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ABSTRACT: Disease control can induce both demographic and evolu-
tionary responses in host-parasite systems. Foreseeing the outcome of
control therefore requires knowledge of the eco-evolutionary feedback
between control and system. Previous work has assumed that control
strategies have a homogeneous effect on the parasite population. How-
ever, this is not true when control targets those traits that confer to the
parasite heterogeneous levels of resistance, which can additionally be re-
lated to other key parasite traits through evolutionary trade-offs. In this
work, we develop a minimal model coupling epidemiological and evolu-
tionary dynamics to explore possible trait-dependent effects of control
strategies. In particular, we consider a parasite expressing continuous
levels of a trait-determining resource exploitation and a control treat-
ment that can be either positively or negatively correlated with that trait.
We demonstrate the potential of trait-dependent control by considering
that the decision maker may want to minimize both the damage caused
by the disease and the use of treatment, due to possible environmental or
economic costs. We identify efficient strategies showing that the optimal
type of treatment depends on the amount applied. Our results pave the
way for the study of control strategies based on evolutionary constraints,
such as collateral sensitivity and resistance costs, which are receiving in-
creasing attention for both public health and agricultural purposes.

Keywords: trade-offs, mathematical modeling, evolutionary epide-
miology, disease management, heterogeneous pathogens, trait-
structured populations.

Introduction

Disease and pest control strategies aim to eradicate or
mitigate the exploitation of a parasite population on a host
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population of economic (agriculture) or public health
(humans) interest (Gilligan 2002). By altering the ecological
host-parasite interactions, a control strategy can induce
both demographic effects (Gilligan and van den Bosch
2008) and evolutionary responses (Day et al. 2020). Pre-
dicting the outcome of control strategies in a system there-
fore depends on our understanding of its eco-evolutionary
feedbacks (Day and Gandon 2006), that is, on the evolu-
tionary epidemiology behavior (Galvani 2003).

In addition to experimental studies, theoretical work
based on evolutionary epidemiology has provided insights
into control strategies and on their (often counterintuitive)
consequences. For instance, host reduction (e.g., via cull-
ing) may increase disease abundance and prevalence (Bol-
zoni and De Leo 2013); altering parasite growth, such as in
vaccination campaigns, can lead to selection for more vir-
ulent parasites, thus increasing disease severity (Gandon
et al. 2001, 2003; Zurita-Gutiérrez and Lion 2015). Studies
of the emergence and spread of multidrug resistance have
also shown that the efficacy of a control strategy may de-
pend on the structure of the host population (e.g., age or
spatial distributions) as well as on parasite heterogeneity
(Blanquart et al. 2018; Lehtinen et al. 2019; McLeod and
Gandon 2021). Furthermore, models also provide a low-
cost tool to explore and optimize large-scale agricultural
practices (Rimbaud et al. 2018), such as the deployment
of disease-resistant cultivars (Taylor and Cunniffe 2022)
and crop rotation (Bargués-Ribera and Gokhale 2020),
whose in-field implementation can consume considerable
time and resources.

Most of the experimental and theoretical work has as-
sumed that control strategies have a homogeneous effect
on parasites or that parasites are endowed with a genetically
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encoded resistance that is either present or absent (qualita-
tive resistance; REX Consortium 2010). However, this pic-
ture neglects the cases where the efficacy of a treatment
depends on quantitative traits that can be heterogeneously
expressed in the parasite population (quantitative resis-
tance; Corwin and Kliebenstein 2017). In fact, parasites
have developed several defense mechanisms that can quan-
titatively affect drug uptake, leading to variable levels of re-
sistance (Munita and Arias 2016; El Meouche and Dunlop
2018). Widespread examples of such mechanisms are met-
abolic regulators (Chebotar et al. 2021), biofilms (Costerton
et al. 1999; Fanning and Mitchell 2012), efflux pumps
(Martinez et al. 2009), flagella (Lyu et al. 2021), and capsules
(Song et al. 2021). Thus, a parasite population will often ex-
hibit heterogeneity in the expression of key traits (Hewitt
etal. 2016; Gonzalez et al. 2019; Perrier et al. 2019; Schréter
and Dersch 2019; Dutta et al. 2020), potentially leading to
heterogeneous trait-dependent treatment effects (Porco
et al. 2005; Laine and Barres 2013; Martinez et al. 2019;
Alizon 2020) and ultimately threatening the control strat-
egy’s overall efficacy (Gefen and Balaban 2009; Patyka
etal. 2016; Weigel and Dersch 2018; Dewachter et al. 2019).

The occurrence of trait-dependent treatment effects is
expected to be exacerbated in the future, as many of the
new promising strategies to counter resistance escalation
are based on the exploitation of trait-specific evolutionary
constraints (Palmer and Kishony 2013; Lassig et al. 2017;
Furusawa et al. 2018), such as fitness costs of resistance
(Lenski 1998; Andersson and Hughes 2010; Vincent et al.
2013; Hawkins and Fraaije 2018), life history (Shoval
et al. 2012), and metabolic (Weife et al. 2015; Pinheiro
et al. 2021) trade-offs and collateral sensitivity (Lazar et al.
2018; Barbosa et al. 2019; Maltas and Wood 2019; Maeda
et al. 2020; Roemhild and Andersson 2021). For instance,
bacterial efflux pumps rely on proton motive force both
to import some toxic compounds (e.g., aminoglycosides;
Taber et al. 1987; Alekshun and Levy 2007) and to expel
others (e.g., B-lactams; Okusu et al. 1996; Lazar et al
2013; Suzuki et al. 2014); therefore, strains with a reduced
proton motive force will be more resistant to one antibiotic
but more sensitive to the other—and vice versa (Pal et al.
2015; Roemhild and Andersson 2021). This phenomenon
is a textbook example of antibiotic collateral sensitivity,
but it also affects other types of control strategies, such as
fungicides, copper use, and phage therapy, and it can poten-
tially involve other fields of application, such as biocontrol
methods in agriculture.

