

Benchmarking of virome metagenomic analysis approaches using a large, 60+ members, viral synthetic community

Deborah Schönegger, Oumaima Moubset, Paolo Margaria, Wulf Menzel, Stephan Winter, Philippe Roumagnac, Armelle Marais, Thierry Candresse

▶ To cite this version:

Deborah Schönegger, Oumaima Moubset, Paolo Margaria, Wulf Menzel, Stephan Winter, et al.. Benchmarking of virome metagenomic analysis approaches using a large, 60+ members, viral synthetic community. Journal of Virology, 2023, 97 (11), pp.e0130023. 10.1128/jvi.01300-23. hal-04384795

HAL Id: hal-04384795 https://hal.inrae.fr/hal-04384795

Submitted on 10 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Benchmarking of virome metagenomic analysis approaches using a large, 60+ members, viral synthetic community

Deborah Schönegger¹, Oumaima Moubset^{2,3}, Paolo Margaria⁴, Wulf Menzel⁴, Stephan Winter⁴, Philippe Roumagnac^{2,3}, Armelle Marais¹ and Thierry Candresse^{1*}

¹Univ. Bordeaux, INRAE, UMR BFP, CS20032, 33882, Villenave d'Ornon Cedex, France.

² CIRAD, UMR PHIM, 34090 Montpellier, France

³ PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France

⁴ Plant Virus Department, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany

* Author for correspondence: thierry.candresse@inrae.fr Tel : (+33) 557 12 23 89

Abstract word count: 248 words

Text word count: 7561 words (Introduction-Materials and Methods-Results-Discussion) **Tables and Figures:** 5 Tables, 4 Figures, 7 supplementary Tables and Figures

Running title: Synthetic viral community for virome benchmarking

1 Abstract

2 In contrast to microbial metagenomics, there has still been only limited efforts to benchmark virome analysis approaches performance in terms of faithfulness to community structure and 3 of completeness of virome description. While natural communities are more readily accessible. 4 synthetic communities assembled using well characterized isolates allow more accurate 5 performance evaluation. Starting from authenticated, quality-controlled reference isolates from 6 the DSMZ Plant Virus Collection, we have assembled synthetic communities of varying 7 complexity up to a highly complex community of 72 viral agents (115 viral molecules) 8 comprising isolates from 21 viral families and 61 genera. These communities were then 9 analyzed using two approaches frequently used in ecology-oriented plant virus metagenomics: 10 a virion-associated nucleic acids (VANA) based strategy and a highly purified double-stranded 11 RNAs (dsRNA) based one. The results obtained allowed to compare diagnostic sensitivity of 12 13 these two approaches for groups of viruses and satellites with different genome types and confirmed that the dsRNA-based approach provides a more complete representation of the RNA 14 15 virome. For viromes of low to medium complexity, VANA however appears a reasonable alternative and would be the preferred choice, in particular if analysis of DNA viruses is of 16 importance. They also allowed to identify several important parameters and to propose 17 hypotheses to explain differences in performance, in particular differences in the imbalance in 18 the representation of individual viruses using each approach. Remarkably, these analyses 19 highlight a strong direct relationship between the completeness of virome description and 20 sample sequencing depth which should prove useful in further virome analysis efforts. 21

23 Importance

24 We report here efforts to benchmark performance of two widespread approaches for virome analysis, which target either virion-associated nucleic acids (VANA) or highly purified double-25 stranded RNAs (dsRNA). This was achieved using synthetic communities of varying 26 complexity levels, up to a highly complex community of 72 viral agents (115 viral molecules) 27 comprising isolates from 21 families and 61 genera of plant viruses. The results obtained 28 confirm that the dsRNA-based approach provides a more complete representation of the RNA 29 virome, in particular for high complexity ones. For viromes of low to medium complexity, 30 VANA however appears a reasonable alternative and would be the preferred choice if analysis 31 of DNA viruses is of importance. Several parameters impacting performance were identified as 32 well as a direct relationship between the completeness of virome description and sample 33 sequencing depth. The strategy, results and tools used here should prove useful in a range of 34 35 virome analysis efforts.

Keywords: virome, VANA, dsRNA, synthetic community, metagenome, double-stranded
RNA, high-throughput sequencing

38 INTRODUCTION

Significant advances in the development of molecular methods have been made in the last 39 decades, including innovative sequencing technologies based on DNA/RNA approaches such 40 as targeted (RT-)PCR or non-targeted High-Throughput Sequencing (HTS). HTS, also known 41 42 as next generation sequencing (NGS), enables high-speed, high-throughput sequencing of native DNA/RNA or amplified DNA, generating enormous amounts of sequencing data. These 43 developments led to major advances in the field of metagenomics, i.e. the sequencing of the 44 entire genetic material of a sample, and to a new understanding of microbial diversity [1, 2]. 45 Viral metagenomics has revealed the immense diversity and ubiquity of viruses in nature and 46 thus revolutionized our vision of these biological agents [1, 3-8]. Specifically, these 47 48 metagenomics studies have revealed that virus sequence data available in public databases are 49 biased toward human viruses or viruses of anthropological significance, with e.g. influenza-like viruses found in fish and amphibian hosts [9] or more than 75% of the plant virus species 50 51 characterized up to 2006 having been isolated from crops [10]. These findings, together with reports on viruses associated with hosts different from those known for the vast majority of 52 their relatives, such as flavi-like viruses found in plants [11, 12], have raised novel questions 53 about virus-hosts co-divergence or host switching. 54

In plant virology in particular, advances in the development of viral metagenome analyses have 55 been of great importance in terms of early detection of known viruses and discovery of novel 56 plant viruses [4, 7, 13-14], as more than half of emerging diseases in plants are thought to be 57 caused by viruses [15]. HTS has a huge potential in plant virus diagnostics because it allows to 58 picture the complete phytosanitary status of a plant and to differentiate between virus variants 59 that may contribute differentially to disease etiology [14]. For example, in a metagenomic 60 analysis of sour cherry showing symptoms of Shirofugen stunt disease (SSD), a divergent 61 isolate of little cherry virus 1 (LChV1) was identified in the absence of any other viral agent, 62

suggesting that LChV1 could be responsible for the SSD disease [16]. However, metagenomics
approaches have also revealed that plants are often infected by more than one virus [17],
complicating the unravelling of the etiology of plant viral diseases.

66 HTS has also renewed the link between classical plant virology and ecology [4, 18]. Viromes 67 identified from both cultivated and uncultivated plant populations enabled the study of 68 ecological processes such as the movement of viruses between different host reservoirs, the 69 effects of management practices or of the anthropological simplification of ecosystems [19-23].

For the efficient characterization of complex plant-associated viromes, there is generally a need 70 71 to enrich viral sequences and conversely reduce the amount of host plant sequences that are generated. Different target nucleic acid populations have been used for virome studies but, 72 coupled with the virus enrichment constraint, the most widely used approaches have targeted 73 74 virion-associated nucleic acids (VANA) or double stranded RNAs (dsRNAs) [4, 7]. For single plant samples or low complexity samples, the use of total RNA or small interfering RNA 75 (siRNA) sequencing are considered the most universal and straightforward options [24, 25] but 76 77 when the viromes of entire plant communities are analyzed from complex plant pools, VANA or dsRNAs enrichment methods are generally preferred [4, 7, 19, 21, 26]. A huge number of 78 bioinformatic tools are available for HTS data analysis and have been, together with nucleic 79 acid preparation strategies, extensively reviewed [13, 27-28]. The choice of a specific viral 80 enrichment method or bioinformatic pipeline depends on the experimental objectives. Even 81 82 though there have been some efforts towards performance comparisons of different virome analysis approaches [29, 30], there is a need to better benchmark them and assess their 83 respective efficiency at providing a faithful and comprehensive description of complex viromes, 84 without introducing biases. In a virus discovery study on single quarantine plants, VANA was 85 shown to assemble longer contigs compared to siRNA for a novel DNA mastrevirus [31], while 86 in a study investigating the virome of native plants in Oklahoma, more viral Operational 87

Taxonomy Units (OTUs) could be detected with dsRNA compared to VANA [26]. Ma *et al.* [32] provided a more comprehensive comparison of these two approaches using the natural viral communities present in complex plant pools from managed and unmanaged sites. The authors found significant differences with more viral contigs and, on average, longer contigs assembled from libraries prepared from dsRNA. With regard to viral richness, more OTUs were detected by the dsRNA approach compared to the VANA one. However, most DNA viruses were only detected using VANA.

95 Standardization is fundamental for the reliable representation of microbiome/virome in metagenomic studies and is challenged by the rapid development of sequencing platforms, 96 protocols and bioinformatic pipelines [33]. Benchmarking is a powerful tool to provide 97 98 standards that can be used to compare and evaluate the performance of the different steps 99 required in metagenomic studies, including target nucleic acids population extraction, library preparation, sequencing (and sequencing platform) and finally bioinformatics sequence 100 101 analysis. In this context, benchmarking studies in metagenomics are often based on mock communities that are microbial assemblages of known composition which can be used to 102 compare the actual vs the expected performance of a process. Besides the use of actual empirical 103 phytoviromes [32], the use of synthetic communities could therefore provide a more precise 104 and detailed benchmarking of HTS-based virome description strategies. Bacterial and fungal 105 106 mock communities have thus been developed and used to compare the performance of different sequencing platforms, e.g. short read Illumina or long read PacBio SMRT sequencing [34-36]. 107 In recent years, viral mock communities have also been developed, especially in the medical 108 and clinical field, to benchmark protocols in human virome studies. For example, the nucleic 109 acid preparation step for the virome analysis of fecal samples was optimized using a 110 combination of both viral and bacterial mock communities [37]. In another study, the bias 111 introduced by viral enrichment or random amplification were assessed using a DNA virus mock 112

community [38]. Viral synthetic communities have also been used to benchmark library 113 preparation approaches in environmental [39] and insect [40] virome studies. However, the use 114 of synthetic communities in plant virome studies is lagging behind. So far, the only study using 115 a defined mix of plant viruses to assess different nucleic acid preparation protocols was 116 performed by Gafaar and Ziebell [30]. This study revealed a better performance of enriched 117 dsRNAs as compared to ribodepleted total RNA or siRNAs for virus detection. However, only 118 119 low complexity synthetic communities have been used so far, whereas most of the viral metagenomes associated with natural plant communities are composed of a complex and 120 diverse mixture of DNA and RNA viruses that are studied from pooled plant samples. In the 121 122 present work, we used a total of 22 synthetic plant virus communities of varying degrees of complexity to compare the diagnostic performance of VANA and dsRNA-based approaches for 123 virome description and analyzed how this performance is affected by sequencing depth and 124 other parameters. In parallel, a first attempt at contrasting the performance of VANA and 125 dsRNA approaches with those of RNASeq was conducted, using synthetic datasets assembled 126 127 in silico from single-isolate RNASeq data.

