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Abstract 1 

In contrast to microbial metagenomics, there has still been only limited efforts to benchmark 2 

virome analysis approaches performance in terms of faithfulness to community structure and 3 

of completeness of virome description. While natural communities are more readily accessible, 4 

synthetic communities assembled using well characterized isolates allow more accurate 5 

performance evaluation. Starting from authenticated, quality-controlled reference isolates from 6 

the DSMZ Plant Virus Collection, we have assembled synthetic communities of varying 7 

complexity up to a highly complex community of 72 viral agents (115 viral molecules) 8 

comprising isolates from 21 viral families and 61 genera. These communities were then 9 

analyzed using two approaches frequently used in ecology-oriented plant virus metagenomics: 10 

a virion-associated nucleic acids (VANA) based strategy and a highly purified double-stranded 11 

RNAs (dsRNA) based one. The results obtained allowed to compare diagnostic sensitivity of 12 

these two approaches for groups of viruses and satellites with different genome types and 13 

confirmed that the dsRNA-based approach provides a more complete representation of the RNA 14 

virome. For viromes of low to medium complexity, VANA however appears a reasonable 15 

alternative and would be the preferred choice, in particular if analysis of DNA viruses is of 16 

importance. They also allowed to identify several important parameters and to propose 17 

hypotheses to explain differences in performance, in particular differences in the imbalance in 18 

the representation of individual viruses using each approach. Remarkably, these analyses 19 

highlight a strong direct relationship between the completeness of virome description and 20 

sample sequencing depth which should prove useful in further virome analysis efforts. 21 

  22 
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Importance 23 

We report here efforts to benchmark performance of two widespread approaches for virome 24 

analysis, which target either virion-associated nucleic acids (VANA) or highly purified double-25 

stranded RNAs (dsRNA). This was achieved using synthetic communities of varying 26 

complexity levels, up to a highly complex community of 72 viral agents (115 viral molecules) 27 

comprising isolates from 21 families and 61 genera of plant viruses. The results obtained 28 

confirm that the dsRNA-based approach provides a more complete representation of the RNA 29 

virome, in particular for high complexity ones. For viromes of low to medium complexity, 30 

VANA however appears a reasonable alternative and would be the preferred choice if analysis 31 

of DNA viruses is of importance. Several parameters impacting performance were identified as 32 

well as a direct relationship between the completeness of virome description and sample 33 

sequencing depth. The strategy, results and tools used here should prove useful in a range of 34 

virome analysis efforts. 35 

Keywords: virome, VANA, dsRNA, synthetic community, metagenome, double-stranded 36 

RNA, high-throughput sequencing  37 
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INTRODUCTION  38 

Significant advances in the development of molecular methods have been made in the last 39 

decades, including innovative sequencing technologies based on DNA/RNA approaches such 40 

as targeted (RT-)PCR or non-targeted High-Throughput Sequencing (HTS). HTS, also known 41 

as next generation sequencing (NGS), enables high-speed, high-throughput sequencing of 42 

native DNA/RNA or amplified DNA, generating enormous amounts of sequencing data. These 43 

developments led to major advances in the field of metagenomics, i.e. the sequencing of the 44 

entire genetic material of a sample, and to a new understanding of microbial diversity [1, 2]. 45 

Viral metagenomics has revealed the immense diversity and ubiquity of viruses in nature and 46 

thus revolutionized our vision of these biological agents [1, 3-8]. Specifically, these 47 

metagenomics studies have revealed that virus sequence data available in public databases are 48 

biased toward human viruses or viruses of anthropological significance, with e.g. influenza-like 49 

viruses found in fish and amphibian hosts [9] or more than 75% of the plant virus species 50 

characterized up to 2006 having been isolated from crops [10]. These findings, together with 51 

reports on viruses associated with hosts different from those known for the vast majority of 52 

their relatives, such as flavi-like viruses found in plants [11, 12], have raised novel questions 53 

about virus-hosts co-divergence or host switching. 54 

In plant virology in particular, advances in the development of viral metagenome analyses have 55 

been of great importance in terms of early detection of known viruses and discovery of novel 56 

plant viruses [4, 7, 13-14], as more than half of emerging diseases in plants are thought to be 57 

caused by viruses [15]. HTS has a huge potential in plant virus diagnostics because it allows to 58 

picture the complete phytosanitary status of a plant and to differentiate between virus variants 59 

that may contribute differentially to disease etiology [14]. For example, in a metagenomic 60 

analysis of sour cherry showing symptoms of Shirofugen stunt disease (SSD), a divergent 61 

isolate of little cherry virus 1 (LChV1) was identified in the absence of any other viral agent, 62 
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suggesting that LChV1 could be responsible for the SSD disease [16]. However, metagenomics 63 

approaches have also revealed that plants are often infected by more than one virus [17], 64 

complicating the unravelling of the etiology of plant viral diseases.  65 

HTS has also renewed the link between classical plant virology and ecology [4, 18]. Viromes 66 

identified from both cultivated and uncultivated plant populations enabled the study of 67 

ecological processes such as the movement of viruses between different host reservoirs, the 68 

effects of management practices or of the anthropological simplification of ecosystems [19-23]. 69 

For the efficient characterization of complex plant-associated viromes, there is generally a need 70 

to enrich viral sequences and conversely reduce the amount of host plant sequences that are 71 

generated. Different target nucleic acid populations have been used for virome studies but, 72 

coupled with the virus enrichment constraint, the most widely used approaches have targeted 73 

virion-associated nucleic acids (VANA) or double stranded RNAs (dsRNAs) [4, 7]. For single 74 

plant samples or low complexity samples, the use of total RNA or small interfering RNA 75 

(siRNA) sequencing are considered the most universal and straightforward options [24, 25] but 76 

when the viromes of entire plant communities are analyzed from complex plant pools, VANA 77 

or dsRNAs enrichment methods are generally preferred [4, 7, 19, 21, 26]. A huge number of 78 

bioinformatic tools are available for HTS data analysis and have been, together with nucleic 79 

acid preparation strategies, extensively reviewed [13, 27-28]. The choice of a specific viral 80 

enrichment method or bioinformatic pipeline depends on the experimental objectives. Even 81 

though there have been some efforts towards performance comparisons of different virome 82 

analysis approaches [29, 30], there is a need to better benchmark them and assess their 83 

respective efficiency at providing a faithful and comprehensive description of complex viromes, 84 

without introducing biases. In a virus discovery study on single quarantine plants, VANA was 85 

shown to assemble longer contigs compared to siRNA for a novel DNA mastrevirus [31], while 86 

in a study investigating the virome of native plants in Oklahoma, more viral Operational 87 
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Taxonomy Units (OTUs) could be detected with dsRNA compared to VANA [26]. Ma et al. 88 

[32] provided a more comprehensive comparison of these two approaches using the natural 89 

viral communities present in complex plant pools from managed and unmanaged sites. The 90 

authors found significant differences with more viral contigs and, on average, longer contigs 91 

assembled from libraries prepared from dsRNA. With regard to viral richness, more OTUs were 92 

detected by the dsRNA approach compared to the VANA one. However, most DNA viruses 93 

were only detected using VANA.  94 

Standardization is fundamental for the reliable representation of microbiome/virome in 95 

metagenomic studies and is challenged by the rapid development of sequencing platforms, 96 

protocols and bioinformatic pipelines [33]. Benchmarking is a powerful tool to provide 97 

standards that can be used to compare and evaluate the performance of the different steps 98 

required in metagenomic studies, including target nucleic acids population extraction, library 99 

preparation, sequencing (and sequencing platform) and finally bioinformatics sequence 100 

analysis. In this context, benchmarking studies in metagenomics are often based on mock 101 

communities that are microbial assemblages of known composition which can be used to 102 

compare the actual vs the expected performance of a process. Besides the use of actual empirical 103 

phytoviromes [32], the use of synthetic communities could therefore provide a more precise 104 

and detailed benchmarking of HTS-based virome description strategies. Bacterial and fungal 105 

mock communities have thus been developed and used to compare the performance of different 106 

sequencing platforms, e.g. short read Illumina or long read PacBio SMRT sequencing [34-36]. 107 

In recent years, viral mock communities have also been developed, especially in the medical 108 

and clinical field, to benchmark protocols in human virome studies. For example, the nucleic 109 

acid preparation step for the virome analysis of fecal samples was optimized using a 110 

combination of both viral and bacterial mock communities [37]. In another study, the bias 111 

introduced by viral enrichment or random amplification were assessed using a DNA virus mock 112 
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community [38]. Viral synthetic communities have also been used to benchmark library 113 

preparation approaches in environmental [39] and insect [40] virome studies. However, the use 114 

of synthetic communities in plant virome studies is lagging behind. So far, the only study using 115 

a defined mix of plant viruses to assess different nucleic acid preparation protocols was 116 

performed by Gafaar and Ziebell [30]. This study revealed a better performance of enriched 117 

dsRNAs as compared to ribodepleted total RNA or siRNAs for virus detection. However, only 118 

low complexity synthetic communities have been used so far, whereas most of the viral 119 

metagenomes associated with natural plant communities are composed of a complex and 120 

diverse mixture of DNA and RNA viruses that are studied from pooled plant samples. In the 121 

present work, we used a total of 22 synthetic plant virus communities of varying degrees of 122 

complexity to compare the diagnostic performance of VANA and dsRNA-based approaches for 123 

virome description and analyzed how this performance is affected by sequencing depth and 124 

other parameters. In parallel, a first attempt at contrasting the performance of VANA and 125 

dsRNA approaches with those of RNASeq was conducted, using synthetic datasets assembled 126 

in silico from single-isolate RNASeq data. 127 

MATERIALS AND METHODS 128 

Mock viral communities design 129 

A list of 61 different viruses (assigned to 59 different genera from 18 different families plus 130 

one unassigned virus) was selected among those kept in collection and available at the Leibniz-131 