Phage therapy employs viruses (phages) that selectively
attack bacteria and ultimately kill them. It has been ob-
served that resistance to both phages and antibiotics is often
costly for bacteria (Meaden et al. 2015; Mangalea and
Duerkop 2020; Laure and Ahn 2022): selection pressure of-
ten leads to the evolution of bacterial strains that are resis-
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tant to either phage or antibiotic therapy, which can there-
fore be applied in combination to obtain synergistic
antimicrobial effects (Torres-Barcel6 and Hochberg 2016;
Coyne et al. 2022; Kebriaei et al. 2022). In addition, recently
discovered phages targeting mechanisms involved in both
antibiotic resistance and virulence are smart tools to restore
antibiotic treatment efficacy and co-select for avirulent
strains (Chan et al. 2018; Gurney et al. 2020). Phages attach
to specific bacterial external structures (e.g., flagella,
capsules, or efflux pumps) that are involved in important
biological processes, such as antibiotic resistance and path-
ogenicity (Chan et al. 2016; Song et al. 2021; Esteves and
Scharf 2022). Modifications in these components make
phage infection more difficult and are therefore selected
for in bacterial populations exposed to phages. These
changes inhibit the bacteria’s previous ability to cause dis-
ease and to resist antibiotics, thereby restoring their sensi-
tivity to the treatment (Chan et al. 2016; Chiarelli et al.
2020; Gurney et al. 2020). Specifically, bacteria with a
downregulated production of efflux pumps would, on the
one hand, avoid phage infection. On the other hand, how-
ever, they would be more sensitive to antibiotics or toxic
heavy metals that are detoxified by these pumps.

A similar mechanism underlies the behavior observed in
Mpyzus persicae, an aphid considered a major threat to agri-
culture (Van Emden and Harrington 2017) and an impor-
tant living model for the study of insecticide resistance
(Bass et al. 2014): mutations in the metabolic activity can
lead to the emergence of clones that are more resistant to
insecticides due to reduced uptake rates but also more vul-
nerable to natural enemies (Foster et al. 2007), with non-
trivial consequences on their demography (Foster et al.
2011). When exposed to both insecticides and biocontrol
(natural enemies or pathogens), insects may face fitness
trade-offs that prevent them from maintaining the same
level of resistance (Lacey et al. 2015). Therefore, by exerting
different selection pressures on a pest, a synergistic use of
chemical and biocontrol has the potential to contain resis-
tance development and maintain crop productivity while
minimizing the negative environmental impacts by poten-
tially reducing chemical doses (Ons et al. 2020), akin to the
phage-antibiotics case.

Since traits that lead to resistance are often also involved
in the parasite’s ability to exploit and harm the host (Beceiro
et al. 2013; Alcalde-Rico et al. 2016; Giraud et al. 2017;
Copin et al. 2019), the outcome of a trait-specific treatment
may be complicated by the presence of trade-offs between
resistance mechanisms and other life history traits of the
parasite (Boots and Haraguchi 1999; Boots and Bowers
2004), such as those involving host exploitation and disease-
induced mortality (known as the transmission-virulence
trade-off) in the case of microparasites (Bull 1994; van
den Bosch and Gilligan 2008; Alizon et al. 2009) and those
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involving foraging activity and life span in the case of
macroparasites (Werner and Anholt 1993; Anholt et al.
2000; Gotthard 2000; Brodin and Johansson 2004; Stoks
et al. 2005; Strobbe et al. 2011). Knowledge of novel trait-
specific mechanisms is broadening the spectrum of possible
selection pressures we can exert on parasites (Allen et al.
2014), and a full exploitation of the potential of such new
strategies depends on our understanding of the eco-
evolutionary feedbacks between the treatment and the bio-
logical system, at various levels of description (Burmeister
et al. 2021; Perry 2021).

Accounting for a detailed description of the therapy-
parasite interactions have provided insightful information
on the in vitro behavior of specific systems (Bull et al.
2014; Mattei et al. 2018; Nichol et al. 2019; Rodriguez-
Gonzalez et al. 2020; Aulin et al. 2021). However, their
results can be hardly generalizable, and the corresponding
population-level information can be tricky to obtain. Here,
we are interested in developing a general framework, shared
in principle by any control strategy, where (i) treatment ef-
ficacy depends on a target trait; (ii) different treatment types
correlate differently with the target trait; (iii) target traits are
heterogeneously expressed across the parasite population,
leading to heterogeneous treatment effects; and (iv) tar-
get traits may be related to other parasites’ traits through
trade-offs.

We tackle this issue by means of a minimal ecological
model describing the dynamics of a generic, valuable re-
source and of a generic parasite population (Lafferty et al.
2015). Following a well-established evolutionary epidemio-
logical approach (Day and Proulx 2004), we model parasites
as a trait-structured population, characterized by heteroge-
neous levels of expression of key traits. We consider a single
proxy trait variable accounting for the possible trade-offs be-
tween the parasite’s level of exploitation and mortality and its
resistance to treatment. Crucially and differently from previ-
ous work (Frank 1996; Alizon and van Baalen 2005; Porco
et al. 2005), we allow treatment efficacy to either correlate
or anticorrelate with the proxy trait to reproduce potentially
different control strategies as well as combinations of them.
We focus our analysis on the implications of trait-dependent
treatment from an agricultural perspective, where maximiz-
ing resources and reducing treatment use are two major
objectives (WHO 2014; Medina-Pastor and Triacchini
2020). Using a simple multicriteria analysis, we show that
the ability to tune trait-dependent control can harness para-
site heterogeneity to our advantage: in particular, we show
the existence of optimal treatment types and the emergence
of saturation effects on resource production gains. By focus-
ing on a quantity of general economic interest (healthy re-
source at equilibrium), our results can be applied to a variety
of agricultural practices and are potentially extendable to dif-
ferent scenarios.

Models and Methods
The Model

In the spirit of Lafferty et al. (2015), we start with a minimal
ecological model describing the interaction between re-
source (R) and parasite (P) biomass, potentially representa-
tive of both microparasite and macroparasite scenarios. The
former scenario neglects the explicit dynamics of within-
host abundance (as is commonly done for pathogens;
Anderson and May 1979, Keeling and Rohani 2011): R rep-
resents the biomass of healthy, susceptible hosts, while P
represents the biomass of hosts infected by the pathogen.
In the latter scenario (typical of crop-pest and plant-herbivore
systems), R represents the resource biomass, and P repre-
sents the biomass of the parasite that consumes it. In both
scenarios, R is treated as a renewable resource exploited by
P. The treatment has the effect of killing the parasite, thus
removing P biomass. In what follows, we first present the
underlying assumptions of the minimal model, from which
we then develop the eco-evolutionary formulation.