128 MATERIALS AND METHODS

129 Mock viral communities design

A list of 61 different viruses (assigned to 59 different genera from 18 different families plus 130 131 one unassigned virus) was selected among those kept in collection and available at the Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures (Braunschweig, 132 Germany), taking into consideration three main criteria: (i) maximizing viral diversity by 133 including viruses with all genome types (ssDNA, dsDNA-RT, dsRNA, +ssRNA, -ssRNA), (ii) 134 including (with one exception) only a single representative virus per viral genus and (iii) 135 selecting viruses/isolates for which a complete or near complete genomic sequence is available. 136 In some cases, these genomic sequences had been determined previously, while in other cases 137 they were developed specifically in the frame of efforts to further improve the characterization 138

of isolates distributed by the DSMZ through the EU-funded EVA-Global initiative 139 140 (https://www.european-virus-archive.com/). Quality controlled samples were obtained from the DSMZ in the form of infected, lyophilized plant material in vacuum-sealed vials. The complete 141 list of the isolates used, together with their properties and the propagation host in which they 142 were provided, are given in Table 1. 143

Initial low complexity pools were generated by assembling 30 mg of virus-infected samples 144 into 12 viral communities comprising five viruses each (150 mg of plant material each) and 145 containing at least one virus with a genome type different from +ssRNA (Supplementary Table 146 S1). Pea enation mosaic virus was counted as one virus, when it is in fact a co-infection of pea 147 enation mosaic virus 1 (Enamovirus) and pea enation mosaic virus 2 (Umbravirus). Stepwise 148 149 combinations of these five viruses mock communities were then assembled to create 150 communities of increasing degrees of complexity (Supplementary Fig. S1), yielding a total of 22 communities with complexity ranging from five to 60 viruses. 151

152

Double-stranded RNA extraction

Double-stranded RNAs were purified from pooled samples according to [41] with some minor 153 modifications. Briefly, instead of 75 mg, 150 mg dried plant material (representing a pool of 154 five plants, Supplementary Table S1) was used as starting material and buffer volumes 155 increased proportionally. Plants were ground in liquid nitrogen until a fine powder was obtained 156 which was then mixed with the phenol-extraction buffer. Following gentle agitation for 30 min 157 and centrifugation, the supernatant was decanted and half of it directly further processed, while 158 the other half was used for the stepwise gradual assembly of pairs of communities used to 159 generate more complex viral communities. In this way, six communities of 10 viruses each, 160 then three communities of 20 viruses and finally a single community of 60 viruses could be 161 assembled. Between each step, assembled samples were vortexed for at least 30s for optimal 162 homogenization. A detailed scheme of the pooling strategy to form communities of different 163

complexities is shown in Supplementary Figure S1. Irrespective of its complexity, a supernatant
volume corresponding to an initial input of 75 mg of plant sample was thus obtained and further
processed as per the protocol of Marais *et al.* [41] which involves two rounds of CC41 cellulose
(Whatman) chromatography followed by a nuclease treatment (DNase RQ1 plus RNaseA under
high salt conditions) to remove any remaining host DNA and single-stranded RNA. A negative
extraction control using only buffer was systematically included. Purified dsRNAs were finally
converted to cDNA and randomly amplified while simultaneously adding MID tags [41-42].

171 VANA extraction

VANA extractions were performed on pools of five viruses similarly prepared as for dsRNA, 172 using the protocol of François et al. [42] with minor modifications. Briefly, 150 mg of 173 174 lyophilized plant material (representing a pool of five plants, Supplementary Table S1) were ground in Hank's buffered salt solution (HBSS) (1:10) with four metal beads within a grinding 175 machine (Fastprep 24, MP Biomedicals). Following two centrifugation steps (4000g for 5 min 176 at 4°C and 8000g at 4°C for 3 min), the supernatants were split and used in the same stepwise 177 assembly of more complex communities as for the dsRNA approach (Supplementary Figure 178 S1). A negative, buffer only, extraction control was systematically included. Each of the thus 179 generated samples, representing different degrees of community complexity, was filtered 180 through a 0.45µm filter and centrifuged at 148,000g for 2.5 hours at 4°C to concentrate the 181 virus particles. Unprotected nucleic acids were eliminated by DNase and RNase treatment at 182 37°C for 1.5 hours. Viral RNA and DNA were then isolated using the NucleoSpin Virus kit 183 (Macherey Nagel, Hoerdt, France), using only 80 µl of sample in the first lysis step and omitting 184 the addition of proteinase K. Extracted RNAs were transformed to cDNA using Superscript III 185 reverse transcriptase (ThermoFisher Scientific/Invitrogen), cDNAs were further purified with 186 the QIAquick PCR purification Kit (Qiagen, Courtaboeuf, France) and a complementary strand 187 was synthesized using the Klenow fragment of DNA polymerase I. Finally, a random PCR 188

amplification adding barcoded dodeca-linkers and corresponding MID primers during reversetranscription and PCR, respectively was performed [42].

191 Illumina sequencing

PCR products from all communities analyzed using the dsRNA and VANA procedures were finally purified using the MinElute PCR purification kit (Qiagen) and equimolar quantities of amplification products were sent to Illumina sequencing in multiplexed format (2×150 bp) on two lanes (one for VANA and one for dsRNA, respectively) on a NovaSeq 6000 system at the GetPlaGe platform (GenoToul INRAE Toulouse, France).

197 Generation of synthetic datasets for viral communities using single-isolate RNASeq data

For all but one of the viral isolates used to build the synthetic communities, available singleisolate ribodepleted RNASeq datasets (Leibniz-Institute DSMZ) were used to reconstruct *in silico* datasets corresponding to the different communities with reads number and average reads length paralleling those from the VANA and dsRNA datasets. These reconstructed datasets, mimicking the analysis of the various communities by RNASeq, were analyzed in parallel to those generated by the VAN A and dsRNA approaches.

204 HTS data analysis

Sequencing reads were imported into CLC Genomics Workbench v. 21.0.3. (CLC-GW, Qiagen) and adapters were removed from reads followed by trimming on quality and length using default settings and a minimum read length of 60 nucleotides (nt). Final trimmed reads were on average 111-113 nt long for the various datasets. Datasets were normalized by resampling at varying depth as needed, using the random reads sampling tool in CLC-GW.

210 To analyze virus detection performance as a function of contig size, *de novo* assembly was

211 performed with CLC-GW (word size, 50; bubble size, 300) using various minimum contig

lengths (125, 175, 250, 350, 500, 1000 nt). In order to identify viruses possibly present in the

samples used, in addition to the expected reference viruses, contigs were annotated by a BlastX analysis [43] against the viral RefSeq portion of the non-redundant (nr/nt) NCBI GenBank database. For the additional viruses thus identified, a genomic scaffold was reconstructed and extended by repeated rounds of residual reads mapping using CLC-GW, thus yielding near complete genome sequences that were used as reference for the relevant virus (Table 2). In a few cases, these assemblies were considered too incomplete and the closest complete genomic sequence in GenBank was selected as reference sequence (Table 2).

In order to determine virus detection performance, unassembled reads or de novo assembled 220 contigs were mapped against the reference genome segment(s) for each virus (Tables 1 and 2) 221 222 using very stringent mapping parameters (length fraction 100%, minimal similarity fraction 90%) in CLC-GW. In order to take into account inter-sample crosstalk due to index jumping 223 [44-45], a threshold of positive detection was computed for each viral molecule by calculating 224 225 the average plus 3 standard deviations (SD) of background virus reads observed in libraries generated from communities that did not contain the corresponding virus. Assuming a normal 226 227 distribution of background reads, the use of such a positivity threshold would provide a <1% risk of reporting false positive detection 228 a (https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7 rule). 229

Comparison of parameters (number, average length) for *de novo* assembled viral contigs
obtained from VANA and dsRNA datasets normalized at different sequencing depths were
performed with five resampling repeats at each depth. Statistically significant differences were
identified using a two-sample t-test.

234 <u>Data availability</u>

Trimmed sequencing reads for all viral communities analyzed by dsRNA or VANA approaches
 are available from the French *Recherche Data Gouv* multidisciplinary repository at
 https://doi.org/10.57745/42WNRJ. The normalized 10M reads dsRNA or VANA datasets

generated using the 60-viruses community have also been made available together with the
 community composition and the complete or near complete reference genomic sequences used
 are also available from the same repository at https://doi.org/10.57745/T4UYPC.

242 **RESULTS**

243 Viruses or virus-like agents identified from viral communities HTS data

The analysis of reads from both the VANA and dsRNA approaches for all communities revealed the presence of all expected viruses, although a few viruses were only represented by a limited number of reads or were only detected using one of the two approaches. Overall, only lettuce ring necrosis virus turned out to be fully absent from VANA reads, while banana bunchy top virus was only represented by a single dsRNA read. It should also be noted that not all viruses could be detected in all the communities of different complexity in which they were expected.

251 In addition to the expected 61 viruses, evidence for the presence in some communities of additional viruses or virus-like agents was obtained through the BlastX indexing of *de novo* 252 assembled contigs from the low complexity, 5-viruses communities. A total of 11 unexpected 253 agents were thus identified (Table 2). These include three linear ssRNA satellites associated 254 with the helper virus isolates included in the communities [turnip crinkle satellite F 255 (TCVsatRNA F), pea enation mosaic satellite RNA (PEMVsatRNA) and strawberry latent 256 ringspot virus satellite RNA (SLRSVsatRNA)], latent viruses associated with the propagation 257 hosts used [Hordeum vulgare endornavirus (HvEV), maize-associated totivirus (MaTV), 258 maize-associated totivirus2 (MaTV-2) and Chenopodium quinoa mitovirus 1 (CqMV1)], as 259 well as viruses in coinfection with some of the viral isolates used [poinsettia mosaic virus 260 (PnMV), tobacco mosaic virus (TMV), turnip yellows virus (TuYV) and maize streak Réunion 261 virus (MSRV)] (Table 2). Taken together, these agents represent three additional viral families, 262

for a total of 21 viral families (plus satellites) used for the assembly of communities. For these additional agents, either a nearly complete genome was reconstructed from sequencing reads and used as the mapping reference or the closest full genome sequence in GenBank was used for further mapping analyses (Table 2). For all other viral isolates included in the communities, complete or nearly complete genomic sequences were available (Table 1).

While the communities of varying complexities analyzed here will be referred to as 5-viruses, 10-viruses, 20-viruses and 60-viruses, it should be kept in mind that the real number of viruses present in a given community might be slightly different because of (i) the presence of one or more of the additional viruses and (ii) the counting of pea enation mosaic virus as one virus when it is in fact a co-infection of pea enation mosaic virus 1 (*Enamovirus*) and pea enation mosaic virus 2 (*Umbravirus*).

274 Read mapping analysis of VANA and dsRNA datasets for the communities of various 275 complexities

276 To be able to compare results between low and high complexity communities, all datasets were normalised by randomly subsampling 120K cleaned reads, the depth of the 5-viruses 277 community with the lowest number of reads. To address the issue of inter-sample crosstalk 278 279 caused by index jumping [44-45] a threshold of positive detection was computed for each viral molecule by calculating the average + 3 standard deviations (SD) of background reads in 280 libraries generated from communities that did not contain the corresponding virus. Assuming a 281 normal distribution of crosstalk reads numbers, this strategy ensures that the probability of 282 283 having a mapped reads number higher than the threshold by chance (false positive detection) is lower than 1%. 284

In general, the proportion of viral reads in both VANA and dsRNA datasets was high (64-89%) and was slightly affected by community complexity, with a general trend to reach higher values when analysing more complex communities (Figure 1A). The proportion of viral reads in the dsRNA datasets were slightly higher than in the corresponding VANA datasets, with the
strongest differential observed for lower complexity communities of five and 10 viruses (6465% viral reads as compared to 79-82%, Figure 1A). In contrast, the average proportion of viral
reads in RNASeq datasets for individual virus isolates following ribodepletion was 19.6% but
with a very large standard deviation of 26.1%.

Using the 12 communities of five viruses and a sequencing depth of 120K reads, 67 viruses 293 were detected with both VANA and dsRNA approaches (with detection of reads for at least one 294 295 genomic molecule considered as positive detection for a virus with a multipartite genome), out of the total of 72 viruses or virus-like agents present in the 12 communities analyzed (93.1%). 296 However, VANA yielded reads for all six DNA viruses used (100%), while dsRNA yielded 297 298 reads for only three of them (50%). Conversely, VANA yielded reads for 61 of the 66 RNA 299 viruses or satellites (92.4%), when dsRNA yielded reads for 64 of them (97.0%) (Figure 1B). As expected, and previously reported, the performance of VANA is thus superior for DNA 300 301 viruses but that of dsRNA slightly superior for RNA viruses. Using the datasets reconstructed from single plant RNASeq data, an overall rate of detection of 97.2% of the 71 viruses was 302 obtained (no RNASeq data was available for one of the isolates used, which was therefore 303 excluded from all computations). 304

The impact of increasing community complexity is reflected by the diminishing number of 305 viruses detected at an equal sequencing effort of 120K reads. The performance of VANA 306 gradually deteriorated, with detection decreasing from 61 RNA viruses detected to 58 (10-307 viruses communities) and then to 52 (20-viruses communities) to reach only 34 RNA viruses 308 detected (51.5%) in the most complex community (Figure 1B). The same pattern was observed 309 for DNA viruses, with all six DNA viruses detected in the 10- and 20-viruses communities but 310 only one detected when analysing the 60-viruses community. In the case of the dsRNA 311 approach, performance was marginally reduced for the 10- and 20-viruses communities (65 and 312

63 RNA viruses detected, respectively) and less affected than for the VANA approach for the
most complex community, with still 57 of 66 RNA viruses detected (86.4%) (Figure 1B).
Remarkably, performance was the least affected for the RNASeq approach using reconstructed
communities data, with still 65 viruses (91.5%) detected for the most complex community (5/6
DNA viruses and 59/65 RNA viruses, or 90.7%).

