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A B S T R A C T   

Digital soil mapping (DSM) is commonly conducted using input soil attributes derived from laboratory analyses 
of geographically referenced samples. Field observations are often abundant and can offer a dense source of soil 
data that has the potential to enhance DSM predictions. However, they are not widely used due to to concerns 
about subjectivity and data quality. This study investigates the usefulness of hand-feel soil texture (HFST) data 
for DSM. We processed HFST data obtained from forest soils in France from two inventory campaigns: (i) HFST 
determination from systematic 1 km2 grid observations in France utilizing a specialized soil texture triangle, and 
(ii) HFST observations from soil survey samples, using a different texture triangle. Both sets of HFST data were 
used as input soil variables, with the same covariates, for predicting topsoil texture In a sizable, forested area 
through a DSM method. By employing independent sampling and laboratory soil analyses in selected areas, we 
uncovered measurement bias in one of the datasets. However, intriguingly, these biased observations identified 
subtle yet highly specific and unexpected patterns of sands in terraces due to alluvial deposits along small rivers. 
Thus, field soil observations, even if they are biased, should not be dismissed solely based on their overall 
predictive performance. It is essential to carefully examine predicted maps and covariates to determine whether 
patterns may have pedological and/or lithological origins and if they are pertinent for enhancing DSM pre
dictions, enhancing soil process understanding, and meeting the requirements of end users. Numerous HFST are 
available worldwide, these datasets are usually disregarded for DSM. Here we contend that efforts should be put 
in recovering these data, and their potential for enhancing DSM and deepening our understanding of soil 
processes.   

1. Introduction 

Digital soil mapping has emerged since the early 1980s’ as an 
appealing, cost-effective, less-subjective method for accelerating the 
mapping of soil classes or attributes when compared to traditional soil 
mapping methods (McBratney et al., 2003; Minasny and MCBratney, 

2016; Arrouays et al., 2017a). The fundamental premise behind DSM is 
to posit that soil classes and properties exhibit non-random distributions 
and can be predicted by establishing empirical relationships between 
soil information and key factors governing soil formation, such as 
climate, organisms, relief, parent material, and age. A seminal publi
cation by McBratney et al. (2003) has been a milestone of DSM. These 
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authors proposed a generic framework called the scorpan-SSPFe (soil 
spatial prediction function with spatially auto-correlated errors) as a 
method to produce digital soil maps. 

The key advantages and limitations of DSM have been thoroughly 
discussed in prior works by McBratney et al. (2003), Arrouays et al. 
(2020a, 2020b), and Ma et al. (2019) and will not be the focus of this 
paper. Originally developed primarily within academic research, DSM 
has seen growing adoption and extensive testing over the years, evolving 
into an operational tool employed across various scales worldwide (e.g. 
Arrouays et al., 2017a; Chartin et al., 2017; Kamamia et al., 2021; Kidd 
et al., 2020; Minai et al., 2021; Minasny and McBratney, 2016; Owens 
et al., 2020; Padarian et al., 2019; Poggio et al., 2021; Sena et al., 2020; 
Taghizadeh-Mehrjardi et al., 2020, 2019; Taghizadeh-Mehrjardi et al., 
2014a; Taghizadeh-Mehrjardi et al., 2014b). 

Broad-scale Digital Soil Mapping (DSM) products have been devel
oped worldwide, covering regions, countries, or entire continents (e.g., 
Chen et al., 2022; Lemercier et al., 2022; Mulder et al., 2016b; Richer- 
de-Forges et al., 2023a; Tifafi et al., 2018; Vaysse and Lagacherie, 
2015). However, detailed soil maps with high resolution for local ap
plications become paramount for informed decision-making. Conven
tional mapping and soil landscape observations are crucial in refining 
soilscapes, which are valuable for effective land management. Never
theless, in many parts of the world, detailed conventional soil mapping 
faces challenges, primarily due to constraints related to cost. Conse
quently, there is a pressing need for more detailed local-scale DSM so
lutions. Achieving this level of detail in DSM is feasible by employing an 
appropriate combination of soil observations and relevant covariates. 
This study investigates the effectiveness of a combination of DSM input 
soil data for mapping soil texture (ST) in a French landscape. 

In Digital Soil Mapping (DSM), soil input data are typically derived 
from laboratory analyses of samples collected from various horizons or 
fixed layers. However, field observations, such as those related to hand- 
feel soil texture (HFST), are infrequently utilized, despite their often 
abundant availability and potential as a dense source of soil data, 
consequently enhancing DSM predictions (see, for example, Malone and 
Searle, 2021a, 2021b; Vos et al., 2016). 

Across forested soils in mainland France, covering an extensive area 
of 17.1 million hectares, constituting 31 % of the total mainland France 
area, a high-density 1 km grid soil observations has been established. 
This grid includes HFST determinations, resulting in approximately 
190,000 auger descriptions that have recently been integrated into the 
French national soil information system. Notably, the first campaign has 
already covered all forested soils in mainland France, encompassing 
around 171,000 data points, and the second campaign is currently un
derway. This presents a significant opportunity with the potential to 
substantially enhance DSM predictions of soil texture (ST), specifically 
within forest soils. 

In this study, we explore the usefulness of HFST data for DSM of soil 
texture class on a French ‘département’ (French départements are 
administrative districts with average areas of approximately 5,500 km2). 
This study investigated low-cost, high-density HFST information 
collected from soil descriptions of two programmes:  

• One programme was the conventional mapping of the ‘Loiret’ 
département at a scale of 1:250,000 (Richer-de-Forges, 2008; Richer- 
de-Forges et al., 2008). Soil surveyors conducted a purposive sam
pling. Soil pits and several additional soil auger borings were gath
ered. This programme is conducted by the French national soil 
survey framework [Inventaire, Gestion et Conservation des Sols 
(IGCS)].  

• The second programme was a systematic forest inventory conducted 
by the French National Institute of Geographic and Forest Informa
tion (IGN). The sampling was unaligned, involving one observation 
point selected randomly in each cell of the 1 km2 grid as described 
above (Cluzeau and Drapier, 2001). 

An airborne gamma-ray spectrometry map was used as a covariate to 
obtain soil information down to approximately 60 cm (Minty, 1988; 
Rawlins et al., 2012, 2007; Reinhardt and Herrmann, 2019). 

The aim of this study was to answer the following questions:  

• Does HFST provide beneficial information as an input variable in 
DSM?  

• Are two independent HFST datasets comparable or complementary?  
• Can airborne gamma-ray spectrometry detect specific local soil 

properties?  
• Can DEM derivatives help predict and explain specific soil texture 

patterns?  
• Does combining different HFSTs datasets and the covariates cited 

above into a DSM framework enable mapping soilscapes with spe
cific properties? 

2. Material and methods 

2.1. Study area 

The study area was located in the Loiret département within the 
French Centre-Val de Loire region (Fig. 1). Forest soils were the focus of 
this study. 

Loiret covers an area of 677,000 ha. The relief is flat, with an average 
elevation of 100 m.a.s.l., ranging from 273 to 66 m. The area has a 
‘degraded oceanic’ climate with mild winters and cool summers. How
ever, this climate has changed slightly, with an increasing frequency of 
hot and dry summers. The average annual temperature is approximately 
11 ◦C (30 y average), and the total annual precipitation ranges between 
600 and 700 mm (Joly et al., 2010). Loiret is crossed by the Loire River, 
the longest river in mainland France. 

Forests cover approximately 31 % of the department (210,000 ha) 
and are primarily divided into two large massifs: the national forest of 
Orléans, north of the Loire River, and the Sologne, south of the Loire 
River. The soils of Loiret show high spatial variability owing to the great 
diversity of lithology and derived parent materials (Horemans, 1962; 
Lacquement et al., 2015; Liard et al., 2017; Macaire, 1985; Martelet 
et al., 2013; Richer-de-Forges et al., 2008; Tissoux et al., 2017). The 
primary soils observed under forest vegetation are Arenosols, Fluvisols, 
Colluviosols, Luvisols, and Planosols; some Cambisols and Vertisols are 
also observed on clayey parent materials (Richer-de-Forges et al., 2008). 
More locally impervious clayey subsoils located in depressions can lead 
to the development of Gleysols and Histosols (Zocatelli et al., 2014). 