Homogeneous RP Formulation with Treatment. Our
assumptions are summarized as follows. First, resource bio-
mass is renewed at a constant rate. Second, resource bio-
mass is converted to parasite biomass upon exploitation:
in the microparasite scenario, it corresponds to the trans-
mission of the infection from an infected to a susceptible
host; in the macroparasite scenario, it corresponds to the
consumption of the resource by the consumer. Third, re-
source and parasite biomass can be removed from the sys-
tem by various possible mechanisms acting on both (e.g.,
natural mortality) or either (e.g., disease-induced mortal-
ity). Fourth, parasite biomass is eradicated at a rate propor-
tional to treatment application and efficacy: in the micro-
parasite scenario, eradication is intended in the sense of
removing the pathogen from the host (Hall et al. 2004; Cas-
tle and Gilligan 2012); in the macroparasite scenario, erad-
ication is intended in the sense of killing the parasite (van
den Bosch and Gilligan 2008).

Under the above assumptions, the dynamics of R and
P biomass is given by the following system of equations:

‘;—1: = 60— 6"R — BRP + {yoP, (1a)
% = BRP — (8" + v9)P, (1b)

where 0 is the resource renewal rate; 6" are the mortality
rates; 3 is the exploitation rate; € is the coefficient ac-
counting for biomass conversion; y¢ is the total eradica-
tion rate per unit of parasite biomass, where parameter y
is the treatment application rate and ¢ is the treatment
efficacy; and { is the treated parasite’s fate parameter.



In the microparasite scenario, 8 corresponds to the
transmission rate of the infection, and € = 1. The fate of
the treated infected host is determined by ¢ as follows: for
¢ = 1, the treated host is restored to R (i.e., treatment
provides recovery without immunity, as may be the case
with animal antibiotics; Hethcote 2000; Forster and Gil-
ligan 2007); for { = 0, the treated host is removed from
the system (recovery with immunity or permanent removal,
as is generally the case with plant diseases; Hall et al. 2004).
Intermediate values (0 < { < 1) can model in-between
cases. As will be shown, for our purposes it is not necessary
to specify the fate of the treated host, since the results
presented here are independent of the value of {.

In the macroparasite scenario, 3 corresponds to the con-
sumption rate of the resource, 0 < € < 1 (biomass conver-
sion from resource to consumer) and { = 0 (treatment
removes consumers from the system).

In the standard ecological formulation of the model, the
population is considered to be homogeneous, so that treat-
ment efficacy, exploitation, and mortality rates have con-
stant values across individuals. The behavior of this basic
model is well known, and we refer the reader to Koro-
beinikov and Wake (2002) for details.

Trait-Structured RPx Formulation with Trait-Dependent
Treatment. Following previous work (Day and Proulx 2004;
Korobeinikov 2018; Day et al. 2020; Sasaki et al. 2022), we
elaborate the formulation equivalent to model equations
(1) in the case of a parasite heterogeneously expressing a trait.
The parameters of the model and their description are sum-
marized in table 1. The following assumptions are intro-
duced. First, the parasite has a continuum of strains, mathe-

Table 1: Variables and parameters used in the model

Description

R Resource biomass
P Parasite biomass
x Trait variable
p(x) Parasite trait distribution
X Average trait value
w Mutations diffusion coefficient
0 Resource renewal rate
o" Resource mortality rate
v Treatment application rate

Treatment fate parameter
6"(x) Parasite mortality rate
5 Parasite baseline natural mortality rate
87 Trait-dependent mortality contribution
B(x) Parasite exploitation rate
Bo Baseline exploitation rate
G Trait-dependent exploitation contribution
d(x) Trait-dependent treatment efficacy
o8 Type of treatment (|¢,| degree of specialization)
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matically described by a single continuous proxy variable
x € T, where 7 is the trait space. For the sake of simplic-
ity, we will also consider the unit interval 7 = [0, 1] as trait
space. The generalization to any positive interval [Xpin, Xmax )
is straightforward and can be mapped to the interval [0, 1] by
rescaling of the parameters. Heterogeneity is described by the
trait distribution p(x), that is, the density of parasites carrying
trait x. Second, the trait determines the parasite’s levels of re-
source exploitation, mortality, and treatment efficacy, which
are now represented by the functions (6(x), 6"(x), and ¢(x).
Third, parasites undergo mutations that induce small
changes in their traits and maintain heterogeneity within
the population; mutation rates are high compared with the
ecological timescale, they are unbiased, and no preferred di-
rection is assumed.

In the heterogeneous formulation, the system is de-
scribed by the ecological and evolutionary states. The
ecological state is given by the amount of R and P bio-
mass. The evolutionary state is given by the trait distri-
bution p(x). Mathematically speaking, p(x) is a probabil-
ity distribution over which it is possible to compute
average quantities with respect to the parasite popula-
tion. Given the assumptions described above, the dy-
namics of the heterogeneous system is provided by the
following system of equations (details are provided in
the supplemental PDF):

% =0 — 6"R— B(t)RP + {yo(t)P,  (2a)
F - _
= BORP - [a 1) + 'y¢>(t)}P, (2b)
d P _
P~ TP pire) - FOL (29
with
F(x) = eB(x)R — 8"(x) — vo(x). (3)

The bar notation indicates the average over the trait dis-
tribution; thus, 8(t) is the average exploitation rate of the
population:

B8(t) = Lﬁ(x)p(x) dx. (4)

In the equation above, the time dependence is retained
in order to recognize that such averages are not fixed but
change over time with the time variation of the trait dis-
tribution p(x). Equivalent definitions apply to average
mortality 6°(¢), the average treatment efficacy (1), and
the function F(t).

Equations (2a) and (2b) describe the population dy-
namics at the demographic level. They are equivalent to
the classical formulation equations (1) upon replacing
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the single-strain parameters 3, 6%, and ¢ with their
population-average counterparts (), §°(¢), and o(1).
Equation (2¢) instead describes the population dynamics
at the evolutionary level, as it governs the changes in the
parasite trait distribution due to mutations and competi-
tion for limited resource.

Phenotypic mutations are captured by the diffusion oper-
ator 9°/dx? over the trait space, . being the diffusion coeffi-
cient related to mutations; this choice assumes that muta-
tions induce small perturbations in the quantitative trait,
that is, a parasite mutates into a “phenotypically close” vari-
ant (possible biases in the direction of mutations may be
accounted for by introducing a gradient term in the last equa-
tion; Kimura 1965; Chisholm et al. 2016; Lorenzi et al. 2016).