If trying to compensate for community complexity by proportionally increasing the sequencing effort for more complex communities, the erosion in performance is less important for VANA, with still 57 of 66 RNA viruses detected for the 60-virus community (86.4%) and five of the six DNA viruses (83.3%) at a 1.44 M reads depth (12 x 120K). The performance of dsRNA, on the other hand, is no longer impaired, as all 66 RNA viruses (100%) were detected for the most complex community (result not shown). Similarly, the performance of RNASeq was no longer substantially impacted, with all DNA viruses and all but one RNA viruses detected.

The stronger degradation of VANA performance as community complexity increases, 325 correlates with a more uneven distribution of read numbers between viruses and the stronger 326 327 dominance of a few viruses, in particular turnip yellow mosaic virus (TYMV). In the 60-viruses community VANA dataset, TYMV represented 67% of the reads while the corresponding value 328 for the dsRNA dataset was only 28%. As shown in Figure 2, even if spanning a 5 to 6 logs 329 scale, the percentage of reads for each virus in the total datasets tends to be more evenly 330 distributed between viruses in the dsRNA dataset than in the VANA dataset for the 60-viruses 331 332 community. By contrast and excluding a single sample showing extremely low viral reads numbers, the variation in the proportion of viral reads in individual viral isolates analyzed by 333 RNASeq showed much less variability as it remained within a 3 logs range of variation. 334

Although allowing to compare the performance of the VANA and dsRNA approaches, these analyses based on the mapping of reads against cognate reference genomes do not mimic the situation in metagenomic studies, in which a high proportion of viruses are expected to be novel and for which therefore no suitable reference genome is available. We therefore analyzed the
performance of these two approaches following the *de novo* assembly of reads into contigs,
which is known to reduce the proportion of un-annotated "dark matter" [46].

341 Impact of minimal contig length on the number of detected viruses

We first evaluated the impact of the minimal contig length on the number of detected viruses 342 using the most complex community of 60-viruses and deep datasets normalized at 10 M reads. 343 As expected, and shown in Figure 3, the number of detected viruses decreased as minimal 344 contig length increased. The pattern observed for RNA viruses is similarly observed for DNA 345 viruses. The dsRNA approach consistently detected more RNA viruses than the VANA one, 346 irrespective of the minimal contig length used, but the difference increased as minimal contig 347 length increased. Using the shortest, 125 nt contig length, VANA identified 54 of the 66 RNA 348 349 viruses or satellites present in the community (81.8%), while dsRNA identified 63 of them (95.5%) (Figure 3). The corresponding values for DNA viruses are respectively 4/6 (66.7%) 350 and 3/6 (50%). 351

On the other hand, the coverage of the detected viruses (fraction of the target molecules represented in contigs) was much less affected by minimal contig length. While being relatively stable for the dsRNA approach, for which it varied between 66.5% and 74.9% with no clear trend, it showed a tendency to increase with contig length for the VANA approach, from 50.2% (>125 nt contigs) to 76.7% (>1,000 nt contigs) (Supplementary Figure S2).

For further analyses, an intermediate 250 nt minimal contig length was retained as it corresponds to an encoded 83 amino acids sequence that was felt sufficient for many conserved protein domain searches which are often used in virome analysis or annotation [47].

360

361 Effects of community complexity on virome description performance

We evaluated how, for a given sequencing depth, community complexity affects virome 362 description performance following contigs assembly. For this, all datasets were normalized at 363 a 120K read depth. Similar to the initial analysis using reads mapping, the number of detected 364 viruses was reduced as community complexity increased. Again, dsRNA outperformed VANA 365 at all complexity levels, though the difference in performance remained limited for low to 366 medium community complexities (Supplementary Figure S3). VANA performance degradation 367 368 was however more drastic at high community complexity, dropping from 44 RNA viruses and four DNA viruses detected for communities of five viruses (66.7% of total viruses) to 11 RNA 369 370 viruses and one DNA virus detected (16.7%) for the 60-viruses community. The corresponding values for dsRNA were 53 (80.3%) and 26 RNA viruses (39.4%), with no DNA virus detected 371 (Supplementary Figure S3). Remarkably, RNASeq turned out to be the least affected, with 372 respectively 57/71 (80.3%, 5-viruses communities) and 34/71 viruses (47.9%, 60-viruses 373 community) detected. These results indicate that even for limited complexity communities 374 involving only five viruses, read numbers significantly higher than 120K are needed by the 375 various techniques to achieve a 100% detection performance with a wide range of viruses. 376

If trying to compensate increased virome complexity by a parallel increase in sequencing depth, 377 a negative impact of complexity is still seen but is much less severe. For example, for the most 378 complex community of 60 viruses at a 1.44M depth (12*120K reads), VANA detected 23 RNA 379 viruses and 2 DNA viruses (compared to 44 RNA viruses and four DNA viruses when analysing 380 individually the 12 pools of five viruses at 120K reads depth), which corresponds to a reduction 381 in performance of 47.9%. For its part, dsRNA detected 42 RNA viruses (no DNA virus), to be 382 compared with 53 viruses when individually analyzing the 12 pools of five viruses, 383 corresponding to a reduction in performance of 20.7% (Supplementary Figure S4). The 384 corresponding value for RNASeq was 55 viruses detected, corresponding to a performance 385

equivalent to the analysis of the 12 communities of five viruses. The loss in performance resulting from high community complexity is therefore only significant for the dsRNA and VANA approaches, and strongest in the case of VANA.

389 Impact of sequencing depth on *de novo* assembly

The 60-viruses community was used to investigate the influence of sequencing depth on *de novo* assembly performance itself. The VANA and dsRNA datasets were therefore resampled at different depths (100K, 300K, 1M, 3M and 10M reads, five random resampling at each depth), assembled and the obtained contigs mapped against the viral reference genomes to determine the average assembly parameters and viral contigs parameters. The results are shown in Supplementary Table S2 and, for viral contigs alone, in Table 3.

As expected, all assembly parameters (number of contigs, average contig length, N50, maximal 396 contig length) increased with sequencing depth (Supplementary Table S2). The same tends to 397 be true for viral contigs (number and length, Table 3), while the proportion of viral contigs 398 tended to diminish as sequencing depth increased, likely reflecting increased probability of 399 assembly of non-viral reads (Supplementary Table S2). Although at the lowest 100K reads 400 sequencing depth few assembly parameters were found to be statistically different, both the 401 total number of assembled contigs and the number of viral contigs were found to be highly 402 403 statistically different, with dsRNA yielding about 3-fold more contigs and 3-fold more viral contigs than VANA (Table 3 and Supplementary Table S2). This trend was observed at all 404 sequencing depth, with 1.3 to 1.8-fold more viral contigs observed for dsRNA. 405

406 At other sequencing depths, differences between the VANA and dsRNA assemblies proved 407 systematically highly significant, with dsRNA consistently yielding more numerous and longer 408 contigs as well as more numerous and longer viral contigs. On the other hand, the proportion

409 of viral contigs was found consistently higher in assemblies of the VANA datasets410 (Supplementary Table S2).

411 It should be noted that the better assembly performance of dsRNA is independent of minimal contig length (Table 4). In particular, using the most complex community and 10 million reads 412 datasets, the higher performance of dsRNA over VANA was observed for all assembly 413 parameters (number of contigs, average length, N50, maximum length) and for both viral 414 contigs parameters (number and average length) at all minimal contigs length (from 125 to 1000 415 nt) with a single exception, the number of viral contigs >125 nt long (1,852 for VANA vs 1,672 416 for dsRNA) (Table 4). At all other minimal contig length, VANA showed from 19.2% (contigs 417 \geq 175 nt) to 50.7% (>1 kb contigs) fewer viral contigs than dsRNA and these contigs were 23-418 419 33% shorter on average than the dsRNA ones (Table 4).

As compared to VANA and dsRNA assemblies, RNASeq assemblies generated more viral contigs at low sequencing depth (ca. 10-30% more than dsRNA for depth of 100K to 1M reads) but ca. 15% fewer viral contigs at the 10M depth. On the other hand, a striking difference in the length of viral contigs was also observed, with RNASeq contigs increasing from an average of 1kb (100K depth, 34% longer than dsRNA contigs on average) to 2.1kb (10M depth, 89% longer than for dsRNA).

426 Impact of sequencing depth on virus identification performance

We proceeded to evaluate the performance of VANA and dsRNA in identifying the expected viruses or viral molecules as affected by sequencing depth. The contigs obtained for the various datasets resampled at different depths (five resampling per sequencing depth) were mapped on individual reference sequences. This allowed to evaluate both the proportion of detected viruses and the coverage of the detected viral molecules, together with their standard deviation (Supplementary Figure S5). Once again, at all sequencing depths and for both parameters, dsRNA outperformed VANA for RNA viruses, while VANA outperformed dsRNA for DNA
viruses. In all cases, average coverage of detected segments of RNA viruses showed a high
standard deviation but dsRNA contigs covered 9% to 22% more of the detected molecules than
VANA contigs.

Similarly, and as expected from single reads mapping data, dsRNA outperformed VANA for the identification of RNA viruses present in the most complex, 60-viruses community. For VANA, performance ranged from 17.7% of RNA viruses identified at the 100K reads depth to 60.3% at the 10 million reads depth. The corresponding values for dsRNA are respectively 35.2% and 89.7% and those for RNASeq respectively 46.2% and 90.8%. The performance of RNASeq therefore appears to be nearly identical to that of dsRNA for RNA viruses, and superior for DNA viruses with 5/6 viruses detected for the 3M and 10M reads depth.

444 A plot of the observed proportion of detected RNA viruses over a logarithmic scale of the sequencing effort is shown in Figure 4. It shows a remarkable pattern with linear regression r² 445 coefficients of 0.97-0.99, suggesting a very strong and monotonous relationship between 446 sequencing depth and the proportion of the viruses present in the community that are 447 represented by at least one assembled contig. An extension of that trend would suggest that a 448 depth of about 30 million reads would be needed for the dsRNA approach to recover at least 449 one contig for each of the 66 RNA viruses present in the synthetic community, while in excess 450 of 1 billion reads would be needed to achieve a comparable performance using VANA. If taking 451 into account also DNA viruses to calculate a proportion of detected viruses, similar linear 452 relationships are still observed, but the performance of the dsRNA approach is slightly degraded 453 as expected from its poor ability to detect DNA viruses (Figure 4). Analyzed in a similar 454 fashion, the RNASeq data showed the same linear relationship, although with a slightly lower 455 r^2 value of 93.7% and a predicted detection of all 71 viruses and satellites with 16-17M reads. 456

Due to a more limited number of reads available for virus communities up to the 20-viruses pools, a similar evaluation could not be as extensively performed for these lower complexity communities. However, an analysis at three sequencing depths (100K reads, 300K reads, 875K reads) of the 20-viruses communities data provided comparable results with r² correlation coefficients of 0.95-0.98, suggesting that the linear correlation between the percentage of viruses recovered and the log of the sequencing depth is independent of the complexity of the analyzed community (result not shown).