This study evaluated the prediction topsoil (see the definition of 
topsoil that we used in section 2.2.) texture by DSM using two different 
soil datasets and common covariates for forest soils in the entire 
département. We then focused on a more detailed area in Sologne to 
better explain and evaluate differences between the two DSM pre
dictions (Fig. 1). 

2.2. Soil information 

Section 2.2 describes the soil information retained as learning vari
ables for DSM. 

In the sections 2.2.1 and 2.2.2 soil information were extracted from 
the existing databases. Topsoil was defined as the surface organo- 
mineral horizon (excluding O horizons). This horizon was nearly al
ways a A horizon and was always thicker than 20 cm. 

2.2.1. Profiles and auger borings used for the initial 1:250,000 soil map 
A 1:250,000 soil map of Loiret was obtained by a conventional soil 

survey using free and purposive sampling. Data were acquired by several 
organisations [primarily the National Research Institute for Agriculture, 
Food and the Environment (INRAE) and the Chambre d’Agriculture du 
Loiret] in the framework of two primary programmes: (i) the systematic 
1:250,000 soil inventory of France and (ii) the systematic 1:50,000 soil 
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Fig. 1. Location of the study area; top left: Mainland France and the Loiret département (in green); bottom left: elevation; right: forested areas in the Loiret 
département (in green) and the location of an independent probability sampling study in the Sologne area (black rectangle). 

Fig. 2. Texture triangles used for the two inventories. a) IGN and b) IGCS triangles. Some textures are the same (AS-ASL and AS, and AL and AL). Other textures are 
different and correspond (i) to some IGCS textures grouped into IGN textures (LL + LM IGCS = L IGN; ALO + A IGCS = A IGN) or (ii) to grouping and changes in limit 
values. Tentative translation of the ST class names in English: ALO: heavy clay, A: clay, AL: silty clay, AS: sandy clay, ALS: sandy-silty clay, LA: clayey silt, LAS: sandy 
clayey silt, LSA: clayey sand silt, SA: clayey sand, S: sand, SL: silty sand, LL: silt, LS: sandy silt, LMS: sandy medium silt, LM: medium silt, LLS: sandy silt. Note that the 
classes and names are different from the USDA (United States Department of Agriculture) triangle. 
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mapping of Loiret. 
All soil surveyors were experienced and used the same protocols and 

a standard texture triangle to describe the soils in the field. The ‘Aisne’ 
triangle defined by Jamagne (1967) was used, and encoded in the 
‘soiltexture’ package in R software (Moeys et al., 2018). The triangle is 
hereafter named the ‘IGCS triangle’, as it was the only triangle that was 
used in Loiret, and to avoid confusion because ‘Aisne’ is also the name of 
another French département (Fig. 2). The data stored in the national 
database included, among others, the depths, names, horizons, as well as 
their HFST. 

Because topsoil texture was the primary interest of this study, we 
retained the HFST and depth of the first organo-mineral horizons and 
recorded the depth of change in HFST and the new ST class when 
observed at deeper depths. 

2.2.2. Mini-pits and auger borings from the systematic forest soil inventory 
The systematic forest soil inventory is a national programme con

ducted by the ‘Institut National de l’Information Géographique et For
estière’ (IGN). This program aims to cover all forests in France following 
a systematic unaligned sampling based on a 1 km2 grid. In each forested 
area of France, one point was randomly selected within a 1 km2 cell. A 
mini-pit of 0.4 × 0.4 × 0.4 m was dug and described, and an auger 
boring was performed deeper (up to 1 m depth, or less if the soil was 
shallower), both with a description of the names, depth, and HFST of the 
horizons. The ST triangle used by IGN (hereafter named the ‘IGN Tri
angle’) differed from the ‘IGCS triangle’ (Fig. 2). For IGCS, we retained 
the HFST of the upper mineral horizons of the topsoil and recorded their 
thickness and the new ST class when observed at deeper depths. 

2.2.3. Sampling design and density differences between the two datasets 
In forest soils, the total number of sampled points was 1,908 and 

1,988 for IGCS and IGN, respectively. Note that the spatial distributions 
of the sampling points were different (Fig. 3). 

The sampling design for the IGN data was based on a systematic 
unaligned grid, resulting in a regular sampling density. In contrast, the 
sampling density for the IGCS soil map was more clustered, because the 
IGCS database included some close observations from studies conducted 
at scales more detailed than 1: 250,000 (see for example the red rect
angle in the middle of the Loiret). Conversely in many areas, the IGCS 
soil observations were less dense than those conducted by IGN. This is 
partly due to the fact that IGCS sampling mainly came from free survey. 
The knowledge and efficiency of the soil surveyor enabled him/her to 
reduce the sampling density and to choose locations according to 
mapping purpose. Conversely, when a soil surveyor suspected that 

spatial changes occured, he/she densified sampling to better capture the 
limits between soil mapping units. 

In regions like Sologne, located to the south of the département, 
accessing certain areas posed challenges, as most of the forests were 
privately owned properties. In contrast to surveyors from INRAE and 
Chambres d’Agriculture, IGN surveyors had the advantage of an official 
decree allowing them to enter these areas and designate specific points 
they intended to visit. Consequently, they could schedule their obser
vations by appointment, a convenience not afforded to soil surveyors 
conducting free surveys, who often had unplanned sampling locations. 

2.3. Covariates for DSM 

Table 1 lists the covariates used to run the DSM predictions for the ST 
classes. 

2.3.1. DEM derivatives 
The Digital Elevation Model (DEM) employed in this study has a cell 

resolution of 25 m and an elevation resolution of 1 m, which is a product 
of IGN. We utilized this DEM both as the source for raw elevation values 
and for calculating a range of terrain derivatives. Aspect is a circular 
variable. Aspect was transformed into two variables, sinφ and cosφ, as 
recommended by Mardia (1972) and Batschelet (1981). This trans
formation is widely used in soil science (e.g. King et al., 1999; Bour
ennane et al., 2000) when the slope aspect derived from a digital 
elevation model is considered in modeling soil variables. Additionally, 
we computed focal mean and focal standard deviations of elevation for 
each pixel, along with selected derivatives, across multiple windows of 
increasing size (specifically, with radii of 100, 500, and 1000 m), a 
methodology consistent with the approaches of Grinand et al. (2008) 
and Chen et al. (2021). These calculations were performed individually 
for each pixel, yielding DEM derivatives associated with various scales 
of spatial variation. 

2.3.2. Airborne gamma-ray spectrometry data 
Airborne gamma-ray spectrometry data are commonly used to map 

regolith and soil properties. A review by Reinhardt and Herrmann 
(2019) provided an overview of the possibilities offered by this tech
nique for directly or indirectly mapping numerous soil properties. 

An airborne gamma spectrometry survey was conducted in 2009 
(Terraquest LTD, 2009). The flights were undertaken at an elevation of 
80 m along a regular flight path consisting of flight lines spaced 1 km 
apart in the N-S direction and perpendicular tie-lines spaced 10 km 
apart. Along the flight lines, data were recorded with an RS 500 NaI 

Fig. 3. The density of soil observations for the two sampling designs. The IGN is shown in green, and the IGCS is shown in red.  
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spectrometer (including two detectors of 50.4 l observing downward 
and 8.4 l observing upward) at an interval of 1 s (i.e. approximately one 
spectrum every 70 m) with a footprint of each measurement of 
approximately 150 × 300 m. Each data point consisted of a 512-channel 
energy spectrum ranging from 0.4 to 3.0 MeV. The total count (absorbed 
dose rate in nanogray/h) and concentrations of uranium (ppm), thorium 
(ppm), and potassium (%) were derived from the raw spectra following 
International Atomic Energy Agency (IAEA) processing guidelines 
(IAEA, 2003, 1991), including corrections related to the presence of 
atmospheric radon, cosmic background, or the Compton effect, as well 
as attenuations related to variations in altimetry. The corrected gamma- 
spectrometric data were then interpolated by the Bureau de Recherches 
Géologiques et Minières (BRGM) on regular 250 m cell grids using a 
standard minimum curvature interpolator. 