Concomitantly, parasites compete between each other
for access to a limited amount of resource (i.e., infection
of a limited number of hosts or consumption of a limited
resource), according to the trait-dependent function F(x):
the exploitation term ¢3(x)R contributes to increasing the
density of trait x, whereas mortality 6°(x) and efficacy ¢(x)
contribute to decreasing it.

The overall success of parasites with trait x depends on
the difference between its value of F(x) and the population
average F, as in a replicator dynamics (Schuster and Sig-
mund 1983). Thus, F(x) represents the fitness landscape
structuring the parasite’s competition for exploitation. Un-
like purely theoretical work, this fitness landscape is not as-
sumed. Rather, it emerges from the ecological interactions
(Day et al. 2020). Note that the evolutionary equation takes
the same form regardless of the parasite’s nature and of the
fate parameter ¢.

The system of equations (2) shows neatly the inter-
twining of ecological and evolutionary levels of description
that is typical of eco-evolutionary dynamics: on the one
hand, the demography of the population (given by R and
P) depends on the trait distribution p(x) via the average
quantities B(1), 67 (1), and $(¢); on the other hand, the trait
distribution depends on the demography via the ecological
interactions (as exploitation depends on R). The solution of
the heterogeneous problem (and the methods needed to ob-
tain it) depends on the choice of the trait-dependent func-
tions, which are detailed below.

Trait-Dependent Trade-Offs

We are interested in cases where the proxy trait x provides
the parasite with different levels of resource exploitation
and, consequently, mortality due to possible life history
trade-offs. This trait will also provide a quantitative re-
sponse to treatment, depending on the type of control strat-
egy employed, so as to model different possible trait-specific
treatments and their consequent heterogeneous efficacy.
Therefore, in the following we will refer to exploitation,

mortality, and efficacy as functions of the proxy trait vari-
able x. Our mathematical choices aim to capture the basic
biological features of the trade-offs of interest while main-
taining mathematical tractability. Relaxation of such
choices does not alter the qualitative features of our model
(details are provided in the supplemental PDF). References
to the examples presented in the introduction should be
taken as qualitative connections underpinning our ap-
proach rather than exact, detailed descriptions of the resis-
tance, exploitation, and mortality mechanisms at play.

Exploitation. We assume exploitation rate 3 to be line-
arly affected by the trait variable x; that is,

B(x) = B + Bix, (5)

where (3, is the baseline rate and (3, the trait-dependent
contribution. We recall that in the microparasite scenario
equation (5) corresponds to the transmission rate of the
infection, and in the macroparasite scenario it corre-
sponds to the consumption rate.

Mortality. In the microparasite scenario, increased exploi-
tation (i.e., transmission rate) is often associated with in-
creased harm to the infected host (i.e., the transmission-
virulence trade-off; Montarry et al. 2006; Sacristan and
Garcfa-Arenal 2008; Laine and Barrés 2013; Zhan et al.
2015; Nelson and May 2020); in the macroparasite sce-
nario, increased exploitation (i.e., consumption rate) is often
associated with a reduced parasite life span due to, for exam-
ple, increased respiration or risk exposure (Werner and
Anholt 1993; Anholt et al. 2000; Gotthard 2000; Brodin
and Johansson 2004; Stoks et al. 2005; Strobbe et al. 2011).
In both scenarios, the respective trade-offs lead to an increase
in parasite mortality. Accordingly, we assume that parasite
mortality 6" can be linearly dependent on trait x:

8(x) = & + o'x, (6)

where the parameter 6; is the baseline natural mortality
and 67 is the trait-dependent contribution (Day and
Proulx 2004; Porco et al. 2005; Bolzoni and De Leo 2013).

For values of both & and 3, > 0, parasites with higher
exploitation will also have higher mortality, consistent
with the trade-off hypothesis described above.

Treatment Efficacy. We assume that efficacy ¢(x) is max-
imal for one of the extreme values of the trait (x = 0 and
x = 1). Consistent with Porco et al. (2005), we choose a
linear functional dependence:

$(x) = Cyy + &1, (7)

where the parameter ¢, represents the degree of correla-
tion between the treatment and the trait (as explained in
the next subsection) and C,, is a normalization factor. A



graphical summary of the treatment spectrum is shown
in figure 1B (note that the bound |¢,| < 2 ensures a pos-
itive ¢(x)). The linear assumption is made for the sake of
mathematical tractability, although nonlinear saturating
choices are considered more realistic (Alizon 2020).
The effects of nonlinearities can be explored semiana-
Iytically, but they do not affect the quality of the results
presented herein (details are provided in the supplemen-
tal PDF).

Combination of equations (5), (6), and (7) captures
the possible trade-offs occurring between trait-dependent
treatment efficacy and the parasite’s exploitation levels.
Ultimately, the eco-evolutionary dynamics of the system
depends on the values of the parameters of the functions
described above and thus on how a control strategy
interacts with the proxy trait value x.

Modeling Treatment Spectrum

We assume that the environmental and economic costs of
the use of treatment are proportional to its application
rate v. We also assume that trait x determines the level of ex-
pression of a target trait, such as efflux pump expression,
metabolic activity, or proton motive force. The type of
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Figure 1: Spectrum of treatments with trait-dependent efficacy.
The type of treatment is determined by the sign and the magni-
tude of the parameter ¢, € [—2,2]: positive ¢, models types with
maximal effect on strains with higher exploitation levels (x = 1),
and negative ¢, models types with maximal effect on strains with
lower exploitation levels (x = 0). Large |, | are specialized in tar-
geting extreme values of the trait, and small |¢,| are generalist
types with more uniform action.
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treatment then depends on how it correlates with the tar-
get trait, which is specified by the slope parameter ¢,.

For instance, efflux pumps provide bacteria with resis-
tance to chemical compounds but make them vulnerable
to attack by certain phages. Therefore, a standard antibi-
otic or pesticide treatment is more efficient on strains
with lower levels of efflux pump expression (small x),
and it is represented by a negative ¢,; instead, phage
therapy benefits from higher levels of efflux pump ex-
pression (large x), and it is represented by a positive ¢,.