Institute DSMZ - German Collection of Microorganisms and Cell Cultures (Braunschweig, 132 

Germany), taking into consideration three main criteria: (i) maximizing viral diversity by 133 

including viruses with all genome types (ssDNA, dsDNA-RT, dsRNA, +ssRNA, -ssRNA), (ii) 134 

including (with one exception) only a single representative virus per viral genus and (iii) 135 

selecting viruses/isolates for which a complete or near complete genomic sequence is available. 136 

In some cases, these genomic sequences had been determined previously, while in other cases 137 

they were developed specifically in the frame of efforts to further improve the characterization 138 
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of isolates distributed by the DSMZ through the EU-funded EVA-Global initiative 139 

(https://www.european-virus-archive.com/). Quality controlled samples were obtained from the 140 

DSMZ in the form of infected, lyophilized plant material in vacuum-sealed vials. The complete 141 

list of the isolates used, together with their properties and the propagation host in which they 142 

were provided, are given in Table 1. 143 

Initial low complexity pools were generated by assembling 30 mg of virus-infected samples 144 

into 12 viral communities comprising five viruses each (150 mg of plant material each) and 145 

containing at least one virus with a genome type different from +ssRNA (Supplementary Table 146 

S1). Pea enation mosaic virus was counted as one virus, when it is in fact a co-infection of pea 147 

enation mosaic virus 1 (Enamovirus) and pea enation mosaic virus 2 (Umbravirus). Stepwise 148 

combinations of these five viruses mock communities were then assembled to create 149 

communities of increasing degrees of complexity (Supplementary Fig. S1), yielding a total of 150 

22 communities with complexity ranging from five to 60 viruses. 151 

Double-stranded RNA extraction 152 

Double-stranded RNAs were purified from pooled samples according to [41] with some minor 153 

modifications. Briefly, instead of 75 mg, 150 mg dried plant material (representing a pool of 154 

five plants, Supplementary Table S1) was used as starting material and buffer volumes 155 

increased proportionally. Plants were ground in liquid nitrogen until a fine powder was obtained 156 

which was then mixed with the phenol-extraction buffer. Following gentle agitation for 30 min 157 

and centrifugation, the supernatant was decanted and half of it directly further processed, while 158 

the other half was used for the stepwise gradual assembly of pairs of communities used to 159 

generate more complex viral communities. In this way, six communities of 10 viruses each, 160 

then three communities of 20 viruses and finally a single community of 60 viruses could be 161 

assembled. Between each step, assembled samples were vortexed for at least 30s for optimal 162 

homogenization. A detailed scheme of the pooling strategy to form communities of different 163 
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complexities is shown in Supplementary Figure S1. Irrespective of its complexity, a supernatant 164 

volume corresponding to an initial input of 75 mg of plant sample was thus obtained and further 165 

processed as per the protocol of Marais et al. [41] which involves two rounds of CC41 cellulose 166 

(Whatman) chromatography followed by a nuclease treatment (DNase RQ1 plus RNaseA under 167 

high salt conditions) to remove any remaining host DNA and single-stranded RNA. A negative 168 

extraction control using only buffer was systematically included. Purified dsRNAs were finally 169 

converted to cDNA and randomly amplified while simultaneously adding MID tags [41-42]. 170 

VANA extraction 171 

VANA extractions were performed on pools of five viruses similarly prepared as for dsRNA, 172 

using the protocol of François et al. [42] with minor modifications. Briefly, 150 mg of 173 

lyophilized plant material (representing a pool of five plants, Supplementary Table S1) were 174 

ground in Hank’s buffered salt solution (HBSS) (1:10) with four metal beads within a grinding 175 

machine (Fastprep 24, MP Biomedicals). Following two centrifugation steps (4000g for 5 min 176 

at 4°C and 8000g at 4°C for 3 min), the supernatants were split and used in the same stepwise 177 

assembly of more complex communities as for the dsRNA approach (Supplementary Figure 178 

S1). A negative, buffer only, extraction control was systematically included. Each of the thus 179 

generated samples, representing different degrees of community complexity, was filtered 180 

through a 0.45µm filter and centrifuged at 148,000g for 2.5 hours at 4°C to concentrate the 181 

virus particles. Unprotected nucleic acids were eliminated by DNase and RNase treatment at 182 

37°C for 1.5 hours. Viral RNA and DNA were then isolated using the NucleoSpin Virus kit 183 

(Macherey Nagel, Hoerdt, France), using only 80 µl of sample in the first lysis step and omitting 184 

the addition of proteinase K. Extracted RNAs were transformed to cDNA using Superscript III 185 

reverse transcriptase (ThermoFisher Scientific/Invitrogen), cDNAs were further purified with 186 

the QIAquick PCR purification Kit (Qiagen, Courtaboeuf, France) and a complementary strand 187 

was synthesized using the Klenow fragment of DNA polymerase I. Finally, a random PCR 188 
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amplification adding barcoded dodeca-linkers and corresponding MID primers during reverse 189 

transcription and PCR, respectively was performed [42]. 190 

Illumina sequencing 191 

PCR products from all communities analyzed using the dsRNA and VANA procedures were 192 

finally purified using the MinElute PCR purification kit (Qiagen) and equimolar quantities of 193 

amplification products were sent to Illumina sequencing in multiplexed format (2 × 150 bp) on 194 

two lanes (one for VANA and one for dsRNA, respectively) on a NovaSeq 6000 system at the 195 

GetPlaGe platform (GenoToul INRAE Toulouse, France).  196 

Generation of synthetic datasets for viral communities using single-isolate RNASeq data 197 

For all but one of the viral isolates used to build the synthetic communities, available single-198 

isolate ribodepleted RNASeq datasets (Leibniz-Institute DSMZ) were used to reconstruct in 199 

silico datasets corresponding to the different communities with reads number and average reads 200 

length paralleling those from the VANA and dsRNA datasets. These reconstructed datasets, 201 

mimicking the analysis of the various communities by RNASeq, were analyzed in parallel to 202 

those generated by the VAN A and dsRNA approaches. 203 

HTS data analysis 204 

Sequencing reads were imported into CLC Genomics Workbench v. 21.0.3. (CLC-GW, 205 

Qiagen) and adapters were removed from reads followed by trimming on quality and length 206 

using default settings and a minimum read length of 60 nucleotides (nt). Final trimmed reads 207 

were on average 111-113 nt long for the various datasets. Datasets were normalized by 208 

resampling at varying depth as needed, using the random reads sampling tool in CLC-GW. 209 

To analyze virus detection performance as a function of contig size, de novo assembly was 210 

performed with CLC-GW (word size, 50; bubble size, 300) using various minimum contig 211 

lengths (125, 175, 250, 350, 500, 1000 nt). In order to identify viruses possibly present in the 212 
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samples used, in addition to the expected reference viruses, contigs were annotated by a BlastX 213 

analysis [43] against the viral RefSeq portion of the non-redundant (nr/nt) NCBI GenBank 214 

database. For the additional viruses thus identified, a genomic scaffold was reconstructed and 215 

extended by repeated rounds of residual reads mapping using CLC-GW, thus yielding near 216 

complete genome sequences that were used as reference for the relevant virus (Table 2). In a 217 

few cases, these assemblies were considered too incomplete and the closest complete genomic 218 

sequence in GenBank was selected as reference sequence (Table 2). 219 

In order to determine virus detection performance, unassembled reads or de novo assembled 220 

contigs were mapped against the reference genome segment(s) for each virus (Tables 1 and 2) 221 

using very stringent mapping parameters (length fraction 100%, minimal similarity fraction 222 

90%) in CLC-GW. In order to take into account inter-sample crosstalk due to index jumping 223 

[44-45], a threshold of positive detection was computed for each viral molecule by calculating 224 

the average plus 3 standard deviations (SD) of background virus reads observed in libraries 225 

generated from communities that did not contain the corresponding virus. Assuming a normal 226 

distribution of background reads, the use of such a positivity threshold would provide a <1% 227 

risk of reporting a false positive detection 228 

(https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule).  229 

Comparison of parameters (number, average length) for de novo assembled viral contigs 230 

obtained from VANA and dsRNA datasets normalized at different sequencing depths were 231 

performed with five resampling repeats at each depth. Statistically significant differences were 232 

identified using a two-sample t-test. 233 

Data availability 234 

Trimmed sequencing reads for all viral communities analyzed by dsRNA or VANA approaches 235 

are available from the French Recherche Data Gouv multidisciplinary repository at 236 

https://doi.org/10.57745/42WNRJ. The normalized 10M reads dsRNA or VANA datasets 237 
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generated using the 60-viruses community have also been made available together with the 238 

community composition and the complete or near complete reference genomic sequences used 239 

are also available from the same repository at https://doi.org/10.57745/T4UYPC. 240 