Airborne gamma spectrometry data provides information on ura
nium, thorium, and potassium content of approximately the upper 60 
cm of the soil (Minty, 1997). In a review, Reinhardt and Herrmann 
(2019) indicated a depth range of 30–60 cm for non-organic soils. For 
more details regarding the use of gamma spectrometry for mapping, we 
referred to the studies by Wilford (2002) and Wilford and Minty (2006) 
and to the review from Reinhardt and Herrmann (2019). 

This airborne gamma-ray spectrometry survey had already been used 
to refine lithology, regolith, and certain soil property maps in various 
parts of the Centre-Val de Loire region, including Loiret (e.g. Chen et al., 
2021; Lacquement et al., 2015; Liard et al., 2017; Martelet et al., 2013; 
Tissoux et al., 2017). 

2.3.3. Final resolution of the covariates 
All covariates defined above were resampled to a 90 × 90 m cell grid 

according to the specifications of GlobalSoilMap (Arrouays et al., 2014a; 
Arrouays et al., 2014b). 

2.4. DSM and global assessment of performances 

We independently predicted topsoil ST classes using the two soil 
observation datasets described above but with the same set of covariates 
(Table 1). Our objectives were (i) to predict the topsoil texture for each 
forested pixel using two different learning datasets gathered in the field 
and (ii) to compare the predictions. 

We used Random Forest (Breiman, 2001), which is among the most 
frequently used machine learning tools in DSM (Chen et al., 2022; 
Heung et al., 2016; Padarian et al., 2019). Random Forest combines the 
outputs of multiple decision trees to obtain a single result. We used the 
randomForest package (version 4.7) (Liaw and Weiner, 2002). Random 
forest algorithms have three primary hyper-parameters that must be set 
before training. These include node size, number of trees, and number of 
features sampled. In our scenario, we used the default values proposed 
by the randomForest function, that is, 500, 17, and 5, for the number of 
trees, number of features, and node size, respectively. 

We used a ten-fold cross-validation with ten realisations; thus, 100 
models were constructed. We calculated confusion matrices to calculate 
the accuracy of the HFST classes. Following the studies of Rossiter 
(2004) and Salley et al. (2018), we calculated the accuracy as follows:  

• Overall accuracy (OA) represents the absolute percentage of HFST 
classes that match the predicted HFST classes.  

• User accuracy (UA) assesses the proportion of HFST classes that 
match a given predicted HTST class relative to the total number of 
estimated points of that HFST class (error of commission).  

• Producer’s reliability (PR) is a measure of the proportion of correctly 
predicted HFST classes classified by the producer relative to the total 

Table 1 
Covariates used for digital soil mapping.  

Abbreviation Description Unit Reference 

DEM Elevation m DEM (IGN, 
2011)1 

DEM100M Focal mean of elevation 
within a 100 m radius 

m DEM (IGN, 
2011) 

DEM100S Standard deviation of 
elevation within a 100 m 
radius 

m DEM (IGN, 
2011) 

DEM500M Focal mean of elevation 
within a 500 m radius 

m DEM (IGN, 
2011) 

DEM500S Standard deviation of 
elevation within a 500 m 
radius 

m DEM (IGN, 
2011) 

DEM1kmM Focal mean of elevation 
within a 1 km radius 

m DEM (IGN, 
2011) 

DEM1kmS Standard deviation of 
elevation within a 1 km 
radius 

m DEM (IGN, 
2011) 

Exp Aspect sinφ and cosφ DEM (IGN, 
2011) 

dppr Distance from the nearest 
drainage network 

m DEM (IGN, 
2011) 

beven Beven index, also named the 
Topographic wetness index 
(TWI). TWI is equal to: ln(a/ 
tan b), where a is the local 
upslope area draining 
through a certain pixel. 

m DEM (IGN, 
2011) 

CURV_M Mixed curvature m DEM (IGN, 
2011) 

CURV_V Vertical curvature m DEM (IGN, 
2011) 

CURV_H Horizontal curvature m DEM (IGN, 
2011) 

Slp100M Focal mean of slope within a 
100 m radius 

degree DEM (IGN, 
2011) 

Slp100S Standard deviation of slope 
within a 100 m radius 

degree DEM (IGN, 
2011) 

Slp500M Focal mean of slope within a 
500 m radius 

degree DEM (IGN, 
2011) 

Slp500S Standard deviation of slope 
within a 500 m radius 

degree DEM (IGN, 
2011) 

Slp1kmM Focal mean of slope within a 
1 km radius 

degree DEM (IGN, 
2011) 

Slp1kmS Standard deviation of slope 
within a 1 km radius 

degree DEM (IGN, 
2011) 

litho Lithology classified into 
seven covariates and in a 
binary code (1, 0) 

Binary: 1 =
presence; 0 =
Absence 

BRGM (Giot, 
2002) 

U Uranium (interpolated from 
airborne gamma-ray 
spectrometry emissions) 

ppm (mg/kg) BRGM ( 
Martelet et al., 
2014) 

K Potassium (interpolated from 
airborne gamma-ray 
spectrometry emissions) 

g/100 g BRGM ( 
Martelet et al., 
2014) 

Th Thorium (interpolated from 
airborne gamma-ray 
spectrometry emissions) 

ppm (mg/kg) BRGM ( 
Martelet et al., 
2014) 

TOT Gamma-ray total count 
(interpolated from airborne 
gamma-ray spectrometry 
emissions) 

nGy/h BRGM ( 
Martelet et al., 
2014) 

K/Th Ratio between K and Th 
(interpolated from airborne 
gamma-ray spectrometry 
emissions) 

/ BRGM ( 
Martelet et al., 
2014) 

K/U Ratio between K and U 
(interpolated from airborne 
gamma-ray spectrometry 
emissions) 

/ BRGM ( 
Martelet et al., 
2014) 

Th/U Ratio between Th and U 
(interpolated from airborne 
gamma-ray spectrometry 
emissions) 

/ BRGM ( 
Martelet et al., 
2014) 

NB: The seven lithological units are grouped as follows: 1) alluvial deposits, 2) 
silex and chalk, 3) marl, 4) limestone, 5) sand, 6) silt, and 7) silty clay. 
1Extracted from https://geoservices.ign.fr/bdalti. 
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number of observed points within each HFST class (error of 
omission). 

These three indices were calculated as follows:  

OA =

∑r
i=1Eii

N
(1)  

UA =
Xii

∑r
i=1Xij

(2)  

PR =
Xjj

∑r
i=1Xij

(3)  

where r is the number of texture classes, Eii is the sum of the diagonal 
elements, N is the number of observations, Xii is the diagonal value for 

Fig. 4. Dominant topsoil textures using the IGN and IGCS observations and triangles.  
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each class in a row, Xij is the sum of the values in a row or column, and Xjj 
is the diagonal value for each class in a column. Theoretically, OA%, PR 
%, and UA% can range from 0 % to 100 %, with the most accurate value 
being 100 %. 

These confusion matrices were not derived from an independent 
probability sampling design. They were based on a ten k-fold validation 
of the HFST classes. The effects and limitations of this method are dis
cussed in Section 4.2.2. 

For mapping, 100 ST classes per pixel were obtained, and we mapped 
1) the dominant ST on each pixel and 2) the percentage of predictions of 
this dominant ST on each pixel as an indicator of prediction consistency. 

3. Results 

3.1. Topsoil texture maps 

Fig. 4 shows the dominant topsoil textures using the IGN and IGCS 
observations and triangles. 