464 An analysis performed at the level of individual viral genomic molecules (115 viral molecules) allows to evaluate the performance of the two methods using the most complex, 60-viruses 465 pool, for groups of viruses with different genome types. The numbers of viral molecules are 466 467 however small for RNA satellites, dsRNA viruses and dsDNA viruses. The results, using a 10 468 million reads sequencing depth, are summarized in Table 5. Considering individual molecules, VANA had at least one contig for only 50% of the viral molecules present in the most complex 469 470 synthetic community, to be compared with a 76.5% value for dsRNA. But while the VANA performance was at an intermediate level for all virus groups analyzed, dsRNA showed good 471 performance for +ssRNA viruses (89.5% of molecules), RNA satellites (100%) and dsRNA 472 viruses (100%). The dsRNA performance was however poor for DNA viruses, as expected, but 473 also for -ssRNA viruses (41.7% of detected molecules only). 474

475 **DISCUSSION**

While synthetic communities have been widely used to benchmark metagenomic processes targeting bacteria and fungi, methodological benchmarking approaches in virome studies are still limited and largely confined to clinical settings [38, 48-49] and, to some extent, to environmental virome studies [50-51]. Such approaches are today largely lacking in plant virology. Here we used well authenticated and sequence characterized plant virus isolates from

a public bioresource center (Leibniz-Institute DSMZ) that allowed for the simple construction 481 482 of synthetic viral communities of varying complexity. Although some of the viruses were detected by only very low read numbers, no virus was fully absent from all generated datasets, 483 validating the approach and the samples used. The fact that some viruses were identified only 484 by low read numbers could have a variety of reasons, such as low virus titer in some samples, 485 competition with other viruses for reads representation in the assembled communities, or 486 difficulties in extracting viral nucleic acids from some plant species. In addition, the fact that 487 freeze-dried plant material was used in this study may have had a negative impact on results 488 and the analysis of fresh plant tissues might have provided superior results. In this respect, it 489 490 should be noted that the two viruses present as infected banana samples, banana streak OL virus (BSOLV) and banana bunchy top virus (BBTV), were only detected by very low read numbers 491 using both VANA and dsRNA, despite the fact that these techniques have successfully been 492 493 used in the past to analyze banana samples [52-53]. The RNASeq data on the same viral isolates shows about 0.9% of viral reads BSOLV but BBTV was the individual sample with the fewest 494 495 reads by far in the RNASeq analysis, suggesting a low viral concentration in that particular sample. 496

497 A total of 11 additional viruses or viral agents were identified in the constructed communities.
498 In most cases, these correspond to satellites that had not been specifically indexed in the viral
499 isolates used or of viruses latently infecting propagation hosts, such as Hordeum vulgare
500 endornavirus, which is present in many barley varieties, or Chenopodium quinoa mitovirus.

The communities assembled cover all known plant virus genome types, 21 viral families (plus satellites and one virus unassigned in a family) and a total of 61 genera [plus four viruses not currently assigned to a genus and three satellites]. It is thus probably to date the largest scale effort to build synthetic viral communities and use them for the benchmarking of phytovirome analysis approaches. In some benchmarking studies, the nucleic acid proportions of the

individual viruses involved in the virus community were quantified prior to extraction [36, 39]. 506 507 The fact that no special effort was made here to normalize or measure the concentration of the different viruses is a limitation for some comparisons. On the other hand, the samples used 508 involved different propagation hosts and actual virus titers in those hosts, so that the 509 communities assembled reflect actual samples from plant virome studies. The results obtained 510 indicate that a range of parameters impact the completeness of the virome description achieved. 511 512 Not surprisingly, such parameters include (i) sequencing depth, (ii) community complexity, (iii) use of *de novo* assembled contigs vs use of unassembled reads and (iv) minimal contig length. 513

The key objective of this work was to compare the performance of the VANA and dsRNA 514 approaches, which are the two techniques most widely used in ecology-oriented viral 515 516 metagenomics experiments involving the analysis of complex pools of plants. The results 517 provided here for RNASeq following ribodepletion should be considered with caution, since they are not fully comparable with the VANA or dsRNA data. Indeed, the RNASeq datasets 518 519 for the various communities were assembled in silico, from data obtained by single-isolate sequencing. This means that any interactions between plant samples or competition between 520 viruses for representation in the datasets were eliminated, contrary to the situation with the 521 VANA and dsRNA experiments. Given that RNASeq is considered an unbiased approach 522 (hence its use for transcriptome analysis), this should not be a problem but the existence of 523 524 unforeseen effects affecting the results cannot be completely ruled out. As compared to dsRNA and VANA, the results obtained for RNASeq using the *in silico* assembled communities show: 525 (i) a much lower imbalance in the representation of the various viruses (3 logs variation as 526 opposed to 5-6 logs), (ii) on average significantly longer viral contigs, irrespective of 527 sequencing depth and (iii) an overall excellent performance with 90% of the viruses identified 528 at 10M reads depth for the most complex, 60-viruses community. This last result favourably 529 compares with the dsRNA performance for all viral categories with the exception of viruses 530

with dsRNA genomes (Table 5). This performance comes as a surprise given the absence of 531 532 enrichment (besides ribodepletion) in RNASeq. However, the relatively narrow range of variation in the proportion of viral reads for different viruses, possibly implying reduced 533 competition for representation between viruses, and the even distribution of RNASeq reads 534 along viral genomes, possibly favouring a more efficient genome assembly, could have 535 contributed to the RNASeq performance. In any case, these results surprisingly suggest that 536 537 RNASeq could have a very good potential for the analysis of complex viral communities and clearly call for direct benchmarking efforts using RNASeq and complex synthetic or natural 538 communities in order to unambiguously validate this potential. 539

As previously reported using natural communities (Ma et al., 2019), the dsRNA approach 540 541 provided in all comparisons a more complete description of the RNA virome than the VANA 542 approach but performed very poorly with DNA viruses. However, the differential with VANA is more limited for the less complex communities of five or 10 viruses. According to our own 543 544 experience, this level of complexity is most often seen when analyzing single plants or pools of 5-20 plants of the same species, with vegetatively propagated plants tending to have more 545 complex viromes. Higher complexity levels are usually encountered when analyzing larger 546 pools composed of plants belonging to different species. The dsRNA approach is therefore 547 recommended whenever analysing complex viromes or when an emphasis on RNA viruses is 548 549 of importance, in particular since dsRNA allows comparable levels of completeness with a lower sequencing effort. On the other hand, for viromes of low to medium complexity, the 550 results reported here show VANA to be a reasonable alternative. For example, at 480K reads 551 depth, VANA detected 57.4% of all viruses for the 20-viruses communities as compared to 552 61.8% for dsRNA (result not shown, see also Supplementary Figure 4 for the compared rates 553 of detection of RNA viruses only). VANA should of course be the preferred choice if analysis 554 of DNA viruses is of importance. The reason for the better performance of the dsRNA approach 555

for high complexity viromes is not fully clear but might result from a lower level of competition 556 557 between viral nucleic acid molecules for representation in complex pools, resulting in a somewhat less imbalanced distribution of read numbers between viruses (Figure 2). Different 558 human microbiome studies have shown that different steps of RNA/DNA extraction such as 559 homogenization, centrifugation, filtration and chloroform treatment, can have a major impact 560 on the quantitative and qualitative composition of identified viral communities, skewing viral 561 metagenome assemblies [37-38, 54]. Another critical step is library preparation, which often 562 involves a random amplification PCR to increase virus genetic material and to add linkers, 563 allowing samples multiplexing during HTS sequencing and thus reducing sequencing costs. 564 565 The amplification step may alter the relative abundance of viruses and can lead to uneven coverage if random primers do not anneal randomly on viral genomes. Indeed, in the case of 566 faba bean necrotic stunt virus, the relative frequencies of the different genome segments 567 568 determined by qPCR was significantly different before and after a rolling circle amplification step used prior to HTS sequencing [55]. Furthermore, different library preparation techniques 569 570 have been found to require different sequencing depths to achieve the same genome coverage [56]. Regardless of the experiment, it is advisable to develop an estimate of the sequencing 571 depth needed, so as to be able to answer the biological question at hand while avoiding 572 excessive sequencing costs. Here we identified a very robust correlation between the percentage 573 of viruses identified in complex communities and the log of the sequencing depth. This is an 574 interesting result, since it allows to gauge the sequencing effort needed for a particular level of 575 virome description or, conversely, to gauge the extent of virome description that can be 576 expected from a particular sequencing depth. Besides metagenomic studies, this finding might 577 have practical implications for diagnostics since many plants, in particular vegetatively 578 propagated ones, frequently display complex mixed infections involving a range of viruses. 579

Virus detection in metagenomic studies is constrained by the degree of complexity of the virus 580 581 communities analyzed. Our results suggest that the detection efficiency of either mapping of unassembled reads or analysis of *de novo* assembled contigs were affected by community 582 complexity with a general trend of detecting a lower proportion of viruses in more complex 583 communities. However, the read mapping strategy was more efficient at all complexities 584 (Figure 1B and Supplementary Figure S3), confirming results obtained through performance 585 testing of sequence analysis strategies [57]. This may be due to the complexity of *de novo* 586 assembly of complex communities, linked with insufficient coverage or uneven coverage of 587 low abundance viruses within such communities. Correspondingly, we observed a lower virus 588 589 detection rate when using longer minimal contig sizes in the *de novo* assembly, which again might be attributed to difficulties in assembling reads from more complex communities for 590 example when coexisting viruses share highly similar regions in their genomes, leading to 591 592 higher fragmentation and reduced contig sizes [58].

Lastly, it has been reported that the quality and completeness of virome description is also affected by the bioinformatic analysis used [58-61]. The normalized 10M reads datasets generated in the present study with the 60-viruses community, which are available at https://doi.org/10.57745/T4UYPC, together with the community composition and the complete or near complete reference genomic sequences used here should prove very useful tools to benchmark virome characterization pipelines.

599

- Acknowledgements: The authors wish to thank the INRAE GetPlaGe Platform (GenoToul,
 Toulouse, France) for Illumina sequencing.
- 602 Funding: This study was funded by the European Union through a Horizon 2020 Marie
- 603 Skłodowska-Curie Actions Innovative Training Network (H2020 MSCA- 60 ITN) project
- 604 "INEXTVIR" (GA 813542). The individual sequencing of some of the isolates used in this
- study was performed as part of the EVA-Global project which has received funding from the
- 606 European Union's Horizon 2020 research and innovation programme under grant agreement
- No. 871029. OM is recipient of a PhD fellowship from CIRAD and the ANR (Phytovirus
- 608 project number: ANR-19-CE35-0008-02).
- 609 **Conflict of interest**: The authors declare that they have no conflict of interest.
- 610 Ethical approval: This article does not contain any studies with human participants or animals
- 611 performed by any of the authors.

612 **REFERENCES**

- [1] Zhang YZ, Chen YM, Wang W, Qin XC, Holmes EC (2019). Expanding the RNA
 Virosphere by Unbiased Metagenomics. Annual Review of Virology, *6*, 119–139.
 <u>https://doi.org/10.1146/annurev-virology-092818-015851</u>
- Jian H, Yi Y, Wang J, Hao Y, Zhang M, Wang S, Meng C, Zhang Y, Jing H, Wang Y,
 Xiao X (2021) Diversity and distribution of viruses inhabiting the deepest ocean on Earth.
 ISME J. 15, 3094-3110. https://doi.org/10.1038/s41396-021-00994-y
- [3] Lefeuvre P, Martin DP, Elena SF, Shepherd DN, Roumagnac P, Varsani A (2019)
 Evolution and ecology of plant viruses. Nature Reviews Microbiology 17, 632-644.
 https://doi.10.1038/s41579-019-0232-3
- [4] Maclot F, Candresse T, Filloux D, Malmstrom CM, Roumagnac P, van der Vlugt R,
 Massart S (2020) Illuminating an ecological blackbox: using high throughput sequencing
 to characterize the plant virome across scales. Front. Microbiol. 11, 578064.
 https://doi.org/10.3389/fmicb.2020.578064

