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• representation of the impact of the variability of the rain on the cost function through a random variable in the latent space • the mean and variance are analytically available and independent of the distribution of Z
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Case study: Moisture profile observations, twin experience 
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• The emulator mean is a good estimator of the true mean. • The train set and the test set do not present the same variabilities, thus the emulator does not reproduce correctly the impact of rain perturbations on the cost function.
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Conclusion

• The PCE approximations on each conditioned rains have a determination coefficient R 2 > 0.95 and the approximation of the metamodel mean is good.

• The minimizer of the mean has lower cost function on unseen rains than a randomly chosen conditional minimizer.

• The variance of the metamodel is not a good estimate What next ?

→ work on the estimation of the variance → study the Pareto-optimal minimizers → augment rain perturbations → minimize mean and variance with Gaussian Process based Efficient Global Optimization, compare the precision and number of model evaluations needed. → observe another output, for example pesticide quantities in the river, interaction will be added. → up the domain to the catchment scale 

Figure :

 : Figure: PESHMELBA a , a process-based, spatially distributed water and pesticide transfer model, representing dynamical behavior of pesticides in agricultural catchments. Semi-conceptual, semi-physically based model, highly non-linear.

  3. Pareto of θ * E , θ * Var 4. ... • How to estimate the robust parameters from a limited number of model simulations? -→ Stochastic metamodel a a Nora Lüthen, Stefano Marelli, and Bruno Sudret (Mar. 2023). "A spectral surrogate model for stochastic simulators computed from trajectory samples". en. In: Computer Methods in Applied Mechanics and Engineering 406, p. 115875.
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  Moisture profile observations, twin experience J(θ, u) = (M(θ, u) -y true ) 2 Moisture profile observations, twin experience J(θ, u) = (M(θ, u) -y true ) 2 Moisture profile observations, twin experience J(θ, u) = (M(θ, u) -y true ) 2 PCE constructed conditionally to each train rain realization. • Determination coefficients R 2 > 0.95 • Minimization BFGS conditionally to each rain realization.
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 : Figure: Histogram of conditional minimizers to each train rain realization.
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 : Figure: Comparison of the train and the test means E U [J(θ, U)].
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 : Figure: Comparison of the train and the test trajectories of PESHMELBA simulations, projected on the PCE basis.

Figure :

 : Figure: Cost function evaluated at the test rains, the simulations performed with the minimizer of the mean have a lower mean and variance than the one obtained with the minimizer conditioned on one rain realization.