In general, the maps exhibit similar patterns. The locations of the 
clayey areas were similar, although a larger variability in the HFST was 
observed when using the IGCS data than when using the IGN data. This 
is logical because the clayey IGCS classes are more numerous than the 
IGN classes. Differences were observed in most clayey areas. The IGCS 
map exhibits numerous but small areas of heavy clay that were mapped 
as sandy or loamy clays using the IGN map (Fig. 3). Certain differences 
in the extreme south-east may also be attributable to sampling density. 
In the north-east, the spatial patterns were similar, although the dif
ferences in texture prediction may have resulted from close but different 
or intersecting classes in the two triangles (Fig. 2). However, note the 
differences in the predictions for the valley areas. 

Two noticeable differences were observed when observing the large 
soilscapes dominated by S (IGCS) or SL (IGN):  

- Large areas were predicted as SL in the IGN map and as S in the IGCS 
map. These large areas were primarily located in the Orléans Forest 
and in Sologne.  

- In Sologne, several S patches were revealed by the IGN map but not 
by the IGCS map. 

Therefore, we focused our study on the evaluation of performance 
and possible explanations for the two differences between the two maps. 

Tables 2 and 3 list the results of the cross-validation for the HFST 
predicted and observed by the IGCS- and IGN-based models. 

Both confusion matrices exhibited a low prediction accuracy. For the 
IGCS (Table 2), the optimal results were obtained for the S class, with an 
exceedingly high UA% (94.6) and acceptable PR% (67.2), followed by 
LM (UA% = 74.2; PR% = 60.0). None of the other classes performed 
well, and certain classes produced poor results. The results for the IGN 
(Table 3) were misleading, except for the SL class, with a UA% of 88.2. 
Although the number of classes was higher for the IGCS than for the IGN, 
its OA% was higher than that for the IGN. However, this result is 
counter-intuitive. The UA% was excellent for both S-IGCS and SL-IGN, 
indicating that the model predictions were consistent with their 
respective input observations in most areas of the Orléans and Sologne 
Forests. The shortcomings of these matrices are discussed in Section 
4.2.2. 

3.2. Covariate importance 

Fig. 5 displays the importance of the covariates estimated by RF for 
the models using the IGN or IGCS training data. 

The four most important covariates were determined using airborne 
gamma-ray spectrometry. Five of the six most important covariates were 
obtained from the gamma-ray maps. The most important factor was the 
K/Th ratio in both models, and the five gamma-ray covariates cited 
above were the same despite their slight differing orders. Elevation and 
slope focal means on windows ranging from 100 m to 1 km in radius 
were among the most important covariates. Certain focal standard de
viations of the DEM derivatives were also among the important cova
riates but to a lesser extent. 

3.3. Consistencies of the 100 model predictions 

Fig. 6 shows the consistency of both predictions, defined as the 
percentage of the most frequently predicted topsoil texture class among 
the 100 predictions. 

The two maps exhibited similar patterns and value ranges, except for 
the eastern and extreme northern parts of the département, where the 
ICGS map appeared slightly less consistent than the IGN map. This effect 
is partly because the IGN ST classes are larger than those of the IGCS, 
particularly in the textural domain predicted in these areas (Figs. 2 and 
4). This may also be partly due to differences in sampling densities. 
Overall, the internal consistency of the maps was exceptional, with 
approximately 89 % and 92 % of the area being consistently predicted 
(>0.80) and approximately 74 % and 79 % of the prediction area being 
nearly ‘pure’ (>0.90), in the IGCS and IGN maps, respectively. 

Table 2 
Confusion matrix between the HFST classes predicted by the model using IGCS HFST as input data and the locally observed IGCS HFST (cross-validation).  

IGCS  ST class predicted Sum UA 
%  

A AL ALO AS LA LAS LL LLS LM LMS LS LSA S SA SL    
ST hand-feel 

class 
A 2 2 9 0 3 0 0 4 0 2 0 0 10 1 3 36  5.6  

AL 1 12 15 0 5 1 0 0 9 0 1 3 10 0 4 61  19.7  
ALO 1 8 45 4 3 1 0 1 3 0 0 0 19 1 8 94  47.9  
AS 1 2 9 5 2 0 0 0 0 0 0 1 27 1 6 54  9.3  
LA 0 1 7 2 12 0 0 2 14 5 2 3 5 0 6 59  20.3  
LAS 0 2 4 0 0 0 0 2 4 0 0 1 12 2 4 31  0.0  
LL 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 3  0.0  
LLS 0 1 2 1 0 1 0 12 3 5 1 0 37 0 14 77  15.6  
LM 0 2 4 0 1 0 0 0 72 8 1 1 4 0 4 97  74.2  
LMS 0 0 1 0 3 0 0 7 8 11 1 0 5 0 4 40  27.5  
LS 1 1 2 2 2 0 0 1 2 0 5 1 14 0 16 47  10.6  
LSA 1 2 5 1 2 0 0 1 1 1 1 8 23 2 8 56  14.3  
S 1 2 2 1 0 0 0 0 2 0 1 1 849 8 30 897  94.6  
SA 0 1 2 1 2 1 0 0 0 0 1 3 83 3 13 110  2.7  
SL 1 3 3 4 1 0 0 6 1 0 3 4 165 1 54 246  22.0 

Sum 9 39 111 21 36 4 0 36 120 32 17 26 1264 19 174 1908   
PR % 22.2 30.8 40.5 23.8 33.3 0.0 0.0 33.3 60.0 34.4 29.4 30.8 67.2 15.8 31.0  OA%=

57.1   
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Nonetheless, these maps convey a markedly distinct message regarding 
‘consistency’ than Tables 2 and 3 do. We investigated whether the 
‘dominant’ ST class in each pixel was consistently predicted, which was 
the case. However, when comparing the dominant ST values with the 
values in Tables 2 and 3, the ‘dominant’ ST class often represents a small 
percentage. A striking example is the HFST AS predicted by the IGN- 
based model, which is dominant but with a UA% and PR% of 12.2 % 
and 23.5 %, respectively. Note that to achieve a deeper analysis of the 
confusions between repeated predictions, we could have used confusion 
indices taking into account more classes than the dominant one (Bur
rough et al., 1997) or entropy indices such as the Shannon’s ‘H’ index 

(Shannon, 1948; Shannon and Weaver, 1998). 
Whatever, these figures and numbers (either those presented in this 

article, or those who could have been produced using the above 
mentioned indices) cannot be considered independent accuracy esti
mates. They provide an estimate of the consistency of predictions among 
the 100 models. Alternatively stated, they provide an indicator of the 
repeatability of the predictions of the 100 models. However, they do not 
provide information on whether these predictions were accurate. They 
neither determine which map is correct, considering the large S and SL 
areas, which are predicted differently by the two models, nor the small 
patches of sand predicted in the southern part using the IGN data. To 

Table 3 
Confusion matrix between the HFST classes predicted by the model using the IGN HFST as input data and the locally observed IGN HFST (cross-validation).  

IGN  ST class predicted Sum UA%  

A AL AS L LA-LAS LS S SA SL    
ST hand-feel class A 0 9 4 0 1 4 1 0 6 25  0.0  

AL 1 27 8 0 6 27 2 2 54 127  21.3  
AS 2 11 12 1 5 7 2 0 58 98  12.2  
L 0 1 1 6 0 40 0 0 6 54  11.1  
LA-LAS 0 10 8 2 4 32 1 0 70 127  3.1  
LS 0 6 7 11 2 118 1 2 138 285  41.4  
S 1 0 0 0 1 3 50 0 180 235  21.3  
SA 0 3 3 0 4 13 2 0 145 170  0.0  
SL 0 7 8 0 9 45 31 2 765 867  88.2 

sum 4 74 51 20 32 289 90 6 1422 1988   
PR % 0.0 36.5 23.5 30.0 12.5 40.8 55.6 0.0 53.8  OA% = 49.4   

Fig. 5. Covariates’ importance for the models using the IGN (left) or IGCS data (right).  

Fig. 6. Percentage of predictions among the 100 models of the dominant topsoil texture for the two maps. Left: IGCS, right: IGN.  
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estimate the accuracy of the predictions, we required independent 
validation, as presented in the following sections. In these sections, we 
focus on S and SL, representing exceedingly large areas of the IGCS and 
IGN maps. Therefore, we designed independent evaluation schemes as 
following. 