- [5] Roux S, Matthijnssens J, Dutilh BE (2019) Metagenomics in Virology. Reference Module
 in Life Sciences. <u>https://doi.org/10.1016/B978-0-12-809633-8.20957-6:B978-0-12-</u>
 809633-8.20957-6
- 629 [6] Greninger AL (2018) A decade of RNA virus metagenomics is (not) enough. Virus
 630 Research 244, 218-229. https://doi.org/10.1016/j.virusres.2017.10.014
- Moubset O, François S, Maclot F, Palanga E, Julian C, Claude L, Fernandez E, Rott P, 631 [7] Daugrois JH, Antoine-Lorquin A, Bernardo P, Blouin AG, Temple C, Kraberger S, 632 Fontenele RS, Harkins GW, Ma Y, Marais A, Candresse T, Chéhida SB, Lefeuvre P, Lett 633 634 JM, Varsani A, Massart S, Ogliastro M, Martin DP, Filloux D, Roumagnac P (2022) 635 Virion-associated nucleic acid-based metagenomics: a decade of advances in molecular 636 characterization of plant viruses. Phytopathology, 112, 2253-2272. 637 https://doi.org/10.1094/PHYTO-03-22-0096-RVW
- [8] Neri U, Wolf YI, Roux S, Camargo AP, Lee B, Kazlauskas D, Chen IM, Ivanova N, Allen 638 LZ, Paez-Espino D, Bryant DA, Bhaya D, Consortium RVD, Krupovic M, Dolja VV, 639 Kyrpides NC, Koonin EV, Gophna U (2022) A five-fold expansion of the global RNA 640 reveals multiple new clades of RNA bacteriophages. 641 virome bioRxiv https://doi.org/10.1016/j.cell.2022.08.023 642
- [9] Shi M, Lin XD, Chen X, Tian JH, Chen LJ, Li K, Wang W, Eden JS, Shen JJ, Liu L,
 Holmes EC, Zhang YZ (2018) The evolutionary history of vertebrate RNA viruses.
 Nature, 556, 197-202. https://doi.org/10.1038/s41586-018-0012-7
- [10] Wren JD, Roossinck MJ, Nelson RS, S2cheets K, Palmer MW, Melcher U (2006) Plant
 virus biodiversity and ecology. PLoS Biol. 4, e80.
 <u>https://doi.org/10.1371/journal.pbio.0040080</u>
- [11] Kobayashi K, Atsumi G, Iwadate Y, Tomita R, Chiba K, Akasaka S, Nishihara M,
 Takahashi H, Yamaoka N, Nishiguchi M, Sekine K (2013) Gentian Kobu-sho-associated
 virus: a tentative, novel double-stranded RNA virus that is relevant to gentian Kobu-sho
 syndrome. J. Gen. Plant Pathol. 79, 56-63. <u>https://doi.org/10.1007/s10327-012-0423-5</u>
- [12] Schönegger D, Marais A, Faure C, Candresse T (2022) A new flavi-like virus identified
 in populations of wild carrots. Arch Virol. 167, 2407-2409. <u>https://doi: 10.1007/s00705-</u>
 022-05544-1

- [13] Roossinck MJ, Martin DP, Roumagnac P (2015) Plant virus metagenomics: advances in
 virus discovery. Phytopathology, 105, 716-727. <u>https://doi.org/10.1094/PHYTO-12-14-</u>
 0356-RVW
- [14] Maree HJ, Fox A, Al Rwahnih M, Boonham N, Candresse T (2018) Application of HTS
 for routine plant virus diagnostics: state of the art and challenges. Front. Plant Sci. 9,
 1082. https://doi.org/10.3389/fpls.2018.01082
- [15] Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004)
 Emerging infectious diseases of plants: pathogen pollution, climate change and
 agrotechnology drivers. Trends Ecol. Evol. 19, 535-544.
 https://doi.org/10.1016/j.tree.2004.07.021
- [16] Candresse T, Marais A, Faure C, Gentit P (2013) Association of Little cherry virus 1 with
 the Shirofugen stunt disease and characterization of the genome of a divergent LChV1
 isolate. Phytopathology 103, 293-298. https://doi.org/10.1094/PHYTO-10-12-0275-R
- [17] Moreno AB, López-Moya JJ (2020) When viruses play team sports: mixed infections in
 plants. Phytopathology, 110, 29-48. <u>https://doi.org/10.1094/PHYTO-07-19-0250-FI</u>
- [18] Malmstrom CM, Melcher U, Bosque-Pérez NA (2011) The expanding field of plant virus
 ecology: historical foundations, knowledge gaps, and research directions. Virus Res. 159,
 84-94. https://doi.org/10.1016/j.virusres.2011.05.010
- [19] Bernardo P, Charles-Dominique T, Barakat M, Ortet P, Fernandez E, Filloux D, Hartnady
 P, Rebelo T A, Cousins SR, Mesleard F, Cohez D, Yavercovski N, Varsani A, Harkins
 GW, Peterschmitt M, Malmstrom CM, Martin DP, Roumagnac P (2018)
 Geometagenomics illuminates the impact of agriculture on the distribution and
 prevalence of plant viruses at the ecosystem scale. ISME J. 12, 173-184.
 https://doi.org/10.1038/ismej.2017.155
- [20] Ma Y, Marais A, Lefebvre M, Faure C, Candresse T (2020) Metagenomic analysis of
 virome cross-talk between cultivated Solanum lycopersicum and wild Solanum nigrum.
 Virology, 540, 38-44. https://doi.org/10.1016/j.virol.2019.11.009
- [21] Ma Y, Fort T, Marais A, Lefebvre M, Theil S, Vacher C, Candresse T (2021) Leafassociated fungal and viral communities of wild plant populations differ between

- cultivated and natural ecosystems. Plant Environ. Interact. 2, 87-99.
 https://doi.org/10.1002/pei3.10043
- [22] Susi H, Laine AL (2021) Agricultural land use disrupts biodiversity mediation of virus
 infections in wild plant populations. New Phytol. 230, 2447-2458.
 https://doi.org/10.1111/nph.17156
- [23] Maachi A, Donaire L, Hernando Y, Aranda MA (2022) Genetic differentiation and
 migration fluxes of viruses from melon crops and crop edge weeds. J. Virol. 96, e0042122. <u>https://doi.org/10.1128/jvi.00421-22</u>
- [24] Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I, Simon R (2009)
 Complete viral genome sequence and discovery of novel viruses by deep sequencing of
 small RNAs: A generic method for diagnosis, discovery and sequencing of viruses.
 Virology, 388, 1-7. <u>https://doi.org/10.1016/j.virol.2009.03.024</u>
- [25] Kashif M, Pietila S, Artola K, Jones RAC, Tugume AK, Mäkinen V, Valkonen JPT
 (2012) Detection of viruses in sweet potato from Honduras and Guatemala augmented by
 deep-sequencing of small RNAs. Plant Dis. 96, 1430-1437.
 https://doi.org/10.1094/PDIS-03-12-0268-RE
- Thapa V, McGlinn DJ, Melcher U, Palmer MW, Roossinck MJ (2015) Determinants of
 taxonomic composition of plant viruses at the Nature Conservancy's Tallgrass Prairie
 Preserve, Oklahoma. Virus Evol. 1, 1-8. https://doi.org/10.1093/ve/vev007
- [27] Villamor DEV, Ho T, Al Rwahnih M, Martin RR, Tzanetakis IE (2019) High throughput
 sequencing for plant virus detection and discovery. Phytopathology, 109, 716-725.
 https://doi.org/ 10.1094/PHYTO-07-18-0257-RVW
- [28] Kutnjak D, Tamisier L, Adams I, Boonham N, Candresse T, Chiumenti M, De Jonghe K, 707 Kreuze JF, Lefebvre M, Silva G, Malapi-Wight M, Margaria P, Mavrič Pleško I, McGreig 708 S, Miozzi L, Remenant B, Reynard JS, Rollin J, Rott M, Schumpp O, Massart S, 709 Haegeman A (2021) A primer on the analysis of high-throughput sequencing data for 710 detection Microorganisms, 9, 841. 711 of plant viruses. https://doi.org/10.3390/microorganisms9040841 712

- [29] Pecman A, Kutnjak D, Gutiérrez-Aguirre I, Adams I, Fox A, Boonham N, Ravnikar M 713 (2017) Next Generation Sequencing for Detection and Discovery of Plant Viruses and 714 1998. 715 Viroids: Comparison of Two Approaches. Front Microbiol. 8. https://doi.org/10.3389/fmicb.2017.01998 716
- [30] Gaafar YZA, Ziebell H (2020) Comparative study on three viral enrichment approaches
 based on RNA extraction for plant virus/viroid detection using high-throughput
 sequencing. PLoS ONE, 15, 1-17. https://doi.org/10.1371/journal.pone.0237951
- [31] Candresse T, Filloux D, Muhire B, Julian C, Galzi S, Fort G, Bernardo P, Daugrois JH,
 Fernandez E, Martin DP, Varsani A, Roumagnac P (2014) Appearances can be deceptive:
 revealing a hidden viral infection with deep sequencing in a plant quarantine context.
 PLoS ONE, 9, e102945. <u>https://doi.org/10.1371/journal.pone.0102945</u>
- [32] Ma Y, Marais A, Lefebvre M, Theil S, Svanella-Dumas L, Faure C, Candresse T (2019)
 Phytovirome analysis of wild plant populations: comparison of double-stranded RNA and
 virion-associated nucleic acids metagenomic approaches. J. Virol. 94, e01462-19.
 https://doi.org/10.1128/jvi.01462-19
- [33] Massart S, Adams I, Al Rwahnih M, Baeyen S, Bilodeau GJ, Blouin A, BoonhamN, 728 Candresse T, Chandellier A, De Jonghe K, Fox A, Gaafar YZA, Gentit P, Haegeman A, 729 Ho W, Hurtado-Gonzales O, Jonkers W, Kreuze J, Kutjnak D, Landa BB, Liu M, Maclot 730 F, Malapi-Wight M, Maree HJ, Martoni F, Mehle N, Minafra A, Mollov D, Moreira AG, 731 Nakhla M, Petter F, Piper AM, Ponchart JP, Rae R, Remenant B, Rivera Y, Rodoni B, 732 733 Botermans M, Roenhorst JW, Rollin J, Saldarelli P, Santala J, Souza-Richards R, Spadaro D, Studholme DJ, Sultmanis S, van der Vlugt R, Tamisier L, Trontin C, Vazquez-Iglesias 734 I, Vicente CSL, van de Vossenberg BTLH, Westenberg M, Wetzel T, Ziebell H, Lebas 735 BSM (2022) Guidelines for the reliable use of high throughput sequencing technologies 736 737 detect pathogens and pests. Peer Comm. J. 2, e62. to plant https://doi.org/10.24072/pcjournal.181 738
- [34] Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of
 a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence
 data on the MiSeq illumina sequencing platform. Appl. Environ. Microbiol. 79, 51125120. <u>https://doi.org/10.1128/AEM.01043-13</u>

[35] Egan CP, Rummel A, Kokkoris V, Klironomos J, Lekberg Y, Hart M (2018) Using mock
 communities of arbuscular mycorrhizal fungi to evaluate fidelity associated with Illumina
 sequencing. Fungal Ecol. 33, 52-64. <u>https://doi.org/10.1016/j.funeco.2018.01.004</u>

[36] Sevim V, Lee J, Egan R, Clum A, Hundley H, Lee J, Everroad RC, Detweiler AM, Bebout
BM, Pett-Ridge J, Göker M, Murray AE, Lindemann SR, Klenk HP, O'Malley R, Zane
M, Cheng JF, Copeland A, Daum C, Woyke T (2019) Shotgun metagenome data of a
defined mock community using Oxford Nanopore, PacBio and Illumina technologies.
Sci. Data, 6, 285. https://doi.org/10.1038/s41597-019-0287-z

- [37] Conceição-Neto N, Zeller M, Lefrère H, De Bruyn P, Beller L, Deboutte W, Yinda CK,
 Lavigne R, Maes P, Ranst M Van, Heylen E, Matthijnssens J (2015) Modular approach
 to customise sample preparation procedures for viral metagenomics: A reproducible
 protocol for virome analysis. Sci. Rep. 5, 1-14. <u>https://doi.org/10.1038/srep16532</u>
- [38] Parras-Moltó M, Rodríguez-Galet A, Suárez-Rodríguez P, López-Bueno A (2018)
 Evaluation of bias induced by viral enrichment and random amplification protocols in
 metagenomic surveys of saliva DNA viruses. Microbiome, 6,1-18.
 https://doi.org/10.1186/s40168-018-0507-3
- [39] Roux S, Solonenko NE, Dang VT, Poulos BT, Schwenck SM, Goldsmith DB, Coleman 759 ML, Breitbart M, Sullivan MB (2016) Towards quantitative viromics for both double-760 J. 4, e2777. 761 stranded and single-stranded DNA viruses. Peer https://doi.org/10.7717/peerj.2777 762
- [40] Gil P, Dupuy V, Koual R, Exbrayat A, Loire E, Fall AG, Gimonneau G, Biteye B, Talla 763 Seck M, Rakotoarivony I, Marie A, Frances B, Lambert G, Reveillaud J, Balenghien T, 764 Garros C, Albina E, Eloit M, Gutierrez S (2021) A library preparation optimized for 765 21, 1788-1807. 766 metagenomics of RNA viruses. Mol. Ecol. Res. https://doi.org/10.1111/1755-0998.13378 767
- [41] Marais A, Faure C, Bergey B, Candresse T (2018) Viral double-stranded RNAs (dsRNAs)
 from Plants: Alternative nucleic acid substrates for high-throughput sequencing. In: Viral
 Metagenomics: Methods in Molecular Biology, Pantaleo V, Chiumenti M (Eds.),
 Humana Press, New York (USA), pp 45-53.