 241 

RESULTS 242 

Viruses or virus-like agents identified from viral communities HTS data 243 

The analysis of reads from both the VANA and dsRNA approaches for all communities 244 

revealed the presence of all expected viruses, although a few viruses were only represented by 245 

a limited number of reads or were only detected using one of the two approaches. Overall, only 246 

lettuce ring necrosis virus turned out to be fully absent from VANA reads, while banana bunchy 247 

top virus was only represented by a single dsRNA read. It should also be noted that not all 248 

viruses could be detected in all the communities of different complexity in which they were 249 

expected. 250 

In addition to the expected 61 viruses, evidence for the presence in some communities of 251 

additional viruses or virus-like agents was obtained through the BlastX indexing of de novo 252 

assembled contigs from the low complexity, 5-viruses communities. A total of 11 unexpected 253 

agents were thus identified (Table 2). These include three linear ssRNA satellites associated 254 

with the helper virus isolates included in the communities [turnip crinkle satellite F 255 

(TCVsatRNA F), pea enation mosaic satellite RNA (PEMVsatRNA) and strawberry latent 256 

ringspot virus satellite RNA (SLRSVsatRNA)], latent viruses associated with the propagation 257 

hosts used [Hordeum vulgare endornavirus (HvEV), maize-associated totivirus (MaTV), 258 

maize-associated totivirus2 (MaTV-2) and Chenopodium quinoa mitovirus 1 (CqMV1)], as 259 

well as viruses in coinfection with some of the viral isolates used [poinsettia mosaic virus 260 

(PnMV), tobacco mosaic virus (TMV), turnip yellows virus (TuYV) and maize streak Réunion 261 

virus (MSRV)] (Table 2). Taken together, these agents represent three additional viral families, 262 
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for a total of 21 viral families (plus satellites) used for the assembly of communities. For these 263 

additional agents, either a nearly complete genome was reconstructed from sequencing reads 264 

and used as the mapping reference or the closest full genome sequence in GenBank was used 265 

for further mapping analyses (Table 2). For all other viral isolates included in the communities, 266 

complete or nearly complete genomic sequences were available (Table 1).  267 

While the communities of varying complexities analyzed here will be referred to as 5-viruses, 268 

10-viruses, 20-viruses and 60-viruses, it should be kept in mind that the real number of viruses 269 

present in a given community might be slightly different because of (i) the presence of one or 270 

more of the additional viruses and (ii) the counting of pea enation mosaic virus as one virus 271 

when it is in fact a co-infection of pea enation mosaic virus 1 (Enamovirus) and pea enation 272 

mosaic virus 2 (Umbravirus). 273 

Read mapping analysis of VANA and dsRNA datasets for the communities of various 274 

complexities 275 

To be able to compare results between low and high complexity communities, all datasets were 276 

normalised by randomly subsampling 120K cleaned reads, the depth of the 5-viruses 277 

community with the lowest number of reads. To address the issue of inter-sample crosstalk 278 

caused by index jumping [44-45] a threshold of positive detection was computed for each viral 279 

molecule by calculating the average + 3 standard deviations (SD) of background reads in 280 

libraries generated from communities that did not contain the corresponding virus. Assuming a 281 

normal distribution of crosstalk reads numbers, this strategy ensures that the probability of 282 

having a mapped reads number higher than the threshold by chance (false positive detection) is 283 

lower than 1%. 284 

In general, the proportion of viral reads in both VANA and dsRNA datasets was high (64-89%) 285 

and was slightly affected by community complexity, with a general trend to reach higher values 286 

when analysing more complex communities (Figure 1A). The proportion of viral reads in the 287 
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dsRNA datasets were slightly higher than in the corresponding VANA datasets, with the 288 

strongest differential observed for lower complexity communities of five and 10 viruses (64-289 

65% viral reads as compared to 79-82%, Figure 1A). In contrast, the average proportion of viral 290 

reads in RNASeq datasets for individual virus isolates following ribodepletion was 19.6% but 291 

with a very large standard deviation of 26.1%. 292 

Using the 12 communities of five viruses and a sequencing depth of 120K reads, 67 viruses 293 

were detected with both VANA and dsRNA approaches (with detection of reads for at least one 294 

genomic molecule considered as positive detection for a virus with a multipartite genome), out 295 

of the total of 72 viruses or virus-like agents present in the 12 communities analyzed (93.1%). 296 

However, VANA yielded reads for all six DNA viruses used (100%), while dsRNA yielded 297 

reads for only three of them (50%). Conversely, VANA yielded reads for 61 of the 66 RNA 298 

viruses or satellites (92.4%), when dsRNA yielded reads for 64 of them (97.0%) (Figure 1B). 299 

As expected, and previously reported, the performance of VANA is thus superior for DNA 300 

viruses but that of dsRNA slightly superior for RNA viruses. Using the datasets reconstructed 301 

from single plant RNASeq data, an overall rate of detection of 97.2% of the 71 viruses was 302 

obtained (no RNASeq data was available for one of the isolates used, which was therefore 303 

excluded from all computations). 304 

The impact of increasing community complexity is reflected by the diminishing number of 305 

viruses detected at an equal sequencing effort of 120K reads. The performance of VANA 306 

gradually deteriorated, with detection decreasing from 61 RNA viruses detected to 58 (10-307 

viruses communities) and then to 52 (20-viruses communities) to reach only 34 RNA viruses 308 

detected (51.5%) in the most complex community (Figure 1B). The same pattern was observed 309 

for DNA viruses, with all six DNA viruses detected in the 10- and 20-viruses communities but 310 

only one detected when analysing the 60-viruses community. In the case of the dsRNA 311 

approach, performance was marginally reduced for the 10- and 20-viruses communities (65 and 312 
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63 RNA viruses detected, respectively) and less affected than for the VANA approach for the 313 

most complex community, with still 57 of 66 RNA viruses detected (86.4%) (Figure 1B). 314 

Remarkably, performance was the least affected for the RNASeq approach using reconstructed 315 

communities data, with still 65 viruses (91.5%) detected for the most complex community (5/6 316 

DNA viruses and 59/65 RNA viruses, or 90.7%). 317 

If trying to compensate for community complexity by proportionally increasing the sequencing 318 

effort for more complex communities, the erosion in performance is less important for VANA, 319 

with still 57 of 66 RNA viruses detected for the 60-virus community (86.4%) and five of the 320 

six DNA viruses (83.3%) at a 1.44 M reads depth (12 x 120K). The performance of dsRNA, on 321 

the other hand, is no longer impaired, as all 66 RNA viruses (100%) were detected for the most 322 

complex community (result not shown). Similarly, the performance of RNASeq was no longer 323 

substantially impacted, with all DNA viruses and all but one RNA viruses detected. 324 

The stronger degradation of VANA performance as community complexity increases, 325 

correlates with a more uneven distribution of read numbers between viruses and the stronger 326 

dominance of a few viruses, in particular turnip yellow mosaic virus (TYMV). In the 60-viruses 327 

community VANA dataset, TYMV represented 67% of the reads while the corresponding value 328 

for the dsRNA dataset was only 28%. As shown in Figure 2, even if spanning a 5 to 6 logs 329 

scale, the percentage of reads for each virus in the total datasets tends to be more evenly 330 

distributed between viruses in the dsRNA dataset than in the VANA dataset for the 60-viruses 331 

community. By contrast and excluding a single sample showing extremely low viral reads 332 

numbers, the variation in the proportion of viral reads in individual viral isolates analyzed by 333 

RNASeq showed much less variability as it remained within a 3 logs range of variation. 334 

Although allowing to compare the performance of the VANA and dsRNA approaches, these 335 

analyses based on the mapping of reads against cognate reference genomes do not mimic the 336 

situation in metagenomic studies, in which a high proportion of viruses are expected to be novel 337 
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and for which therefore no suitable reference genome is available. We therefore analyzed the 338 

performance of these two approaches following the de novo assembly of reads into contigs, 339 

which is known to reduce the proportion of un-annotated “dark matter” [46]. 340 

Impact of minimal contig length on the number of detected viruses 341 

We first evaluated the impact of the minimal contig length on the number of detected viruses 342 

using the most complex community of 60-viruses and deep datasets normalized at 10 M reads. 343 

As expected, and shown in Figure 3, the number of detected viruses decreased as minimal 344 

contig length increased. The pattern observed for RNA viruses is similarly observed for DNA 345 

viruses. The dsRNA approach consistently detected more RNA viruses than the VANA one, 346 

irrespective of the minimal contig length used, but the difference increased as minimal contig 347 

length increased. Using the shortest, 125 nt contig length, VANA identified 54 of the 66 RNA 348 

viruses or satellites present in the community (81.8%), while dsRNA identified 63 of them 349 

(95.5%) (Figure 3). The corresponding values for DNA viruses are respectively 4/6 (66.7%) 350 

and 3/6 (50%). 351 

On the other hand, the coverage of the detected viruses (fraction of the target molecules 352 

represented in contigs) was much less affected by minimal contig length. While being relatively 353 

stable for the dsRNA approach, for which it varied between 66.5% and 74.9% with no clear 354 

trend, it showed a tendency to increase with contig length for the VANA approach, from 50.2% 355 

(>125 nt contigs) to 76.7% (>1,000 nt contigs) (Supplementary Figure S2).  356 

For further analyses, an intermediate 250 nt minimal contig length was retained as it 357 

corresponds to an encoded 83 amino acids sequence that was felt sufficient for many conserved 358 

protein domain searches which are often used in virome analysis or annotation [47]. 359 

  360 
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Effects of community complexity on virome description performance 361 

