zhang et al. 2021; Suslov et al. 2009), in comparison to much thinner walls (35 to 50 nm) described for instance for anticlinal cell walls of pavement cells (Haas et al. 2020). A study using Arabidopsis hypocotyls showed that such thick walls are deposited during a slow growth phase, after which they undergo significant thinning during a rapid growth phase (Refrégier et al. 2004). The use of such tissues has allowed the assessment of the remodeling capacity of multilayered walls without having to worry about the replenishment of new cell wall material. The observation of the uncoupling of wall synthesis and cell elongation led Bonner to conclude in 1934 (Bonner 1934) “Increase of wall area due primarily to active intussusception of new material is therefore excluded, at least in the case of the Avena coleoptile.”. Subsequent studies using similar materials were often less careful in avoiding extrapolation to plant cell expansion in general.

Indeed, the problem is more complex for the majority of expanding cell walls, in which wall deposition and cell expansion are tightly coupled. This is illustrated by the anticlinal (perpendicular to the organ surface) walls of Arabidopsis epidermal pavement cells, which showed, on cryo-Scanning Electron Microscopy (SEM) sections, a thickness of 35 to 50 nm on each side of the middle lamella (Haas et al. 2020). Such walls can thus accommodate not more than a single cellulose layer (estimated to have a thickness of around 40 nm as determined by Field Emission Scanning Electron Microscopy (FESEM) and AFM in dried onion cell walls (Zhang et al. 2013) or a few cellulose layers, if we assume that these walls have a denser architecture than onion outer cell
walls. As discussed below, expansion of such walls cannot occur without a continuous insertion of new wall material.

Very few studies have addressed in plants how new cell wall material is inserted into the structure and how critical cross-links are formed. Ray (1967) fed oat coleoptile segments with Glucose-H$_3$ in the presence or absence of auxin and used electron microscope radio-autography to observe in which parts of the cell wall cellulose and matrix polysaccharides were incorporated. Consistent with the more recent observation of the activity of cellulose synthase complexes in the plasma membrane (McFarlane et al. 2014), they observed that cellulose was deposited close to the plasma membrane, whereas hemicellulose also penetrated into deeper cell layers. Anderson et al. (2012) used click chemistry upon feeding Arabidopsis seedlings with alkynylated fucose to show the incorporation of newly synthesized polymers, presumably fucose-containing rhamnogalacturonan I (RG-I), into the outer cell wall of root epidermis cells. They observed deposits of the polymer aligned with cellulose microfibrils and reorientation of these polymers associated with cell elongation consistent with the multinet growth theory by Roelofsen and Houwink (1953), the above mentioned AFM observations by Zhang et al (2017) and the results from coarse grain modeling (Zhang et al. 2021). More detailed observations were reported for the Charophyte Chara corallina (Boyer 2016). Charophytes are freshwater green algae, which descended from a common ancestor with land plants (Domozych et al. 2016). This proximity is reflected in a very similar composition of the cell walls (Popper et al. 2011). In Chara, calcium-pectate cross-links rather than XG-cellulose bonds appear to be the load-bearing structures of the cell wall.
(Boyer 2016). A large body of evidence shows that these cell walls expand as a result of the insertion of pectate, which chelates calcium from load-bearing bonds, thus causing the relaxation of the cell wall and the formation of new load-bearing bonds. It should be noted that in this system, the insertion of new wall material is sufficient to promote wall expansion, which is reminiscent of intussusception (Figure 1B). The difference, however, is that in Dumais’ view, the flexible pectin only adopts its structure by occupying the void created upon the turgor-driven relaxation of the cell wall network after removal of load-bearing cross-links (Dumais 2013) and hence does not orient the deformation like the insertion of new material in bacterial cell walls for instance.

In what follows we will first discuss the role of pectin metabolism in cell expansion and then compare models for cell wall expansion in tip-growing and diffusely growing cells.

Pectin structure-function relationships, the tip of the iceberg?

As discussed in detail in chapter **MOHNEN** in this book, pectins are characterized by the presence of galacturonic acid (GalA) and constitute the most diverse family of cell wall polysaccharides in plants. Among those, HG, a linear polymer of δ-1,4-linked GalA is, in many cell types of non-Commelinoid species, the most abundant cell wall polymer. For instance, it represents 20% of the cell wall dry mass in Arabidopsis leaf tissue (Zablackis et al. 1995) and even over 50% in the outer walls of the onion epidermis (Wilson et al. 2021). HGs are found as part of different block-copolymers (HG-RG-I, HG-xylogalacturonan, HG-RG-II the proteoglycan ARABINOXYLAN PECTIN
ARABINOGALACTAN PROTEIN1 (APAP1; (Tan et al. 2013)) and perhaps also as homogeneous independent HG polymers. The function of this structural modularity is not understood in most cases.

HGs are unique in the plant cell wall in that their charge patterns are precisely regulated. Indeed, they are thought to be secreted in a methylesterified form to become selectively de-esterified by cell wall-associated pectin methylesterases (PMEs) (see MOHNEN for a detailed discussion on HG methylesterification). This generates negatively charged residues in the polymer at pH values above the pKa of the polymer (which can range from 3.5 to 5 depending on its charge density (Ralet et al. 2011)).