- [42] François S, Filloux D, Fernandez E, Ogliastro M, Roumagnac P (2018) Viral
 metagenomics approaches for high-resolution screening of multiplexed arthropod and
 plant viral communities. In: Viral metagenomics: methods and protocols, Pantaleo V,
 Chiumenti M (Eds), Humana Press, New York (USA), pp 77-95.
- [43] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. (1990) Basic local alignment
 search tool. J Mol Biol. 215 403-410. https://doi: 10.1016/S0022-2836(05)80360-2
- [44] Illumina (2017) Effects of index misassignment on multiplexing and downstream
 analysis. <u>https://www.illumina.com/content/dam/illumina-</u>
 <u>marketing/documents/products/</u> whitepapers/index-hopping-white-paper-770-2017 <u>004.pdf</u>
- [45] van der Valk T, Vezzi F, Ormestad M, Dalén L, Guschanski K (2019) Index hopping on
 the Illumina HiseqX platform and its consequences for ancient DNA studies. Mol. Ecol.
 Resour. 20, 1171-1181 https://doi.org/10.1111/1755-0998.13009
- [46] François S, Filloux D, Frayssinet M, Roumagnac P, Martin DP, Ogliastro M, Froissart R
 (2018) Increase in taxonomic assignment efficiency of viral reads in metagenomic
 studies. Virus Res. 244, 230-234. <u>https://doi.org/10.1016/j.virusres.2017.11.011</u>
- [47] Lefebvre M, Theil S, Ma Y, Candresse T (2019) The VirAnnot pipeline: A resource for
 automated viral diversity estimation and operational taxonomy units assignation for
 virome sequencing data. Phytobiomes J. 3, 256-259. <u>https://doi.org/10.1094/PBIOMES-</u>
 <u>07-19-0037-A</u>
- [48] Ajami NJ, Wong MC, Ross MC, Lloyd RE, Petrosino F (2018). Maximal viral
 information recovery from sequence data using VirMAP. Nat. Comm. 9, 3205.
 https://doi.org/10.1038/s41467-018-05658-8
- [49] Santiago-Rodriguez TM, Hollister EB (2020) Potential applications of human viral
 metagenomics and reference materials: considerations for current and future viruses.
 Appl. Environ. Microbiol. 86, e01794-20. <u>https://doi.org/10.1128/AEM.01794-20</u>
- [50] Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, Poulos BT, Solonenko
 N, Lara E, Poulain J, Pesant S, Kandels-Lewis S, Dimier C, Picheral M, Searson S,
 Cruaud C, Alberti A, Duarte CM, Gasol JM, Vaqué D, Tara Oceans Coordinators, Bork

P, Acinas SG, Wincker P, Sullivan MB (2016) Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature, 537, 689-693. https://doi.org/10.1038/nature19366

- [51] Zablocki O, Michelsen M, Burris M, Solonenko N, Warwick-Dugdale J, Ghosh R, PettRidge J, Sullivan MB, Temperton B (2021) VirION2: A shortand long-read sequencing
 and informatics workflow to study the genomic diversity of viruses in nature. Peer J. 9,
 1-23. <u>https://doi.org/10.7717/peerj.11088</u>
- [52] Filloux D, Dallot S, Delaunay A, Galzi S, Jacquot E, Roumagnac P (2015) Metagenomics
 approaches based on virion-associated nucleic acids (VANA): An innovative tool for
 assessing without a priori viral diversity of plants. Meth. Molec. Biol. 1302, 249-257.
 https://doi.org/10.1007/978-1-4939-2620-6_18
- [53] Teycheney PY, Bandou E, Gomez RM, LangeD, Pavis C, Umber M, Acina Manbole IN,
 Bonheur L, Daugrois JH, Fernandez E, Filloux D, Julian C, Roumagnac P, Grisoni M,
 Pierret A, Rubington M, Candresse T, Contreras S, Faure C, Marais A, Theil S, Da
 Câmara MA, Mendonça D, Pinheiro de Carvalho M (2015). Viral treasure hunt in
 European outermost territories: how metagenomics boosts the discovery of novel viral
 species in tropical and sub-tropical crops germplasm. https://agritrop.cirad.fr/575812/
- Kleiner M, Hooper LV, Duerkop BA (2015) Evaluation of methods to purify virus-like
 particles for metagenomic sequencing of intestinal viromes. BMC Genomics, 16, 7.
 <u>https://doi.org/10.1186/s12864-014-1207-4</u>
- [55] Gallet R, Fabre F, Michalakis Y, Blanc S (2017) The number of target molecules of the
 amplification step limits accuracy and sensitivity in ultradeep-sequencing viral
 population studies. J Virol. 91, e00561-17. <u>https://doi.org/10.1128/JVI.00561-17</u>
- [56] Visser M, Bester R, Burger JT, Maree HJ (2016) Next-generation sequencing for virus
 detection: covering all the bases. Virol J. 13, 85. <u>https://doi.org/10.1186/s12985-016-</u>
 0539-x
- [57] Massart S, Chiumenti M, De Jonghe K, Glover R, Haegeman A, Koloniuk I, Komínek P,
 Kreuze J, Kutnjak D, Lotos L, Maclot F, Maliogka V, Maree HJ, Olivier T, Olmos A,
 Pooggin MM, Reynard JS, Ruiz-García AB, Safarova D, Schneeberger PHH, Sela N,
 Turco S, Vainio EJ, Varallyay E, Verdin E, Westenberg M, Brostaux Y, Candresse T

- (2019) Virus detection by high-throughput sequencing of small RNAs: large-scale
 performance testing of sequence analysis strategies. Phytopathology, 109, 488-497.
 https://doi.org/10.1094/PHYTO-02-18-0067-R
- [58] Roux S, Emerson JB, Eloe-Fadrosh EA, Sullivan MB (2017) Benchmarking viromics: an *in silico* evaluation of metagenome-enabled estimates of viral community composition
 and diversity. Peer J. 5, e3817. https://doi.org/10.7717/peerj.3817
- 837 [59] Breitwieser FP, Lu J, Salzberg SL (2019) A review of methods and databases for
 838 metagenomic classification and assembly. Brief Bioinform. 20, 1125-1136.
 839 <u>https://doi.org/10.1093/bib/bbx120</u>
- [60] Rampelli S, Soverini M, Turroni S, Quercia S, Biagi E, Brigidi P, Candela M (2016)
 ViromeScan: a new tool for metagenomic viral community profiling. BMC Genomics,
- 842 17, 1-9. <u>https://doi.org/10.1186/s12864-016-2446-3</u>
- 843 [61] Sutton TDS, Clooney AG, Ryan FJ, Ross RP, Hill C (2019) Choice of assembly software
 844 has a critical impact on virome characterisation. Microbiome, 7, 1-15.
 845 <u>https://doi.org/10.1186/s40168-019-0626-5</u>

Figures

848

Figure 1. Average proportion of viral reads (DNA and RNA viruses) in VANA (grey) and dsRNA (blue) datasets from viral communities of different complexities (A) and number of viruses detected at an even 120K read depth for communities of different complexities (B). In figure 1B RNA viruses are indicated by solid bars while DNA viruses are indicated by dashed bars.

854

Figure 2: Distribution of percentage of mapped VANA (grey) and dsRNA (blue) reads for each
detected virus in the 60-viruses community using a normalized 1.44 million reads sequencing
depth. The percentages of mapped reads for each virus are shown on a logarithmic scale, from
1,E+00 (100%) to 1,E-07 (0.000001%)

859

Figure 3. Number of detected viruses using VANA (grey) or dsRNA (blue) in the 60-viruses community (over a total of 69 viruses plus 3 satellites) as a function of minimal contig length at a sequencing depth of 10M reads. RNA viruses are indicated by solid bars while DNA viruses are indicated by dashed bars.

Figure 4: Observed percentages of detected viruses in the 60 viruses community as a function
of sequencing depth expressed in million reads per sample and plotted on a logarithmic scale.
VANA results are in grey, dsRNA results in blue. Linear regression curves are shown for RNA
viruses (round dots, thick lines,) as well as considering both RNA and DNA viruses (square
dots, think lines). Linear r² coefficients are shown only for the RNA viruses curves.

Family	Genus	Virus	Acronym	Genome	Code ^a	Host ^b	Sequence accession number(s)
Alphaflexiviridae	Allexivirus	Shallot virus X	ShVX	ssRNA(+)	PV-0622	Chenopodium murale	MW854280
Alphaflexiviridae	Potexvirus	Lettuce virus X	LeVX	ssRNA(+)	PV-0904	Nicotiana benthamiana	MW248356
Benyviridae	Benyvirus	Beet necrotic yellow vein virus	BNYVV	ssRNA(+)	PV-0467	Chenopodium quinoa	OK181765-67; M36896
Betaflexiviridae	Capillovirus	Apple stem grooving virus	ASGV	ssRNA(+)	PV-0199	Chenopodium quinoa	MW582790
Betaflexiviridae	Carlavirus	Poplar mosaic virus	PopMV	ssRNA(+)	PV-0341	Nicotiana benthamiana	ON924213
Betaflexiviridae	Trichovirus	Apple chlorotic leaf spot virus	ACLSV	ssRNA(+)	PV-0998	Chenopodium quinoa	OK340218-19°
Betaflexiviridae	Tepovirus	Potato virus T	PVT	ssRNA(+)	PV-1145	Nicotiana hesperis	MZ405665
Bromoviridae	Alfamovirus	Alfalfa mosaic virus	AMV	ssRNA(+)	PV-0779	Nicotiana tabacum "Samsun nn"	MZ405653-55
Bromoviridae	Anulavirus	Pelargonium zonate spot virus	PZSV	ssRNA(+)	PV-0259	Nicotiana glutinosa "24A"	ON398493-95
Bromoviridae	Bromovirus	Brome mosaic virus	BMV	ssRNA(+)	PV-0194	Hordeum vulgare	MW582787-89
Bromoviridae	Cucumovirus	Peanut stunt virus	PSV	ssRNA(+)	PV-0190	Nicotiana benthamiana	MW307259-61
Bromoviridae	Ilarvirus	Parietaria mottle virus	PMoV	ssRNA(+)	PV-0400	Chenopodium quinoa	MZ405646-48
Closteroviridae	Closterovirus	Beet yellows virus	BYV	ssRNA(+)	PV-1260	Beta macrocarpa	MT815988
Closteroviridae	Crinivirus	Tomato chlorosis virus	ToCV	ssRNA(+)	PV-1242	Solanum lycopersicum	ON398512-13
Potyviridae	Bymovirus	Barley yellow mosaic virus	BaYMV	ssRNA(+)	PV-0634	Hordeum vulgare	OL311692-93
Potyviridae	Ipomovirus	Cucumber vein yellowing virus	CVYV	ssRNA(+)	PV-0776	Cucumis sativus	OK181771
Potyviridae	Potyvirus	Bidens mottle virus	BiMoV	ssRNA(+)	PV-0752	Nicotiana benthamiana	ON398504
Potyviridae	Rymovirus	Agropyron mosaic virus	AgMV	ssRNA(+)	PV-0729	Triticum aestivum	OM471970
Potyviridae	Tritimovirus	Brome streak mosaic virus	BrSMV	ssRNA(+)	PV-0431	Hordeum vulgare	OP357935

Table 1. Viral isolates used to construct mock viral communities of varying complexity. The taxonomic status of the various viruses is indicated, together with their DSMZ catalogue code, their propagation host and the GenBank accession number(s) of their genomic sequence(s).