3.4. Sampling design and measurements for the local assessment of DSM 
performances, particle-size analysis, and particle binocular observations 

The maps identified two major differences between the predictions 
(Fig. 4). 

Certain large areas were predicted as a sand (S) using the IGCS tri
angle observations, whereas they were predicted as a sandy loam (SL) 
using IGN observations. This difference was observed for both Orléans 
Forest (north of the Loire River) and Sologne Forest (south of the 
département). 

Specific patterns of S textures were observed in Sologne using the 
IGN data, whereas they were not detected when using the IGCS data. 
These S patterns were discovered as inclusions within large areas where 
DSM using the IGN data predicted SL values, whereas most of the 
Sologne area was predicted as S using the IGCS data. 

Therefore, we used two complementary evaluation strategies for 
these two areas. 

3.4.1. Sampling design  

1) South of Sologne, we selected a validation area (Fig. 1) and applied 
stratified design-based probability sampling. Random locations of 
new sampling points were selected within and outside the S areas 
mapped using the IGN learning dataset. The number of points was 
proportional to the areas predicted as S or SL using the IGN model. 
This resulted in 13 auger borings descriptions and 35 topsoil samples 
in the S and SL areas, respectively, as predicted by the IGN model. All 
topsoil horizons were analysed. In total, 48 topsoil samples were 
transferred to the laboratory and subsequently observed with a 
binocular microscope.  

2) In the Orléans Forest, we selected closely situated points (<75 m 
apart) with an initially observed topsoil HFST classified as S by the 
IGCS and SL by the IGN. As in Sologne, all topsoil horizons were 
sampled and analysed. Because the likelihood of having closely sit
uated points was low, this sampling strategy resulted in only 12 pairs 
of points. 

In total, 72 topsoil samples were analysed in the laboratory, 
including 24 samples from the Orléans Forest and 48 samples from the 
Sologne validation area. 

For both validation sampling schemes, topsoil was defined as the 0- 
to-30 cm depth layer (once the O horizons were removed). It corre
sponded nearly always to A horizons or to the upper part of A horizons. 
We retained the 0–30 layer when the HFST was homogeneous. In case a 
change in HFST occurred before 30 cm, we kept the upper part for HFST 
and/or laboratory analysis. This abrupt change occurred for a small 
proportion of observations and was always deeper than 20 cm. There
fore, the thickness of the layers retained for analysis ranged from 20 to 
30 cm, most of them being equal to 30 cm. 

3.4.2. Laboratory soil analyses 
The samples were air-dried at a constant temperature and hygrom

etry (30 ◦C, 30 % air hygrometry) until a constant weight was achieved. 
Particle-size fractionation was performed in eight fractions and 

coarse fragments (after the removal of soil organic matter by H202 pre- 
treatment). The following fractions were retained: clay (<2 µm), fine silt 
(2–20 µm), coarse silt (20–50 µm), very fine sand (50–100 µm), fine sand 
(100–200 µm), three fractions of coarse sand (200–500 µm), (500–1000 
µm), (1000–2000 µm), and coarse fragments (>2000 µm). The coarse 
fragments were measured using the NF ISO 11464 method. Particle-size 

fractionation was performed using the pipette method (NFX 31-107). 
The clay, silt, and sand percentages were used to calculate the 
laboratory-measured ST (LAST). 

3.4.3. Microscopy observations 
The samples were first treated with H2O2 to remove organic com

pounds (Juvigné, 1982; Petigara et al., 2002; Vafaei Molamahmood 
et al., 2021). The samples were then heated to accelerate the reaction. 
When the effervescence of the reaction was no longer visible, the sam
ples were washed, sieved at 50 µm to recover the sands and gravels, and 
then dried at 30 ◦C. 

Binocular analyses were performed at BRGM facilities using a Leica 
DFC 425 binocular microscope. The morphologies of the sand and 
coarser particles were observed, and photographs were captured. When 
feasible, the minerals were identified. 

3.4.4. Consistency of soilscape locations in the Sologne area 
The locations of the S areas predicted using the IGN data were 

compared with their locations relative to the primary small river 
network. We created transects projecting the topography and gamma- 
ray emissions along the line segments intersecting the small valleys 
and IGN model areas with different predicted STs (S or SL), and we 
interpolated the gamma-ray emissions. 

3.5. Results of the local independent evaluations 

3.5.1. HFST and particle-size analysis 
In this section, we attempt to estimate whether a systematic bias 

exists between the S and SL predictions when using the IGCS or IGN 
HFST data. 

3.5.1.1. HFST and particle-size analysis in the Orléans forest. Fig. 7 shows 
the results of laboratory analysis of soil texture (LAST) measurements on 
pairs of closely situated points classified as S or SL by HFST during the 
initial sampling campaigns of the IGCS and IGN in the Orléans Forest. 

Among the twelve points predicted as SL by the IGN-HFST obser
vations, ten were identified as S when performing the LAST measure
ments. This implies that the SL IGN-HFST estimates were biased toward 
approximately 83 % of the observations. Conversely, nine of twelve 
points predicted as S by the IGCS-HFST observations were consistent 
with the LAST measurements, indicating that IGCS-HFST correctly 
predicted the S texture for approximately 75 % of the observations. 
Although the total number of points sampled was low, these results 
suggest a systematic bias exists in the IGN surveyor observations. This 
bias is not linked to the effect of the difference between the limits of the S 
and SL classes in the two triangles. 

3.5.1.2. Predicted HFST and particle-size analysis in the Sologne evaluation 
area. In this section, we use a stratified random probability sampling 
design to evaluate whether the S and SL textures are correctly predicted 
in the Sologne evaluation area. Fig. 8 shows the LAST results obtained 
for the topsoil samples located in the spatial patterns predicted as S 
using the IGN model. 

These predictions led to the observation of spatial patterns not pre
sent in the IGCS map (Fig. 4).  

• The projected LAST of the topsoil samples belonging to the IGN- 
predicted S patterns (blue) showed that 12 of 13 samples effec
tively corresponded to the LAST measurements when projected on 
the IGN triangle. Using the IGCS triangle, this correspondence was 
observed in 11 of the 13 samples. This result suggests that the pat
terns revealed by the IGN-based model can be considered nearly pure 
sand areas.  

• Conversely, considering the samples outside the S areas predicted by 
the IGN model, which were predicted as S by the IGCS model (blue) 

A. Eymard et al.                                                                                                                                                                                                                                



Geoderma 441 (2024) 116769

10

and as SL by the IGN model (orange): in this area, thirteen of thirty- 
five samples were effectively SL, eighteen were S, and four were 
other textural classes adjacent to S + SL. Therefore, in this area, we 
observed S and SL in 51 % and 37 % of the cases, respectively. In
dependent sampling showed that this area is characterised by an 
association of S and SL, representing approximately 88 % of the 
observed points, with the remainder of the other points belonging to 
textures adjacent to S + SL. In addition, within this area, S dominated 
the SL.  

• Our results query why the IGN observations and model could reveal 
nearly pure sand patterns. Outside these patterns, they query if it is 
logical to attempt mapping ‘pure’ ST classes or if certain areas should 
be better characterised by an association of S and SL ST classes and 
their relative proportions. 

Fig. 9 displays the box plots of sand with coarse fragment content in 
percentage (i.e. equivalent to g.100 g− 1) inside (A) and outside (B) the 
areas predicted as sand by the IGN model. 

The box plots are distinctly different. The sand and coarse element 
contents were substantially higher inside the areas predicted as S by the 
IGN model than those outside. These results suggest that the processes 
and/or nature of the deposits were different in areas A and B. 

3.5.2. Gamma-ray signature statistical distributions inside and outside the 
areas predicted as S by the IGN model 

Fig. 10 shows the statistical distribution of the airborne gamma-ray 
spectrometry interpolated emissions inside (yellow) and outside (dark 

Fig. 7. Projection in both the IGCS (right) and IGN (left) triangles of the results of the laboratory analysis (LAST) performed on closely situated pairs of topsoil layers 
classified in situ by HFST during the initial surveys as S (red) or SL (green) by the IGCS and IGN respectively. 