Why does polymer charge matter that much? Firstly, anionic polymers, such as pectins but also glucuronated AGPs (Lopez-Hernandez et al. 2020), trap counterions and thus may affect the apoplastic pH, the proton motive force and ion currents across the plasma membrane (Grignon and Sentenac 1991; Sentenac and Grignon 1981), which control turgor and morphogenesis (Weisenseel and Kicherer 1981; Hoffmann et al. 2020). In addition, pectins, like many other polymers, form cross-linked networks that contain water in their interstices. The water retention capacity increases dramatically with increasing polymer charge, going from water-polymer ratios of 5:1 for uncharged polymers, up to 3000:1 for charged polymers (Osada and Gong 1993). To understand this, one should keep in mind that the volume of an ionized polymer gel is determined by its osmotic pressure, which is the sum of three forces: (i) the rubber elasticity, (ii) the polymer-polymer affinity and (iii) the counterion pressure (Tanaka 1981). The rubber elasticity derives from the elasticity of the individual polymer strands. The magnitude of
this pressure depends on the temperature, whereas the sign depends only on the volume of the gel (positive for a condensed gel, with polymer ends held close together or negative for a swollen gel, with polymer ends stretched far apart). The polymer-polymer affinity depends on the solubility of the polymers. Poor solubility will tend to draw polymers together creating a negative pressure. This pressure is temperature insensitive and decreases with increasing gel volume. The counterion pressure is the osmotic pressure resulting from counterions sequestered by the polymer's charges (Donnan effect). This pressure increases with temperature and is positive, since it tends to draw water into the polymer's interior and push its exterior parts away from one another. Changes in the “environment” (temperature, pH, ionic strength, calcium concentration, mechanical stresses, etc) of the gel will affect the three parameters in independent and often discontinuous ways. For instance, increasing the temperature will increase the osmotic pressure of the gel due to the increased rubber elasticity and counterion pressure. The resulting volume increase will lead to a decrease in polymer-polymer affinity, which, beyond a certain threshold, will again be counteracted by the negative pressure due to the stretching of the polymers. This leads to complex emergent behaviors, including discontinuous changes in volume (phase transitions) in response to even minute changes in the “environment” or the composition of the gel (Tanaka 1981) (Figure 2A, B). So it is easy to understand how even subtle chemical changes (e.g. de-methylesterification, de-acetylation, polymer cleavage) that affect one or more of these three parameters, can strongly affect the hydration capacity of the gel and hence that of the cell wall.
This idea is nicely illustrated by studies of the mucilage that is released from the Arabidopsis seed coat upon seed imbibition. The released portion of the mucilage is a hydrogel consisting mainly of RG-I (Šola et al. 2019). Genetic studies showed that the removal of one or more galactose residues from a RG-I side chain by the β-galactosidase MUM2 is essential for mucilage release (Macquet et al. 2007). The authors provided evidence that galactoses in RG-I side chains, when oxidized by a putative galactose oxidase, encoded by the RUBY gene, are able to form hemi-acetal cross-links with neighboring sugars during dehydration (Šola et al. 2019). Mucilage swelling therefore appears to depend on preventing cross-linking through the enzymatic removal of galactose residues from RG-I side chains.

To understand the in vivo function of pectins, it should be kept in mind that their concentration in the cell wall is an order of magnitude higher than in the gels used in most in vitro physicochemical studies. Such concentrated gels can have tensile moduli close to those of plant cell walls (Zsivanovits et al. 2004), suggesting that, besides cellulose, pectins can significantly contribute to the mechanical properties of the cell wall. In addition, uni-axially oriented HG chains can form crystalline fibrils. This was shown in vitro using X-ray diffraction on oriented HG preparations of high Degree of Methylesterification (DM), gelified at low pH in the presence of sucrose, or calcium cross-linked low DM HG, where the two types of fibrils showed different crystal units (Palmer et al. 1947; Sterling 1957; Walkinshaw and Arnott 1981a, 1981b). Pectin fibrils were also shown to exist in vivo (Figure 3). For instance, electron microscopy and X-ray diffraction revealed predominantly axially oriented pectin fibrils in fresh collenchyma cell
walls of *Petasites vulgaris* petioles (Roelofsen and Kreger 1951) (Figure 3A). “Non-cellulosic fibrillar galacturonic acid” was also observed *in vivo*, pointing out from the cell wall into the extracellular medium of liquid plant cell cultures (Leppard et al. 1971) (Figure 3B), in the inner (cytoplasmic-facing) cell wall surface of these cells, or in root epidermal cell walls (Figure 3C). These structures with a diameter in the order of 20 nm, were initially christened “lignofibrils”, due to their weak UV absorption properties and Phloroglucinol-HCl staining. The UV absorption, however, could, besides lignin, also come from tyrosine-rich proteins such as polycationic extensin-related proteins, which can form polyelectrolyte complexes with pectate (Cannon et al. 2008; Valentin et al. 2010). This may go some way to explain why these fibres were reported to be largely resistant to pectinases (Leppard et al. 1971). Pectin fibrils were also observed in the lumen of poplar xylem fiber cells (Arend et al. 2008) (Figure 3D). More recently, super-resolution microscopy revealed uni-axially oriented HG in the anticlinal cell walls of pavement cells in the Arabidopsis epidermis (Haas et al. 2020) Figure 3E). The significance of this for cell expansion will be discussed below.

A last, so far poorly explored, aspect relevant for the regulation of cell expansion is how substitution and charge patterns of HGs may govern interactions with other polysaccharides or proteins. Well-studied examples for other polysaccharides are the periodic (glucuronic acid (GlcA), me-GlcA or acetyl) substitution patterns on xylan backbones that condition cellulose binding (Granatham et al. 2017) or, in the animal extracellular matrix, the sulfate substitution patterns of the glucoronoaminoglucan heparin that govern, often highly specific, interactions with proteins (Capila and Linhardt
HGAs can also be acetylated or xylosylated (at position 2 or 3) and can have random or blockwise charge patterns. In addition, specific repeated substitution patterns (such as GalA$_4$MeAc) could be inferred from the profiling of oligogalacturonides released from the cell wall by a fungal pectate lyase (Voxeur et al. 2019). Such patterns are the hallmarks of specific PME activities, which remain to be characterized.