We evaluated how, for a given sequencing depth, community complexity affects virome 362 

description performance following contigs assembly. For this, all datasets were normalized at 363 

a 120K read depth. Similar to the initial analysis using reads mapping, the number of detected 364 

viruses was reduced as community complexity increased. Again, dsRNA outperformed VANA 365 

at all complexity levels, though the difference in performance remained limited for low to 366 

medium community complexities (Supplementary Figure S3). VANA performance degradation 367 

was however more drastic at high community complexity, dropping from 44 RNA viruses and 368 

four DNA viruses detected for communities of five viruses (66.7% of total viruses) to 11 RNA 369 

viruses and one DNA virus detected (16.7%) for the 60-viruses community. The corresponding 370 

values for dsRNA were 53 (80.3%) and 26 RNA viruses (39.4%), with no DNA virus detected 371 

(Supplementary Figure S3). Remarkably, RNASeq turned out to be the least affected, with 372 

respectively 57/71 (80.3%, 5-viruses communities) and 34/71 viruses (47.9%, 60-viruses 373 

community) detected. These results indicate that even for limited complexity communities 374 

involving only five viruses, read numbers significantly higher than 120K are needed by the 375 

various techniques to achieve a 100% detection performance with a wide range of viruses. 376 

If trying to compensate increased virome complexity by a parallel increase in sequencing depth, 377 

a negative impact of complexity is still seen but is much less severe. For example, for the most 378 

complex community of 60 viruses at a 1.44M depth (12*120K reads), VANA detected 23 RNA 379 

viruses and 2 DNA viruses (compared to 44 RNA viruses and four DNA viruses when analysing 380 

individually the 12 pools of five viruses at 120K reads depth), which corresponds to a reduction 381 

in performance of 47.9%. For its part, dsRNA detected 42 RNA viruses (no DNA virus), to be 382 

compared with 53 viruses when individually analyzing the 12 pools of five viruses, 383 

corresponding to a reduction in performance of 20.7% (Supplementary Figure S4). The 384 

corresponding value for RNASeq was 55 viruses detected, corresponding to a performance 385 
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equivalent to the analysis of the 12 communities of five viruses. The loss in performance 386 

resulting from high community complexity is therefore only significant for the dsRNA and 387 

VANA approaches, and strongest in the case of VANA.  388 

Impact of sequencing depth on de novo assembly 389 

The 60-viruses community was used to investigate the influence of sequencing depth on de 390 

novo assembly performance itself. The VANA and dsRNA datasets were therefore resampled 391 

at different depths (100K, 300K, 1M, 3M and 10M reads, five random resampling at each 392 

depth), assembled and the obtained contigs mapped against the viral reference genomes to 393 

determine the average assembly parameters and viral contigs parameters. The results are shown 394 

in Supplementary Table S2 and, for viral contigs alone, in Table 3. 395 

As expected, all assembly parameters (number of contigs, average contig length, N50, maximal 396 

contig length) increased with sequencing depth (Supplementary Table S2). The same tends to 397 

be true for viral contigs (number and length, Table 3), while the proportion of viral contigs 398 

tended to diminish as sequencing depth increased, likely reflecting increased probability of 399 

assembly of non-viral reads (Supplementary Table S2). Although at the lowest 100K reads 400 

sequencing depth few assembly parameters were found to be statistically different, both the 401 

total number of assembled contigs and the number of viral contigs were found to be highly 402 

statistically different, with dsRNA yielding about 3-fold more contigs and 3-fold more viral 403 

contigs than VANA (Table 3 and Supplementary Table S2). This trend was observed at all 404 

sequencing depth, with 1.3 to 1.8-fold more viral contigs observed for dsRNA.  405 

At other sequencing depths, differences between the VANA and dsRNA assemblies proved 406 

systematically highly significant, with dsRNA consistently yielding more numerous and longer 407 

contigs as well as more numerous and longer viral contigs. On the other hand, the proportion 408 
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of viral contigs was found consistently higher in assemblies of the VANA datasets 409 

(Supplementary Table S2). 410 

It should be noted that the better assembly performance of dsRNA is independent of minimal 411 

contig length (Table 4). In particular, using the most complex community and 10 million reads 412 

datasets, the higher performance of dsRNA over VANA was observed for all assembly 413 

parameters (number of contigs, average length, N50, maximum length) and for both viral 414 

contigs parameters (number and average length) at all minimal contigs length (from 125 to 1000 415 

nt) with a single exception, the number of viral contigs >125 nt long (1,852 for VANA vs 1,672 416 

for dsRNA) (Table 4). At all other minimal contig length, VANA showed from 19.2% (contigs 417 

≥175 nt) to 50.7% (>1 kb contigs) fewer viral contigs than dsRNA and these contigs were 23-418 

33% shorter on average than the dsRNA ones (Table 4). 419 

As compared to VANA and dsRNA assemblies, RNASeq assemblies generated more viral 420 

contigs at low sequencing depth (ca. 10-30% more than dsRNA for depth of 100K to 1M reads) 421 

but ca. 15% fewer viral contigs at the 10M depth. On the other hand, a striking difference in the 422 

length of viral contigs was also observed, with RNASeq contigs increasing from an average of 423 

1kb (100K depth, 34% longer than dsRNA contigs on average) to 2.1kb (10M depth, 89% 424 

longer than for dsRNA). 425 

Impact of sequencing depth on virus identification performance 426 

We proceeded to evaluate the performance of VANA and dsRNA in identifying the expected 427 

viruses or viral molecules as affected by sequencing depth. The contigs obtained for the various 428 

datasets resampled at different depths (five resampling per sequencing depth) were mapped on 429 

individual reference sequences. This allowed to evaluate both the proportion of detected viruses 430 

and the coverage of the detected viral molecules, together with their standard deviation 431 

(Supplementary Figure S5). Once again, at all sequencing depths and for both parameters, 432 
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dsRNA outperformed VANA for RNA viruses, while VANA outperformed dsRNA for DNA 433 

viruses. In all cases, average coverage of detected segments of RNA viruses showed a high 434 

standard deviation but dsRNA contigs covered 9% to 22% more of the detected molecules than 435 

VANA contigs.  436 

Similarly, and as expected from single reads mapping data, dsRNA outperformed VANA for 437 

the identification of RNA viruses present in the most complex, 60-viruses community. For 438 

VANA, performance ranged from 17.7% of RNA viruses identified at the 100K reads depth to 439 

60.3% at the 10 million reads depth. The corresponding values for dsRNA are respectively 440 

35.2% and 89.7% and those for RNASeq respectively 46.2% and 90.8%. The performance of 441 

RNASeq therefore appears to be nearly identical to that of dsRNA for RNA viruses, and 442 

superior for DNA viruses with 5/6 viruses detected for the 3M and 10M reads depth.  443 

A plot of the observed proportion of detected RNA viruses over a logarithmic scale of the 444 

sequencing effort is shown in Figure 4. It shows a remarkable pattern with linear regression r² 445 

coefficients of 0.97-0.99, suggesting a very strong and monotonous relationship between 446 

sequencing depth and the proportion of the viruses present in the community that are 447 

represented by at least one assembled contig. An extension of that trend would suggest that a 448 

depth of about 30 million reads would be needed for the dsRNA approach to recover at least 449 

one contig for each of the 66 RNA viruses present in the synthetic community, while in excess 450 

of 1 billion reads would be needed to achieve a comparable performance using VANA. If taking 451 

into account also DNA viruses to calculate a proportion of detected viruses, similar linear 452 

relationships are still observed, but the performance of the dsRNA approach is slightly degraded 453 

as expected from its poor ability to detect DNA viruses (Figure 4). Analyzed in a similar 454 

fashion, the RNASeq data showed the same linear relationship, although with a slightly lower 455 

r² value of 93.7% and a predicted detection of all 71 viruses and satellites with 16-17M reads. 456 
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Due to a more limited number of reads available for virus communities up to the 20-viruses 457 

pools, a similar evaluation could not be as extensively performed for these lower complexity 458 

communities. However, an analysis at three sequencing depths (100K reads, 300K reads, 875K 459 

reads) of the 20-viruses communities data provided comparable results with r² correlation 460 

coefficients of 0.95-0.98, suggesting that the linear correlation between the percentage of 461 

viruses recovered and the log of the sequencing depth is independent of the complexity of the 462 

analyzed community (result not shown).  463 

An analysis performed at the level of individual viral genomic molecules (115 viral molecules) 464 

allows to evaluate the performance of the two methods using the most complex, 60-viruses 465 

pool, for groups of viruses with different genome types. The numbers of viral molecules are 466 

however small for RNA satellites, dsRNA viruses and dsDNA viruses. The results, using a 10 467 

million reads sequencing depth, are summarized in Table 5. Considering individual molecules, 468 

VANA had at least one contig for only 50% of the viral molecules present in the most complex 469 

synthetic community, to be compared with a 76.5% value for dsRNA. But while the VANA 470 

performance was at an intermediate level for all virus groups analyzed, dsRNA showed good 471 

performance for +ssRNA viruses (89.5% of molecules), RNA satellites (100%) and dsRNA 472 

viruses (100%). The dsRNA performance was however poor for DNA viruses, as expected, but 473 

also for -ssRNA viruses (41.7% of detected molecules only). 474 

DISCUSSION  475 

While synthetic communities have been widely used to benchmark metagenomic processes 476 

targeting bacteria and fungi, methodological benchmarking approaches in virome studies are 477 

still limited and largely confined to clinical settings [38, 48-49] and, to some extent, to 478 

environmental virome studies [50-51]. Such approaches are today largely lacking in plant 479 

virology. Here we used well authenticated and sequence characterized plant virus isolates from 480 
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a public bioresource center (Leibniz-Institute DSMZ) that allowed for the simple construction 481 

of synthetic viral communities of varying complexity. Although some of the viruses were 482 

detected by only very low read numbers, no virus was fully absent from all generated datasets, 483 

validating the approach and the samples used. The fact that some viruses were identified only 484 

by low read numbers could have a variety of reasons, such as low virus titer in some samples, 485 

competition with other viruses for reads representation in the assembled communities, or 486 

difficulties in extracting viral nucleic acids from some plant species. In addition, the fact that 487 

freeze-dried plant material was used in this study may have had a negative impact on results 488 

and the analysis of fresh plant tissues might have provided superior results. In this respect, it 489 

should be noted that the two viruses present as infected banana samples, banana streak OL virus 490 