Fig. 8. LAST topsoil textures as projected on the IGN (left) and IGCS (right) soil 
texture triangles. Blue: samples located inside the areas predicted as S by the 
IGN model. Orange: samples located outside the areas predicted as S by the IGN 
model, as SL by the IGN model, and as S by the IGCS model. 

Fig. 9. Box plots of topsoil sand and coarse element content (% = g.100 g− 1). 
(A) Inside and (B) outside the areas predicted as sand by the IGN model. 
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grey) the areas predicted as S by the IGN model. 
The distributions inside the areas predicted as S showed more 

distinct and sharper peaks and lower modal values of gamma-ray 
emissions than those observed outside these areas. We observed an 
overlap between the distributions, which was largely dependent on the 
origin of the emissions. Note the sharp decrease on the right side of the 
distribution of areas predicted as S. This decrease indicates that high 
emission values were scarcely observed in the areas predicted to be S by 
the IGN model. These distributions were smoothed by interpolation, and 
resampling was used to allocate gamma-ray emissions to each pixel. 
Considering the smoothing effect, the results obtained are noteworthy 
and suggest that the actual difference in emissions from these two 
populations may be further differentiated. 

3.5.3. Microscopy observations 
Fig. 11 shows four examples of microscope observations of samples 

predicted as S (left column A) or SL (right column B) using the IGN 
model. The organic matter was removed using H2O2. 

Microscope observations confirmed that particles coarser than (or 
approximately) 2 mm were more numerous in areas predicted as S than 
in those predicted as SL. We interpret these results as an amplified 
‘gritty’ tactile sensation when certain particles are coarser than others. 
This effect likely led the IGN surveyors to distinguish A areas with S 
HFST from B areas considered less sandy than these areas and thus 
classified as SL HFST. As the observations were performed in forests, it 
cannot be excluded that some SL HFST could have been influenced by 
the presence of organic matter, which may have provided a soft tactile 
sensation similar to that of silt. Nearly all the sand samples were pure 

silica quartz. In area B, other minerals were occasionally observed (e.g. 
feldspars) but in few cases and especially low proportions (data not 
shown). The images cannot be used to estimate the relative proportions 
of coarse elements (>2 mm) for at least two reasons: 1) the coarser 
particles mask some underlying finer particles, and 2) the sand and 
gravel are not precisely spherical, which is a recurrent scenario influ
encing the 2 mm sieving results. 

3.5.4. Consistency with geomorphology and landscape position 
Fig. 12 shows the locations of the S patterns revealed by the IGN 

model. 
The majority of these patterns were located along the three primary 

small rivers flowing from east to west. These patterns follow the primary 
direction of the rivers, and their shapes are generally elongated in the 
direction of the river current. These observations suggest the presence of 
terraces created by alluvial deposits originating from the east and 
transported by these small rivers when they were significantly larger 
than presently. This hypothesis is consistent with the findings of Tissoux 
et al. (2017), who identified alluvial deposits along these small rivers. 
However, their maps were substantially less detailed than those in this 
study, which is understandable because they studied a substantially 
larger area than we did, using the same gamma-ray data, but with an 
objective and sampling design markedly distinct from ours. Nonetheless, 
the results of Tissoux et al. (2017) are consistent with those of the pre
sent study. 

Fig. 13 shows an example of a transect from points A to B based on 
Fig. 12. 

Fig. 13 shows that the three areas predicted as pure S are located 

Fig. 10. Histograms and fitted statistical distributions of airborne gamma-ray spectrometric values of U, K, Th, and total count (Tot) inside (yellow) and outside (dark 
grey) the areas predicted as S by the IGN model. 
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within similar elevation ranges (120–130 m). These areas exhibited the 
lowest Th emissions and are located in flat regions. These observations 
are consistent with the alluvial origin of these S areas, which originates 
from materials that may have been transported from farther eastern 
locations. The specificity of these pure S materials was corroborated by 
their pure sand LAST values and the presence of particles coarser than 2 
mm. 

Another low Th emission, but in a substantially higher elevation area 
than that in the other areas, was identified in this transect. This area 
corresponds to the ancient terrace of the Loire River but has a different 
origin. This terrace is gravelly and has highly weathered and illuviated 
sandy soils (Horemans, 1962). Therefore, its gamma-ray signature is 
logical. The RF IGN model results primarily depend on both gamma-ray 
emissions and relief attributes (Fig. 5). Therefore, the prediction of pure 
S areas likely excluded this terrace because of its DEM-derived attri
butes. This observation corroborates the importance of the DEM attri
butes smoothed over large windows. 

4. Discussion 

4.1. Principal findings—comparison with other studies 

4.1.1. Utility of HFST data 
The topsoil HFST point observations were beneficial for predicting 

ST patterns using the DSM, as we observed consistent patterns of con
trasted HFST for both ST triangles and inventory programmes. These 

findings suggest that the HFST can be inexpensive and useful informa
tion to incorporate as an input variable in the DSM of ST. HFST de
terminations are substantially less precise than those of LAST but can be 
substantially more numerous. HFST can be relatively reliable depending 
on the operators and triangles used (e.g. Carlile et al., 2001; Franzmeier 
and Owens, 2008; Richer-de-Forges et al., 2022; Vos et al., 2016). 

In contrast, certain systematic biases between the two sampling 
campaigns and triangles confirm that HFST determination can be sub
jective and that its accuracy may depend on the experience of the soil 
surveyors and the range of particle-size fractions present over a study 
area (Foss et al., 1975; Levine et al., 1989; Salley et al., 2018). 

In the present study, the two evaluation sampling initiatives (in the 
northern and southern parts) distinctly showed a systematic bias in the 
IGN HFST input data. In the northern part, we showed that for S and SL, 
the IGCS HFST observations by soil surveyors were more accurate than 
the IGN observations. The IGN HFST observations underestimated the S 
class and overestimated the SL class. Therefore, from a textural class 
perspective, the input data used to map the S and SL classes should be 
more efficient when using the IGCS framework. One hypothesis is that 
soil surveyors of the ICGS framework were more experienced than those 
in the IGN framework and have benefited from the cross-checks of the 
HFST and LAST for a prolonged period in various landscapes. 

Nonetheless, this bias in the IGN input data was crucial in identifying 
the nearly pure silica sandy and relatively gravelly terraces in southern 
Sologne. This ‘biased’ observations, in conjunction with relevant cova
riates (particularly airborne gamma-ray data), proved highly efficient 

Fig. 11. Selection of certain binocular observation images. (A) Inside and (B) outside the areas predicted as S by the IGN model.  
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for capturing certain patterns that were not identified using the IGCS 
input data. This result shows that, regardless of the biased observations, 
they provided useful information on soil spatial distribution. These re
sults suggest that discarding data on the sole criteria of accuracy may 
lead to missing ‘hidden’ information that is provided by the spatial 
distribution and/or clustering of certain field observations. 

4.1.2. Utility of gamma-ray spectrometry 
For both models (with the IGCS or IGN HFST input data), raw 

gamma-ray spectrometry data and ratios were the most important 
covariates for predicting the topsoil HFST. This aligns with numerous 
studies that have mapped topsoil texture in various regions and land
scapes worldwide [e.g. Taylor et al. (2002) in Australia, Rawlins et al. 
(2007) in England, Van Der Klooster et al. (2011) in The Netherlands, 
Priori et al. (2014, 2013) in Italy, Heggemann et al. (2017) in Germany, 
and Martelet et al. (2013) and Loiseau et al. (2020) in France]. Soil 
gamma-ray emissions are highly correlated with clay content and 

mineralogy (e.g. Reinhardt and Herrmann, 2019; Wilford, 2002; Wilford 
and Minty, 2006). Thus, our case study is a noteworthy example owing 
to the high variability in clay content (from heavy clay to nearly pure 
quartz sand). Moreover, we showed that gamma-ray spectrometry can 
detect different natures of sand, size distributions, and sand contents 
within the sand texture class. These results are exceptional and exceed 
our expectations. 