PMEs are encoded by large gene families (66 members in Arabidopsis thaliana) and, in vascular plants, PME activity can be modulated by endogenous proteinaceous PME inhibitors (PMEIs), which are encoded by equally large families (71 in A. thaliana) (Wolf et al. 2009; Wang et al. 2013). In addition, demethylation exposes the HG to the activity of endogenous polygalacturonases (PGs) and pectate lyases (PLs), which require demethylated substrates (Hocq et al. 2017). The few plant PMEs that have been studied so far have neutral to basic pH optima and processive activities, generating blockwise charge patterns. At least some of these PMEs can lose processivity in certain conditions (low pH (Hocq et al. 2021) or in the presence of Ca$^{2+}$ (Vincent et al. 2013)) thus generating non-clustered patterns. It will be interesting to see to what extent HG charge and substitution patterns can govern interactions with cell wall proteins. A recent study (Francoz et al. 2019) revealed that a specific PMEI (PMEI6) is required for the generation of a binding site for a cell wall peroxidase (PRX36), presumably by altering the activity of an unknown PME, at a specific location within the outer cell wall of the Arabidopsis seed coat. At this specific location, the peroxidase changes the cell wall properties generating brittle spots that selectively rupture upon hydration, facilitating the release of the seed mucilage. Many other cell wall proteins have basic
surfaces and bind to pectins as shown *in vitro* (Carpin et al. 2001; Jamet et al. 2008) and *in vivo* (Wang et al. 2015). This is expected to contribute not only to the nanoscale distribution of cell wall modifying activities, but also to the formation of polyelectrolyte complexes that may also locally impact the hydration, porosity and rheology of cell walls. For instance, the interaction with basic extensins induced the dehydration of pectin layers *in vitro* (Valentin et al. 2010). Similar effects can be expected from the interaction with other polycations such as endogenous polyamines (Messiaen and Van Cutsem 1999) or chitosan present in the walls of endophytic (Noorifar et al. 2021) or pathogenic fungi (Baker et al. 2007).

Tip growth

Tip growth is mainly studied in pollen tubes and root hairs. As such, there is much literature dealing with discoveries in both cell systems. It has been known since 1897 that growing pollen tubes contain moving granular protoplasm (Potter 1897). Years later, (Castle 1958) concluded that the apical regions of tip growing cells may have the highest relative elemental rates of elongation known. Following this, the oldest models of tip growth zone activities were developed by Green (1973), while in the same period electrophysiological experiments showed that calcium enters the growing pollen tube tip, with other positive ions, mainly protons, leaving at the more basal region (Weisenseel et al. 1975). The importance of calcium was backed up with the visualization of an internal Ca$^{2+}$-gradient in pollen tubes (Jaffe et al. 1975) and the observations that raising calcium in the tubes leads to growth arrest, but not of cell wall
buildup, resulting in a thicker cell wall (Picton and Steer 1983) while its deprivation or the use of a calcium-channel blocker results in localized swelling at the tube tip (Reiss and Herth 1985). Later on (Li et al. 1994) observed a periodically arranged pattern of esterified and unesterified pectin in pollen tubes, which was linked to growth velocity fluctuations by (Pierson et al. 1996). Further correlations between the oscillations of pollen tube growth, and those of calcium-ions and protons were described by (Pierson et al. 1996; Feijó et al. 1999), respectively. In the early years of the 21st century, localized cell wall remodeling by expansin and XTH in tip-growing root hairs was shown by Baluška et al. (2000) and Vissenberg et al. (2001), while the discovery that Rapid Alkalization Factors (RALFs) regulate extracellular pH and growth of root hairs (Wu et al. 2007) opened up the findings that members of the Catharanthus roseus superfamily of receptor-like kinases (RLKs) control cell wall integrity at the pollen tube tip (Boisson-Dernier et al. 2009) and in root hairs (Duan et al. 2010). Only in 2018, Schoenaers et al. (2018) made a link between cell wall integrity sensing by one of these RLKs, ERULUS (ERU), and the oscillations of cell wall pectin methylesterification grade and the resulting growth of root hairs.

Like in Chara, pectin insertion thus also appears to drive the expansion of tip-growing pollen tubes and root hairs. In such cells, growth is restricted to the extreme apex and depends on the fusion of vesicles containing new cell wall material with the apical plasma membrane (Bove et al. 2008; Ketelaar et al. 2008; Balcerowicz et al. 2015). This results in polar growth that is highly responsive to local changes in the cell’s environment (Schoenaers et al. 2017).
Valuable insights into growth mechanisms in these cells came from the observation of growth rate oscillations, which, as detailed below, are accompanied by oscillations with the same temporal or spatial frequency as a number of other cellular parameters (Kroeger and Geitmann 2012; Damineli et al. 2017). These include exocytosis rate, cell wall modification and thickness, Rho-like GTPase (ROP) activity, apical F-actin presence, cytoplasmic pH and calcium gradients, apoplastic pH and Reactive Oxygen Species (ROS) levels (Hepler et al. 2001; Hwang et al. 2010; Yan et al. 2009; Schoenaers et al. 2017). Such oscillations are also reflected in the periodic cell wall deposition patterns that were reported in tobacco pollen tubes (Geitmann et al. 1995; Derksen et al. 2011). McKenna et al. (2009) monitored PME-GFP levels in the cell wall of pollen tubes, as a marker for exocytosis. They concluded that exocytosis oscillates with the growth rate, where peaks in exocytosis precede periodic growth bursts. (A critical note here is that GFP is less fluorescent at lower pH (Kneen et al. 1998), hence PME-GFP fluorescence oscillations might also reflect apoplastic pH oscillations). Cell wall thickness was also shown to oscillate, also with its maxima preceding the growth rate maxima (Figure 4A). Interestingly, variations in the amount of deposited cell wall material correlated with the extent of the subsequent growth rate increases. This suggested that cell wall deposition determines the elongation rate of these cells (McKenna et al. 2009) (Figure 4B), in contrast to the above mentioned “biomechanical hotspot” model for diffusely growing cells, in which cell wall deposition somehow passively follows cell wall relaxation. A role for cytosolic calcium oscillations in the
control of oscillations in exocytosis, cell wall thickness and growth rate was explored in a model by (Kroeger et al. 2008).