Metabolic activity provides aphids an increased ability
to consume and reproduce, but it also makes them also
more sensitive to pesticides, as they will tend to take up
more toxic compounds. Therefore, the pesticide is more
efficient on fast-exploiting strains (large x) and less effi-
cient on slow-exploiting strains (small x); its slope ¢, is
then positive. At the same time, reduced metabolic activity
makes the aphids more vulnerable to natural enemies, so
that predator-based biocontrol will have a negative ¢,.

Proton motive force reduces the import of aminogly-
cosides but also the export of (-lactams. Therefore,
aminoglycoside is more efficient against strains expressing
less proton motive force (small x) and less efficient against
strains with more proton motive force (large x); it is thus
represented by a negative ¢,. However, 3-lactam has the
opposite effect, so it is represented by a positive ¢,.

In any case, maximal efficacy is obtained at the
extremes of the trait space (either x = 0 or x = 1), so
it is assumed that the correlation of efficacy with traits
is unimodal. In the absence of more precise data, we con-
sider this assumption to be a reasonable starting point
and leave other possible cases for discussion. The normal-
ization factor C,, = 1 — ¢,/2 ensures that quS(x)dx is
always normalized to 1, for any value of ¢,. In addition
to removing an arbitrary degree of freedom, this condi-
tion also imposes a plausible evolutionary constraint con-
sistent with the notions of costs of resistance and of col-
lateral sensitivity: resistance with respect to a particular
treatment is paid for by high sensitivity with respect to
others, as has been observed in the examples illustrated
above.

Recognizing that a treatment may be either positively or
negatively correlated with the proxy trait variable, we as-
sume the existence of a continuous spectrum from which
it is, in principle, possible to choose. This continuous spec-
trum mimics the possibility of synergistically combining
different types of treatments, as has been documented for
phages and antibiotics (Gu Liu et al. 2020; Kebriaei et al.
2022), antibiotics and antivirulents (Rezzoagli et al. 2020),
fungicide mixtures (van den Bosch et al. 2014), antibiotic
mixtures (Cokol et al. 2011; Nichol et al. 2019), fungicide
biocontrol (Lima et al. 2006), and pesticide biocontrol (Fos-
ter et al. 2007). Crucially, we assume that the overall efficacy
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is the result of the sum of the single different treatment
types. Therefore, any slope can be obtained by adjusting
the relative proportions of antibiotic and phage therapy. Al-
though we expect a full spectrum to be practically unavail-
able, it allows us to fully explore the eco-evolutionary be-
havior of the system. Henceforth, the term “specialist”
will refer to treatments with a large degree of correlation
(large |¢,|), and the term “generalist” will refer to
treatments with a small degree of correlation (small |, ]).
A control strategy is thus characterized by one value of ap-
plication rate y and one value of treatment type ¢,.

Agent-Based Numerical Simulations

We compared the deterministic dynamics presented in our
article with numerical simulations of the equivalent agent-
based dynamics. The Python code is available from Zenodo
(https://zenodo.org/record/7874696#.ZFu4AnZBybh; Miele
etal. 2023). The agent-based dynamics simulates the stochas-
tic events of renewal, mortality, exploitation, treatment, and
mutation, each occurring at a rate consistent with the deter-
ministic equations (2). The deterministic theory is expected
to be consistent with our agent-based simulations as long
as large populations are involved. Our aim is to provide a nu-
merical validation of the existence and stability of the en-
demic equilibrium solution predicted by the theory. The
analysis of finite size effects on the system is beyond the
scope of this article, although it is straightforward to per-
form once the agent-based codes are set up (Ardaseva et al.
2020). Details of the numerical simulations can be found in
the supplemental PDF.

Results
Equilibrium Trait Distribution and Evolutionary States

The state of the parasite population at equilibrium is de-
scribed by the steady-state trait distribution p(x), the so-
lution of

,Lazpif) + p(x)[F(x) — F] = 0, (8)

where the average quantities f, 8", and ¢, appearing in F, are
not known a priori, as they depend on the solution p(x) itself.
Note that their time dependence has been dropped, since
they reach a constant value at equilibrium. The equation
given above has a trivial solution p,(x) = 0, correspond-
ing to the parasite-free equilibrium, and a nontrivial solu-
tion describing the endemic equilibrium, where resource
and parasites coexist (mathematical details are provided
in the supplemental PDF).

The coexistence equilibrium exists (and is stable) as
long as the following condition is satisfied:

0 _
0=_R_P€75_21’ 9)
076" + v

where R, is the expected offspring produced by a parasite
encountering an unexploited resource, per unit of bio-
mass (also known as the basic reproduction number),
for the heterogeneous system. Contrary to the classical
formulation, the condition described above cannot be
calculated directly in terms of the ecological parameters,
since it depends on average quantities that are not known
a priori. Therefore, one must first solve equation (8) for a
given set of parameters, then calculate the average quan-
tities and check with condition equation (9) the existence
of the endemic equilibrium. In the supplemental PDF, we
show that the behavior of the solution to equation (8),
with linear trait-dependent functions, is entirely deter-
mined by the following compound parameter :

Q= 6165 - 605{) + 7(61 - 61¢’1/2 - 60¢1)~ (10)

In particular, if Q <0, the solution is monotonically de-
creasing and the trait distribution is mostly distributed close
to the trait x = 0. We will refer to this as the “low-
exploitation” state because the corresponding trait has a
minimum value for x = 0. On the other hand, if 2> 0,
the solution is monotonically increasing and the trait distri-
bution is mostly distributed close to the trait x = 1. Like-
wise, we will refer to this as the “high-exploitation” state.

Below we characterize the phase diagram corresponding
to a set of parameters, both in the presence and in the absence
of treatment. In this case, the proxy trait variable x simulta-
neously determines the levels of transmission and mortality
of the parasite as well as the efficacy of the treatment. In
the absence of treatment (i.e., v = 0), the parasite popula-
tion can be found in either the high- or low-exploitation state,
depending on the value of the ecological parameters. With
reference to figure 2A, low states will be favored for large
baseline exploitation (3, and trait-dependent mortality contri-
bution 8}; instead, high states will be favored for large trait-
dependent exploitation (3, and baseline mortality & .