Although the signal of gamma-ray emissions is attenuated by forest 
cover, it can capture information from the topsoil layers. The exact 
contribution of the topsoil thickness to emissions is unknown. However, 
some studies have suggested that, in mineral soils, the contribution to 
emissions strongly decreases with depth (Reinhardt and Herrmann, 
2019) and that approximately 90 % of the emissions may originate from 
the upper 20–25 cm of mineral soil (Grasty, 1997). This depth is 
consistent with the thicknesses of the sampled topsoil horizons, ranging 
from 20 to 45 cm. 

The quality of these results is likely enhanced owing to the forested 

Fig. 12. Location of areas identified as S by the IGN model (red) and of the primary small rivers flowing from east to west in the Sologne validation area. The (A–B) 
line segment corresponds to the transect shown in Fig. 13. 

Fig. 13. Transect from points A to B (Fig. 12) showing the elevation, gradients of gamma-ray spectrometry Th emission, and the locations of the two primary rivers 
flowing from east to west. The unnamed river is a small tributary of ‘Le Cosson’, the source of which is located in the validation area and not from an eastern location 
distant from this area. 
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study area not including the following: (i) high emissions linked to some 
sesquioxides, such as those observed in some tropical areas (Bednar 
et al., 2004; Taylor et al., 2002); ii) natural mineralisation outcrops of 
high-emitting elements (else they would have been detected on the 
gamma-ray maps); (iii) high levels of soil contamination in emitting 
elements (which would have also been detected); and (iv) the perturbing 
effects of agricultural management and fertilization on gamma-ray 
emissions (e.g. Wetterlind et al., 2012b, 2012a). 

4.1.3. Utility of relief attributes 
For both models, relief attributes contributed to the prediction of the 

HFST. Notably, we observed the utility of raw DEM values and their 
derivatives at different scales of spatial aggregation. The benefit of using 
various scales for relief attribute covariates aligns with that of previous 
studies (e.g. Behrens et al., 2010; Chen et al., 2021; Grinand et al., 2008; 
Loiseau et al., 2020, 2019; Sena et al., 2020). 

The most noteworthy result was the consistency between the 
exceedingly low gamma-ray emissions, pure silica sand, and the geo
morphology in the southern part of the Sologne Forest. This consistency 
is exceptional and should be emphasised. The relief attributes also 
contributed to avoiding confusion between the Loire River’s high terrace 
and the small Sologne Rivers terraces, regardless of whether they might 
be similar from an ST or gamma-ray perspective. 

As several studies have suggested (e.g. Arrouays et al., 2020a; 
Wadoux et al., 2020b, 2020a; Wadoux and McBratney, 2021), the 
goodness of DSM predictions should not be evaluated using statistical 
estimators alone. Other criteria should examine whether the predictions 
and choice of covariates are logical from a soil science and landscape 
perspective. In this study, we showed that DSM may help highlight 
certain processes (in the present study, specific alluvial deposits) that 
are confirmed by ST, mineralogy, sand morphology and content, coarse 
elements, gamma-ray emissions, landform, and position in the 
landscape. 

4.1.4. Potential additional pathway to improve DSM performance 
Several case studies have compared several models, sampling stra

tegies, or sets of covariates to demonstrate the optimal selection for 
predicting a given soil attribute using DSM (see a review from Chen 
et al., 2022). They have often based their conclusions on optimal pre
diction performance indicators. Unfortunately, most of these conclu
sions are case-specific. Other studies have used an equivalent 
comparison to determine whether the results were consistent among 
different approaches. This strategy may be useful for testing whether 
certain changes in the datasets (e.g. increasing the density of points and 
adding new covariates) have similar and generic effects, regardless of 
the models. Finally, certain studies have proposed averaging or mixing 
several predictions using ensemble modelling, leading to the logical 
hypothesis that ensemble modelling is more robust than using only one 
model. 

In the present study, we tested two soil attribute inputs. Using a 
range of prediction performance indicators on an overall independent 
dataset of ST across the entire map would likely have led to the 
conclusion that the IGCS dataset was optimal. However, we did not 
attempt to select the optimal dataset for the entire map. We explored 
whether there was any useful information for each dataset. Having 
completed this action, we showed that a dataset that would have been 
rejected using the overall estimates of prediction performance could be 
useful for specific soilscapes. 

4.1.5. Mapping larger ST classes may be logical 
The results obtained for the probability sampling evaluation areas 

are consistent. They showed that certain large areas identified as S by 
the IGCS model and SL by the IGN model were, in actuality, charac
terised by an ensemble of ST composed of approximately 50 % S, 40 % 
SL, and 10 % other ST classes adjacent to this ensemble. From scientific 
and practical perspectives, stating that these areas are S with an 

accuracy of 50 % is substantially less informative than mapping an 
ensemble and defining this ensemble by an S + SL association with an 
accuracy of 90 % and internal relative proportions of S and SL of 
approximately 56 % and 44 %, respectively. Alternatively stated, we 
should recognise that there are cases where DSM was not efficient for 
mapping ‘pure’ ST. This may be due to the local variability of S and SL 
that could not be captured using our learning data density and cova
riates. However, DSM could map certain ensembles that were logical 
and could be characterised by their relative proportions. In contrast, the 
S areas revealed by only the IGN model were nearly pure S with some 
gravel, and mapping them as pure sand ST units appeared feasible and 
logical. 

To formulate this conclusion, independent probability sampling was 
necessary and proved to be highly efficient. We lacked the financial 
means to conduct probability sampling across the entirety of the 
département, which is a limitation of the present study. 

4.2. Limitations of the study 

4.2.1. Data availability 
This study used input variables and covariates, the availability of 

which may depend strongly on their locations. 
The input soil information (HFST) for learning is inexpensive and 

easily gathered. However, the density of point data may vary signifi
cantly among and even within countries (Arrouays et al., 2017b). 
Several countries do not yet possess soil maps at a scale of 1:250,000 and 
related databases with geolocalised soil observations. Inventories based 
on a systematic 1 km2 cell grid, such as that conducted by IGN for forest 
soils in mainland France, are rarer than these soil maps and related 
databases. Even in France, such a fine grid does not exist for land covers 
other than forests. We may consider the feasibility of implementing such 
a density of information and sampling design worldwide. Considering 
cost and access constraints, the response was that it was not feasible. 

The covariates used for the DSM may also have different spatial 
coverages and precisions (Richer-de-Forges et al., 2023a, 2023b; 
Samuel-Rosa et al., 2015). If we can logically state that precise DEMs are 
currently available worldwide owing to remote sensing, this is in stark 
contrast to the reality of airborne gamma-ray spectrometry. There are 
relatively few countries with full airborne gamma-ray spectrometry 
coverage. Evidently, most airborne gamma-ray surveys have been 
inspired by mining objectives (primarily for uranium; IAEA, 2010, 
1976), and their acquisition over large areas represents a significant 
financial cost. Therefore, obtaining airborne gamma-ray spectrometry 
data from soils worldwide in the next decade is unlikely. For example, 
the coverage of mainland France using this covariate is currently 
approximately 40 %. Nonetheless, previous studies in similar contexts 
have demonstrated the high potential of airborne gamma-ray spec
trometry for topsoil texture mapping. In addition, the coverage of 
gamma-ray data is gradually but continuously increasing in France and 
several countries worldwide. Airborne gamma-ray spectrometry also 
had some limitations in the present study because of the smoothing ef
fect linked to interpolations. Proximal gamma-ray spectrometry can be a 
useful tool for obtaining geographically precise information and/or 
estimating the effect of interpolation on the precision of airborne 
gamma-ray covariates. 