The fusion of vesicles with the plasma membrane is controlled by members of the syntaxin family of soluble N-ethyl-maleimide sensitive factor attachment protein receptors (SNAREs; (Rodriguez-Furlán et al. 2016)), the exocyst complex (Hála et al. 2008) and in part by members of the plant ROP family. ROP activity oscillates in pollen tubes with the same frequency as tip growth oscillations (Hwang et al. 2010), and its apical location depends on the action of ROP1 ENHANCERs (REns), proteins that are located sub-apically and help to remove ROPs from the plasma membrane using clathrin-mediated endocytosis (Li et al. 2018). ROPs interact with diverse effectors and mediate actin dynamics, microtubule organization (and thus vesicle trafficking, reviewed in (Nibau et al. 2006; Yalovsky et al. 2008), ROS production (Carol et al. 2005) and the formation of a tip-focused Ca2+ gradient (Li et al. 1999), and are therefore considered as ‘hubs’ for signal integration during tip growth.

The requirement of pectin deposition for proper tip growth was suggested by the observation that root hair growth was inhibited in mutants (for two distinct UDP-GalA biosynthetic enzymes) with reduced pectin levels (Pang et al. 2010) or in WT upon pectate lyase treatment (Park et al. 2011). Next to deposition, PME-driven pectin modification (see Box 2) is also critical for pollen tube and root hair growth. In pollen tubes, PME activity is essential for growth, as shown by the curved, irregularly shaped and stunted pollen tubes with reduced elongation rates upon inactivation of PPME1 or
VANGUARD1 (VGD1), which both encode pollen-specific PMEs (Tian et al. 2006; Jiang et al. 2005). The involvement of PME activity in proper tip growth of pollen tubes was modeled using Finite Element Modeling (FEM) and also experimentally validated (Fayant et al. 2010). In root hairs, genetic validation for a role of PME activity in elongation awaits the identification of pme-mutants with a root hair phenotype, but Schoenaers et al. (2018) were already able to show that inhibiting PME activity with a catechin extract also affected root hair growth. Interestingly PME activity also appears to oscillate in the tip of growing root hairs (Schoenaers et al. 2018) or pollen tubes (Rounds et al. 2011). This was shown by the oscillations in the staining intensity of propidium iodide, a dye that binds to anionic pectin. These oscillations may mirror oscillations in PME activity, which, given the high pH optimum of the bulk of PME activity (Hocq et al. 2017), is expected to be controlled by the oscillations in surface pH, reported for pollen tubes (Hepler et al. 2006) and root hairs (Monshausen et al. 2007) (Box 2).

In line with this, the activity of most other cell wall modifying enzymes is also highly pH-dependent. The activity of expansins is promoted in an acidic environment (McQueen-Mason et al. 1992), whereas recombinantly-produced XG endo-transglycosylase-hydrolases (XTHs) show widely diverging pH optima (Maris et al. 2009, 2011). Recombinant pectate lyases have alkaline pH optima (Ali et al. 2015), while polygalacturonases are more active at acidic pH (Hocq et al. 2017). In this respect, it needs to be mentioned that in alkaline conditions, PME activity on methylesterified pectin generates protons, and hence contributes to cell wall acidification (Moustacas et
al. 1991), in concert with plasma membrane-localised H+-ATPases (AHAs). In pollen tubes, AHAs are specifically localized in the shank and they have been shown to be the drivers for cytosolic pH oscillations (Hoffmann et al. 2020). Indeed, mutants in AHAs show reduced H+ and anion fluxes around the pollen tube tip, slower cytosolic pH oscillations, shallower cytosolic pH gradients and reduced growth rates. Root hair and pollen tube elongation therefore seem to be in line with the acid growth theory (Box 3) (Rayle and Cleland 1992), where cell wall pH oscillations cause periodic activation of PMEs at high pH in antiphase with the activation of expansins at low pH (Cosgrove 2000).

Based on the calcium-pectate exchange mechanism previously proposed for Chara, (Rojas et al. 2011) developed a computational model for pollen tube growth (Figure 4C). This model posits that cell wall deposition promotes cell elongation and that cell elongation inhibits cell wall deposition through a negative feedback loop. It also implies that cell expansion ceases when all available pectin is incorporated into the load-bearing cell wall layer and no new material is available. This model was able to predict pollen tube shape, trajectories of cell wall material at the growing surface and even growth oscillations, which occur above a certain elongation rate, where cell expansion outruns cell wall deposition. The model clearly indicates that in the case of tip-growing cells, wall expansion is limited by deposition and/or insertion of material. Evidently, turgor pressure provides the driving force for growth also in this model (Kroeger et al. 2011; Dumais 2021).
The calcium-pectate exchange model does not address the role in tip growth of cellulose-XG remodeling described in the biomechanical hotspot model. As discussed below, however, this cannot be ignored given the strong root hair growth phenotypes of mutants for cellulose or XG synthesis or expansins.

Cellulose deposition is essential for maintaining cell wall integrity as shown by the growth inhibition and/or rupture of root hairs treated with a cellulase or the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB) (Park et al. 2011). Mutant analysis and localization experiments suggest that proteins other than those involved in cellulose synthesis in primary walls (CESA1, CESA3 and CESA6) synthesize cellulose at the root hair tip (Endler and Persson 2011; Park et al. 2011). **CELLULOSE SYNTHASE LIKE (CSL)D2** and **CSLD3 (KOJAK)** are likely candidates. Indeed their mutants produce abnormal root hairs that rupture early (Favery et al. 2001) or late (Bernal et al. 2008) during development or which show a swollen base, wavy growth or occasional branches. Evidence for a role of CSLD3 in cellulose synthesis came from the observation that a chimeric gene encoding CSLD3 with the catalytic domain of CESA6 complemented the **csld3/kjk** root hair phenotype (Galway et al. 2011, Park et al. 2011). In addition, recent data confirmed that CSLD3 is indeed a UDP-glucose-dependent (1-4)-β-glucan synthase that can be purified as higher-order complexes with similar ultrastructural features as those formed by CESA6 proteins (Yang et al. 2020). The fact that CSLDs are active where plasma membrane-associated cortical microtubules are generally absent (in the root hair tip or at the new cell plate), suggests that they contribute to the production of cellulose structures different from the long microfibrils
generated by microtubule-associated cellulose synthase complexes. It will be interesting to see whether the shorter disordered cellulose-like fibrils that can be observed in the tip of growing root hairs are produced by CLSD complexes (Akkerman et al. 2012; Newcomb and Bonnet 1965).