Potyviridae	Unassigned	Spartina mottle virus	SpMV	ssRNA(+)	PV-0970	Spartina sp.	MN788417
Secoviridae	Cheravirus	Arracacha virus B	AVB	ssRNA(+)	PV-0082	Chenopodium murale	MW582785-86
Secoviridae	Comovirus	Squash mosaic virus	SqMV	ssRNA(+)	PV-0581	Cucurbita pepo	ON398498-99
Secoviridae	Fabavirus	Broad been wilt virus 1	BBWV-1	ssRNA(+)	PV-0067	Chenopodium quinoa	MT663310-11
Secoviridae	Nepovirus	Tomato black ring virus	TBRV	ssRNA(+)	PV-0191	Nicotiana clevelandii	MW057704-05
Secoviridae	Sequivirus	Carrot necrotic dieback virus	CNDV	ssRNA(+)	PV-0976	Nicotiana benthamiana	MW080951
Secoviridae	Stralirivirus	Strawberry latent ringspot virus	SLRSV	ssRNA(+)	PV-0247	Chenopodium quinoa	MZ405640-41
Solemoviridae	Sobemovirus	Rice yellow mottle virus	RYMV	ssRNA(+)	PV-0732	Oryza sativa	MT701719
Solemoviridae	Enamovirus	Pea enation mosaic virus 1	PEMV1	ssRNA (+)	PV-0088	Pisum sativum	MW961146
Solemoviridae	Polerovirus	Cucurbit aphid-borne yellows virus	CABYV	ssRNA(+)	PV-1017	Physalis floridana	MZ202344
Tombusviridae	Alphacarmovirus	Calibrachoa mottle virus	CbMV	ssRNA(+)	PV-0611	Chenopodium quinoa	OK181769
Tombusviridae	Alphanecrovirus	Tobacco necrosis virus A	TNV-A	ssRNA(+)	PV-0186	Chenopodium quinoa	MT675968
Tombusviridae	Aureusvirus	Johnsongrass chlorotic stripe mosaic virus	JCSMV	ssRNA(+)	PV-0605	Zea mays	MT682309
Tombusviridae	Betacarmovirus	Turnip crinkle virus	TCV	ssRNA(+)	PV-0293	Nicotiana benthamiana	OK181761
Tombusviridae	Betanecrovirus	Beet black scorch virus	BBSV	ssRNA(+)	PV-0951	Chenopodium quinoa	OK058516
Tombusviridae	Dianthovirus	Carnation ringspot virus	CRSV	ssRNA(+)	PV-0097	Nicotiana clevelandii	MT682300-01
Tombusviridae	Gammacarmovirus	Melon necrotic spot virus	MNSV	ssRNA(+)	PV-0378	Cucumis sativus	ON398496
Tombusviridae	Machlomovirus	Maize chlorotic mottle virus	MCMV	ssRNA(+)	PV-1087	Zea mays	OK181780
Tombusviridae	Pelarspovirus	Pelargonium line pattern virus	PLPV	ssRNA(+)	PV-0193	Chenopodium quinoa	MW854266
Tombusviridae	Tombusvirus	Tomato bushy stunt virus	TBSV	ssRNA(+)	PV-0268	Nicotiana clevelandii	MW582792
Tombusviridae	Umbravirus	Carrot mottle virus	CMoV	ssRNA(+)	PV-0968	Nicotiana benthamiana	OK058520
Tombusviridae	Umbravirus	Pea enation mosaic virus 2	PEMV2	ssRNA(+)	PV-0088	Pisum sativum	MW961147; MW961148°
Tospoviridae	Orthotospovirus	Impatiens necrotic spot virus	INSV	ssRNA(+/-)	PV-0280	Nicotiana benthamiana	MW582795-97
Tymoviridae	Tymovirus	Turnip yellow mosaic virus	TYMV	ssRNA(+)	PV-0299	Brassica rapa	ON924209

Virgaviridae	Furovirus	Soil-borne wheat mosaic virus	SBWMV	ssRNA(+)	PV-0748	Triticum aestivum	MZ405651-52
Virgaviridae	Hordeivirus	Barley stripe mosaic virus	BSMV	ssRNA(+)	PV-0330	Hordeum vulgare	ON924210-12
Virgaviridae	Pecluvirus	Peanut clump virus	PCV	ssRNA(+)	PV-0291	Nicotiana benthamiana	MW961156-57
Virgaviridae	Pomovirus	Potato mop-top virus	PMTV	ssRNA(+)	PV-0582	Nicotiana benthamiana	ON398500-02
Virgaviridae	Tobamovirus	Paprika mild mottle virus	PaMMV	ssRNA(+)	PV-0606	Nicotiana benthamiana	OK181768
Virgaviridae	Tobravirus	Pea early-browning virus	PEBV	ssRNA(+)	PV-0298	Chenopodium quinoa	MW854268-69
not assigned	Idaeovirus	Raspberry bushy dwarf virus	RBDV	ssRNA(+)	PV-0053	Chenopodium quinoa	MW582777-78
Rhabdoviridae	Cytorhabdovirus	Lettuce necrotic yellows virus	LNYV	ssRNA(-)	PV-0085	Nicotiana glutinosa "24A"	MZ202327
Rhabdoviridae	Varicosavirus	Beet oak leaf virus	BOLV	ssRNA(-)	PV-1034	Spinacia oleracea	OQ975887-88
Rhabdoviridae	Alphanucleorhabd ovirus	Physostegia chlorotic mottle virus	PhCMoV	ssRNA(-)	PV-1182	Nicotiana occidentalis "37B"	KX636164
Rhabdoviridae	Betanucleorhabdo virus	Sonchus yellow net virus	SYNV	ssRNA(-)	PV-0052	Nicotiana clevelandii	MT613317
Aspiviridae	Ophiovirus	Lettuce ring necrosis virus	LRNV	ssRNA(-)	PV-0983	Nicotiana occidentalis "P1"	ON398506-09
Partitiviridae	Alphacryptovirus	Poinsettia latent virus	PnLV	dsRNA	PV-0629	Euphorbia pulcherrima	ON398503
Caulimoviridae	Badnavirus	Banana streak OL virus	BSOLV	dsDNA-RT	PV-0492	<i>Musa</i> sp.	OQ102041
Caulimoviridae	Caulimovirus	Cauliflower mosaic virus	CaMV	dsDNA-RT	PV-0229	Brassica rapa	OP947586
Geminiviridae	Begomovirus	Squash leaf curl virus	SLCV	ssDNA	PV-1299	Cucurbita pepo	MW582809-10
Geminiviridae	Mastrevirus	Maize streak virus	MSV	ssDNA	PV-1103	Zea mays	OQ102042-44
Nanoviridae	Babuvirus	Banana bunchy top virus	BBTV	ssDNA	PV-1166	Musa sp.	OQ102052-57

(a) DSMZ catalogue code

(b) Host in which the virus isolate was propagated and lyophilized

(c) Several variants are present in the propagated sample and accession numbers for the variants are provided

Table 2. Additional viruses identified by analysis of the HTS data in the samples used to assemble the synthetic mock communities of varying complexity.

Family	Genus	Virus	Acronym	Genome type	Reference sequence accession number ^a
Virgaviridae	Tobamovirus	Tobacco mosaic virus	TMV	ssRNA(+)	OQ953825
Tymoviridae	unassigned	Poinsettia mosaic virus	PnMV	ssRNA(+)	OQ953828
Endornaviridae	Alphaendornavirus	Hordeum vulgare endornavirus	HvEV	ssRNA(+)	OQ953829
Solemoviridae	Polerovirus	Turnip yellows virus	TuYV	ssRNA(+)	JQ862472
Geminiviridae	Mastrevirus	Maize streak Réunion virus	MSRV	ssDNA	OQ953826
Totiviridae	unassigned	Maize-associated totivirus	MATV	dsRNA	OQ953827
Totiviridae	unassigned	Maize-associated totivirus 2	MTV-2	dsRNA	MN428829
Mitoviridae	Duamitovirus	Chenopodium quinoa mitovirus 1	CqMV1	ssRNA(+)	MT089917
small linear ssRN	A satellite	Turnip crinkle satellite RNA F	TCVsatRNA F	ssRNA	X12749
small linear ssRN	A satellite	Pea enation mosaic virus satellite RNA	PEMVsatRNA	ssRNA	OQ953831
small linear ssRN	A satellite	Strawberry latent ringspot virus satellite RNA	SLRSVsatRNA	ssRNA	OQ953830

(a) Accession number of the closest sequence in GenBank that was used as reference for reads mapping

Table 3. Comparison of the number and average length of *de novo* assembled viral contigs obtained for VANA and dsRNA datasets normalized at different sequencing depths (100K, 300K, 1M, 3M and 10M reads, five resampling repeats at each depth). The standard deviations (SD) and the statistical differences (p-values) are also shown

		VANA average +/- SD	dsRNA average +/- SD	Two sample t-test
100 K	nb viral contigs	33.6 +/- 1.9	101.8 +/- 2.9	9.2E-11
reads	Viral contigs average length	733.4 +/- 23.7	747.4 +/- 17.1	0.32
300K	nb viral contigs	70.2 +/- 5.4	129.4 +/- 8.1	8.0E-07
reads	Viral contigs average length	643.4 +/- 27.8	887.8 +/- 38.2	2.8E-06
1M	nb viral contigs	106.2 +/- 6.3	159.2 +/- 6.6	1.1E-06
reads	Viral contigs average length	694.8 +/- 30.3	1019.6 +/- 40.9	5.7E-07
3M	nb viral contigs	129.6 +/- 4.8	207.6 +/- 3.8	2.5E-09
3M reads	Viral contigs average length	798.4 +/- 15.9	1067.6 +/- 11.5	1.4E-09
10M	nb viral contigs	201.2 +/- 4.1	268 +/- 2.9	1.8E-09
10M reads	Viral contigs average length	791.2 +/- 11.1	1121.4 +/- 10.6	3.9E-11

Table 4.	Performance para	ameters of	de novo	assembly 1	using	different	minimal	contigs	length	of normalized	l, 10M	reads,	VANA	and	dsRNA
datasets f	for the 60-viruses	synthetic c	ommunit	у.											

					Ν	linimal co	ontig lengt	h				
	125	5 nt	175 nt		250 nt		350 nt		500 nt		1000 nt	
	VANA	dsRNA	VANA	dsRNA	VANA	dsRNA	VANA	dsRNA	VANA	dsRNA	VANA	dsRNA
nb contigs	1947	2212	416	784	220	437	144	276	86	182	37	88
average length	235	324	506	607	757	907	985	1243	1355	1662	2191	2696
N25	547	1764	1836	3642	2334	4007	2560	4060	3449	4505	3824	5671
N50	206	352	628	1005	994	1521	1277	1955	1709	2775	2277	3705
N75	156	191	313	352	481	558	618	773	888	1117	1653	1782
Max	6549	13919	6652	13919	6652	13919	6549	13919	6652	13919	6652	13919
nb viral contigs	1852	1672	378	468	204	269	137	181	84	131	37	75
% viral contigs	95%	76%	91%	60%	93%	62%	95%	66%	98%	72%	100%	85%
Viral contigs average length	235	327	525	741	783	1123	1008	1508	1368	1921	2191	2833
Bases in viral contigs	435421	547507	198486	347003	159827	302074	138102	272883	114951	251656	81077	212467
% bases in viral contigs	95.20%	76.40%	94.40%	72.90%	96.00%	76.20%	97.40%	79.50%	98.60%	83.20%	100%	89.50%

Table 5. Detection performance of VANA, dsRNA and RNASeq methods at the level of individual viral genomic molecules (from a total of 115 viral molecules) using the most complex, 60-virus pool, for groups of viruses with different genome types at 10M reads sequencing depth.

	# viral molecules	VANA		dsl	RNA	RNASeq		
		# detected	% detected	# detected	% detected	# detected	% detected	
+ssRNA viruses	86	50	58.1%	77	89.5%	81	96.,3%	
-ssRNA viruses	12	1	8.3%	5	41.7%	12	100%	
RNA satellites	3	1	33.3%	3	100%	2	66.,6%	
dsRNA viruses	2	0	0%	2	100%	0	0,0%	
ssDNA viruses	10	4	40.0%	0	0%	4	40.0%	
dsDNA viruses	2	1	50.0%	1	50.0%	1	50.0%	
Total	115	57	49.6%	88	76.5%	100	87.,7%	

Supplementary Figures

Supplementary Figure S1: Pooling strategy to generate mock virus communities with different degrees of complexity (5, 10, 20, and 60-viruses communities).

Supplementary Figure S2: Percent coverage of detected viral molecules using the VANA or the dsRNA approaches as a function of minimal contig length.