(BSOLV) and banana bunchy top virus (BBTV), were only detected by very low read numbers 491 

using both VANA and dsRNA, despite the fact that these techniques have successfully been 492 

used in the past to analyze banana samples [52-53]. The RNASeq data on the same viral isolates 493 

shows about 0.9% of viral reads BSOLV but BBTV was the individual sample with the fewest 494 

reads by far in the RNASeq analysis, suggesting a low viral concentration in that particular 495 

sample.  496 

A total of 11 additional viruses or viral agents were identified in the constructed communities. 497 

In most cases, these correspond to satellites that had not been specifically indexed in the viral 498 

isolates used or of viruses latently infecting propagation hosts, such as Hordeum vulgare 499 

endornavirus, which is present in many barley varieties, or Chenopodium quinoa mitovirus. 500 

The communities assembled cover all known plant virus genome types, 21 viral families (plus 501 

satellites and one virus unassigned in a family) and a total of 61 genera [plus four viruses not 502 

currently assigned to a genus and three satellites]. It is thus probably to date the largest scale 503 

effort to build synthetic viral communities and use them for the benchmarking of phytovirome 504 

analysis approaches. In some benchmarking studies, the nucleic acid proportions of the 505 
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individual viruses involved in the virus community were quantified prior to extraction [36, 39]. 506 

The fact that no special effort was made here to normalize or measure the concentration of the 507 

different viruses is a limitation for some comparisons. On the other hand, the samples used 508 

involved different propagation hosts and actual virus titers in those hosts, so that the 509 

communities assembled reflect actual samples from plant virome studies. The results obtained 510 

indicate that a range of parameters impact the completeness of the virome description achieved. 511 

Not surprisingly, such parameters include (i) sequencing depth, (ii) community complexity, (iii) 512 

use of de novo assembled contigs vs use of unassembled reads and (iv) minimal contig length.  513 

The key objective of this work was to compare the performance of the VANA and dsRNA 514 

approaches, which are the two techniques most widely used in ecology-oriented viral 515 

metagenomics experiments involving the analysis of complex pools of plants. The results 516 

provided here for RNASeq following ribodepletion should be considered with caution, since 517 

they are not fully comparable with the VANA or dsRNA data. Indeed, the RNASeq datasets 518 

for the various communities were assembled in silico, from data obtained by single-isolate 519 

sequencing. This means that any interactions between plant samples or competition between 520 

viruses for representation in the datasets were eliminated, contrary to the situation with the 521 

VANA and dsRNA experiments. Given that RNASeq is considered an unbiased approach 522 

(hence its use for transcriptome analysis), this should not be a problem but the existence of 523 

unforeseen effects affecting the results cannot be completely ruled out. As compared to dsRNA 524 

and VANA, the results obtained for RNASeq using the in silico assembled communities show: 525 

(i) a much lower imbalance in the representation of the various viruses (3 logs variation as 526 

opposed to 5-6 logs), (ii) on average significantly longer viral contigs, irrespective of 527 

sequencing depth and (iii) an overall excellent performance with 90% of the viruses identified 528 

at 10M reads depth for the most complex, 60-viruses community. This last result favourably 529 

compares with the dsRNA performance for all viral categories with the exception of viruses 530 
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with dsRNA genomes (Table 5). This performance comes as a surprise given the absence of 531 

enrichment (besides ribodepletion) in RNASeq. However, the relatively narrow range of 532 

variation in the proportion of viral reads for different viruses, possibly implying reduced 533 

competition for representation between viruses, and the even distribution of RNASeq reads 534 

along viral genomes, possibly favouring a more efficient genome assembly, could have 535 

contributed to the RNASeq performance. In any case, these results surprisingly suggest that 536 

RNASeq could have a very good potential for the analysis of complex viral communities and 537 

clearly call for direct benchmarking efforts using RNASeq and complex synthetic or natural 538 

communities in order to unambiguously validate this potential. 539 

As previously reported using natural communities (Ma et al., 2019), the dsRNA approach 540 

provided in all comparisons a more complete description of the RNA virome than the VANA 541 

approach but performed very poorly with DNA viruses. However, the differential with VANA 542 

is more limited for the less complex communities of five or 10 viruses. According to our own 543 

experience, this level of complexity is most often seen when analyzing single plants or pools of 544 

5-20 plants of the same species, with vegetatively propagated plants tending to have more 545 

complex viromes. Higher complexity levels are usually encountered when analyzing larger 546 

pools composed of plants belonging to different species. The dsRNA approach is therefore 547 

recommended whenever analysing complex viromes or when an emphasis on RNA viruses is 548 

of importance, in particular since dsRNA allows comparable levels of completeness with a 549 

lower sequencing effort. On the other hand, for viromes of low to medium complexity, the 550 

results reported here show VANA to be a reasonable alternative. For example, at 480K reads 551 

depth, VANA detected 57.4% of all viruses for the 20-viruses communities as compared to 552 

61.8% for dsRNA (result not shown, see also Supplementary Figure 4 for the compared rates 553 

of detection of RNA viruses only). VANA should of course be the preferred choice if analysis 554 

of DNA viruses is of importance. The reason for the better performance of the dsRNA approach 555 
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for high complexity viromes is not fully clear but might result from a lower level of competition 556 

between viral nucleic acid molecules for representation in complex pools, resulting in a 557 

somewhat less imbalanced distribution of read numbers between viruses (Figure 2). Different 558 

human microbiome studies have shown that different steps of RNA/DNA extraction such as 559 

homogenization, centrifugation, filtration and chloroform treatment, can have a major impact 560 

on the quantitative and qualitative composition of identified viral communities, skewing viral 561 

metagenome assemblies [37-38, 54]. Another critical step is library preparation, which often 562 

involves a random amplification PCR to increase virus genetic material and to add linkers, 563 

allowing samples multiplexing during HTS sequencing and thus reducing sequencing costs. 564 

The amplification step may alter the relative abundance of viruses and can lead to uneven 565 

coverage if random primers do not anneal randomly on viral genomes. Indeed, in the case of 566 

faba bean necrotic stunt virus, the relative frequencies of the different genome segments 567 

determined by qPCR was significantly different before and after a rolling circle amplification 568 

step used prior to HTS sequencing [55]. Furthermore, different library preparation techniques 569 

have been found to require different sequencing depths to achieve the same genome coverage 570 

[56]. Regardless of the experiment, it is advisable to develop an estimate of the sequencing 571 

depth needed, so as to be able to answer the biological question at hand while avoiding 572 

excessive sequencing costs. Here we identified a very robust correlation between the percentage 573 

of viruses identified in complex communities and the log of the sequencing depth. This is an 574 

interesting result, since it allows to gauge the sequencing effort needed for a particular level of 575 

virome description or, conversely, to gauge the extent of virome description that can be 576 

expected from a particular sequencing depth. Besides metagenomic studies, this finding might 577 

have practical implications for diagnostics since many plants, in particular vegetatively 578 

propagated ones, frequently display complex mixed infections involving a range of viruses.  579 
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Virus detection in metagenomic studies is constrained by the degree of complexity of the virus 580 

communities analyzed. Our results suggest that the detection efficiency of either mapping of 581 

unassembled reads or analysis of de novo assembled contigs were affected by community 582 

complexity with a general trend of detecting a lower proportion of viruses in more complex 583 

communities. However, the read mapping strategy was more efficient at all complexities 584 

(Figure 1B and Supplementary Figure S3), confirming results obtained through performance 585 

testing of sequence analysis strategies [57]. This may be due to the complexity of de novo 586 

assembly of complex communities, linked with insufficient coverage or uneven coverage of 587 

low abundance viruses within such communities. Correspondingly, we observed a lower virus 588 

detection rate when using longer minimal contig sizes in the de novo assembly, which again 589 

might be attributed to difficulties in assembling reads from more complex communities for 590 

example when coexisting viruses share highly similar regions in their genomes, leading to 591 

higher fragmentation and reduced contig sizes [58]. 592 

Lastly, it has been reported that the quality and completeness of virome description is also 593 

affected by the bioinformatic analysis used [58-61]. The normalized 10M reads datasets 594 

generated in the present study with the 60-viruses community, which are available at 595 

https://doi.org/10.57745/T4UYPC, together with the community composition and the complete 596 

or near complete reference genomic sequences used here should prove very useful tools to 597 

benchmark virome characterization pipelines. 598 

  599 
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Figures 847 

 848 

Figure 1. Average proportion of viral reads (DNA and RNA viruses) in VANA (grey) and 849 

dsRNA (blue) datasets from viral communities of different complexities (A) and number of 850 

viruses detected at an even 120K read depth for communities of different complexities (B). In 851 

figure 1B RNA viruses are indicated by solid bars while DNA viruses are indicated by dashed 852 

bars. 853 

 854 

Figure 2: Distribution of percentage of mapped VANA (grey) and dsRNA (blue) reads for each 855 

detected virus in the 60-viruses community using a normalized 1.44 million reads sequencing 856 

depth. The percentages of mapped reads for each virus are shown on a logarithmic scale, from 857 

1,E+00 (100%) to 1,E-07 (0.000001%) 858 
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 859 

Figure 3. Number of detected viruses using VANA (grey) or dsRNA (blue) in the 60-viruses 860 

community (over a total of 69 viruses plus 3 satellites) as a function of minimal contig length 861 

at a sequencing depth of 10M reads. RNA viruses are indicated by solid bars while DNA viruses 862 

are indicated by dashed bars. 863 

  864 
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 865 

Figure 4: Observed percentages of detected viruses in the 60 viruses community as a function 866 

of sequencing depth expressed in million reads per sample and plotted on a logarithmic scale. 867 

VANA results are in grey, dsRNA results in blue. Linear regression curves are shown for RNA 868 

viruses (round dots, thick lines,) as well as considering both RNA and DNA viruses (square 869 

dots, think lines). Linear r² coefficients are shown only for the RNA viruses curves.  870 

 871 
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Table 1. Viral isolates used to construct mock viral communities of varying complexity. The taxonomic status of the various viruses is indicated, 
together with their DSMZ catalogue code, their propagation host and the GenBank accession number(s) of their genomic sequence(s). 