Xyloglucan is also essential for root hair growth. Indeed, mutants for XG 6-XYLOSYLTRANSFERASES (XXTs) (xxt1/xxt2, xxt1/xxt2/xxt5) lack detectable XG and have short root hairs with swollen bases (Cavalier et al. 2008; Zabotina et al. 2008). Disruption of the synthesis of a GalA-containing XG (in the ROOT HAIR SPECIFIC8/XYLOGLUCAN-SPECIFIC GALACTURONOSYLTRANSFERASE1 (RHS8/XUT1) mutant) results in shorter root hairs (Peña et al. 2012), which, however, do not rupture. The same is true for root hairs treated with a xyloglucanase (Park et al. 2011).

Expansins are also required for normal root hair growth as shown by the shorter root hair phenotypes of RNAi lines for EXPANSIN A7 (EXPA7) in Arabidopsis (Lin et al. 2011), or an OsEXPA17 mutant in rice (ZhiMing et al. 2011). In addition, application of expansin to growing root hairs triggered, at low concentrations, radial swelling of the tip and transient growth inhibition or, at higher concentrations, bursting (Cosgrove et al. 2002).

XTHs act on the same cellulose/XG network. Although XG endotransglycosylase activity (XET) was observed at the tip and in the shank of root hairs (Vissenberg et al.
2000, 2001, 2003), no \textit{xth} mutants with a detectable root hair phenotype have been described so far, possibly due to redundancy.

Another critical oscillating parameter during root hair growth is the production of ROS in the apoplast. Indeed, mutations in \textit{ROOT HAIR DEFECTIVE (RHD2)} encoding a plasma membrane NADPH oxidase, strongly decreased ROS accumulation and caused stunted roots with no or very short root hairs (Foreman et al. 2003). Different interpretations of this phenotype have been formulated. Foreman et al. (2003) proposed that extracellular ROS is required for the activation hyperpolarization-activated Ca2+-channels in the plasma membrane, which form the cytoplasmic calcium gradient that is required for root hair growth and acts in the negative feedback regulation of ROP activity (Yan et al. 2009). Monshausen et al. (2007) proposed an alternative interpretation, in which the lack of root hairs in \textit{rhd2} is the result of premature bursting due to reduced apoplastic ROS levels. In this view, cell wall expansion in root hairs reflects a balancing act between growth-promoting (e.g. acid growth) and growth-restricting activities, where apoplastic ROS promotes wall strengthening through oxidative cross-linking of cell wall extensins (Schnabelrauch et al. 1996; Velasquez et al. 2011). Support for this view comes from the observation that growth at higher pH, which slows down cell expansion, restored root hair growth in the \textit{rhd2} mutant (Monshausen et al. 2007). The essential role for extensins (Velasquez et al. 2011; 2015a,b; Draeger et al. 2015; Møller et al. 2017) but also of other structural proteins such as PRP1, PRP3 (Bernhardt and Tierney 2000), PRPL1 (Boron et al. 2014) and
AGPs (Mollet et al. 2002; Marzec et al. 2015) in cell wall assembly of root hairs was shown by genetic and pharmacological studies.

Together, these observations show that understanding tip growth requires integration of the growth-promoting “calcium-pectate exchange” and “biomechanical hotspot” models but also growth-restricting activities involving oxidative cross-linking of cell wall proteins.

Given the importance and highly dynamic character of the cell wall at the growing root hair and pollen tube tip, the status of the cell wall must be constantly monitored to prevent (premature in case of the pollen tubes) bursting of the cell. This information on cell wall status must therefore feed back to the growth-controlling processes. RLKs of the *Catharanthus roseus* subfamily (CrRLK1Ls), such as FERONIA (FER) (Duan et al. 2010) and ERULUS (ERU) (Schoenaers et al. 2018), were suggested to function in the perception of cell wall status in root hairs by binding to specific cell wall ligands, and they are indeed related to growth control through activity changes of the apical plasma membrane-localized ROPs (Molendijk et al. 2001; Jones et al. 2002). Our current understanding states that ligand-bound RLKs activate ROPs, which then initiate NADPH-oxidase-dependent ROS production, leading to changes in calcium-channel activity and changes in the cell wall (Duan et al. 2010). It would be interesting to see which ligands serve as cell wall status indicators, and whether vesicle fusion and new cell wall deposition are controlled by RLK activation, especially in the light of the abovementioned calcium-pectate exchange model to explain tip growth, where RLKs could act in the control of wall deposition and expansion (Rojas et al. 2011; Dumais
Schoenaers et al. (2018) have indeed shown that ERU is involved in the control of cell wall PME activity dynamics, since eru root hairs have elevated PME activity levels, reflected in increased de-methylesterified pectin abundance and in propidium iodide fluorescence intensity oscillations with a lower frequency and higher amplitude.

Diffuse cell expansion

In contrast to the extremely polarized expansion in tip growing cells, the growth of cells embedded in tissues is considered “diffuse”, i.e. not restricted to specific subcellular locations. The distinction between tip growth and diffuse growth, however, is not always that clear (Geitmann and Ortega 2009). Indeed, the “diffuse” growth pattern can be either homogeneous or non-homogeneous, referred to as “homotropic” and “heterotropic” respectively. In the latter case, local foci with increased growth rate, reminiscent of tip growth, create irregular deformation patterns, underlying the large variety of cell shapes that can be found in plants (Figure 5).

One well-studied example of heterotropic growth is that of the formation of the lobes of puzzle-shape pavement cells in the epidermis of Arabidopsis leaves or cotyledons (Figure 5A). In these cells, the appearance of inhomogeneities in cell wall deformation patterns depends, like in root hairs and pollen tubes, on ROP signaling modules, which not only promote the formation of specific membrane domains that locally organize the cytoskeleton and secretory events (Liu et al. 2021), but also other processes crucial for
growth, such as protein translation (through TARGET OF RAPAMYCIN (TOR) signaling upon activation by the plant hormone auxin) (Schepetilnikov et al. 2017).