Supplementary Figure S3: Number of detected RNA viruses based on *de novo* assembled contigs from the VANA or the dsRNA approaches for datasets normalized at a 120K reads sequencing depth and for viral communities with different degrees of complexity.

Supplementary Figure S4: Number of detected RNA viruses for viral communities with different degrees of complexity using *de novo* assembled contigs from the VANA or the dsRNA approaches derived from datasets normalized so as to compensate for community complexity (120K reads for 5 viruses communities, 240K for 10 viruses, 480K for 20 viruses and 1.44M for 60 viruses).

Supplementary Figure S5: Average proportion of the length of viral molecules represented by contigs obtained for the VANA or the dsRNA approaches as a function of sequencing depth. For each sequencing depth 5 independent random resamplings were performed and error bars represent the standard deviations of the coverage obtained.

Supplementary Tables

Supplementary Table S1. Pooling strategy to generate the various pools of variable complexity (from 5 to 60 viruses in a pool).

Supplementary Table S2. Comparison of *de novo* assembly parameters for VANA and dsRNA datasets normalized at different sequencing depths (100K, 300K, 1M, 3M and 10M reads, 5 resampling repeats at each depth) and corresponding statistical significance.

Supplementary Figure S1: Pooling strategy to generate mock virus communities with different degrees of complexity (5, 10, 20, and 60-viruses communities)

Supplementary Figure S2: Percent coverage of detected viral molecules as a function of minimal contig length for the VANA (light grey) or the dsRNA (dark grey) approaches on the 60 viruses community at a 10 millions reads sequencing depth

Supplementary Figure S3: Number of detected viruses based on *de novo* assembled contigs from the VANA (light grey) or the dsRNA (dark grey) approaches for datasets normalized at a 120K reads sequencing depth and for viral communities with different degrees of complexity. RNA viruses are indicated by solid bars while DNA viruses are indicated by dashed bars.

Supplementary Figure S4: Number of detected viruses for viral communities with different degrees of complexity using *de novo* assembled contigs from the VANA (light grey) or the dsRNA (dark grey) approaches. Datasets were normalized so as to compensate for community complexity (120K reads for 5 viruses communities, 240K for 10 viruses, 480K for 20 viruses and 1.44M for 60 viruses). RNA viruses are indicated by solid bars while DNA viruses are indicated by dashed bars.

Supplementary Figure S5: Average proportion of the length of detected viral molecules of the 60 viruses community represented by contigs obtained for the VANA (light grey) or the dsRNA (dark grey) approaches at different sequencing depth. For each sequencing depth 5 independent random resamplings were performed and error bars represent the standard deviations of the coverage obtained

60 viruses pool	20 viruses pools	10 viruses pools	5 viruses pools	Family	Genus
				Bromoviridae	Alfamovirus
				Alphaflexiviridae	Allexivirus
			P5-1	Tombusviridae	Alphacarmovirus
				Partitiviridae	Alphacryptovirus
		D10 1		Benyviridae	Benyvirus
		F 10-1		Tombusviridae	Alphanecrovirus
				Bromoviridae	Anulavirus
			P5-2	Potyviridae	Bymovirus
				Caulimoviridae	Badnavirus
	P20-1			Betaflexiviridae	Capillovirus
	1201			Tombusviridae	Betacarmovirus
				Geminiviridae	Begomovirus
			P5-3	Betaflexiviridae	Carlavirus
				Bromoviridae	Bromovirus
		P10-2		Secoviridae	Cheravirus
		1102	P5-4	Nanoviridae	Babuvirus
				Tombusviridae	Aureusvirus
				Closteroviridae	Closterovirus
				Secoviridae	Comovirus
				Solemoviridae/Luteoviridae	Enamovirus/Umbravirus
				Tombusviridae	Betanecrovirus
				Caulimoviridae	Caulimovirus
			P5-5	Closteroviridae	Crinivirus
				Bromoviridae	Cucumovirus
		P10-3		Virgaviridae	Furovirus
		F 10-5		Rhabdoviridae	Cytorhabdovirus
				Tombusviridae	Dianthovirus
			P5-6	Secoviridae	Fabavirus
				Not assigned	Idaeovirus
PEO	₽ 20_2			Virgaviridae	Hordeivirus
FUU	F 20-2			Tombusviridae	Gammacarmovirus
				Bromoviridae	llarvirus
			P5-7	Potyviridae	Ipomovirus
				Rhabdoviridae	Varicosavirus
		P10-4		Tombusviridae	Machlomovirus
		1 10 4		Geminiviridae	Mastrevirus
			P5-8	Secoviridae	Nepovirus
				Luteoviridae	Polerovirus
				Virgaviridae	Pomovirus
				Betaflexiviridae	Trichovirus
				Virgaviridae	Pecluvirus
				Tombusviridae	Pelarspovirus
			P5-9	Alphaflexiviridae	Potexvirus
				Potyviridae	Potyvirus
		P10-5		Rhabdoviridae	Alphanucleorhabdovirus
				Rhabdoviridae	Betanucleorhabdovirus
				Potyviridae	Rymovirus
			P5-10	Secoviridae	Sequivirus
				Solemoviridae	Sobemovirus
	P20-3			Betaflexiviridae	Tepovirus
	0 0			Aspiviridae	Ophiovirus
				Virgaviridae	Tobravirus
			P5-11	Tombusviridae	Tombusvirus
				Potyviridae	Tritimovirus
		P10-6		Tymoviridae	Tymovirus
		. 10 0		Virgaviridae	Tobamovirus
				Secoviridae	unassigned
			P5-12	Tombusviridae	Umbravirus
				Potyviridae	unassigned
				Tospoviridae	Orthotospovirus

s in a pool)

Virus species	Genome type
Alfalfa mosaic virus	ssRNA(+)
Shallot virus X	ssRNA(+)
Calibrachoa mottle Virus	ssRNA(+)
Poinsettia latent virus	dsRNA
Beet necrotic yellow vein virus	ssRNA(+)
Tobacco necrosis virus A	ssRNA(+)
Pelargonium zonate spot virus	ssRNA(+)
Barley yellow mosaic virus	ssRNA(+)
Banana streak OL virus	dsDNA-RT
Apple stem grooving virus	ssRNA(+)
Turnip crinkle virus	ssRNA(+)
Squash leaf curl virus	ssDNA
Poplar mosaic virus	ssRNA(+)
Brome mosaic virus	ssRNA(+)
Arracacha virus B	ssRNA(+)
Banana bunchy top virus	ssDNA
Johnsongrass chlorotic stripe mosaic virus	ssRNA(+)
Beet yellows virus	ssRNA(+)
Squash mosaic virus	ssRNA(+)
Pea enation mosaic virus 1 and 2	ssRNA(+)
Beet black scorch virus	ssRNA(+)
Cauliflower mosaic virus	dsDNA-RT
Tomato chlorosis virus	ssRNA(+)
Peanut stunt virus	ssRNA(+)
Soil-borne wheat mosaic virus	ssRNA(+)
Lettuce necrotic vellows virus	ssRNA(-)
Carnation ringspot virus	ssRNA(+)
Broad been wilt virus 1	ssRNA(+)
Raspberry bushy dwarf virus	ssRNA(+)
Barley stripe mosaic virus	ssRNA(+)
Melon necrotic spot virus	ssRNA(+)
Parietaria mottle virus	ssRNA(+)
Cucumber vein yellowing virus	ssRNA(+)
Beet oak leaf virus	ssRNA(-)
Maize chlorotic mottle virus	ssRNA(+)
Maize streak virus	ssDNA
Tomato black ring virus	ssRNA(+)
Cucurbit aphid-borne vellows virus	ssRNA(+)
Potato mop-top virus	ssRNA(+)
Apple chlorotic leaf spot virus	ssRNA(+)
Peanut clump virus	ssRNA(+)
Pelaraonium line pattern virus	ssRNA(+)
Lettuce virus X	ssRNA(+)
Bidens mottle virus	ssRNA(+)
Physostegia chlorotic mottle virus	ssRNA(-)
Sonchus vellow net virus	ssRNA(-)
Aaropyron mosaic virus	ssRNA(+)
Carrot necrotic dieback virus	ssRNA(+)
Rice vellow mottle virus	ssRNA(+)
Potato virus T	ssRNA(+)
Lettuce ring necrosis virus	ssRNA(-)
Pea early-browning virus	ssRNA(+)
Tomato bushv stunt virus	ssRNA(+)
Brome streak mosaic virus	ssRNA(+)
Turnin vellow mosaic virus	ssRNA(+)
Paprika mild mottle virus	ssRNA(+)
Strawberry latent ringsnot virus	ssRNA(+)
Carrot mottle virus	ssRNA(+)
Sparting mottle virus	ssRNA(+)
Impatiens necrotic spot virus	ssRNA(+/-)-

Supplementary Table S2. Comparison of *de novo* assembly parameters for VANA and dsRNA datasets normalized at different sequencing depths (100K, 300K, 1M, 3M and 10M reads, 5 resamplings at each depth) and corresponding statistical significance.

		VANA average +/- SD	dsRNA average +/- SD	Two sample t-test
	nb contigs	33.6 +/- 1.9	103.2 +/- 2.4	2.6E-11
	average length	733.4 +/- 23.7	741.8 +/- 14.9	0.52
	N50	839.2 +/- 104.8	937.2 +/- 34.1	0.10
100K reads	Max length	5886.2 +/- 442.4	5277.2 +/- 577.9	0.10
	nb viral contigs	33.6 +/- 1.9	101.8 +/- 2.9	9.2E-11
	% viral contigs	100% +/- 0%	99% +/- 1%	2.5E-02
	Viral contigs average length	733.4 +/- 23.7	747.4 +/- 17.1	0.32
	nb contigs	70.6 +/- 6.1	140.4 +/- 8.9	5.1E-07
	average length	642.4 +/- 30.0	849.4 +/- 35.3	8.5E-06
	N50	681.2 +/- 93.1	1102.4 +/- 104.5	1.5E-04
300K reads	Max length	6260 +/-213.1	7581.6 +/- 3875.5	0.49
	nb viral contigs	70.2 +/- 5.4	129.4 +/- 8.1	8.0E-07
	% viral contigs	100% +/- 1%	92% +/- 2%	7.7E-05
	Viral contigs average length	643.4 +/- 27.8	887.8 +/- 38.2	2.8E-06
	nb contigs	108.2 +/- 6.1	198.4 +/- 7.8	3.5E-08
	average length	687.6 +/- 28.1	915.4 +/- 35.4	3.5E-06
	N50	767 +/- 74.9	1556.4 +/- 178.3	2.6E-04
1M reads	Max length	6491 +/- 79.4	10382.6 +/- 1825.7	8.9E-03
	nb viral contigs	106.2 +/- 6.3	159.2 +/- 6.6	1.1E-06
	% viral contigs	98% +/- 1%	80% +/- 2%	8.3E-08
	Viral contigs average length	694.8 +/- 30.3	1019.6 +/- 40.9	5.7E-07
	nb contigs	134.2 +/- 3.4	284 +/- 8.2	2.5E-07
	average length	783.4 +/- 10.1	931 +/- 16.6	1.5E-07
	N50	1016.6 +/- 73.5	1599.4 +/- 214.1	4.3E-04
3M reads	Max length	6540 +/- 3.4	11573.4 +/- 2359.2	8.8E-03
	nb viral contigs	129.6 +/- 4.8	207.6 +/- 3.8	2.5E-09
	% viral contigs	97% +/- 1%	73% +/- 1%	1.0E-09
	Viral contigs average length	798.4 +/- 15.9	1067.6 +/- 11.5	1.4E-09
	nb contigs	217 +/- 4.4	433.8 +/- 4.4	8.2E-13
	average length	764.6 +/- 10.5	907.2 +/- 7.7	8.2E-09
	N50	1025.4 +/- 31.2	1529.6 +/- 21.7	1.8E-09
10M reads	Max length	6534.4 +/- 210.2	13930.4 +/- 24.9	1.6E-07
	nb viral contigs	201.2 +/- 4.1	268 +/- 2.9	1.8E-09
	% viral contigs	93% +/- 0%	62% +/- 1%	2.2E-13
	Viral contigs average length	791.2 +/- 11.1	1121.4 +/- 10.6	3.9E-11