4.2.2. Necessity for validation and mapping uncertainties 
The confusion matrices shown in Tables 2 and 3 cannot be consid

ered independent validation results for the département. They were not 
constructed using independent probability sampling. They were derived 
from the k-fold validation of the initial dataset. Therefore, they only 
indicate whether the predictions are consistent with the observations. 
Therefore, they likely overestimate the goodness of prediction and do 
not consider possible errors linked to biases in HFST estimation. Dis
tances between classes, or between LAST measurements and HFST 
classes (see for example Richer-de-Forges et al. (2023a)), could have 
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been incorporated into the model evaluation in order to lessen the effect 
of near misses as opposed to huge misses in mis-classification. An in
dependent probability sampling design combined with LAST measure
ments was conducted for a specific area of interest. However, 
conducting such probability sampling over the entirety of the 
département was not feasible in the framework of this study. 

Because of high costs, few DSM studies can gather independent data 
for validation purposes. Over relatively large areas, the method used for 
estimating prediction performance is primarily cross-validation (Chen 
et al., 2022). An independent, stratified random sampling design is often 
limited to small areas. For example, one option proposed by Malone 
et al. (2011) is to select a limited number of strata, hypothesising that if 
the ensemble of covariates can be clustered into different groups, then 
these groups should have similar internal variability and prediction in
tervals. Another option, more similar to the option we retained, would 
be to select a set of sub-areas representing different physiographies and 
soilscapes and concentrate the independent validation effort on these 
sub-areas. 

In the present study, we primarily focused our validation efforts on 
the S and SL ST. This strategy was consistent with the observation that 
these STs covered the majority of the area and that we observed sys
tematic differences between the two HFST datasets. We also aimed to 
determine if the unexpected sandy spatial structures observed in 
southern Sologne using IGN HFST existed and whether their locations 
and characteristics had plausible explanations and specific properties 
and origins. We neither explored nor validated the predictions for the 
other texture classes. 

4.3. Perspectives 

4.3.1. Improving ST predictions at the département level 
In this study, the LAST results were not incorporated into the soil 

profiles obtained during the IGCS soil survey. Combining precise 
analytical values with more uncertain data, such as the HFST, is feasible, 
although by no means trivial (e.g. Malone and Searle, 2021a, 2021b). In 
the future, we plan to verify this approach. 

We could also attempt to disaggregate the 1:250,000 soilscape map, 
as proposed by Odgers et al. (2014a,2014b) and applied with various 
adaptations in several studies (e.g. Chaney et al., 2016; Easher et al., 
2023; Ellili-Bargaoui et al., 2020a, 2020b, 2019; Holmes et al., 2015; 
Jamshidi et al., 2019; Møller et al., 2019; Vincent et al., 2018). Finally, 
these approaches could be combined to obtain the optimal predictions. 

Regardless of the approach, it would require a more exhaustive in
dependent validation test on the entire département. 

4.3.2. Enlarging the study to mainland France 
Several DSM predictions of ST or clay, silt, sand, and/or coarse 

element contents have already been produced at the scale of mainland 
France (Caubet et al., 2019; Mulder et al., 2016a; Román Dobarco et al., 
2019). The first map (Mulder et al., 2016a) uses available LAST data 
from the IGCS programme (latest date, 2014) and approximately 2,200 
LAST site measurements from the French soil monitoring network based 
on a 16 × 16 km systematic grid. The second map (Caubet et al., 2019) 
merges several ST predictions at different scales (national, EU, and 
global). The third map (Román Dobarco et al., 2019) uses the IGCS data 
for calibration and RMQS data for validation. 

None of these maps used the HFST estimates. In addition, the IGCS 
programme has an unbalanced sampling density between forest and 
agricultural areas. Because of the history of soil mapping in France, 
sampling points under forest were substantially less dense than those in 
agricultural landscapes. 

Considering the disparity in the sampling densities and designs of the 
aforementioned datasets, the availability of a systematic 1 km HFST grid 
for all forested land (approximately 31 % of mainland France, i.e. 17.1 
million ha) could constitute an excellent opportunity to improve ST 
prediction over the entire mainland France. As the first IGN campaign 

already covered all forested areas and is currently undergoing a subse
quent iteration, there are currently approximately 190,000 IGN sites in 
the database. The use of all these IGN HFST data at national level would 
require further work to estimate the consistency between HFST and 
LAST over the French territory and to assess the benefit of adding rather 
uncertain data (HFST). Further studies should deal with the trade-off 
between adding noise in the measurements and filling the geograph
ical space when using HFST. 

Other data sources of topsoil LAST are increasing in quantity, such as 
those collected in the framework of the French Soil Test Database 
(BDAT; e.g. Lemercier et al., 2008; Saby et al., 2017), which gathers soil 
analyses realised under the requests of farmers, and for which an 
increasing quantity of locations are now geolocalised. However, these 
analyses are conducted only on agricultural soil and there are still some 
legal limitations about the use of their precise geolocalisation in France. 

5. Conclusions 

The primary conclusions of this pilot study at the French 
département scale are as follows:  

• HFST data provided useful information as a learning variable in 
DSM. 

• Two different HFST datasets with different ST triangles and rela
tively experienced surveyors provided slightly different results, even 
when using the same covariates. However, most patterns in the 
topsoil ST maps were consistent.  

• Using two different sampling designs, we underlined a systematic 
bias in one dataset.  

• Even if biased, the HFST dataset remains useful for detecting specific 
soilscapes. Therefore, before discarding certain learning data based 
on a possible bias, we recommend testing and verifying whether 
using this dataset helps capture specific patterns or spatial structures.  

• Depending on the scale, density of observations, and covariates, 
predicting associations characterised by their relative percentage in 
two STs may be more relevant than attempting to predict a given ST 
alone. However, predicting nearly pure ST was possible in specific 
and contrasting cases.  

• The DEM derivatives and gamma-ray data helped detect specific 
patterns. They contributed to revealing and explaining patterns that 
were logical from both soil process and soil management 
perspectives.  

• We should not consider certain data as unusable because they do not 
satisfy certain statistical criteria. We must also examine the map 
produced and attempt to explain the unexpected findings, if any.  

• Numerous HFST datasets exist and should not be ignored. We should 
continue to recover these data and explore their potential for 
improving DSM and soil process knowledge at a low cost. 

Data availability 
The 1/250,000 soilscape map of the Loiret and its associated book 

(both in paper format) are sold by QUAE editions (France). https://www 
.quae.com/collection/13/cartes-et-referentiels-pedologiques. 

Points coordinates and associated soil data in private properties are 
not publicly available, according to French regulations. 

The Loiret 1/250,000 soilscape map in digital format and its related 
database are available for free upon reasonable request and license 
agreement. The database is described in Richer-de-Forges et al. (2008), 
and the link to the database is available at https://doi. 
org/10.15454/1U255W. People willing to have free access to data 
should precise the framework and the intended utilization of the map. 
All products using this map should cite and acknowledge its source. The 
database does not include points data, but areal statistics and estimates 
of soil types and soil properties mean, minimum and maximum values. 
Neither INRAE, nor the author are responsible for misuses of the data, 
nor for possible errors and/or uncertainties in the map and the related 
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database. 
The IGN forest soils grid is the property of the National Institute for 

Geographic and Forest Information. The access to point data is restricted 
and requests should be made through the “Information Forestières” 
website: https://inventaire-forestier.ign.fr/. 

The IGN DEM at 25 m resolution (BD ALTI ®) is the property of the 
National Institute for Geographic and Forest Information (IGN). All 
départment data are downloadable at: https://geoservices.ign. 
fr/bdalti/. 

Airborne gamma-ray data used in this study are available from 
BRGM upon request. 
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Jamshidi, M., Delavar, M.A., Taghizadehe-Mehrjardi, R., Brungard, C., 2019. 

Disaggregation of conventional soil map by generating multi realizations of soil class 
distribution (case study: Saadat Shahr plain, Iran). Environ. Monit. Assess. 191, 769. 
https://doi.org/10.1007/s10661-019-7942-x. 

Joly, D., Brossard, T., Cardot, H., Cavailhes, J., Hilal, M., Wavresky, P., 2010. Les types 
de climats en France, une construction spatiale. cybergeo. [in French]. https://doi. 
org/10.4000/cybergeo.23155. 
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