This raises the question of how the position of these ROP domains is determined. A recent elegant study, also building upon data presented by Bidhendi et al. (2019), showed that stress patterns may provide initial positional cues (Belteton et al. 2021). They first used a 3D FEM model, elaborated from the observed geometry of a few epidermal cells, to show that, in developing pavement cells (Figure 5A), highest stress is found along the anticlinal (perpendicular to the surface) cell walls. Next, using time lapse imaging, the authors showed that the symmetry breaking event underlying lobe initiation was preceded by the local and transient formation of transfacial cortical microtubule bundles, facing both anticlinal and external periclinal (parallel to the surface) cell walls in the cell located at the convex site of the future lobe (Figure 5B). Using the 3D FEM model, the site of the transfacial microtubule accumulation could be predicted from the local maxima of the mechanical stress patterns, which are the resultant of the mechanical anisotropy of the walls of the cell and the anisotropy of the supracellular stress patterns within the organ (Box 1). It has been shown that cortical (i.e. right below the plasma membrane) microtubules align with maximum stress patterns through a so far unknown mechanism (Hamant et al. 2019). These microtubules in turn guide the trajectories of the cellulose synthase complexes, which move in the plasma membrane while depositing stiff microfibrils. The latter reinforce the cell wall along the stress patterns thus changing the anisotropy in wall mechanics and overall stress patterns and, as a result, the orientation of surface deformation (Hamant
et al. 2008; Mirabet et al. 2011). Consistent with this, also in pavement cells, the microtubule bundles facing the anticlinal walls co-localized with GFP-tagged cellulose synthase complexes. The authors proposed a model in which the cellulose microfibrils deposited in the anticlinal wall of the cell at the convex side of the future lobe, create a “patch of anisotropic wall”. The subsequent local anisotropic cell wall deformation, perpendicular to the microfibril orientation, would then drive lobe formation (Belteton et al. 2021).

This study provides a nice example of how mechanical stress patterns, predicted from a geometrical model, may provide initial positional cues for local cell wall deformation patterns, which may be sharpened and reinforced by ROP-mediated feedback signaling. The study, however, also points to inconsistencies in current models for diffuse cell expansion, in particular how turgor-driven cell wall relaxation can lead to lobe formation given that adjacent cells most likely have comparable turgor pressures. This is even more striking for the formation of furrows in cells in which cell adhesion was prevented (by treatment with low doses of pectinases, removing the middle lamella, or in mutants with reduced cell adhesion). These furrows consist of closely opposed walls from the same cell connected by a widened bulb at the apex, that grow into the cell (Verger et al. 2018; Belteton et al. 2021). The driving force for such ingrowths cannot be the turgor, but reflects an intrinsic capacity of the cell wall to increase its surface. A similar conclusion was drawn from the study of natural cell wall ingrowths observed in a number of cell types (Borowska-Wykret and Kwiatkowska 2018) (Figure 5C, D). The authors proposed a model in which ingrowth initiation is driven by the swelling of the
matrix between the oriented microfibrils in the anticlinal cell walls, selectively on the convex side of the lobe. Finally, turgor-driven cell wall expansion is also an unlikely mechanism for the formation of Rhizobium infection threads (Rae et al. 1992) or fungal infection structures that progress against the turgor pressure of the host cell (Huckelhoven 2007). Here again the driving force for cell wall deformation appears to come from the insertion and expansion of cell wall material.

A potential molecular mechanism for turgor-independent cell wall deformation was suggested by a recent study on Arabidopsis pavement cells (Haas et al. 2020). This study used super-resolution microscopy with anti-HG antibodies to reveal that HG, instead of forming an amorphous gel, can show a striking degree of organization, at least in anticlinal cell walls. Indeed, the epitopes for a subset of these antibodies (2F4, LM20 and LM19) formed filaments paralleling the cellulose microfibrils. Stacked parallel chains of HG are expected to form semi-crystalline fibrils, such as those that have been reported previously (Figure 3). Interestingly, other anti-HG antibodies (JIM7) did not reveal such filaments (Haas et al. 2020). This indicates that first, the observed filaments were not artifactual and second, different HG populations with a distinct mesoscale organisation must exist in the same cell wall. The study also showed a higher proportion of low/high DM HG in the wall on the convex side of the lobe. Given the above-mentioned increased distance between polymers in crystals of low DM HG relative to those of high DM HG, the authors proposed a mechanism in which HG de-methylesterification induces a phase transition causing the cell wall to swell. Since this occurred preferentially on one side of the cell wall, a lobe was expected to form. Indeed,
lobe formation could be simulated with a FEM model based on this mechanism. The causality between PME activity, the HG phase transition and lobe formation was suggested by the inhibition of all these events by the inducible overexpression of a PMEI in transgenic Arabidopsis. In addition, inducible overexpression of a PME promoted the accumulation of low DM HG on both sides of the wall, increased the distance between fibrils observed by SEM and promoted cell expansion while preventing lobe formation. The latter was expected given the lack of asymmetry in the connected opposing cell walls.

It should be noted that lobe formation occurs during the expansion of the entire cell. This requires differential expansion rates across an already expanding wall. If we assume that the expansion of the straight walls is also, at least in part, driven by pectin insertion and swelling, lobe formation could arise from enhanced activation of PME activity on the convex side or, perhaps more likely, from the inhibition of de-methylesterification on the concave side. It will therefore be interesting to see whether the local cell wall pH differs between the two opposing cell walls at the concave and convex sides, since it would affect the activities of PMEs and other growth regulators.

Together, the study of lobe and furrow formation suggests a turgor-independent driving force for cell wall deformation based on the conversion of chemical energy into mechanical energy associated with the de-methylesterification of HG.