The introduction of treatment (i.e., y # 0) can lead to
a change in state, depending on the control strategy
(¢1,y) employed. In figure 2B, we show how a system
initially in the low state (parameters corresponding to
the red point in fig. 2A) adapts after treatment applica-
tion, as a function of the control parameters y and ¢,. At
low doses (i.e., low ), the parasite population will re-
main in the low state, regardless of the type employed.
However, increasing the application rate will eventually
bring the system to the high state if negative ¢, or gen-
eralist types are employed. If the system is initially in the
high state in the absence of treatment (fig. 2C; blue point
of fig. 2A), the complementary behavior is observed.
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Figure 2: Trait distribution states. A, State diagram of the trait distribution in the absence of treatment. The parasite population can adapt
toward either low-exploitation (gray regions) or high-exploitation (white regions) states. B, A system initially in the low state (red point in
A) can switch toward the high state under a range of control strategies. The red curve separates the two regions of the control parameters. C,
Likewise, a system initially in the high state (blue point in A) can switch toward the low state under a range of control strategies. The blue
curve separates the two regions of the control parameters. Parameters: for the red point, 8, = 0.0001, 3, = 3,/2, 8, = 0.12, 8] = 0.24; for
the blue point, 3, = 8, = 0.0001, & = 0.2, 8} = 0.075.

In addition to affecting the evolutionary state of the sys- lines), differing for the treatment type employed. The other
tem at endemic equilibrium, the control strategy also affects parameters (indicated in the figure caption) and initial con-
the amount of equilibrium resource. The adaptation toward ditions are identical. For ¢, = 2 the system adapts toward
the two possible states is shown in figure 3, where we plot the the low state, and for ¢, = —2 it adapts toward the high
trajectories of the simulated agent-based dynamics (solid state. Consequently, the resource reached at equilibrium is
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Figure 3: Simulated temporal trajectories. Solid lines: temporal trajectories of the resource R (rescaled with respect to R,) and of the average
trait X, obtained from agent-based numerical simulations of the dynamics. Dashed lines: analytical equilibrium values predicted by the de-
terministic theory. The system is initialized with identical initial conditions and the same application rate ¥ = 0.1 but a different treatment
type é;. For ¢, = *2, resource and parasite average trait attain different equilibrium values. Other parameters: § = 200, §* = 0.04,
Bo = 0.0001, B, = B,/2, 6 = 0.12, 8] = 28;, u = 7 x 10°°.
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different in the two cases. The figure also shows the agree-
ment between the analytical predictions for the equilibrium
values (dashed lines) and the agent-based trajectories (solid
lines), which holds for all sets of parameters considered in
our analysis.

Equilibrium Resource and Treatment Effects

In the following, we will focus on the equilibrium resource
R, which can be considered as the amount of harvest with
economic value (Cunniffe et al. 2015; Vyska et al. 2016). The
population equilibria are obtained by setting equations (2)
to zero, and they are equivalent to the classical formulation.
If Ry < 1, we have a trivial parasite-free equilibrium:

~ 0 ~
(R = 5P = 0), (11)
corresponding to the extinction of the parasite. If R, > 1,
we have the following stable endemic equilibrium:

(ﬁ AR LI A s ﬁ)). (12)
s BI8" + o (1 = {)]

Note that the equilibrium averages are function of the
control strategy (¢,,7), since the equilibrium trait distri-
bution p(x) depends on such parameters. Therefore,
equation (12) provides all the information about the
complex relationship between resource production and
control strategy, and it allows the systematic exploration
of the whole parameter space. Note that the value of re-
source at the endemic equilibrium R is independent of ¢.
Therefore, a control strategy with such a quantity as the
objective will have the same outcome regardless of the
fate of the treated parasite. In the following, we will fo-
cus on a particular set of parameters as an example of
the relevant behavior of the system.

In figure 4, we plot the equilibrium resource R (rescaled
with respect to the parasite-free resource R,) as a function
of application rate y and compare the effect of five differ-
ent types of treatment: ¢, = —2, —1, 0, 1, and 2. We
present two sets of parameters corresponding to the two
opposite states of the parasite trait distribution in the ab-
sence of treatment: the left panel corresponds to the red
point in figure 2A, which is a low-exploitation state; the
right panel corresponds to the blue point in figure 24,
which is a high-exploitation state. Note that employing
a treatment type that is inconsistent with the state of
the trait distribution in the absence of control (e.g.,
¢, = 2 for the left panel, ¢, = —2 for the right panel)
leads to a small increase in resource as the dose increases
(green and blue curves, respectively). Instead, employing
a type extremely specialized in the trait that dominates in
the absence of control (¢, = —2 for the left panel,

¢, = 2 for the right panel) leads to a more significant in-
crease in resource, at least for low application rates (blue
and green curves, respectively). However, as increasing
the rate of application tends to push the system toward
the opposite state, extremely specialized treatments can
quickly become less effective, and the resource gain will
eventually saturate. At this point, switching to a more
moderate type (smaller ¢,) rather than further increasing
the application rate vy will provide more resource gain.
Depending on the value of the renewal rate 0, the system
may eventually reach the parasite-free equilibrium
(where R = R,). Overall, when comparing the two panels,
we find that the outcome of the control depends on the
state of the parasite population in the absence of treat-
ment, so that very efficient treatments in one case may
be very inefficient in the other. We also find that an in-
crease in v, regardless of the choice, always corresponds
to an increase in the resource. Therefore, maximizing
the resource and minimizing the treatment application
are conflicting objectives. Nevertheless, it is possible to
identify efficient strategies (¢, %), as explained below.

Pareto-Efficient Strategies

Figure 4 shows that resource maximization and treatment
application minimization are conflicting objectives. In
the presence of conflicting objectives, multicriteria analy-
sis highlights the best compromises in the form of Pareto-
efficient solutions (Kennedy et al. 2008). Among all of the
possible choices of our control strategy (¢,, ), the Pareto-
efficient solutions are those for which it is not possible to
improve one objective without worsening the other. As
such, they provide the decision maker with a smaller set
of privileged alternatives to choose from, depending on
the different management scenarios and on the decision
maker’s priorities.

The resulting Pareto-efficient solutions to our control
strategy are identified by the solid curves in figure 4:
choosing a control strategy (¢,,7) different from the
Pareto-efficient ones will inevitably worsen the outcome
(dashed curves) either by reducing the amount of re-
source or by increasing the costs associated with the treat-
ment application.