Family Genus Virus Acronym Genome Codea Hostb Sequence accession 
number(s) 

Alphaflexiviridae Allexivirus Shallot virus X ShVX ssRNA(+) PV-0622 Chenopodium murale MW854280 
Alphaflexiviridae Potexvirus Lettuce virus X LeVX ssRNA(+) PV-0904 Nicotiana benthamiana MW248356 

Benyviridae Benyvirus Beet necrotic yellow vein virus BNYVV ssRNA(+) PV-0467 Chenopodium quinoa OK181765-67; 
M36896  

Betaflexiviridae Capillovirus Apple stem grooving virus ASGV ssRNA(+) PV-0199 Chenopodium quinoa MW582790 
Betaflexiviridae Carlavirus Poplar mosaic virus PopMV ssRNA(+) PV-0341 Nicotiana benthamiana ON924213 
Betaflexiviridae Trichovirus Apple chlorotic leaf spot virus ACLSV ssRNA(+) PV-0998 Chenopodium quinoa OK340218-19c 
Betaflexiviridae Tepovirus Potato virus T PVT ssRNA(+) PV-1145 Nicotiana hesperis MZ405665 

Bromoviridae Alfamovirus Alfalfa mosaic virus AMV ssRNA(+) PV-0779 Nicotiana tabacum 
“Samsun nn” MZ405653-55 

Bromoviridae Anulavirus Pelargonium zonate spot virus PZSV ssRNA(+) PV-0259 Nicotiana glutinosa 
“24A” ON398493-95  

Bromoviridae Bromovirus Brome mosaic virus BMV ssRNA(+) PV-0194 Hordeum vulgare MW582787-89 
Bromoviridae Cucumovirus Peanut stunt virus PSV ssRNA(+) PV-0190 Nicotiana benthamiana MW307259-61 
Bromoviridae Ilarvirus Parietaria mottle virus PMoV ssRNA(+) PV-0400 Chenopodium quinoa MZ405646-48 
Closteroviridae Closterovirus Beet yellows virus BYV ssRNA(+) PV-1260 Beta macrocarpa MT815988 
Closteroviridae Crinivirus Tomato chlorosis virus ToCV ssRNA(+) PV-1242 Solanum lycopersicum ON398512-13 
Potyviridae Bymovirus Barley yellow mosaic virus BaYMV ssRNA(+) PV-0634 Hordeum vulgare OL311692-93 
Potyviridae Ipomovirus Cucumber vein yellowing virus CVYV ssRNA(+) PV-0776 Cucumis sativus OK181771 
Potyviridae Potyvirus Bidens mottle virus BiMoV ssRNA(+) PV-0752 Nicotiana benthamiana ON398504 
Potyviridae Rymovirus Agropyron mosaic virus AgMV ssRNA(+) PV-0729 Triticum aestivum OM471970 
Potyviridae Tritimovirus Brome streak mosaic virus BrSMV ssRNA(+) PV-0431 Hordeum vulgare OP357935 
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Potyviridae Unassigned Spartina mottle virus SpMV ssRNA(+) PV-0970 Spartina sp. MN788417 
Secoviridae Cheravirus Arracacha virus B AVB ssRNA(+) PV-0082 Chenopodium murale MW582785-86 
Secoviridae Comovirus Squash mosaic virus SqMV ssRNA(+) PV-0581 Cucurbita pepo ON398498-99 
Secoviridae Fabavirus Broad been wilt virus 1 BBWV-1 ssRNA(+) PV-0067 Chenopodium quinoa MT663310-11 
Secoviridae Nepovirus Tomato black ring virus TBRV ssRNA(+) PV-0191 Nicotiana clevelandii MW057704-05 
Secoviridae Sequivirus Carrot necrotic dieback virus CNDV ssRNA(+) PV-0976 Nicotiana benthamiana MW080951 
Secoviridae Stralirivirus Strawberry latent ringspot virus SLRSV ssRNA(+) PV-0247 Chenopodium quinoa MZ405640-41 
Solemoviridae Sobemovirus Rice yellow mottle virus RYMV ssRNA(+) PV-0732 Oryza sativa MT701719 
Solemoviridae Enamovirus Pea enation mosaic virus 1 PEMV1 ssRNA (+) PV-0088 Pisum sativum MW961146 

Solemoviridae Polerovirus Cucurbit aphid-borne yellows 
virus CABYV ssRNA(+) PV-1017 Physalis floridana MZ202344 

Tombusviridae Alphacarmovirus Calibrachoa mottle virus CbMV ssRNA(+) PV-0611 Chenopodium quinoa OK181769  
Tombusviridae Alphanecrovirus Tobacco necrosis virus A TNV-A ssRNA(+) PV-0186 Chenopodium quinoa MT675968 

Tombusviridae Aureusvirus Johnsongrass chlorotic stripe 
mosaic virus JCSMV ssRNA(+) PV-0605 Zea mays MT682309 

Tombusviridae Betacarmovirus Turnip crinkle virus TCV ssRNA(+) PV-0293 Nicotiana benthamiana OK181761 
Tombusviridae Betanecrovirus Beet black scorch virus BBSV ssRNA(+) PV-0951 Chenopodium quinoa OK058516 
Tombusviridae Dianthovirus Carnation ringspot virus CRSV ssRNA(+) PV-0097 Nicotiana clevelandii MT682300-01 
Tombusviridae Gammacarmovirus Melon necrotic spot virus MNSV ssRNA(+) PV-0378 Cucumis sativus ON398496 
Tombusviridae Machlomovirus Maize chlorotic mottle virus MCMV ssRNA(+) PV-1087 Zea mays OK181780 
Tombusviridae Pelarspovirus Pelargonium line pattern virus PLPV ssRNA(+) PV-0193 Chenopodium quinoa MW854266 
Tombusviridae Tombusvirus Tomato bushy stunt virus TBSV ssRNA(+) PV-0268 Nicotiana clevelandii MW582792 
Tombusviridae Umbravirus Carrot mottle virus CMoV ssRNA(+) PV-0968 Nicotiana benthamiana OK058520 

Tombusviridae Umbravirus Pea enation mosaic virus 2 PEMV2 ssRNA(+) PV-0088 Pisum sativum MW961147; 
MW961148c 

Tospoviridae Orthotospovirus Impatiens necrotic spot virus INSV ssRNA(+/-) PV-0280 Nicotiana benthamiana MW582795-97 
Tymoviridae Tymovirus Turnip yellow mosaic virus TYMV ssRNA(+) PV-0299 Brassica rapa ON924209 
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Virgaviridae Furovirus Soil-borne wheat mosaic virus SBWMV ssRNA(+) PV-0748 Triticum aestivum MZ405651-52 
Virgaviridae Hordeivirus Barley stripe mosaic virus BSMV ssRNA(+) PV-0330 Hordeum vulgare ON924210-12  
Virgaviridae Pecluvirus Peanut clump virus PCV ssRNA(+) PV-0291 Nicotiana benthamiana MW961156-57 
Virgaviridae Pomovirus Potato mop-top virus PMTV ssRNA(+) PV-0582 Nicotiana benthamiana ON398500-02 
Virgaviridae Tobamovirus Paprika mild mottle virus PaMMV ssRNA(+) PV-0606 Nicotiana benthamiana OK181768 
Virgaviridae Tobravirus Pea early-browning virus PEBV ssRNA(+) PV-0298 Chenopodium quinoa MW854268-69 
not assigned Idaeovirus Raspberry bushy dwarf virus RBDV ssRNA(+) PV-0053 Chenopodium quinoa MW582777-78 

Rhabdoviridae Cytorhabdovirus Lettuce necrotic yellows virus LNYV ssRNA(-) PV-0085 Nicotiana glutinosa 
“24A” MZ202327 

Rhabdoviridae Varicosavirus Beet oak leaf virus BOLV ssRNA(-) PV-1034 Spinacia oleracea OQ975887-88 

Rhabdoviridae Alphanucleorhabd
ovirus Physostegia chlorotic mottle virus PhCMoV ssRNA(-) PV-1182 Nicotiana occidentalis 

“37B” KX636164 

Rhabdoviridae Betanucleorhabdo
virus Sonchus yellow net virus SYNV ssRNA(-) PV-0052 Nicotiana clevelandii MT613317 

Aspiviridae Ophiovirus Lettuce ring necrosis virus LRNV ssRNA(-) PV-0983 Nicotiana occidentalis 
“P1” ON398506-09 

Partitiviridae Alphacryptovirus Poinsettia latent virus PnLV dsRNA PV-0629 Euphorbia pulcherrima ON398503  
Caulimoviridae Badnavirus Banana streak OL virus BSOLV dsDNA-RT PV-0492 Musa sp. OQ102041 
Caulimoviridae Caulimovirus Cauliflower mosaic virus CaMV dsDNA-RT PV-0229 Brassica rapa OP947586 
Geminiviridae Begomovirus Squash leaf curl virus SLCV ssDNA PV-1299 Cucurbita pepo MW582809-10 
Geminiviridae Mastrevirus Maize streak virus MSV ssDNA PV-1103 Zea mays OQ102042-44 
Nanoviridae Babuvirus Banana bunchy top virus BBTV ssDNA PV-1166 Musa sp. OQ102052-57 

(a) DSMZ catalogue code  

(b) Host in which the virus isolate was propagated and lyophilized  

(c) Several variants are present in the propagated sample and accession numbers for the variants are provided 
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Table 2. Additional viruses identified by analysis of the HTS data in the samples used to assemble the synthetic mock communities of varying 

complexity. 