New food for thought
In summary, three models for cell expansion are currently being proposed in different contexts: (i) the biomechanical hotspot model for acid growth in diffusely growing cells, (ii) the Ca$^{2+}$-pectate cross-link exchange model for Chara and tip-growing cells and (iii) the expanding pectin filament model for lobe formation in pavement cells. The question is whether these models explain cell expansion only in certain cell wall types or whether they are part of an integrated processing system in which overlapping, synergistic or antagonistic chemo-mechanical phenomena and control points might modulate cell wall expansion, with some aspects becoming dominant in some cell types/developmental stages/environmental conditions and others being completely absent in other instances. The above discussions showed that the latter possibility is the more likely one. Indeed, we discussed the requirement for XG-cellulose cross-link removal in tip-growing root hairs, in addition to Ca$^{2+}$-pectate cross-link exchange. Inversely, in diffusely growing cells, genetic evidence showed a key growth-promoting role for pectin de-methylesterification in a variety of contexts (Peaucelle et al. 2008, 2011, 2015; Andres-Robin et al. 2018; Haas et al. 2020; Wachsman et al. 2020; Jonsson et al. 2021; Stefanowicz et al. 2021), suggesting that Ca$^{2+}$-pectate exchange and/or pectin swelling also occurs in these cells, although more complex scenarios involving signaling or PME-dependent cell wall acidification impinging on cellulose-XG remodeling cannot be excluded. In pavement cells, FEM modeling showed that cell wall deformation driven by swelling pectins would create additional stresses in particular in external periclinal cell walls (Haas et al., 2020), and perhaps also between younger and older cell wall layers, which would require relaxation for instance through XG-cellulose cross-link removal.
Finally, pectin swelling upon de-methylesterification might also contribute to turgor-driven expansion. For instance, cell wall swelling was observed in Arabidopsis root epidermis cells upon auxin or brassinosteroid treatment (Elgass et al. 2009).

The study of tip growth showed the importance of the surface pH and ROS oscillations that contribute to expansion and cross-linking cycles leading to the formation of periodic cell wall deposition patterns. Similar processes could explain the deposition of layered cell walls of diffusely growing cells, although such oscillations would be more difficult to observe.

The observation of oriented HG chains and pectin fibrils raises the question how the HG chains can reach their uni-axial orientation. Is this through interaction with similarly oriented cellulose? Pectin-cellulose interactions have indeed been observed in muro using solid-state NMR on never-dried cell wall preparations (Wang et al. 2015). Also, fractionation studies revealed a pectin fraction strongly bound to the cellulosic residue. Interestingly, this fraction and not the chelator-extractable pectin fraction had disappeared in a seedling lethal mutant for the GalA transferase GAUT1 (Mohnen in this book), suggesting the existence of a specialized biosynthetic pathway. How pectin is bound to cellulose is not known, but it may be through xylan (Ralet et al. 2016), arabinan or galactan side chains (Zykwinska et al. 2005) of RG-I or even through covalent links that have been observed between HG and XG (Stratilová et al. 2020) or cellulose (Broxterman and Schols 2018) respectively. Alternative orientating mechanisms are not excluded, such as self-assembly through a nematic crystalline
phase (Sanchez et al. 2012; Saw et al. 2018) or perhaps through exocytosis by vesicular-tubular structures reminiscent of those observed in neurons or in suberizing plant cells (De Bellis et al. 2021).

Finally, the presence of uni-axially oriented HG filaments, the swelling of which contributes to the growth direction of single-layered anticlinal cell walls, corresponds more to a growth mechanism by intussusception than chemorheological growth. The above-mentioned statement of Bonner in 1934 (Bonner 1934) definitely cannot be extrapolated to all cell/tissue types, or species!

Acknowledgements

The authors acknowledge the financial support by the University of Antwerp (BOF-DOCPRO4) and the Research Foundation Flanders (FWO Post-doc fellowship) to KV and ANR project ANR-20-CE11-0008, HOMEOWALL to HH. The IJPB benefits from the support of Saclay Plant Sciences-SPS (ANR-17-EUR-0007).

References

Bonner J (1934) Studies on the growth hormone of plants. V. The relation of cell elongation to cell wall formation. *Proceedings of the National Academy of Sciences of the USA* 20:393-397

Liu W, Xu L, Lin H, Cao J (2021) Two expansin genes, AtEXPA4 and AtEXPB5, are redundantly required for pollen tube growth and AtEXPA4 is involved in primary root elongation in Arabidopsis thaliana. Genes 12:249

Roelofsen PA, Houwink AL (1953) Architecture and growth of the primary cell wall in some plant hairs and in the phycomyces sporangiophore. *Acta Botanica Néerlandica* 2:218–125

Roelofsen PA, Kreger DR (1951) The sub-microscopic structure of pectin in collenchyma cell-walls. *Journal of Experimental Botany* 2:332-343

covalently xyloglucan and anionic oligosaccharides derived from pectin. *The Plant Journal* 104:752-767

Figure legends

Figure 1: Models explaining (an)isotropic growth (adapted from Dumais (2013) with permission)

A) The three-for-one model of peptidoglycan wall assembly. The wall assembly machinery travels along one docking glycan strand, and depolymerizes the docking strand as it progresses forward. Meanwhile, it is synthesizing three new strands to replace it, resulting in a net growth of two glycan chains.

B) Intussusception in a cell wall with ordered cell wall material. New material is deposited between existing material, separating former neighboring material and inducing cell wall growth in one direction during the process of intussusception. (Brown crosses and dotted lines depict the deposition of new cell wall material by synthase proteins/complexes, also in C).

C) Chemorheological growth of a cell wall with randomly-organised cell wall material. New material becomes deposited and concomitantly chemical bonds between cell wall components are broken and reformed, leading to turgor-driven isotropic growth.

D) Anisotropic growth. Cell wall deformation is anisotropic when a cell wall with anisotropic material properties undergoes isotropic stress. (The thickness of the arrows reflect the level of stress in that direction, also in E)

E) Anisotropic growth. Cell wall deformation is anisotropic when an isotropic cell wall is suspect of anisotropic stress.
Figure 2: Phase separation in ionized polymer gels (Adapted from Tanaka et al. (1992)).