We note that when moving along the same type ¢,
the resource shows a decrease in the incremental gain
for the following threshold application rate:

28,8, — Bod)
th . — . 3
V) = BB+ 8% - 28, (13)

In the presence of a constraint on the application rate, the
problem collapses to a unique objective function, which is op-
timized by (mathematical details in the supplemental PDF)
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Figure 4: Equilibrium resource as function of control strategy. Shown is the resource at equilibrium R obtained using five different treat-
ment types, as a function of application rate y (the y-axis is normalized with respect to the disease-free resource R,). Left, in the absence of
treatment, the system is in the low-exploitation state; parameters correspond to the red point of figure 2. Right, in the absence of treatment,
the system is in the high-exploitation state; parameters correspond to the blue point of figure 2. Very specialized types (¢, = *2) are ef-
ficient for low v, but their correspondent gain in resource saturates as the application rate is increased. Therefore, if the application rate can
be increased, more generalist treatment should be privileged. The Pareto-efficient strategies of the control strategy are highlighted with solid

curves. Other parameters: u = 7 x 107, § = 150, §* = 0.04.

opt _ 2 6155 - 606}1)
") = 260+Bl( . +61). (14)

With respect to figure 2, the equation given above corre-
sponds to the curves separating the two states in the (¢,,7y)
phase diagrams, for which @ = 0. The effect of each pa-
rameter on ¢," (y) is summarized in table 2. In particular,
we note that the optimal degree of specialization is a de-
creasing function of application rate v, so that extremely
specialized treatments types will perform better at low ;
the optimal choice is independent of biomass conversion ¢
and exploitation and mortality rates (both baseline and
trait-dependent contributions) play a nontrivial role in
shaping the optimal choice.

Overall, equations (13) and (14) provide qualitative
insight into the role played by each ecological interac-
tion in shaping the control strategy behavior.

Discussion

We have developed a mathematical model to explore the
implications of possible correlations between treatment ef-
ficacy and key traits of the parasite. We have considered a
general parasite that may express continuous levels of ex-
ploitation and mortality (eqq. [5], [6]) and a treatment

that exerts an eradicant action, which may be either pos-
itively or negatively correlated with the levels given above
(eq. [7]; fig. 1), depending on the type of treatment. As a
result of eco-evolutionary feedback, the parasite popula-
tion can adapt toward evolutionary states dominated by
either high or low exploitation levels (fig. 2), and the final
resource will depend on the control strategy employed
(fig. 4). The transition between these two possible states
triggers several implications, depending on the manage-
ment scenarios, which we discuss below.

Scenario 1: both the application rate and treatment
type are freely tunable. In this case, the efficient strategies
are represented by a Pareto front (solid lines in fig. 4).
The Pareto front does not identify a single best strategy.
Rather, it highlights a collection of best compromises be-
tween resource production and treatment use: whether
to favor economic, environmental, or ethical objectives
will therefore depend on the priorities of the decision
maker, as well as on how the resource and the applica-
tion rate will map into a real cost benefit.

Scenario 2: the type of treatment may be constrained
by the unavailability of alternatives or the inability to play
with synergistic effects. In this case, there will be a threshold
™, above which the decision maker should begin to ques-
tion the benefit of further increasing the application rate.
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Table 2: Effect of the parameters on the Pareto-efficient strategies

Parameter Effect on ¢5™(v) Effect on y"(¢,)
v 1 if (Bod7 — B,65) <0 and | otherwise
|1 | always
Bo 1 if (8 + 67/2 — ) >0 and | otherwise | always
6, 1if (85 + 61 /2 — ) <0 and | otherwise | always
o 1 always 1 always
87 | always | always

Note: The symbol 1 (]) indicates that an increase in the parameter in question leads to an increase

(decrease) of ¢} (y) and y™(¢,).

The economic impact of these saturation effects can be
further assessed by including such information in eco-
nomic evaluations of agricultural systems (Paveley et al.
2001; Ney et al. 2013; Day et al. 2021). Note that these sat-
uration effects differ from those typically reported in the
literature with treatment dose-response curves (Elderfield
etal. 2018), which are accounted for by using nonlinear, sat-
urating functions. Here, saturation is due to a transition be-
tween opposite evolutionary states. This kind of saturation
is then dynamic, and it is inherent to the eco-evolutionary
nature of the system.

Scenario 3: the application rate may be constrained by
limits on the use of antibiotics for safety reasons or by limits
on the spread of pesticides/copper/fungicides for legislative
agricultural constraints. In this case, there will be a unique
optimal type ¢;"'. As a general rule, very specialized treat-
ment types should be employed at low application rates; in-
stead, generalist types, with a more uniform action over the
trait space, are likely to perform better at high application
rates. This value represents the optimal choice from an ideal
continuous spectrum of possibilities. We do not expect this
spectrum to be fully available or even possible to design in
practice. Nevertheless, it should provide qualitative guid-
ance to the decision maker when calibrating synergistic
treatments.

These scenarios assume that the control parameters ¢,
and 7y are independent, which may not always be the case.
However, a possible relation between application rate and
treatment could be considered if the function y(¢,) is
known. Similarly, treatment application may be related
to aspects of the host-parasite system (e.g., virulence or
severity of the symptoms; Porco et al. 2005). In such cases,
it may be possible to derive optimal treatment conditions
in terms of the epidemiological parameters of the parasite,
provided that the corresponding functions are known.

Opverall, our results can contribute to the ubiquitous
call to reduce the use of chemicals in public health
(WHO 2014) and agriculture (Medina-Pastor and
Triacchini 2020). Specifically, they point toward many
of the European Union’s principles (P) for sustainable

farm management (Barzman et al. 2015): valuable syner-
gistic use of alternative control methods (P4), minimizing
environmental impact (P5), reducing the use of chemicals
(P6), and antiresistance strategies (P7). A concrete and
urgent issue is the widespread use of copper in agriculture
to combat plant diseases (Nunes et al. 2016). Because of
its questionable efficacy and toxic side effects, there is
an urgent call for its reduction (Tamm et al. 2018). In bac-
teria, resistance to heavy metals such as copper is medi-
ated by efflux pumps, which are also involved in virulence
to plants (Ryan et al. 2007; Martinez et al. 2009). There-
fore, our theoretical framework could be used to support
experimental studies of phage-copper synergy, which re-
main to be tested.

