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Context

Figure: PESHMELBAa, a process-based, spatially distributed water
and pesticide transfer model, representing dynamical behavior of
pesticides in agricultural catchments. Semi-conceptual,
semi-physically based model, highly non-linear.

aEmilie Rouzies et al. (June 2019). “From agricultural catchment to
management scenarios: A modular tool to assess effects of landscape
features on water and pesticide behavior”. en. In: Science of The Total
Environment 671, pp. 1144–1160.

• Not all model parameters
can be measured directly

• → calibrate these model
parameters with terrain
observations

• Impact of external
uncertainties on the
calibration results
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Introduction

What does it mean to find a robust minimizer ?
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Methods: Robust estimators

u1, u2, u3
1. θ∗

E = argmin
θ

EU [J(θ,U)],

2. θ∗
Var = argmin

θ
VarU [J(θ,U)],

3. Pareto of θ∗
E, θ∗

Var

4. ...

• How to estimate the robust parameters from a limited
number of model simulations?

−→ Stochastic metamodela
aNora Lüthen, Stefano Marelli, and Bruno Sudret (Mar. 2023). “A

spectral surrogate model for stochastic simulators computed from
trajectory samples”. en. In: Computer Methods in Applied Mechanics
and Engineering 406, p. 115875.
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Methods: Stochastic metamodel
• Polynomial chaos expansion (useful for models with sparse observations)

• −→ ok, for when a rain realization is fixed
J(θ) =

∑
α∈NK

cαψα(θ) ≈
∑

α∈AK,p
q

cαψα(θ)

• ...but when the rain is an external, unknow, unparametrized uncertainty ?

Ĵ(θ, ω) = µ̂(θ) +
K∑

k=1

√
λkZk(ω)(

∑
α∈A

b(k)
α ψα(θ))

• PCE on each rain realization, then Principal component analysis on the PCE coefficients
• representation of the impact of the variability of the rain on the cost function through a

random variable in the latent space
• the mean and variance are analytically available and independent of the distribution of Z
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Case study: Moisture profile observations, twin experience

J(θ, u) = (M(θ, u) − ytrue)2

θ ∈ R6

ytrue ∈ R25

Katarina Radišić Lefe-Manu, 20-22 June 2023 7/13



Context Introduction Methods Case study Results Conclusion

Case study: Moisture profile observations, twin experience

J(θ, u) = (M(θ, u) − ytrue)2

θ ∈ R6

ytrue ∈ R25

Katarina Radišić Lefe-Manu, 20-22 June 2023 7/13



Context Introduction Methods Case study Results Conclusion

Case study: Moisture profile observations, twin experience

J(θ, u) = (M(θ, u) − ytrue)2

θ ∈ R6

ytrue ∈ R25

Katarina Radišić Lefe-Manu, 20-22 June 2023 7/13



Context Introduction Methods Case study Results Conclusion

Case study: Moisture profile observations, twin experience

J(θ, u) = (M(θ, u) − ytrue)2

θ ∈ R6

ytrue ∈ R25

Katarina Radišić Lefe-Manu, 20-22 June 2023 7/13



Context Introduction Methods Case study Results Conclusion

Results: Conditional minimization

• PCE constructed conditionally to
each train rain realization.

• Determination coefficients
R2 > 0.95

• Minimization BFGS conditionally
to each rain realization.

Figure: Histogram of conditional minimizers to each
train rain realization.

Katarina Radišić Lefe-Manu, 20-22 June 2023 8/13
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Results: Validation of the emulator

Figure: Comparison of the train and the
test means EU [J(θ, U)].

Ĵ(θ,U(ω)) = µ̂(θ)+
K∑

k=1

√
λkZk(ω)(

∑
α∈A

b(k)
α ψα(θ))

• The emulator mean is a good estimator
of the true mean.
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Results: Validation of the emulator

Figure: Comparison of the train and the
test trajectories of PESHMELBA
simulations, projected on the PCE basis.

Ĵ(θ,U(ω)) = µ̂(θ)+
K∑

k=1

√
λkZk(ω)(

∑
α∈A

b(k)
α ψα(θ))

• The emulator mean is a good estimator
of the true mean.

• The train set and the test set do not
present the same variabilities, thus the
emulator does not reproduce correctly
the impact of rain perturbations on the
cost function.
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Results: Validation of the emulator

Figure: Cost function evaluated at the test rains, the simulations performed with the minimizer of the
mean have a lower mean and variance than the one obtained with the minimizer conditioned on one
rain realization.

Katarina Radišić Lefe-Manu, 20-22 June 2023 10/13
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Conclusion
• The PCE approximations on each conditioned rains have a determination coefficient

R2 > 0.95 and the approximation of the metamodel mean is good.
• The minimizer of the mean has lower cost function on unseen rains than a randomly

chosen conditional minimizer.
• The variance of the metamodel is not a good estimate

What next ?
→ work on the estimation of the variance
→ study the Pareto-optimal minimizers
→ augment rain perturbations
→ minimize mean and variance with Gaussian Process based Efficient Global Optimization,

compare the precision and number of model evaluations needed.
→ observe another output, for example pesticide quantities in the river, interaction will be

added.
→ up the domain to the catchment scale

Katarina Radišić Lefe-Manu, 20-22 June 2023 11/13
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Thank you for your attention !

Katarina Radišić Lefe-Manu, 20-22 June 2023 12/13
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