A) Large volume transitions (here in acrylamide gel beads) are triggered by subtle changes in the environment. From left to right: gradually increasing changes in environmental conditions lead to abrupt changes in the volume of the bead.

B) Large volume transition in a gel induced by minute changes in the hydrophobicity of the medium.

Figure 3: Visualization of fibrillar pectin.

A) Axially oriented pectin fibrils in fresh collenchyma cell walls of Petasites vulgaris petioles, as visualized by transmission electron microscopy (TEM). (Adapted from Roelofsen and Kreger (1951))

B) Non-cellulosic fibrillar galacturonic acid pointing out from the cell wall into the extracellular medium of liquid plant cell cultures, as visualized by TEM. (From Leppard et al. (1971), with permission)

C) Ropelike aggregate at the cell wall surface of Phaseolus culture cells, as visualized by TEM (From Leppard et al. (1971), with permission).

D) TEM images of pectin fibrils in the lumen of poplar xylem fiber cells. (From Arend et al. (2008), with permission)

E) Super-resolution microscopy showing uni-axially oriented HG in the anticlinal cell walls of pavement cells in the Arabidopsis epidermis. (From Haas et al. (2020)).
Figure 4: Calcium-pectate exchange model to explain tip growth.

A) Two DIC-images taken at different moments during oscillating pollen tube tip growth. The upper image shows a thick, and the lower a thin apical cell wall. (Images from McKenna et al. (2011), with permission)

B) Schematic representation of events happening at the tip during pollen tube tip growth. (1) Vesicles containing highly methylesterified pectin move towards the tip. The cell wall contains load-bearing calcium-pectate cross-links. (2) Methylesterified pectin is secreted into the inner cell wall layers, creating a periplasmic space, pushing the cell wall a bit forward and creating the thick cell wall appearance (see panel A, upper image). (3) PME activity de-methylesterifies the newly deposited pectin. (4) This de-methylesterified pectin competes for calcium ions with the older de-methylesterified and load-bearing pectins and becomes integrated in the existing pectin matrix, emptying the periplasmic space and thinning the cell wall (see panel A, lower image). By dissociating the calcium-bonds and recreating new bonds with the young de-methylesterified pectin, the older pectins can yield under turgor pressure and are pushed aside, leading to cell wall growth. The cycle can now restart from (1). (Modified after McKenna et al. (2011), with permission)

C) More detailed view on the events explained in B) happening at the pollen tube tip (from Rojas et al. (2011), with permission). Load-bearing cross-links are altering positions in the wall, from the old pectin located more in the outer cell wall to the newly incorporated pectins more to the inner side of the wall. The
model is based on 3 key concepts: 1) cross-link dissociation allows turgor pressure to stretch (and thin) the cell wall, 2) newly deposited methylesterified and uncross-linked pectin serves as a reservoir of material that waits to be incorporated into the cross-linked network by dissociating existing cross-links, after being de-methylesterified by PMEs, and 3) cross-links reform at the same rate as they are broken, but in a relaxed state.

Figure 5: Lobe formation in pavement cells and ingrowth development in pine needles

A) Different stages of pavement cell morphogenesis. Rounded protodermal cells (top) grow and develop lobes (middle) generating cells with complex shapes (bottom). (Redrawn from Cosgrove and Anderson (2020), with permission)

B) Involvement of cell wall components in the formation of lobes (structures not drawn to scale). Methylesterified HG forms vertical nanofibrils in the concave surfaces of the anticlinal cell walls of neck regions, interspersed with or connected to adjacent cellulose fibrils. The convex surfaces of the anticlinal walls of lobes are rich in de-methylesterified HG nanofibrils. (Redrawn from Cosgrove and Anderson (2020), with permission).

C) Pine needle mesophyll morphogenesis. a) Three adjacent mesophyll cells (C1-3) forming one mesophyll plate. In C1 one wall invagination (In) terminated by a loop (L) is labeled. b) Fragment of a needle cut along the vascular bundle (Vsc) with two exemplary mesophyll plates (MPI) spreading between the vascular bundle and the epidermis (Ep). A large gas space
(GSp) is present between the plates. c) Ingrowth initiation in one of two contacting cell walls due to the swelling of the local wall thickening (B1 in c) is followed by the expansion of the ingrowth assisted by the stresses generated by the B1 layer (c’, c”). (From Borowska-Wykret and Kwiatkowska (2018), with permission)

D) Jigsaw puzzle-shaped epidermal cells. (a, b) images showing optical paradermal sections of the leaf epidermis in Arabidopsis (a) and maize (b). Scale bars 20 μm. c) At the site of lobe (Lb) formation, cellulose microfibrils (blue/gray lines) form bundles in the anticlinal wall (AW) of cell 1 (C1), into which lumen the wall is bending. The cellulose microfibril bundles extend radiating into the outer (PWo) and inner periclinal walls (PWi) of C1. Pads (Pa) are formed at the junctions between the anticlinal and periclinal walls. d) Asymmetric swelling in one of the single walls comprising a compound wall fragment with fixed ends leads to the buckling of the wall (B1, A1, A2 in d). As a result, a lobe is initiated (d’). (From Borowska-Wykret and Kwiatkowska (2018), with permission).
Anisotropic stresses

Processive intussusception

Chemorheological growth

Anisotropic material properties

Anisotropic stresses
temperature, solvent composition, pH, ions, electric field, UV, light, specific molecules, or chemicals

Figure 2
Step 1: The growth cycle begins with the deposition of secretory vesicles.

Step 2: Nascent pectin is initially unincorporated with the load-bearing network.

Step 3: The nascent pectin is then de-esterified by the enzyme pectin methylesterase.

Step 4: A cross-link is a calcium ion bound to two pectin residues. A new cross-link forms when a de-esterified residue draws the calcium ion from an existing one, thereby dissociating it.

Step 5: This reaction integrates the nascent pectin into the load-bearing network and allows turgor-driven expansion.

Step 6: Expansion down-regulates deposition.

Figure 4
Figure 5