The assumption of a broad spectrum of treatment effects
was motivated by the growing interest in developing thera-
pies targeting specific traits and the possibility of combining
them synergistically with traditional synthetic treatments
(Lima et al. 2006; Allen et al. 2014; Baym et al. 2016). So
far, we have referred to collateral sensitivity, phage therapy,
and biocontrol as examples of control strategies that inter-
fere with heterogeneous traits involved in both resistance
and resource exploitation. We argue that the phenomenon
may be of interest to other treatments based on heterogene-
ity and evolutionary constraints, such as antibiofilm, photo-
dynamic activation, and more, on phage therapy.

Antibiofilm and photodynamic activation rely on a
planktonic-versus-sessile evolutionary trade-off (Almeida
et al. 2014; Tits et al. 2020; Feng et al. 2021): some bacteria
can either live and move individually (planktonic phase)
or can aggregate together into immobile structures called
biofilms (sessile phase). Targeting such structures is a de-
sirable strategy because they are involved in virulence and
resistance to treatment. However, the efficacy of an
antibiofilm treatment would depend on the trait composi-
tion of the target bacterial population, which in turn
depends on the trade-off between the two phases, similar
to the phenomenon considered in this work.

A promising application of phage therapy is the use of
phages that have bacterial capsules as receptors. Capsules



are external polysaccharide layers that protect bacteria and
facilitate attachment to host tissue. Capsules are therefore
involved in host colonization and in evasion of the immune
response or treatment. Phage selection for reduced capsule
production will impose trade-offs between virulence and
antibiotic sensitivity (Chiarelli et al. 2020; Song et al. 2021).

A proper experimental investigation and measurement of
specific trait-dependent effects would likely require two
stages. The first would be a single-cell stage to detect hetero-
geneity in the level of expression of the trait of interest and to
measure the resulting trait-dependent interactions with the
different treatments (Fernandes et al. 2011); this task could
be performed using in vitro setups, such as microscopy, flow
cytometry, or RNA sequencing (Avraham et al. 2015;
Mohiuddin et al. 2020). The second would be a population
stage where the overall effects on the demography and on
the trait distributions can be monitored and measured; this
task could be performed in controlled in vivo environments,
such as bioreactors (Levin and Udekwu 2010), greenhouses,
field plots, and animal facilities (Band et al. 2016).

Our analysis has assumed a linear, monotonic, and
unimodal dose-response curve for treatment efficacy so
as to keep the model as simple as possible and to favor
mathematical tractability. In the supplement PDF, we
show that the addition of nonlinearities does not affect
the qualitative behavior of the system as long as an evolu-
tionary constraint is considered. Therefore, we conjecture
that the emergence of optimal and threshold behaviors
are inherent to the system and that they are due to evolu-
tionary constraints, rather than to its exact functional
form. From a theoretical perspective, it would be interest-
ing to prove this conjecture formally, for any kind of evo-
lutionary constraint imposed on the treatment.

Instead, we expect that breaking the unimodal assump-
tion will have nontrivial implications. On the one hand, a
bimodal efficacy function would likely trigger multiple
peaks in the trait distributions, therefore leading to possi-
ble branching phenomena where the parasite population
splits into two separate subclasses of, for example, mid-
low and mid-high levels of exploitation; however, we are
currently unaware of any evidence for bimodal treatment
efficacy, and it would need to be motivated by (at least) phe-
nomenological arguments. On the other hand, it is reason-
able to imagine a treatment that would have maximal efficacy
at an intermediate value of the proxy trait (rather than at the
extremes), which would likely lead to nonmonotonous trait
distributions; accordingly, the variance of this putative bell-
shaped efficacy could function as a tunable control param-
eter, governing possible intermediate scenarios between the
homogeneous (rather flat, large variance) and the heteroge-
neous (rather peaked, small variance) extremes.

Although nonlinear, concave-down functions are typi-
cally considered to relate exploitation and mortality, a sim-
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pler linear choice has allowed us to take full advantage of
the mathematical analysis while preserving the possibility
to model exploitation-mortality trade-offs; it also provides
the baseline results against which to compare nonlinear
functions, thus disentangling the role of nonlinearities from
the role of the trade-off alone. The relaxation to nonlinear
functions is discussed in the supplement PDF, where it is
again shown that the qualitative behavior of the linear case
is preserved.

Although our analytical derivation of the optimal treat-
ment type relies on many simplifying assumptions, our
work highlights the qualitative role of the various epide-
miological interactions, and it provides a starting point
for introducing further elements of complexity. To con-
clude our discussion, we highlight some potentially inter-
esting issues.

Although multidimensional trait spaces are rarely con-
sidered, the simultaneous presence of multiple traits
encoding different features of the parasite would improve
the realism of the model. In particular, it would be inter-
esting to explore the case where the treatment correlates
with a subset of them, in order to mimic intervention pol-
icies with imperfect coverage (Walter and Lion 2021). For
instance, one could consider a pathogen endowed with a
trait defining its transmission capacity and a trait defining
its disease-induced mortality; then one could imagine the
existence of an intervention affecting the transmission
trait (e.g., protectant effects of a pesticide, quarantine pol-
icy, vaccination campaigns) and an intervention affecting
the mortality trait. Performing a similar analysis, one
might be able to compute the optimal combination of
the two actions and relate it to the geometry of the trait
space (Miele et al. 2021), as well as to the possible evolu-
tionary and economic constraints.

Our minimal model used simple demography for both
resource and parasite dynamics. The introduction of more
complex demographic functions (Cunniffe and Gilligan
2010) could lead to oscillating regimes around the endemic
equilibrium. Such a maintained out-of-equilibrium demog-
raphy results in a time-varying fitness landscape that could
trigger out-of-equilibrium evolutionary responses, charac-
terized by the alternation of low- and high-exploitation
regimes of the trait distribution.

The expanding knowledge of the ecological, evolution-
ary, and molecular interactions between parasites and
treatments, coupled with the theoretical feedback, should
continue to provide opportunities to effectively address
the challenge of disease management. Combining the prac-
tical development of trait-specific treatments with our
theoretical methods of investigation (Saubin et al. 2023)
may allow us to exploit heterogeneity of parasite popula-
tions—almost always seen as a key difficulty by allowing
the evolution of resistance to human intervention—to
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our advantage. Ultimately, evolutionary epidemiology is an
instantiation of a more general theory of evolutionary ecol-
ogy (Lion 2018). As such, the potential of the approach pre-
sented here can be exploited to investigate trait-dependent
intervention in other domains, such as public health (Stearns
2012) and cancer dynamics (Gatenby et al. 2009).
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