Family Genus Virus Acronym Genome 
type 

Reference sequence 
accession numbera 

Virgaviridae Tobamovirus Tobacco mosaic virus TMV ssRNA(+) OQ953825 
Tymoviridae unassigned Poinsettia mosaic virus PnMV ssRNA(+) OQ953828 
Endornaviridae Alphaendornavirus Hordeum vulgare endornavirus HvEV ssRNA(+) OQ953829 
Solemoviridae Polerovirus Turnip yellows virus TuYV ssRNA(+) JQ862472 
Geminiviridae Mastrevirus Maize streak Réunion virus MSRV ssDNA OQ953826 
Totiviridae unassigned Maize-associated totivirus MATV dsRNA OQ953827 
Totiviridae unassigned Maize-associated totivirus 2 MTV-2 dsRNA MN428829 
Mitoviridae Duamitovirus Chenopodium quinoa mitovirus 1 CqMV1 ssRNA(+) MT089917 
small linear ssRNA satellite Turnip crinkle satellite RNA F TCVsatRNA F ssRNA X12749 
small linear ssRNA satellite Pea enation mosaic virus satellite RNA PEMVsatRNA ssRNA OQ953831 
small linear ssRNA satellite Strawberry latent ringspot virus satellite RNA SLRSVsatRNA ssRNA OQ953830 

(a) Accession number of the closest sequence in GenBank that was used as reference for reads mapping 
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Table 3. Comparison of the number and average length of de novo assembled viral contigs 

obtained for VANA and dsRNA datasets normalized at different sequencing depths (100K, 

300K, 1M, 3M and 10M reads, five resampling repeats at each depth). The standard deviations 

(SD) and the statistical differences (p-values) are also shown 

  VANA average 
+/- SD 

dsRNA average 
+/- SD Two sample t-test 

100 K 
reads 

nb viral contigs 33.6 +/- 1.9 101.8 +/- 2.9 9.2E-11 
Viral contigs 

average length 733.4 +/- 23.7 747.4 +/- 17.1 0.32 

300K 
reads 

nb viral contigs 70.2 +/- 5.4 129.4 +/- 8.1 8.0E-07 
Viral contigs 

average length 643.4 +/- 27.8 887.8 +/- 38.2 2.8E-06 

1M 
reads 

nb viral contigs 106.2 +/- 6.3 159.2 +/- 6.6 1.1E-06 
Viral contigs 

average length 694.8 +/- 30.3 1019.6 +/- 40.9 5.7E-07 

3M 
reads 

nb viral contigs 129.6 +/- 4.8 207.6 +/- 3.8 2.5E-09 
Viral contigs 

average length 798.4 +/- 15.9 1067.6 +/- 11.5 1.4E-09 

10M 
reads 

nb viral contigs 201.2 +/- 4.1 268 +/- 2.9 1.8E-09 
Viral contigs 

average length 791.2 +/- 11.1 1121.4 +/- 10.6 3.9E-11 
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Table 4. Performance parameters of de novo assembly using different minimal contigs length of normalized, 10M reads, VANA and dsRNA 

datasets for the 60-viruses synthetic community. 

 Minimal contig length 
 125 nt 175 nt 250 nt 350 nt 500 nt 1000 nt 
 VANA dsRNA VANA dsRNA VANA dsRNA VANA dsRNA VANA dsRNA VANA dsRNA 
nb contigs 1947 2212 416 784 220 437 144 276 86 182 37 88 
average length 235 324 506 607 757 907 985 1243 1355 1662 2191 2696 
N25 547 1764 1836 3642 2334 4007 2560 4060 3449 4505 3824 5671 
N50 206 352 628 1005 994 1521 1277 1955 1709 2775 2277 3705 
N75 156 191 313 352 481 558 618 773 888 1117 1653 1782 
Max 6549 13919 6652 13919 6652 13919 6549 13919 6652 13919 6652 13919 
nb viral contigs 1852 1672 378 468 204 269 137 181 84 131 37 75 
% viral contigs 95% 76% 91% 60% 93% 62% 95% 66% 98% 72% 100% 85% 
Viral contigs average length  235 327 525 741 783 1123 1008 1508 1368 1921 2191 2833 
Bases in viral contigs 435421 547507 198486 347003 159827 302074 138102 272883 114951 251656 81077 212467 
% bases in viral contigs 95.20% 76.40% 94.40% 72.90% 96.00% 76.20% 97.40% 79.50% 98.60% 83.20% 100% 89.50% 
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Table 5. Detection performance of VANA, dsRNA and RNASeq methods at the level of individual viral genomic molecules (from a total of 115 

viral molecules) using the most complex, 60-virus pool, for groups of viruses with different genome types at 10M reads sequencing depth. 

 

# viral 
molecules 

VANA dsRNA RNASeq 

# detected % detected # detected % detected # detected % detected 

+ssRNA viruses 86 50 58.1% 77 89.5% 81 96.,3% 

-ssRNA viruses 12 1 8.3% 5 41.7% 12 100% 

RNA satellites 3 1 33.3% 3 100% 2 66.,6% 

dsRNA viruses 2 0 0% 2 100% 0 0,0% 

ssDNA viruses 10 4 40.0% 0 0% 4 40.0% 

dsDNA viruses 2 1 50.0% 1 50.0% 1 50.0% 

Total 115 57 49.6% 88 76.5% 100 87.,7% 
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Supplementary Figures 

Supplementary Figure S1: Pooling strategy to generate mock virus communities with 

different degrees of complexity (5, 10, 20, and 60-viruses communities). 

Supplementary Figure S2: Percent coverage of detected viral molecules using the VANA or 

the dsRNA approaches as a function of minimal contig length.  

Supplementary Figure S3: Number of detected RNA viruses based on de novo assembled 

contigs from the VANA or the dsRNA approaches for datasets normalized at a 120K reads 

sequencing depth and for viral communities with different degrees of complexity. 

Supplementary Figure S4: Number of detected RNA viruses for viral communities with 

different degrees of complexity using de novo assembled contigs from the VANA or the dsRNA 

approaches derived from datasets normalized so as to compensate for community complexity 

(120K reads for 5 viruses communities, 240K for 10 viruses, 480K for 20 viruses and 1.44M 

for 60 viruses). 

Supplementary Figure S5: Average proportion of the length of viral molecules represented 

by contigs obtained for the VANA or the dsRNA approaches as a function of sequencing depth. 

For each sequencing depth 5 independent random resamplings were performed and error bars 

represent the standard deviations of the coverage obtained.  

Supplementary Tables  

Supplementary Table S1. Pooling strategy to generate the various pools of variable 

complexity (from 5 to 60 viruses in a pool). 

Supplementary Table S2. Comparison of de novo assembly parameters for VANA and dsRNA 

datasets normalized at different sequencing depths (100K, 300K, 1M, 3M and 10M reads, 5 

resampling repeats at each depth) and corresponding statistical significance. 





Supplementary Figure S2: Percent coverage of detected viral molecules as a function of
minimal contig length for the VANA (light grey) or the dsRNA (dark grey) approaches on the 60
viruses community at a 10 millions reads sequencing depth



Supplementary Figure S3: Number of detected viruses based on de novo assembled contigs
from the VANA (light grey) or the dsRNA (dark grey) approaches for datasets normalized at a
120K reads sequencing depth and for viral communities with different degrees of complexity.
RNA viruses are indicated by solid bars while DNA viruses are indicated by dashed bars.

5 viruses  10 viruses      20 viruses      60 viruses



Supplementary Figure S4: Number of detected viruses for viral communities with different
degrees of complexity using de novo assembled contigs from the VANA (light grey) or the
dsRNA (dark grey) approaches. Datasets were normalized so as to compensate for community
complexity (120K reads for 5 viruses communities, 240K for 10 viruses, 480K for 20 viruses and
1.44M for 60 viruses). RNA viruses are indicated by solid bars while DNA viruses are indicated
by dashed bars.

5 viruses
120K reads

10 viruses
240K reads

20 viruses
480K reads

60 viruses
1.44M reads



Supplementary Figure S5: Average proportion of the length of detected viral molecules of the 60
viruses community represented by contigs obtained for the VANA (light grey) or the dsRNA (dark
grey) approaches at different sequencing depth. For each sequencing depth 5 independent random
resamplings were performed and error bars represent the standard deviations of the coverage
obtained



Family Genus

P60

P20-1

P10-1

P5-1

Bromoviridae Alfamovirus

Alphaflexiviridae Allexivirus

Tombusviridae Alphacarmovirus

Partitiviridae Alphacryptovirus

Benyviridae Benyvirus

P5-2

Tombusviridae Alphanecrovirus

Bromoviridae Anulavirus

Potyviridae Bymovirus

Caulimoviridae Badnavirus

Betaflexiviridae Capillovirus

P10-2

P5-3

Tombusviridae Betacarmovirus

Geminiviridae Begomovirus

Betaflexiviridae Carlavirus

Bromoviridae Bromovirus

Secoviridae Cheravirus

P5-4

Nanoviridae Babuvirus

Tombusviridae Aureusvirus

Closteroviridae Closterovirus

Secoviridae Comovirus

Solemoviridae/Luteoviridae Enamovirus/Umbravirus

P20-2

P10-3

P5-5

Tombusviridae Betanecrovirus

Caulimoviridae Caulimovirus

Closteroviridae Crinivirus

Bromoviridae Cucumovirus

Virgaviridae Furovirus

P5-6

Rhabdoviridae Cytorhabdovirus

Tombusviridae Dianthovirus

Secoviridae Fabavirus

Not assigned Idaeovirus

Virgaviridae Hordeivirus

P10-4

P5-7

Tombusviridae Gammacarmovirus

Bromoviridae Ilarvirus

Potyviridae Ipomovirus

Rhabdoviridae Varicosavirus

Tombusviridae Machlomovirus

P5-8

Geminiviridae Mastrevirus

Secoviridae Nepovirus

Luteoviridae Polerovirus

Virgaviridae Pomovirus

Betaflexiviridae Trichovirus

P20-3

P10-5

P5-9

Virgaviridae Pecluvirus

Tombusviridae Pelarspovirus

Alphaflexiviridae Potexvirus

Potyviridae Potyvirus

Rhabdoviridae Alphanucleorhabdovirus

P5-10

Rhabdoviridae Betanucleorhabdovirus

Potyviridae Rymovirus

Secoviridae Sequivirus

Solemoviridae Sobemovirus

Betaflexiviridae Tepovirus

P10-6

P5-11

Aspiviridae Ophiovirus

Virgaviridae Tobravirus

Tombusviridae Tombusvirus

Potyviridae Tritimovirus

Tymoviridae Tymovirus

P5-12

Virgaviridae Tobamovirus

Secoviridae unassigned

Tombusviridae Umbravirus

Potyviridae unassigned

Tospoviridae Orthotospovirus

Supplementary Table S1: pooling strategy to generate the viral communities pools of variable complexity (from 5 to 60 viruses in a pool) 

60 viruses 
pool

20 viruses 
pools

10 viruses 
pools

5 viruses 
pools



Virus species Genome type

Alfalfa mosaic virus ssRNA(+)

Shallot virus X ssRNA(+)

Calibrachoa mottle Virus ssRNA(+)

Poinsettia latent virus dsRNA

Beet necrotic yellow vein virus ssRNA(+)

Tobacco necrosis virus A ssRNA(+)

Pelargonium zonate spot virus ssRNA(+)

Barley yellow mosaic virus ssRNA(+)

Banana streak OL virus dsDNA-RT

Apple stem grooving virus ssRNA(+)

Turnip crinkle virus ssRNA(+)

Squash leaf curl virus ssDNA

Poplar mosaic virus ssRNA(+)

Brome mosaic virus ssRNA(+)

Arracacha virus B ssRNA(+)

Banana bunchy top virus ssDNA

Johnsongrass chlorotic stripe mosaic virus ssRNA(+)

Beet yellows virus ssRNA(+)

Squash mosaic virus ssRNA(+)

Pea enation mosaic virus 1 and 2 ssRNA(+)

Beet black scorch virus ssRNA(+)

Cauliflower mosaic virus dsDNA-RT

Tomato chlorosis virus ssRNA(+)

Peanut stunt virus ssRNA(+)

Soil-borne wheat mosaic virus ssRNA(+)

Lettuce necrotic yellows virus ssRNA(-)

Carnation ringspot virus ssRNA(+)

Broad been wilt virus 1 ssRNA(+)

Raspberry bushy dwarf virus ssRNA(+)

Barley stripe mosaic virus ssRNA(+)

Melon necrotic spot virus ssRNA(+)

Parietaria mottle virus ssRNA(+)

Cucumber vein yellowing virus ssRNA(+)

Beet oak leaf virus ssRNA(-)

Maize chlorotic mottle virus ssRNA(+)

Maize streak virus ssDNA

Tomato black ring virus ssRNA(+)

Cucurbit aphid-borne yellows virus ssRNA(+)

Potato mop-top virus ssRNA(+)

Apple chlorotic leaf spot virus ssRNA(+)

Peanut clump virus ssRNA(+)

Pelargonium line pattern virus ssRNA(+)

Lettuce virus X ssRNA(+)

Bidens mottle virus ssRNA(+)

Physostegia chlorotic mottle virus ssRNA(-)

Sonchus yellow net virus ssRNA(-)

Agropyron mosaic virus ssRNA(+)

Carrot necrotic dieback virus ssRNA(+)

Rice yellow mottle virus ssRNA(+)

Potato virus T ssRNA(+)

Lettuce ring necrosis virus ssRNA(-)

Pea early-browning virus ssRNA(+)

Tomato bushy stunt virus ssRNA(+)

Brome streak mosaic virus ssRNA(+)

Turnip yellow mosaic virus ssRNA(+)

Paprika mild mottle virus ssRNA(+)

Strawberry latent ringspot virus ssRNA(+)

Carrot mottle virus ssRNA(+)

Spartina mottle virus ssRNA(+)

Impatiens necrotic spot virus ssRNA(+/-)-

 pooling strategy to generate the viral communities pools of variable complexity (from 5 to 60 viruses in a pool) 



100K reads

nb contigs 2.6E-11
average length

N50
Max length

nb viral contigs 9.2E-11
% viral contigs 100% +/- 0% 99% +/- 1% 2.5E-02

Viral contigs average length

300K reads

nb contigs 5.1E-07
average length 8.5E-06

N50 1.5E-04
Max length 6260 +/-213.1

nb viral contigs 8.0E-07
% viral contigs 100% +/- 1% 92% +/- 2% 7.7E-05

Viral contigs average length 2.8E-06

1M reads

nb contigs 3.5E-08
average length 3.5E-06

N50 767 +/- 74.9 2.6E-04
Max length 6491 +/- 79.4 8.9E-03

nb viral contigs 1.1E-06
% viral contigs 98% +/- 1% 80% +/- 2% 8.3E-08

Viral contigs average length 5.7E-07

3M reads

nb contigs 284 +/- 8.2 2.5E-07
average length 931 +/- 16.6 1.5E-07

N50 4.3E-04
Max length 6540 +/- 3.4 8.8E-03

nb viral contigs 2.5E-09
% viral contigs 97% +/- 1% 73% +/- 1% 1.0E-09

Viral contigs average length 1.4E-09

10M reads

nb contigs 217 +/- 4.4 8.2E-13
average length 8.2E-09

N50 1.8E-09
Max length 1.6E-07

nb viral contigs 268 +/- 2.9 1.8E-09
% viral contigs 93% +/- 0% 62% +/- 1% 2.2E-13

Viral contigs average length 3.9E-11

Supplementary Table S2. Comparison of de novo assembly parameters for VANA and dsRNA datasets 
normalized at different sequencing depths (100K, 300K, 1M, 3M and 10M reads, 5 resamplings at each depth) 
and corresponding statistical significance.

VANA average
+/- SD

dsRNA average
+/- SD

Two sample
t-test

33.6 +/- 1.9 103.2 +/- 2.4
733.4 +/- 23.7 741.8 +/- 14.9 0.52
839.2 +/- 104.8 937.2 +/- 34.1 0.10

5886.2 +/- 442.4 5277.2 +/- 577.9 0.10
33.6 +/- 1.9 101.8 +/- 2.9

733.4 +/- 23.7 747.4 +/- 17.1 0.32
70.6 +/- 6.1 140.4 +/- 8.9

642.4 +/- 30.0 849.4 +/- 35.3
681.2 +/- 93.1 1102.4 +/- 104.5

7581.6 +/- 3875.5 0.49
70.2 +/- 5.4 129.4 +/- 8.1

643.4 +/- 27.8 887.8 +/- 38.2
108.2 +/- 6.1 198.4 +/- 7.8

687.6 +/- 28.1 915.4 +/- 35.4
1556.4 +/- 178.3

10382.6 +/- 1825.7
106.2 +/- 6.3 159.2 +/- 6.6

694.8 +/- 30.3 1019.6 +/- 40.9
134.2 +/- 3.4

783.4 +/- 10.1
1016.6 +/- 73.5 1599.4 +/- 214.1

11573.4 +/- 2359.2
129.6 +/- 4.8 207.6 +/- 3.8

798.4 +/- 15.9 1067.6 +/- 11.5
433.8 +/- 4.4

764.6 +/- 10.5 907.2 +/- 7.7
1025.4 +/- 31.2 1529.6 +/- 21.7

6534.4 +/- 210.2 13930.4 +/- 24.9
201.2 +/- 4.1

791.2 +/- 11.1 1121.4 +/- 10.6
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